27 research outputs found

    Experience-Related Differences on Attentional Control in Cognitive Ageing: An Investigation of Bilingualism Effects on Flanker Conflicts in TFRs

    Get PDF
    Bilingualism has been argued to help maintain cognitive functioning in ageing by contributing to the cognitive reserve, the brain’s functional adaptability and resilience against cognitive decline. Within this, the constant engagement with bilingual mechanisms to monitor multiple languages arguably leads to neurocognitive adaptations of attentional systems. Examining bilingual experience as a spectrum, and how these potentially link to variable individual outcomes in cognitive ageing remains understudied. Therefore, this study investigates the effect of individual differences in bilingual experiences on neurocognition in middle-aged adults and seniors. In the study, a non-linguistic flanker task was implemented while measures of both indices of brain activity through EEG and behavioral data were collected. In looking at the relation between differences in bilingual experiences and ageing, the study found that more balanced bilinguals were able to maintain their reliance on alpha activity in ageing, associated to the efficiency of attentional resources to focus on task relevant stimuli. Furthermore, the study found indications of a post stimulus increase in theta power related to cognitive control recruitment. The behavioral findings however, showed the opposite pattern as to what was expected, as subjects with more engagement in bilingual experiences showed a bigger effect of age on flanker task reaction times. Overall, these findings indicate that individual differences in bilingual experiences have a modulatory effect on neurocognition in ageing, potentially leading to better maintained cognitive functioning in cognitive decline

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF

    A Survey of User Interfaces for Robot Teleoperation

    Get PDF
    Robots are used today to accomplish many tasks in society, be it in industry, at home, or as helping tools on tragic incidents. The human-robot systems currently developed span a broad variety of applications and are typically very different from one another. The interaction techniques designed for each system are also very different, although some effort has been directed in defining common properties and strategies for guiding human-robot interaction (HRI) development. This work aims to present the state-of-the-art in teleoperation interaction techniques between robots and their users. By presenting potentially useful design models and motivating discussions on topics to which the research community has been paying little attention lately, we also suggest solutions to some of the design and operational problems being faced in this area

    A reactive architecture for cloud-based system engineering

    Get PDF
    PhD ThesisSoftware system engineering is increasingly practised over globally distributed locations. Such a practise is termed as Global Software Development (GSD). GSD has become a business necessity mainly because of the scarcity of resources, cost, and the need to locate development closer to the customers. GSD is highly dependent on requirements management, but system requirements continuously change. Poorly managed change in requirements affects the overall cost, schedule and quality of GSD projects. It is particularly challenging to manage and trace such changes, and hence we require a rigorous requirement change management (RCM) process. RCM is not trivial in collocated software development; and with the presence of geographical, cultural, social and temporal factors, it makes RCM profoundly difficult for GSD. Existing RCM methods do not take into consideration these issues faced in GSD. Considering the state-of-the-art in RCM, design and analysis of architecture, and cloud accountability, this work contributes: 1. an alternative and novel mechanism for effective information and knowledge-sharing towards RCM and traceability. 2. a novel methodology for the design and analysis of small-to-medium size cloud-based systems, with a particular focus on the trade-off of quality attributes. 3. a dependable framework that facilitates the RCM and traceability method for cloud-based system engineering. 4. a novel methodology for assuring cloud accountability in terms of dependability. 5. a cloud-based framework to facilitate the cloud accountability methodology. The results show a traceable RCM linkage between system engineering processes and stakeholder requirements for cloud-based GSD projects, which is better than existing approaches. Also, the results show an improved dependability assurance of systems interfacing with the unpredictable cloud environment. We reach the conclusion that RCM with a clear focus on traceability, which is then facilitated by a dependable framework, improves the chance of developing a cloud-based GSD project successfully

    Modern Developments in Transcranial Magnetic Stimulation (TMS) – Applications and Perspectives in Clinical Neuroscience

    Get PDF
    Transcranial magnetic stimulation (TMS) is being increasingly used in neuroscience and clinics. Modern advances include but are not limited to the combination of TMS with precise neuronavigation as well as the integration of TMS into a multimodal environment, e.g., by guiding the TMS application using complementary techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI), or magnetoencephalography (MEG). Furthermore, the impact of stimulation can be identified and characterized by such multimodal approaches, helping to shed light on the basic neurophysiology and TMS effects in the human brain. Against this background, the aim of this Special Issue was to explore advancements in the field of TMS considering both investigations in healthy subjects as well as patients

    Irreversible Noise: The Rationalisation of Randomness and the Fetishisation of Indeterminacy

    Get PDF
    This thesis aims to elaborate the theoretical and practical significance of the concept of noise with regard to current debates concerning realism, materialism, and rationality. The scientific conception of noise follows from the developments of thermodynamics, information theory, cybernetics, and dynamic systems theory; hence its qualification as irreversible. It is argued that this conceptualization of noise is entangled in several polemics that cross the arts and sciences, and that it is crucial to an understanding of their contemporary condition. This thesis draws on contemporary scientific theories to argue that randomness is an intrinsic functional aspect at all levels of complex dynamic systems, including higher cognition and reason. However, taking randomness or noise as given, or failing to distinguish between different descriptive levels, has led to misunderstanding and ideology. After surveying the scientific and philosophical context, the practical understanding of randomness in terms of probability theory is elaborated through a history of its development in the field of economics, where its idealization has had its most pernicious effects. Moving from the suppression of noise in economics to its glorification in aesthetics, the experience of noise in the sonic sense is first given a naturalistic neuro-phenomenological explanation. Finally, the theoretical tools developed over the course of the inquiry are applied to the use of noise in music. The rational explanation of randomness in various specified contexts, and the active manipulation of probability that this enables, is opposed to the political and aesthetic tendencies to fetishize indeterminacy. This multi-level account of constrained randomness contributes to the debate by demystifying noise, showing it to be an intrinsic and functionally necessary condition of reason and consequently of freedom

    The Game Situation:An object-based game analysis framework

    Get PDF

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Dynamic Vehicular Routing in Urban Environments

    Get PDF
    Traffic congestion is a persistent issue that most of the people living in a city have to face every day. Traffic density is constantly increasing and, in many metropolitan areas, the road network has reached its limits and cannot easily be extended to meet the growing traffic demand. Intelligent Transportation System (ITS) is a world wide trend in traffic monitoring that uses technology and infrastructure improvements in advanced communication and sensors to tackle transportation issues such as mobility efficiency, safety, and traffic congestion. The purpose of ITS is to take advantage of all available technologies to improve every aspect of mobility and traffic. Our focus in this thesis is to use these advancements in technology and infrastructure to mitigate traffic congestion. We discuss the state of the art in traffic flow optimization methods, their limitations, and the benefits of a new point of view. The traffic monitoring mechanism that we propose uses vehicular telecommunication to gather the traffic information that is fundamental to the creation of a consistent overview of the traffic situation, to provision real-time information to drivers, and to optimizing their routes. In order to study the impact of dynamic rerouting on the traffic congestion experienced in the urban environment, we need a reliable representation of the traffic situation. In this thesis, traffic flow theory, together with mobility models and propagation models, are the basis to providing a simulation environment capable of providing a realistic and interactive urban mobility, which is used to test and validate our solution for mitigating traffic congestion. The topology of the urban environment plays a fundamental role in traffic optimization, not only in terms of mobility patterns, but also in the connectivity and infrastructure available. Given the complexity of the problem, we start by defining the main parameters we want to optimize, and the user interaction required, in order to achieve the goal. We aim to optimize the travel time from origin to destination with a selfish approach, focusing on each driver. We then evaluated constraints and added values of the proposed optimization, providing a preliminary study on its impact on a simple scenario. Our evaluation is made in a best-case scenario using complete information, then in a more realistic scenario with partial information on the global traffic situation, where connectivity and coverage play a major role. The lack of a general-purpose, freely-available, realistic and dependable scenario for Vehicular Ad Hoc Networks (VANETs) creates many problems in the research community in providing and comparing realistic results. To address these issues, we implemented a synthetic traffic scenario, based on a real city, to evaluate dynamic routing in a realistic urban environment. The Luxembourg SUMO Traffic (LuST) Scenario is based on the mobility derived from the City of Luxembourg. The scenario is built for the Simulator of Urban MObiltiy (SUMO) and it is compatible with Vehicles in Network Simulation (VEINS) and Objective Modular Network Testbed in C++ (OMNet++), allowing it to be used in VANET simulations. In this thesis we present a selfish traffic optimization approach based on dynamic rerouting, able to mitigate the impact of traffic congestion in urban environments on a global scale. The general-purpose traffic scenario built to validate our results is already being used by the research community, and is freely-available under the MIT licence, and is hosted on GitHub

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings
    corecore