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Design of Permanent Magnets to Avoid Chaos
in Doubly Salient PM Machines
Y. Gao, Student Member, IEEE, and K. T. Chau, Senior Member, IEEE

Abstract—This paper analyzes the effect of permanent magnets
(PMs) on the formation of chaos in doubly salient PM (DSPM)
machines. Based on the newly derived nonlinear system dynam-
ical equation, the corresponding Poincaré map and bifurcation di-
agram show that the sizing of PMs significantly affects the stability
of DSPM machines. Chaos may be resulted if the PMs are not prop-
erly designed. Both computer simulations and experimental results
are provided to support the theoretical derivation.

Index Terms—Bifurcation, chaos, doubly salient, permanent
magnet (PM), Poincaré map.

I. INTRODUCTION

RECENTLY, a new class of brushless machines, termed the
doubly salient permanent magnet (DSPM) machine, has

been introduced [1]–[3]. The DSPM machine incorporates the
merits of both the PM brushless machine and the switched reluc-
tance (SR) machine. Namely, the PMs are located in the stator so
that the problems of irreversible demagnetization and mechan-
ical instability can be solved, while the rotor is the same as that
of the SR machine so that the advantages of simple configura-
tion and mechanical robustness can be retained. However, this
machine still suffers from torque ripples and possible formation
of chaos. Those torque ripples can be alleviated by adopting
rotor skewing [3], whereas the investigation of its chaotic be-
havior is not yet explored.

Recent investigations have revealed that chaos occurs in the
dc machine [4], induction machine [5], brushless dc machine
[6], SR machine [7] and PM synchronous machine [8]. Partic-
ularly, the effect of PMs on the formation of chaos in the PM
synchronous machine was analyzed in [8]. However, this anal-
ysis is ill-suited to the DSPM machine that is directly connected
to the power system.

This paper first analyzes the relationship between the sizing
of PMs and the formation of chaos in DSPM machines. A
practical three-phase 12/8-pole DSPM machine with a skewed
rotor structure is used for exemplification. With the use of rotor
skewing, the air-gap flux is sinusoidally distributed so that
vector control can be employed for high-performance opera-
tion. In Section II, a nonlinear system dynamical equation will
be derived. Then, Poincaré mapping and bifurcation analysis
will be conducted in Section III. Hence, the formation of chaos
with respect to the PM flux will be presented in Section IV.
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Fig. 1. Three-phase 12/8-pole DSPM machine configuration.

II. SYSTEM DYNAMICS

Fig. 1 shows a three-phase 12/8-pole DSPM machine, which
consists of three-phase concentrated windings in the stator, 12
salient poles in the stator, and eight salient poles in the rotor.
Its PMs are located in the stator, and there are no windings or
PMs in the rotor. With rotor skewing, the PM flux with respect
to phases , , and can be approximated as

(1)

where is the average PM flux, is its amplitude of varia-
tions, and is the spatial angle with the reference at the aligned
position of phase . Thus, after neglecting magnetic saturation,
the self- and mutual inductances of the stator can be written as

(2)

(3)

where , , and and
are the inductances at the aligned and unaligned positions,

respectively. Hence, the system voltage equation is given by

(4)
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where represents the operator , is the stator resistance,
is the number of pole pairs, and is the rotor speed.

Applying the well-known Park’s transformation to (4), the
three-phase DSPM machine with rotor skewing can be modeled
in frame as given by

(5)
where , are the stator currents, , are the stator volt-
ages, , are the stator inductances, is the mechanical
driving torque, is the rotor inertia, and is the viscosity
friction coefficient.

When the DSPM machine is connected to a power system
where the frequency is and the phase voltage amplitude is ,
the corresponding , can be expressed as

(6)

where is the initial phase angle difference. Substituting (6)
into (5), the system dynamical equation can be written as

(7)

III. POINCARÉ MAP AND BIFURCATION

Poincaré mapping is an effective method that functions to re-
place the solution of a continuous-time dynamical system by
an iterative map. It acts like a stroboscope which produces a
sequence of samples of the continuous-time solution. Thus, the
steady-state behavior of the Poincaré map, termed the orbit, cor-
responds to the steady-state waveform of the continuous-time
dynamical system.

For a nonautonomous system as described by (7), a natural
way to construct the Poincaré map is to sample the trajectory
with the power system frequency . Hence, the Poincaré surface

is defined as

(8)

where is the solution of the state vector. The
trajectory of repeatedly passes the surface for every pe-
riod (namely, the period of the power system). The sequence
of surface crossings, so-called the orbit, defines the Poincaré
map as given by

P P (9)

where and are the th and th samples of ,
respectively.

For a chaotic system, it is essential to know the formation of
chaos due to the variation in system parameters. As a parameter

TABLE I
MACHINE PARAMETERS

Fig. 2. Measured back EMF waveform at the rated speed 1500 r/min.

is varied, a bifurcation is an abrupt change in the steady-state
behavior of the system. A plot of the steady-state orbit against a
bifurcation parameter is termed a bifurcation diagram. Thus, the
bifurcation analysis facilitates the appraisal of the steady-state
system behavior at a glance.

IV. PM SIZING AND CHAOS

It is anticipated that there are different system parameters
affecting the stability and hence the formation of chaos. In this
paper, the PM sizing and hence the PM flux is particularly
interested.

A practical three-phase 12/8-pole DSPM machine with rotor
skewing is used for experimentation. Its parameters are listed
in Table I. Fig. 2 shows the measured back EMF waveform of
the machine at the rated speed of 1500 r/min, and a pure sinu-
soidal waveform produced by a signal generator. Obviously, the
EMF waveform is very close to be sinusoidal, indicating that the
approximation for (1) is valid.

In order to experimentally verify the above derivation,
the DSPM machine purposely operates at the conditions of

Hz, V, and . When selecting
as the bifurcation parameter, the corresponding bifurcation

diagram of the rotor speed is shown in Fig. 3. It illustrates that
there exists a critical value of for stable operation. Beyond
this critical value, the DSPM machine will exhibit chaotic
behaviors, namely random-like but bounded oscillations. As
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Fig. 3. Rotor speed bifurcation diagram via  .

shown in Table I, the of the adopted machine is 0.1432
Wb, which is beyond the critical value of 0.1411 Wb for
the above operating conditions. Thus, the machine purposely
operates at chaos. Fig. 4 shows the measured chaotic behaviors,
including the time-domain waveforms of , , and , as
well as the trajectories on the , , and
planes. It can be found that the waveforms offer the typical
chaotic properties, namely random-like and bounded, while the
trajectories resemble a double-scroll, especially on the
plane. Therefore, the adopted DSPM machine exhibits chaotic
behaviors at the above operating conditions, namely at reduced
frequency, reduced voltage, zero phase difference, and zero
driving torque, which can occur in a practical world.

Based on the above finding, the designer for DSPM machines
should not only size the PMs for the sake of torque production,
but also take into account the critical value of PM flux to avoid
the formation of chaos.

V. CONCLUSION

This paper has analyzed the effect of PMs on the formation
of chaos in DSPM machines. The key is to derive the critical
value of PM flux using the Poincaré map and bifurcation dia-
gram. Beyond this critical value, bifurcation and hence chaos
are resulted. A practical three-phase 12/8-pole DSPM machine
with rotor skewing has been employed for exemplification. The
measured results, including both chaotic waveforms and trajec-
tories, have verified the theoretical derivation, and confirmed
the importance of this analysis.

Fig. 4. Measured chaotic waveforms and trajectories. (a) i . (b) i . (c) ! .
(d) i � i plane. (e) i � ! plane. (f) i � ! plane.
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