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Abstract

Software system engineering is increasingly practised over globally dis-

tributed locations. Such a practise is termed as Global Software Develop-

ment (GSD). GSD has become a business necessity mainly because of the

scarcity of resources, cost, and the need to locate development closer to

the customers. GSD is highly dependent on requirements management,

but system requirements continuously change. Poorly managed change in

requirements affects the overall cost, schedule and quality of GSD projects.

It is particularly challenging to manage and trace such changes, and hence

we require a rigorous requirement change management (RCM) process.

RCM is not trivial in collocated software development; and with the pres-

ence of geographical, cultural, social and temporal factors, it makes RCM

profoundly difficult for GSD. Existing RCM methods do not take into

consideration these issues faced in GSD. Considering the state-of-the-art

in RCM, design and analysis of architecture, and cloud accountability,

this work contributes:

1. an alternative and novel mechanism for effective information and

knowledge-sharing towards RCM and traceability.

2. a novel methodology for the design and analysis of small-to-medium

size cloud-based systems, with a particular focus on the trade-off of

quality attributes.

3. a dependable framework that facilitates the RCM and traceability

method for cloud-based system engineering.

4. a novel methodology for assuring cloud accountability in terms of

dependability.

5. a cloud-based framework to facilitate the cloud accountability method-

ology.



The results show a traceable RCM linkage between system engineering

processes and stakeholder requirements for cloud-based GSD projects,

which is better than existing approaches. Also, the results show an im-

proved dependability assurance of systems interfacing with the unpre-

dictable cloud environment. We reach the conclusion that RCM with

a clear focus on traceability, which is then facilitated by a dependable

framework, improves the chance of developing a cloud-based GSD project

successfully.
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Chapter 1

Introduction

This chapter initially describes the motivations behind the thesis and the main topics

related to this work in Section 1.1. The research problem statement and our ap-

proaches are presented in Section 1.2, and the research contributions in Section 1.3.

Section 1.4 lists publications related to the thesis. Finally, the thesis structure is

presented in Section 1.5.

1.1 Motivation

Global software development (GSD) is characterised by globally distributed teams

which are made up of stakeholders from different geographic locations, and different

national and organisational cultures. Many software development companies nowa-

days strive for the utilisation of benefits offered by GSD such as: access to large skilled

labour pool, improving time to market, reduced software development costs by del-

egating work to countries with low labour cost, to produce better quality product

[175], [157], [115], [109], [8]. The collaboration among globally distributed teams is

based on the team members’ communication. However, the coordination and control

of communication forms the main challenges of GSD [193]. Such challenges are gener-

ally influenced by distance: geographical, socio-cultural and temporal. The physical

distance between remote team members is identified as the geographical distance.

Also, the extent to which members of a team vary with regards to language, so-

cial status, religion, economic conditions, politics, and basic assumptions constitutes
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socio-cultural distance. Furthermore, cultural issues, such as attitudes toward hier-

archy, communication styles, time, and need for structure, are often different. Some

researchers [180], [17] point out that the dispersion of work force constitutes a drop in

productivity in GSD. Others like [121], indicate that the productivity of globally dis-

tributed team members decreases by up to 50% compared to that of co-located team

members. However, an even more critical issue is that GSD is highly dependent on

requirements management. The specific challenge here is that system requirements

continuously change. Primarily, poorly managed change in requirements affects the

overall cost, schedule and quality of GSD projects [190], [124]. Here, it is particularly

challenging to manage and trace such changes. It is identified from literature [6],

[86], [116] that, issues related to coordination and control of communication affecting

requirement change management (RCM) arise when there is no effective information

and knowledge-sharing mechanisms towards change management and traceability.

This however requires a rigorous RCM process. RCM is not trivial in co-located

software development; and with the presence of geographical, cultural, social and

temporal factors in GSD, it makes RCM profoundly difficult for GSD. Existing RCM

methods do not take into consideration these issues faced in GSD.

In recent years, cloud computing has been identified as a well suited deployment

environment or delivery model for web-based services and especially for complex sys-

tems. Cloud computing [103] is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g. servers, storage, etc.)

that can be rapidly provisioned and released with minimal management effort or ser-

vice provider interaction. System engineering stands to benefit from the scalability,

parallelism, cost-effectiveness, global multi-user access and flexibility features of the

cloud platform. With such a global-focused service delivery model, cloud computing

can suitably facilitate the deployment and operations of GSD.

However, the dependability challenge of cloud computing as a result of the rapid

evolution of the cloud topology as well as uncontrolled or malicious impact of co-

located systems, pose a major issue in its adoption. In the State of Cloud Security

2016 report [45] of the Cloud Security Alliance, it is noted that the challenge to the

adoption of cloud computing is mainly security, compliance, lack of expertise and/or

resources, and performance. That said, there have been some frequent occurrences
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of cloud service failure events. Two of such events reported by [222] are first, the

Azure cloud services of Microsoft that had two service interruptions attributed to

system failure in March 2015. This affected most parts of their central and eastern

United States service areas. Secondly, with regards to the Apple Cloud Services,

about 11 iCloud-related features experienced serious technical issues on May 20, 2015.

This includes iCloud Account and iCloud mail, by which 2 million iCloud users were

affected. Here, the availability and reliability of cloud based systems are affected. In

such a situation, the efficient operation of GSD can be adversely affected.

In order for GSD to be dependable in the cloud environment, two approaches

need to be considered. Since the disciplined design of a system is as much relevant as

the influence on the behaviour of that system by its environment [65], the design as

well as the deployment environment are of immense importance. Firstly, the design

of GSD systems must master the costs and the quality of the development of such

software systems, relative to the rapid evolution of the topology of the cloud envi-

ronment. Here, it is imperative to consider the overall effect of design decisions, the

inherent trade-offs between quality attributes (such as availability, security, reliabil-

ity, performance), and the trade-offs required to address user, system, and business

requirements [20]. It is however essential to have a software system design approach

that yields itself readily to an implicit analysis or evaluation method for cloud-based

systems. Since the cloud environment is characterised by rapid interactions between

quality attributes, the state-of-the-art of evaluating cloud-based systems in this con-

text is lacking. Most notable software system evaluation methods mainly focus on

independent quality attributes: modifiability [111], [26], [129], maintainability [148],

flexibility [130], etc. Other methods [28], [24] that consider multiple quality attributes

do not factor the “trade-off analysis” of system quality attributes.

Secondly, the concept of cloud accountability [77], [11], especially for dependability

has not been adequately addressed. This means that the cloud behaviours affecting

system dependability should be transparent to relevant parties, hence the call for

accountability [11], [77], [187], [137]. It is important to mention that cloud account-

ability has been widely applied towards assuring the security of cloud-based systems

in several research such as [82], [179], [23], [191], [201]. In our literature review, we

found no work that employs the forensic auditing techniques of cloud accountability
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towards the assurance of dependability especially for “availability” and “reliability”.

It is relevant that cloud users, such as system engineers, are assured of the availability

and reliability of the cloud platform they use for GSD.

With these observations in mind, the problem statement for this thesis is formu-

lated below, as well as the thesis approach to the problem.

1.2 Problem Statement and Approach

1.2.1 Problem Statement

To design and evaluate an effective mechanism for requirements change management

and traceability, facilitated by a dependable framework to improve the chances of

successfully undertaking cloud-based GSD to meet stakeholders’ needs.

1.2.2 Research Aim and Objectives

In this thesis, we address the problems mentioned in the motivations by proposing

a cloud-based Reactive Architecture (RA), which supports cloud-based system engi-

neering. This alternative approach as against the current state-of-the-art, prioritises

the definition of an effective information and knowledge-sharing mechanism towards

change management and traceability, as well as providing a dependable framework

for the proposed mechanism. Our main aim is to design and evaluate this Reac-

tive Architecture. To achieve this aim, we propose an approach that relates two key

components with their associated objectives:

1. A set of GSD management guidelines for requirements change management and

traceability. Here, we identify the following objectives:

• OB1 : Define a change management and traceability (CM-T) process model,

which applies a software process improvement method to ensure the ma-

turity of the RCM and traceability processes,

• OB2 : Identify a standard quality management framework to facilitate a

significant level of quality for the proposed CM-T process model,
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• OB3 : Validate the CM-T process model using an expert panel review

process, and

• OB4 : Demonstrate the defined management guidelines by applying it to

an Airlock Control System case study.

2. A cloud-based Reactive Architecture to facilitate the defined GSD management

guidelines. This approach is undertaken in two ways:

(a) Provide a bespoke methodology that facilitates the design and analysis

of small-to-medium size GSD architectures like the Reactive Architecture,

interfacing with the unpredictable cloud environment. Here, the identified

objectives are below:

• OB5 : Define the methodology for small-to-medium size GSD archi-

tectures.

• OB6 : Validate the methodology using a comparative study with cur-

rent approaches,

• OB7 : Demonstrate the methodology by applying it to the design of

the Reactive Architecture, and then

• OB8 : Analyse the quality attribute trade-off of the Reactive Archi-

tecture.

(b) Present a method that is guided by a forensic model to perform virtual

machine introspection for the purpose of assuring the dependability of the

Reactive Architecture deployed to the cloud environment. Here, some

objectives are identified:

• OB9 : Define the cloud accountability methodology.

• OB10 : Develop a cloud accountability system which facilitates the

presented method,

• 0B11 : Demonstrate the method by applying it to a cloud-based test-

bed of the Reactive Architecture, and

• 0B12 : Conduct an evidence-based trust analysis on the derived evi-

dence for the purpose of dependability assurance of the cloud-based

Reactive Architecture.
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1.3 Research Contributions

The research presented in this thesis makes several key contributions:

1. The design, development and evaluation of a novel Reactive Middleware,

that supports a set of management guidelines for high quality GSD change

management and traceability. The middleware facilitates a novel change

management and traceability process model, within the context of qual-

ity management for GSD projects. An expert review panel process is

conducted to assess the maturity of the process model. Also, an Airlock

Control System case study is used to demonstrate the GSD management

guidelines.

2. The proposal of a novel methodology for the design and analysis of small-

to-medium size cloud-based systems. This method considers the unpre-

dictable character and rapidly evolving topology of the cloud deployment

environment, and its impact on dependability in the bespoke design of

systems to be deployed to the cloud. The methodology targets systems

that are classified within the range of small to medium size. A compar-

ative study of the current state-of-the-art methods is initially undertaken

to identify methods that present a high potential to remedy this challenge.

3. The design, development and evaluation of the Reactive Architecture,

which is used for cloud-based system engineering. The Reactive Archi-

tecture presents critical components for system engineering such as the

introduced Reactive Middleware, with a Shared Artefacts Repository, and

a System Engineering Toolbox.

4. The proposal of a novel methodology for assuring cloud accountability in

terms of dependability. A forensic analysis process is taken to guide the

data collection, examination, evidence analysis, and reporting of informa-

tion.

5. The design and development of the Cloud Accountability System to fa-

cilitate the cloud accountability methodology. The Cloud Accountability

6



System is used to conduct virtual machine introspection of some key com-

ponents of the Reactive Architecture, where data is collected also from

the Cloud Service Providers based on availability and reliability related

metrics. Also, an evidence-based trust analysis of the reported informa-

tion from the forensic process is conducted, to assure cloud users of the

dependability of the cloud environment.

1.4 List of Publications

Our list of eleven publications are classified based on the technical chapters they

support, or as other publications below:

• Chapter 3: Reactive Architecture

(a) D. E. Adjepon-Yamoah, A. Romanovsky, and A. Iliasov. A Re-

active Architecture for Cloud-Based System Engineering. In Proceed-

ings of the International Conference on Software and Systems Process,

ICSSP 2015 (Tallinn, Estonia), pages 77-81, August 2015.

• Chapter 4: Managing Change and Traceability

(b) D. E. Adjepon-Yamoah. Towards Dependable Change Manage-

ment and Traceability for Global Software Development. In Fast Ab-

stract Proceedings of the 12th International European Dependable

Computing Conference, EDCC 2016 (Gothenburg, Sweden), Septem-

ber 5-9, 2016.

(c) A. Iliasov, L. Laibinis, E. Troubitsyna, D. E. Adjepon-Yamoah,

and A. Romanovsky. Refinement-based Approach to Co-engineering

Requirements and Formal Models. In (CS-TR-1456) Technical Re-

port, Newcastle University, 13 pages, March 2015.

The following three works are considered in Chapter 4 as cloud-based

tool support in the Reactive Architecture:
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(d) A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, and A. Romanovsky.

Rodin Platform Why3 Plug-In. In Proceedings of the 5th International

ABZ Conference 2016 ASM, Alloy, B, TLA, VDM, Z, ABZ 2016 (Linz,

Austria), 6 pages, May 2016.

(e) A. Iliasov, P. Stankaitis, and D. E. Adjepon-Yamoah. Event-B and

Cloud Provers. In Proceedings of the Automated Reasoning Work-

shop 2015 Bridging the Gap between Theory and Practice, ARW 2015

(Birmingham, UK), pages 11-12, April 2015.

(f) A. Iliasov, D. E. Adjepon-Yamoah, P. Stankaitis and A. Romanovsky.

Putting Provers on the Cloud. In “Work In Progress” of the 23rd Eu-

romicro International Conference on Parallel, Distributed, and Network-

Based Processing, PDP 2015 (Turku, Finland), March 4-6, 2015.

• Chapter 5: Designing Architectures for Global Software Development

(g) D. E. Adjepon-Yamoah. cloud-ATAM: Method for Analysing Re-

silient Attributes of Cloud-Based Architectures. In book: Software

Engineering for Resilient Systems, Chapter: Engineering Resilient Sys-

tems, pp.105-114.

This publication introduces our method for designing dependable small-

to-medium size cloud-based architectures. Here, it is demonstrated by

designing the Reactive Architecture.

• Chapter 6: Cloud Accountability

(h) D. E. Adjepon-Yamoah, and Z. Wen. Assuring Dependable Cloud-

Based System Engineering: A Cloud Accountability Method. In Pro-

ceedings of the 12th International European Dependable Computing

Conference, EDCC 2016 (Gothenburg, Sweden), September 5-9, 2016.

• Chapter 7: Evaluation

(i) D. E. Adjepon-Yamoah. cloud-ATAM: Method for Analysing Re-

silient Attributes of Cloud-Based Architectures. In book: Software

Engineering for Resilient Systems, Chapter: Engineering Resilient Sys-

tems, pp.105-114.
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In this chapter, the method introduced in Chapter 5 is used to conduct

the trade-off analysis of relevant quality attributes of the developed

Reactive Architecture.

• Other Publications:

(j) A. Iliasov, P. Stankaitis, and D. Adjepon-Yamoah. Static Verifi-

cation of Railway Schema and Interlocking Design Data. In book:

Reliability, Safety, and Security of Railway Systems. Modelling, Anal-

ysis, Verification, and Certification, pp.123-133.

(k) A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, and A. Romanovsky.

A Rodin Plug-in for Constructing Reusable Schematic Lemmas. In

Proceedings of the 6th Rodin User and Developer Workshop, pp.5-6,

23rd May 2016.

1.5 Thesis Structure

Chapter 2 - Background and Related Works

Presents an overview of the research areas relevant to this work, and

terms that will be used in later chapters.

Chapter 3 - Reactive Architecture

The solutions to the problems introduced in the previous chapters are

described as high-level functions of a cloud-based framework proposed

in this thesis as the Reactive Architecture. Here, all the solutions are

justified, and the definition of our original contributions are clearly

presented.

Chapter 4 - Managing Requirements Change and Traceability

Presents the Reactive Middleware component of the Reactive Ar-

chitecture, that facilitates a set of GSD management guidelines for

change management and traceability. We propose a novel change
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management and traceability process model, within the context of

quality management of GSD.

Chapter 5 - Designing Architectures for Global Software Development

This chapter presents a novel methodology for designing and analysing

dependable small-to-medium sized cloud-based systems. Also in this

chapter, the cloud-focused Architecture Trade-off Analysis Method-

ology (i.e. cloud-ATAM) is demonstrated by designing the Reactive

Architecture to meet stakeholders’ requirements.

Chapter 6 - Cloud Accountability

Presents a novel cloud accountability methodology for assuring the de-

pendability of cloud-based systems. This chapter defines the method-

ology, and introduces it as a forensic process model in terms of data

collection, examination, analysis and reporting. Also, an evidence-

based trust analysis approach is introduced as a means of providing

trusted information for the assurance of the dependability of the cloud

environment.

Chapter 7 - Evaluation

Presents the evaluation and analysis of the Reactive Architecture

and its components. First, the change management and traceabil-

ity process model facilitated by the Reactive Middleware introduced

in Chapter 4 is reviewed by an expert panel review process. Also,

the GSD management guidelines facilitated by the Reactive Middle-

ware is demonstrated using an Airlock Control System. Secondly, the

Cloud Accountability System facilitating the Cloud Accountability

Method introduced in Chapter 6, is demonstrated by applying it to

a cloud-based test-bed of some components of the Reactive Archi-

tecture. Then, an evidence-based trust analysis is conducted on the

information generated. Finally, the cloud-ATAM introduced in Chap-

ter 5 is validated through a comparative analysis with state-of-the-
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art methods for analysis software architectures. Also, the two-staged

qualitative analysis approach (i.e. Utility Tree mechanism and Stake-

holders’ Brainstorming mechanism) provided by cloud-ATAM is used

to analyse the Reactive Architecture.

Chapter 8 - Conclusions

Presents a summary of the findings presented throughout this doc-

ument and speculates on potential future research made possible by

our findings.
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Chapter 2

Background and Related Work

This chapter provides an overview of the relevant background material moti-

vating and underpinning the work conducted in this thesis. We begin by intro-

ducing GSD and approaches with the potential of improving the development

experience in Section 2.1. An overview of software architecture as a suitable

GSD framework is presented in Section 2.2. Section 2.3 presents a discussion

about cloud computing as a deployment environment for GSD, and its account-

ability in the context of the provided service level agreement. A discussion on

trust assurance methods is provided in Section 2.3.5. We draw our conclusions

in Section 2.4.

2.1 Global Software Development

2.1.1 Overview

Many software development projects are globally distributed in nature [180],

resulting in the evolution of the term Global Software Development (GSD)

[83], [85]. Many factors motivate the need to implement models such as GSD,

including: the need to capitalise on globally dispersed resources, wherever they

are located [181]; the business advantages of proximity to the market, including

12



knowledge of customers and local conditions, as well as the good will engendered

by local investment [218]; the quick formation of virtual corporations and virtual

teams to exploit market opportunities; and, pressure to improve time-to-market

by using time zone differences in “follow-the-sun” development [83]; the need

for flexibility to capitalize on merger and acquisition opportunities wherever

they present themselves [21], [84]. This model typically involves a team in a

so-called “home” site, generating requirements based on customer interactions,

and farming out parts of those requirements to several geographically diverse

“global” sites for implementation [150].

GSD seems to have become a business necessity for various reasons, includ-

ing cost, scarcity of resources, and the need to locate development closer to

the customers. In fact, it is fast becoming a pervasive business phenomenon

[50]. Some companies like IBM, British Airways, British Telecom and General

Electric have moved parts of their internal software development operations to

countries like India and Ireland [118]. Fundamentally, GSD involves communi-

cation for information exchange, coordination of teams, activities and artefacts

so they contribute to the overall objective, and finally the control of teams [46].

2.1.2 Requirement Management

Communication, coordination and control issues arise largely when there is no

effective information and knowledge-sharing mechanisms [6], [86]. In GSD, due

to lack of common understanding between geographically dispersed teams, re-

quirements management is particularly difficult. Problems in the requirements

phase have a wide impact on the success of software development projects, but

have an even greater impact on the success of GSD projects [138]. Here, changes

to requirements have to be adequately managed, effected, traceable, and all rele-

vant stakeholders have to be informed. Changes that are inadequately managed

affect product quality [190], [124]. Hence, the requirement change management

plays a vital part of software requirements engineering process in GSD. How-

ever, the communication issue and requirement change management in GSD are

given very little consideration as compared to localised software development
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[115], [30], [119], [117]. In order to make any meaningful headway for GSD, the

closely related concepts of requirements change management, and traceability

of these requirements through the development life-cycle in the context of the

distributed development resources, need to be appropriately considered.

We therefore briefly introduce and discuss current research approaches for change

management (Section 2.1.2.1) and traceability (Section 2.1.2.2) as critical areas

that have the potential of facilitating effective requirements management for

GSD.

2.1.2.1 Change Management

An important aspect of software system engineering is change management.

Since change in the system engineering process is inevitable and has a high

influence in determining the success of the process, it must be managed with

utmost discipline. Change management is a disciplined process for introducing

required changes into the information technology environment [214], [188]. It

ensures that changes to software (and sometimes, hardware) are managed and

conducted in a way that costs are met, risks are reduced, and that the business

needs and goals of a company are satisfied with the highest degree of confidence

and optimisation. We first discuss some relevant models for change management

in collocated software development.

Olsen’s Change Management Model

This change management model [161] identifies the software development pro-

cess as a queue of changes that need to be made. A primary assumption of this

model is that all work done by software designers change. Here, the model can

be applied to both software development and maintenance as it is not life-cycle

dependent (refer to Figure 2.1). The sources of changes are made available by

the users who suggest possible requirement changes. These changes are then

passed to the “manage change” section where these changes are managed by

change managers. The approved changes are passed on to the implementation

section where necessary changes are made in the software. After completing

implementation, “verification” begins by testing code and by inspecting papers.
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Figure 2.1: Olsen’s Change Management Model [161]

Figure 2.2: Ince’s Change Process Model [100]

When a change has been implemented and verified it is then passed back to

change managers who will then release the change in a product.
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Ince’s Change Process Model

Ince’s model [100] focuses on how software configuration management relates

to software change management. This model (refer to Figure 2.2) has two main

sources of change requests, i.e. customer and development team. In order for the

change process to be initiated, a change request must be initiated in a software

project. All such change requests are recorded in a change request note. The

change control board then considers the suggested change. The change control

board can reject the change, batch the change (the change will take place but

not immediately) or accept the change. If the request for the change is success-

ful, a change authorisation note must be filled. After this the change can be

implemented and a system’s documentation is modified. After implementation

the change is validated. Validation and test records are then produced to docu-

ment the changes that have taken place. Finally, the configuration records are

updated and the staff is informed about the new changes.

Figure 2.3: Spiral Like Change Management Process [145]
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Spiral-Like Change Management Process

This model [145] presents the change management process as a four-cycle or

round process (refer to Figure 2.3): the first cycle is “problem owning”, the

second is “problem solving”, the third is “system engineering”, and the final

cycle is technology-specific. The first cycle of this model is the initial cycle; here

the owner of a problem begins this cycle. A problem can be a request to add a

new feature or services in the system, or to fix a problem in the existing system.

At the end of the first cycle the owner decides whether a change needs to be

made, and if necessary, how it should be accommodated. The second cycle is

required only if the change needs to be investigated from a non-technical view-

point. This leads to the third cycle, which is the planning stage. This involves

the examination of the change from a system viewpoint, and makes implemen-

tation plans for the final cycle. The fourth cycle generates, implements and

verifies the technical solution. The change is finished and the results of this

change are recorded.

Figure 2.4: Requirement Change Management Model [153]
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At this point, our attention is drawn to relevant change management models

and approaches that focus on requirements management for GSD. We begin

by discussing a prominent work [153] in this area, that further motivates some

similar works ([115], [200], [125]) during the decade. We conclude this section

by also considering other approaches that suggest agile and hybrid methods as

potential solutions.

Niazi’s Requirement Change Model

In this work [153], a requirements change management model as well as its

framework [138] are presented for GSD. This work implements a CMMI Level 2

specific practice - SP 1.3-1 - manage requirements changes. The model is based

on both an empirical study that have been carried out, and then an extensive

literature review of software process improvement (SPI) and requirements engi-

neering (RE). The model is based on five core elements identified from literature

and interviews: request, validate, implement, verify and update (refer to Fig-

ure 2.4). Within each of these elements, there are some specific activities that

need to take place during requirements change management process. This work

shows that the requirements change management model is clear, easy to use

and can effectively manage the requirements change process. However, more

case studies are needed to evaluate this model in order to further assess its

effectiveness in the domain of RE process.

It is also important to point out that the agile concepts and methods [19], [51],

[146] are also receiving attention in this area. Agile and lean practices are used

to support a more dynamic handling of software products, especially in terms of

RE. The notable approach found from literature is Scrum [168], [107]. Also, oth-

ers [211] point to the use of hybrid approaches as viable options. That said, [136]

identifies that GSD and agile seemingly creates a contradiction, since distributed

software engineering requires a number of rules and formalisms to coordinate

the different teams spread across the globe, but agile software development is,

on the other hand, strongly driven by immediate and direct communication

and collaboration of people - quite often in small and co-located teams. Hence,

agile approaches need more collaboration which cannot be effectively achieved
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in a distributed setting for GSD [88]. Also, the lack of requirements documen-

tation causes problems especially when managing changes to requirements and

maintaining traceability [151]. Furthermore, Wagner [219] emphasises that the

lack of written, and traceable requirements can make it difficult to maintain

developed tool support in the long run.

2.1.2.2 Traceability

Software requirements traceability enables software engineers to ensure consis-

tency among the artefacts created during the development and maintenance

of software products [55]. Requirements express needs and constraints of a

software product, and traceability allows to describe and follow requirements

steps [171],[122]. That said, traceability facilitates an easier verification and

validation of requirements. Hence, traceability supports software management,

software evolution, and validation. Here, when changes are made in a software

product, traceability is fundamental to analyse the impact of such changes.

Also, it facilitates the understanding, capturing, tracking, and verification of

software artefacts, their relationships, and dependencies with other artefacts

during the software life-cycle [71].

An effective traceability approach depends on several factors such as architec-

ture, technical modelling tools, among others. The implementation of traceabil-

ity in the industry is still a challenge. Literature [42; 55; 72; 73] has shown some

reasons for that: cost of implementation, different viewpoints of stakeholders,

difficulties of maintaining updated requirements’ information, and integrating

all generated data or artefacts from software development life-cycle. From these

reasons, it is apparent how critical requirements traceability is to the software

development RCM processes. Some approaches have been introduced to address

various aspects of the traceability challenge, and are discussed briefly below.

Focusing on the communication challenge introduced by the inevitable involve-

ment of a group of stakeholders in GSD, [13] presents a multi-perspective re-

quirements traceability (MUPRET) framework which deploys ontology as a

knowledge management mechanism to intervene mutual “understanding” with-
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out restricting the freedom in expressing requirements differently. This work

provides an approach to handle and resolve issues resulting from such hetero-

geneity, by tracing and managing changes relating to GSD requirements. On-

tology matching as a reasoning mechanism is applied here to automatically gen-

erate fine-grained traceability relationships. Such relationships are identified by

deriving semantic analogy of ontology concepts which represent requirements

elements. Finally, the precision and recall of these traceability relationships

generated by the framework are verified by comparing with a set of traceability

relationships manually identified by users as a proof-of-concept of the frame-

work. However, this framework is limited in two ways: (1) it emphasises on

tracing multi-perspectives in the requirements analysis phase, and (2) it also

focuses on requirements that are expressed in terms of natural language.

In this work [170], the concept of Just-In-Time RE which presents the idea

of reactivity to requirement changes is applied to agile projects to record their

requirements (so-called feature requests) in an issue tracker. This work observes

that in open source projects, there are large networks of feature requests that

are linked to each other. They stress that in both situations when trying to

understand the current state of the system, and to understand how a new

feature request should be implemented, it is important to know and understand

all these tightly related feature requests. However, the authors identify that

there is still a lack of tool support to visualise and navigate these networks of

feature requests. The first step the authors provide in this direction is to see

whether they can identify additional links that are not made explicit in the

feature requests, by measuring the text-based similarity with a Vector Space

Model (VSM) [135] using Term Frequency - Inverse Document Frequency (TF-

IDF) [105] as a “weighting factor”. Also, they show that a high text-based

similarity score is a good indication for related feature requests. With this

in place, they conclude that a TF-IDF VSM can aid the creation of horizontal

traceability links. This then provides a new perspective for developers exploring

the feature request space. That said, there are three shortcomings of this work:

(1) there are no measures on thresholds, recall and precision for the retrieval of

those links before hand, (2) there is no tool support for the automatic creation of
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feature request networks so that developers can benefit more from the horizontal

traceability links, and (3) it does not compare additional information retrieval

approaches for a given problem domain.

Finally, the main focus of the authoritative European CESAR project (Cost-

Efficient Methods and Processes for Safety Relevant Embedded Systems) [178] is

the facilitation of full traceability of a requirement throughout the development

chain and even the entire supply chain. To achieve this aim, CESAR adopted

interoperability and traceability technologies proposed by the Open Services for

Life-cycle Collaboration (OSLC) [27], [31], [160]. OSLC is a cross-industry ini-

tiative aiming to define standards for compatibility of software life-cycle tools.

It is critical to the CESAR project because OSLC aims to make it easy and

practical to integrate software used for development, deployment, and moni-

toring or tracing applications. The elementary concepts and rules are defined

in the OSLC Core Specification which sets out the common features that ev-

ery OSLC Service is expected to support using the terminology and generally

accepted approaches of the World Wide Web Consortium (W3C). Here, the

OSLC-CM (Change Management) specification provides details of its approach

to traceability by adopting known technologies like resource description frame-

work (RDF) and linked-data [80]. Another significant work [142] that looks at

a common industry challenge where a system model which is composed of sev-

eral sub-models, and which may have been developed using different tools. In

this work, the authors present a new approach facilitated by OSLC to support

traceability in the OpenModelica software where the traceability information

is exchanged with other life-cycle tools through a standardised interface and

format. The main limitation of this work is that, it focuses largely on the

requirements and specification phases of the development life-cycle.

2.1.3 Artefact Repositories

Central to the achievement of a high standard of RCM and traceability, lies in

a common facility to support communication and collaboration of GSD team

resources. This facility is a common repository of artefacts. Such a repository
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stores all artefacts that are either created or generated during the SDLC phases.

We consider some of such repositories below.

The Open Source Component and Artefact Repository System (OSCAR) [33] is

provided with in the European Commission backed GENESIS project [34]. This

work introduces a software artefact repository that provides its contents with

some awareness of their own creation. To achieve such awareness, the concept of

“active” artefacts are introduced and are distinguished from their passive coun-

terparts by their enriched meta-data model. Such a meta-data model reflects the

work-flow process that created them, the actors responsible, the actions taken to

change the artefact, and various other pieces of organisational knowledge. This

enriched view of an artefact is intended to support re-use of both software and

the expertise gained when creating the software. A distinguishing feature from

other organisational knowledge systems is that, the meta-data is intrinsically

part of the artefact and may be populated automatically from sources includ-

ing existing data-format specific information, user supplied data and records

of communication. The authors emphasise the increased importance of such a

feature in the world of “virtual teams” where transmission of vital organisa-

tional knowledge, at best difficult, is further constrained by the lack of direct

contact between engineers and differing development cultures. Our work draws

inspiration from the notion of active artefacts and their awareness for change.

Another repository [54] identified in literature is used for the storage of artefacts

for controlled experimentation in software testing. This repository is presented

within an infrastructure that supports controlled experimentation with testing

and regression testing techniques. This infrastructure primarily stores, artefacts

(programs, versions, test cases, faults, and scripts) that enable researchers to

perform controlled experimentation and replications. However, the challenges

of this infrastructure is that it has no mechanisms for artefacts sharing, as well

as to facilitate community development of the infrastructure. Also, it has no

mechanisms for the contribution of additions to it in the form of new fault data,

new test suites, and variants of programs and versions that function on other

operational platforms.
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Also, Sysiphus [37] is identified as a distributed environment providing a uni-

form framework for system models, collaboration artefacts, and organisational

models. Fundamentally, Sysiphus encourages participants to make communi-

cation and issues explicit in the context of system models and become aware

of relevant stakeholders. The authors specifically focus on the problem of ex-

ternalising issues with their context, stakeholders, and organisational roles in

distributed settings such as GSD. This work addresses the challenge of captur-

ing sufficient knowledge as a side effect of development, while structuring it for

long-term use.

Figure 2.5: ISO/IEC 12207 Software Processes [102]

In practice, software version control repositories such as Git [197], GitHub [70],
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SVN [10], and Mercurial [143]. are largely being used in the industry. The main

challenges we identified in our experience of this set of repositories are that, their

application is often focused narrowly on the development (or implementation)

phase of SDLC, and also change management is often enforced based on trust

of the change actor (i.e. a Software Developer).

2.1.4 Global Software Development Tool Support

The current challenges in Global Software Development (GSD) necessitate sup-

port from software tools with special features. We briefly consider some works

from literature that identify tools that facilitate some operations that are crucial

in GSD.

The first work [174], presents a set of tools with special features and explains

why these features are desirable for the tools in the context of GSD, and how

these features are related to the principal challenges in this environment. The

authors therefore present a survey of the tools that provide such features. The

tools included in the survey were classified through the use of the ISO/IEC

12207 standard processes [102] (see Figure 2.5) to determine which process is

supported by each tool. Generally, they provide two main groups. The first

group is made up of tools that support Project Processes such as ActiveCol-

lab [4], Assembla [14], Maven [208], Jira [15], Rational Team Concert [92], etc.

Here, these tools mainly support activities relating to project management.

These tools specifically integrate features to support the Project Planning Pro-

cess and Project Assessment and Control Process of the ISO/IEC 12207. Also,

the second group is composed of tools supporting Implementation Processes

such as Rational Requirements Composer [93], IBM Rational DOORS [92], etc.

The processes included in this group are Software Requirements Analysis Pro-

cess, Software Architectural Design Process, Software Detailed Design Process,

Software Construction Process and Software Integration Process.

Another work [126], identifies that the distribution of tasks to sites is one cen-

tral activity in global software development project planning. Due to the large
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number of assignment possibilities, tool support seems to be adequate for sup-

porting the evaluation and selection of task assignments. This work presents

TAMRI, a planning tool for identifying task assignments based on multiple cri-

teria and weighted project goals. Its implementation combines a distributed

systems approach with Bayesian networks. The tool can be adapted to specific

organisational environments by exchanging the underlying Bayesian network.

The authors present an overview of task distribution approaches, gives three

application scenarios for the tool, and shows the implementation of the tool as

well as its application in the scenarios.

Also, in this work [49], the authors propose TIPMerge, a novel tool that rec-

ommends developers who are best suited to perform merges, by taking into

consideration developers’ past experience in the project, their changes in the

branches, and dependencies among modified files in the branches of distributed

projects. They evaluate TIPMerge on 28 projects, which included up to 15,584

merges with at least two developers, and potentially conflicting changes. On

average, 85% of the top three recommendations by TIPMerge correctly included

the developer who performed the merge. Best results of recommendations were

at 98%. Their interviews with developers of two projects reveal that in cases

where the TIPMerge recommendation did not match the actual merge devel-

oper, the recommended developer had the expertise to perform the merge, or

was involved in a collaborative merge session. This work like most past works,

considers the fact that the integration of changes across branches is not easy,

and often leads to failures. They also emphasise that there has been little work

to recommend developers who have the right expertise to perform a branch

integration. That said, the identified challenge with this work is that, without

a consistently stringent facility to effect changes through the merging process,

reliance or trust based on past experiences can be subjective and not very ef-

fective.
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Figure 2.6: CMMI’s Maturity Levels [22]
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2.1.5 Software Process Improvement Methods

Software Process Improvement (SPI) has been a widely used approach promoted

by software engineering researchers, with the intention of helping organisations

to develop high quality software more efficiently [153]. SPI frameworks such

as the process capability maturity models (e.g. Capability Maturity Model

Integration (CMMI) [41] and ISO/IEC 15504 (SPICE) [155], [154], [156]) are

provided for defining and measuring processes and practices that can be used by

organisations that develop software. We will briefly discuss the CMMI model,

which is the most widely used SPI process capability maturity model [7]. Also,

ISO/IEC 15504 (SPICE) will be discussed, and then an overview of the current

state of SPI frameworks is presented to conclude this section.

2.1.5.1 Capability Maturity Model Integration (CMMI)

The CMMI model is consistent with the international standard ISO/IEC 15504

[226]. The most well-known representation of CMMI is the “staged” repre-

sentation, which has five “levels” of process maturity for organisations [153]

(refer also to Figure 2.6). Here, each of the five levels is composed of several

“process areas” [205], and for each process area, there are several goals that

are defined, and in turn contain different practices. To reach a maturity level,

the goals of the process areas for that level and all lower levels must be sat-

isfied. These practices help in understanding how to achieve maturity goals,

and serve as examples of the activities to be addressed when undertaking a

SPI programme. Level 2 maturity is the first level that defines a collection of

“process capabilities” that focus on supporting process areas, but also includes

some project management and engineering process areas. The two goals in Level

2 are Specific Goal one (SG1): Manage Requirements, and Generic Goal two

(GG2): “Institutionalise Managed Process”. To achieve CMMI maturity level

2, projects must ensure that processes are planned and executed in accordance

with a defined policy; projects must employ skilled people who have adequate

resources to produce controlled outputs; must involve relevant stakeholders; are

monitored, controlled, and reviewed; and are evaluated for adherence to their
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process descriptions. Here, the process discipline shown by maturity level 2

helps to ensure that existing practices are retained during times of stress.

Figure 2.7: Comparison of CMMI & SPICE Models

2.1.5.2 ISO/IEC 15504 (SPICE)

The International Standards Organisation’s ISO/IEC 15504 standard for Soft-

ware Process Improvement and Capability Determination (SPICE) [156] is an

important model for software process assessment, improvement and capability

determination. The ISO/IEC 15504 much like CMMI comprises of maturity

levels and each maturity level has attributes assigned to it. An organisation

fulfilling all the attributes of a level is said to be on that maturity plane. Also,

CMMI and SPICE models are similar in their major classifications: “Process

Categories”, “Capability Levels”, and composing processes (see Figure 2.7). In

terms of differences, an obvious one is that SPICE introduces one new pro-

cess area (i.e. Customer-Supplier). Also, researchers (such as [57]) identify the

SPICE model as relatively complex than the CMMI model; the SPICE model

contains extra process areas (i.e. Operational Process, Management Process,

Process Alignment Process).
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2.1.5.3 Overview of SPI Frameworks

The challenge here is that, the failure rate of SPI initiatives is generally very

high; estimated as 70% [152]. Also, it is a very complex set of practices or

activities, with its accompanying costs. The significant investment and limited

success are reasons for many organisations (especially small to medium-sized)

being reluctant to embark on a long path of systematic process improvement.

Fundamentally, the population of organisations that have adopted process ca-

pability maturity model is only a part of the entire population of software de-

veloping organisations [134], [153]. It takes significant time to fully implement

an SPI initiative [155], [154], [156]. Some experts (such as [22]) in SPI have at-

tempted to provide a streamlined set of activities/practices for CMMI, that are

reasonably applicable in the industry. This above mentioned research largely

motivates our work. CMMI is a popular choice because it is freely available,

trained resources and quality professionals of CMMI are available, and there is

also not much awareness in industry about ISO/IEC 15504.

2.1.5.4 Using An Expert Panel In A Model Validation Exercise

From [56], it is noted that small samples of experts can be used to develop and

test explanations, and more so in the early stages of model development. Others

such as [59], have used small samples to gain expert feedback to evaluate and

support model development. The value of expert knowledge is also recognised

in an evaluation of software quality that suggests methods to formally capture

expert judgement [183]. The reliability of using expert judgement is shown in

other work such as [131], [120]. Some notable studies such as [22], [58], [59],

and validate improvement models and measurement ’instruments’ by inviting a

panel of experts to complete a detailed questionnaire.

2.1.6 Quality Management of Software Processes

A widely applied approach for managing the quality of software processes is the

Project Management Body of Knowledge (PMBOK) [176]. It is a collection of
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processes and knowledge areas accepted as best practice for the project man-

agement profession. PMBOK is an internationally recognised standard (AN-

SI/PMI 99-001-2008 and IEEE 1490-2011) that provides the fundamentals of

project management. PMBOK introduces five basic process groups, as well as

ten knowledge areas, which is typical of almost all projects. The basic concepts

are generic and hence applicable to a wide range of projects, programmes and

operations. The five basic process groups are: (1) Initiating, (2) Planning, (3)

Executing , (4) Monitoring and Controlling, and (5) Closing. Processes overlap

and interact throughout a project or system engineering phase. In PMBOK,

processes are described in terms of: i) inputs - such as documents plans, designs,

etc.; ii) tools and techniques - such as mechanisms applied to inputs; and iii)

outputs such as documents, products, etc. Also, the ten knowledge areas are:

(1) project integration management, (2) project scope management, (3) project

time management, (4) project cost management, (5) project quality manage-

ment, (6) project human resource management, (7) project communications

management, (8) project risk management, (9) project procurement manage-

ment, and (10) project stakeholder management. Each knowledge area contains

some or all of the project management processes.

Other approaches such as OSLC [160] and CMMI [41] provide features to achieve

or support quality management in software processes. First, OSLC as an indus-

trial standard that targets tools used during a products life cycle and enables

their integration and interoperability [63]. To enable interoperability, different

specifications, called domains, need to be provided. More precisely, an OSLC

Domain is one ALM (Application Lifecycle Management) or one Product Life-

cycle Management (PLM) topic area such as Quality Management (QM), Ar-

chitecture Management (AM), Requirements Management (RM). With regards

to quality management, OSLC defines a common set of resources, formats and

RESTful services for Quality Management tools to interact with other Appli-

cation Lifecycle Management (ALM) tools. This includes test execution tools

such as functional and performance test tools in addition to source control,

defect management, and code development tools. Second, CMMI integrate tra-

ditionally separate organisational functions, set process improvement goals and
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priorities, provide guidance for quality processes, and provide a point of reference

for appraising current processes.

2.2 Software Architecture

2.2.1 Overview

With the increasing size of software systems now spanning global scale, the

concept of software architecture continues to provide a disciplined process for

planning and building frameworks that can sustain such systems. Even though

different researchers provide different perspectives to the disciplined processes of

software architecture, it is strongly argued that they permit designers to describe

complex systems using abstractions that make the overall system intelligible

[66]. Furthermore, software architecture is identified as a more disciplined basis

for architectural design that has the potential to significantly improve the ability

of software engineers to construct effective software systems. Some leading

literature in system engineering indicate that software architecture can have a

positive impact on at least four aspects of software development: understanding

([207], [67], [65]), reuse ([169], [18]), evolution ([87]), and analysis ([20], [169]).

Software architecture design focuses on understanding a system, its reusabil-

ity, evolution and analysis to meet a desirable quality, as well as controlling

development cost. The quality of such systems are usually identified as depend-

ability quality attributes such as performance, reliability, availability, security,

etc. In essence, software architecture seeks to build a bridge between business

requirements and technical requirements. A good design is sufficiently flexible

to be able to handle the natural drift that occurs over time in hardware and

software technology, as well as in user scenarios and requirements [65]. It is

crucial to consider the overall effect of design decisions, the inherent trade-offs

between quality attributes, and the trade-offs required to address user, system,

and business requirements [20]. In view of this, we first provide an overview of

the dependability of software architecture, and briefly introduce some relevant
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quality attributes. Then, an assessment of some widely used software architec-

ture evaluation methods are discussed in light of quality attribute sensitivity

and trade-off analysis below.

2.2.2 Software System Dependability

Dependability is defined in [16] as the ability to avoid service failures that

are more frequent and more severe than is acceptable. Here, the concept of

dependability leads to trust (i.e. accepted dependence). In this context, the

delivered service is the behaviour of the system, as it is perceived by its user,

which is another system that interacts with the provider and receives the service.

Another work [164], points out that dependability advocates user trust and

customer confidence from a value perspective in doing business, it affects the

bottom line of an organisation in product development or service provision

demanding attention to ascertain dependability performance value. However,

to assess whether a system satisfies the requirements of dependability is not

an easy task, especially when complex and globally distributed systems are

involved. Moreover, such an assessment is further hampered by the fact that

dependability is an encompassing concept which embraces a set of different

attributes, whose emphasis and importance depends on the characteristics of

the system or application being analysed. We provide further definitions and

taxonomy of dependability in the following sections.

2.2.2.1 Definitions and Taxonomy

As mentioned earlier, dependability is an integrating concept which embraces

a number of different, but complementary attributes [16], that correspond to

different viewpoints of the system. Here, we briefly introduce some system

quality attributes:

• Availability - ability of a system to be in a state to perform as required;

• Reliability - ability of a system to perform as required, and without failure

for a given time under a given set of conditions;
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• Safety - absence of disastrous results for the users and the environment;

• Performance - ability of a system to satisfy the service application for a

series of operational time interval;

• Security - ability of a system to prevent unauthorised access and to pro-

tect from intrusions without revealing sensitive information;

• Recoverability - ability of a system to recover from a failure, without

corrective maintenance.

We further discuss some of these quality attributes, which can quantify the de-

pendability of software systems in different perspectives. We begin by providing

an overview of the dependability metrics that facilitate the definition of a set of

quality attributes.

Metrics are commonly used in engineering as measures of system performance

for a given quality attribute [52]. Most often, metrics are computed based on

an analytical model that describes the behaviour of a system as a function of

parameters associated with these attributes. Generally, this analytical model

contains the notion of state, which when combined with the inputs to a system

provides a way to uniquely identify the system at any time. Here, the probability

of the occurrence of a given state as a function of time, and the average time

before a given system state occurs are considered to compute such models. Such

dependability metrics are the:

(a) Mean Time To Failure (MTTF): Average time a system takes to fail. This

metric is often referred to as the average uptime.

(b) Mean Time To Recover/Repair (MTTR): Average recovery time for a sys-

tem.

(c) Mean Time Between Failures (MTBF): Average time between two succes-

sive failures.

(d) Operational Time: The total time an operational system is under obser-

vation.
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We introduce the three quality attributes and their corresponding dependability

metrics that define them below.

Availability of Software Architecture: As introduced earlier, availabil-

ity of a system is its ability to be in a state to perform as required. It also

describes a system’s behaviour in the presence of error treatment mechanisms

such as redundancy (i.e. system replication, checkpointing). Availability can

be classified as either instantaneous or steady-state. Instantaneous availability

is the probability that a system is performing correctly at time, t, and its equal

to reliability for non-repairable systems. On the other hand, steady-state avail-

ability is the probability that a system will be operational at any random point

of time. Usually in practice, the steady-state availability is considered when

observing an operational system over a period of time. Here, availability is the

ratio of uptime and the sum of uptime, scheduled downtime, and unscheduled

downtime. Mathematically, steady-state availability (A) is expressed as:

A =
MTBF

MTBF + MTTR
(2.1)

Reliability of Software Architecture: The reliability of a system (i.e. soft-

ware, hardware) is defined to be the probability that the system performs as

required, without failure, for a given time interval, under given conditions. Re-

liability is a function of time, and it gets smaller as time increases. Here, the

assumption is that the system is fully operational at t=0, and it indicates failure-

free interval of operation. Reliability (R) can be expressed mathematically as:

R = e−(
Time

MTBF
) (2.2)

Performance of Software Architecture: Performance involves the alloca-

tion and adjustment of resources in order to meet the timing requirements of a

system. In this situation, timing behaviour is determined by allocating resources

according to the demands for such resources, choosing between conflicting re-
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(a) Availability Characterisation

(b) Performance Characterisation - Stimuli

(c) Performance Characterisation - Architectural Parameters

(d) Performance Characterisation - Responses

Figure 2.8: Quality Attributes Characterisation (from [43])
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quests for resources, and managing resource usage [140]. To manage perfor-

mance, three main techniques are worth mentioning:

• resource allocation - these are policies for meeting resource demands by

allocating various resources,

• resource arbitration - these are policies for choosing between various re-

quests of a single resource, and

• resource usage - these are strategies affecting the usage of resource.

In assessing the performance of a software system, some of the metrics con-

sidered are system availability, response time, latency, completion time, service

time, bandwidth, throughput, etc.

2.2.3 Quality Attributes Characterisation

Evaluating an architectural design against quality attribute requirements re-

quires a precise characterisation of the quality attributes of concern. From

the knowledge that is already in the various quality attribute communities, we

identified the characterisations from [43] as widely used, due to its effective-

ness. These characterisations serve as starting points, which can be detailed

when preparing to conduct the architecture design or analysis. Here, each qual-

ity attribute characterisation is divided into three categories: external stimuli,

architectural decisions, and responses. The external stimuli are the events that

cause the architecture to respond or change. Also, to analyse an architecture

for adherence to quality requirements, these requirements need to be expressed

in concrete and measurable or observable quantities. Such quantities are de-

scribed as the responses. Then, architectural decisions are those aspects of an

architecture that have a direct impact on achieving attribute responses.

With regards to the availability quality attribute, its stimuli are from Source

(i.e. hardware or software faults), and Type (i.e. value, timing, and stopping).

The parameters that apply to the stimuli are the hardware redundancy, soft-

ware redundancy, voting, retry, and failover. Finally, the responses generated
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are usually in the form of availability, reliability, levels of service, and mean

time to failure. The availability characterisation is depicted in Figure 2.8(a)

with further details. The performance quality attribute presents a relatively

elaborate characterisation. Figure 2.8(b) shows the stimuli for performance as

mode, source, and frequency regularity. The performance parameters considered

in architectural decisions are mainly resource such as CPUs, sensors, networks,

memories, actuators, etc. and resource arbitration in the form of queuing and

pre-emption (see Figure 2.8(c)). Finally, the responses from the performance

characterisation for architectural decision are latency, throughput, and prece-

dence (see Figure 2.8(d)).

2.2.4 Designing Software Systems

In the design of software architecture, quality attributes are a fundamental

consideration in determining the level of dependability of that architecture. This

determination is achieved by using architectural evaluation methods. In this

section, we discuss some architectural evaluation methods. Then we conduct

comparative studies to identify a suitable evaluation method. To achieve this,

some relevant evaluation criteria are defined.

2.2.5 Dependability Evaluation Methods

Architecture evaluation has attracted many researchers and practitioners dur-

ing the last 20 years. Software Architecture can be evaluated at different stages

of software development life-cycle (SDLC). An architecture is evaluated to com-

pare alternatives for identifying strength and weaknesses, at the early phase of

design. Several approaches to evaluate software architecture exist: scenario-

based, mathematical modeling, simulation-based, and experience-based [184].

It is observed that, scenario-based approaches are most widely used in practice.

This approach is considered as a more matured, reliable and easy to implement

in practical situations [166]. Here, we briefly introduce some relevant approaches
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(in two parts: (1) old but relevant methods, and (2) relatively current methods)

below:

First among the old but relevant methods, is the Software Architecture Analy-

sis Method (SAAM) [111] which performs evaluation on software architecture

to identify risks present in architecture, and also able to express the modifia-

bility quality attribute. SAAM is an established method and has been applied

in several case studies, which includes user interface development environment,

internet information systems, keyword in context (KWIC), revision control sys-

tem, global information system, and embedded audio system [112], [43]. SAAM

meets the criteria of involving all major stakeholders, and it is the only method

that has tool support (i.e. Ex:SAAMTOOL), even though partial.

Secondly, the Architecture Trade-off Analysis Method (ATAM) is inspired by

the notion of architectural styles, the quality attribute analysis communities,

and the SAAM (i.e. the predecessor to the ATAM). The ATAM is intended for

sensitivity and trade-off analysis of an architecture with respect to its quality

attributes which covers a broader scope (i.e. performance, availability, security,

modifiability, etc.) [113]. ATAM is also relatively flexible since it allows for

the definition of new quality attributes. In such a situation, the properties of

interest for these attributes will have to be explicitly described during its early

steps. The ATAM easily accommodates new quality-dependent analysis [43]. It

also involves all relevant stakeholders. ATAM consists of nine steps: (1) Present

the ATAM, (2) Present the Business Drivers, (3) Present the Architecture, (4)

Identify Architectural Approaches, (5) Generate the Quality Attribute Utility

Tree, (6) Analyse the Architectural Approaches, (7) Brainstorm and Prioritise

Scenarios, (8) Analyse the Architectural Approaches, and (9) Present Results.

Note that steps (6) and (8) are similar and can be considered redundant.

Also, the SAAM for Complex Scenarios (SAAMCS) extends the SAAM. Its

main goal is to assess risk during system modification. SAAMCS handles spe-

cific problems, and hence it is designed to implement modifiability or flexibility

quality attributes [130]. This method is applied to the final document of ar-

chitecture design. Here, stakeholder involvement is same as SAAM. SAAMCS
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defines a measurement instrument to identify complex scenarios in the system.

To this end, SAAMCS presents a two dimensional framework diagram to lo-

cate complex scenarios. Currently, SAAMCS has no tool support for method

automation.

Another method is the Scenario-Based Architecture Re-engineering (SBAR)

[24]. It drives the architecture re-design for reliability and performance qual-

ity attributes. The main goal of SBAR is to introduce an iterative process of

quality evaluation and architecture transformation. It supports multiple qual-

ity attributes like ATAM but differs from ATAM since it uses different eval-

uation techniques: scenario-based, mathematical modelling, simulation, and

experience-based. In scenario-based approach, SBAR defines scenarios for each

quality attribute and maps the performance of architecture. SBAR has been

applied in fire-alarm system [35], measurement system [112], and dialysis system

[24].

The Extending SAAM by Integration in the Domain (ESAAMI) is similar to

SAAM, however it differs as it considers the existence of a reusable knowledge-

base. ESAAMI integrates the existing knowledge in the reuse based develop-

ment and domain-centric process [148]. It introduces the concept of reusable

products (or “protoscenario”) that are deployed during the steps of the method.

The stakeholder involvement here is the same as in SAAM.

The Architecture-Level Modifiability Analysis (ALMA) is also a scenario-based

architecture evaluation method, which analyses software architecture for modi-

fiability quality attribute. ALMA assesses modifiability property by employing

indicators, such as risk assessment, and maintenance cost prediction. Origi-

nally, ALMA is a combination of two architecture evaluation methods, created

by [26], and [130]. Here, both methods are based on scenarios and uses similar

structures. ALMA provides five steps for evaluation: (1) setting the analysis

goal, (2) describing software architectures, (3) eliciting scenarios, (4) evaluating

change scenarios, and (5) interpreting the results. It has been applied to anal-

yse various software architecture case studies, such as haemo-dialysis system (a

medical treatment device), mobile positioning center assessment (a telecommu-
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nications service provider system), ComBAD Framework assessment (a domain

specific architecture for administrative systems) [129]. ALMA considers various

sets of stakeholders for different activities.

The Architecture Level Prediction of Software Maintenance (ALPSM) has been

developed to predict software maintainability during software architecture de-

sign [25]. Such predictions are used for balancing maintainability of quality

attributes, or to compare architectural alternatives. ALPSM considers inputs

such as requirement specification, architecture design, software engineer ex-

pertise, and historical maintenance data. However, its outputs are estimated

maintenance efforts and maintenance profile. Some benefits of ALPSM are that

it is practically used in architecture design and it gives not only prediction but

also gives improved understanding of requirements. ALPSM has been validated

for Haemo-Dialysis System [25].

The final method is the Software Architecture Comparison Method (SACAM),

which provides basis for selecting architecture by comparing different candidate

architectures [28]. A set of criteria based on business goals of an organisation

is used by SACAM to compare architectures. It helps organisations to explore

architecture design mainly in product line architectures. That said, SACAM

is used for architecture design in many architectures from different vendors or

contractors.

2.2.5.1 Comparative Study

We conduct a comparative study of the software architecture evaluation meth-

ods, based on a defined set of criteria. Considering software systems that are

distributed and deployed using the cloud deployment model, we focus on the

fact that this environment is characterised by random evolution which affects

the dependability of deployed systems. The main criteria for our comparative

study are that the evaluation methods should have:

(a) A goal of sensitivity and trade-off analysis:- In a rapidly evolving

environment, an efficient evaluation method should be capable of identi-
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fying the quality attributes that change relative to others. Also, it must

be able to inform architectural decisions regarding an acceptable trade-off

between quality attributes.

(b) A focus on multiple quality attributes:- In the described environment

above, typically there will be multiple competing quality attributes. It

is, however, relevant that an appropriate evaluation method can consider

varying quality attributes.

(c) The involvement of multiple or all architecture stakeholders:-

Stakeholders are the custodians of architecture requirements, and their in-

volvement in the evaluation and development processes are critical. That

said, an appropriate evaluation method should actively involve many rel-

evant stakeholders (for requirements coverage).

We are also interested in identifying (d) the SDLC stage(s) that the methods

apply to, (e) application of methods in projects, and (f) whether there are tools

that support the methods.

A: Summary of Comparative Study

A summary of our comparative study is shown in Figure 2.9. For Criteria

(a), we identified that ATAM is the only method that has a goal to analyse

system sensitivity and trade-off. Criteria (b) is met by ATAM, SBAR, and

SACAM for focusing on multiple quality attributes. Finally, ATAM, SAAM,

ALMA, SAAMCS, and ESAAMI involve multiple or all stakeholders to meet

Criteria (c). An overall assessment shows that even though ESAAMI met two

criteria (i.e. Criteria 2 and 3 ), ATAM on the other hand met all three criteria.

Furthermore, ATAM can be applied iteratively to SDLC improvement processes,

but it has no tool support. Some reported successful applications of ATAM are

the role-playing game to teach ATAM [149], architectural evaluation of a data

center system [177], assessment of a battlefield control system [110], war game

simulation [106], product line architecture [199], control of a transportation

system [36], credit card transactions system [133] and a dynamic map system

[203].
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To ensure that ATAM is effective as a method compared to more recent meth-

ods, we compare some relatively recent architecture evaluation methods and

approaches to ATAM based on the set criteria above. We begin by providing

an overview of the considered methods, and then tabulate their features in the

context of a set of relevant criteria.

The first method [206] proposes the aspectual software architecture analysis

method (ASAAM) which explicitly identify and specify the architectural as-

pects and make them transparent early in the software development life cycle.

In software architecture analysis, it is implicitly assumed that an appropriate

refactoring of the architecture design can help in coping with critical scenar-

ios and mending the architecture. The authors also show that, similar to the

notion of aspect at the programming level, there are concerns at the architec-

ture design level which inherently crosscut multiple architectural components.

Such concerns are referred to as architectural aspects. Here, they indicate that

such concerns cannot be localised in one architectural component and which,

as such, can not be easily managed by using conventional abstraction mecha-

nisms. In this context, ASAAM introduces a set of heuristic rules that help to

derive architectural aspects and the corresponding tangled architectural com-

ponents from scenarios. They illustrate their approach for architectural aspect

identification with the architecture design of a window management system.

Another work [215], that applies scenario-based architecture analysis, provides

a motivation that scenarios are especially helpful for visualising and under-

standing the incorporation of new systems within systems of systems. They

argue that, if used as the basis for decisions about candidate designs, then it is

important that such decisions can be rationalised, and quantitative assessment

is particularly important. Their work introduces an approach for developing

complex scenarios, which incorporates the phases of systems development and

deployment, is presented and a quantitative method of comparison is described.

Their approach is based on the development of measures of merit and measures

of performance. The techniques are illustrated using cases that are relevant to

Network Enabled Capability.
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The use of Representational State Transfer (REST) as an architectural style for

integrating services and applications introduces some risks. Importantly, this

work, [48] indicates that such risks are failures to effectively address quality at-

tribute requirements such as security, reliability, and performance. They argue

that, an architecture evaluation conducted early in the software life-cycle can

identify and help mitigate these risks. This work presents guidelines to assist

architecture evaluation activities in REST-based systems. These guidelines can

be systematically used in conjunction with scenario-based evaluation methods

to reason about design considerations and trade-offs. This work also presents

a proof of concept to describe how to use the guidelines in the context of an

Architecture Trade-off Analysis Method (ATAM) evaluation.

The final approach, [172] begins by describing an exploratory study for the eval-

uation of the performance quality attribute for releases of the same system. This

work aims mainly to reveal performance degradations of architectural scenarios

and their possible causes. The study uses three software systems from differ-

ent domains: (1) a large-scale web system, (2) a UML modeling tool, and (3)

a client-server framework for development of network applications. The data

collection of the study is accomplished using a scenario-based approach that

uses dynamic analysis and code repository mining to provide an automated way

to reveal degradations of scenarios on releases of software systems. The results

of the study show the feasibility of the approach to determine the causes of

the performance degradations of scenarios, including the degraded and changed

methods of scenarios, and the issues that have affected them.

B: Summary of Comparative Study of Some Relatively Current Meth-

ods and ATAM

A summary of our comparative study of ATAM and some recent architecture

evaluation methods is tabulated in Figure 2.10. Considering the goal of the

methods in Criteria (a), we identified that the method provided for “evaluat-

ing REST architecture” is the only one that considers “risks” and “trade-offs”

related to multiple quality attributes in designing an architecture. Even though

ASAAM identifies risks in its analysis, it classifies them as “concerns” and do
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not consider them in relation to multiple quality attributes. With Criteria

(b), it is only the method for evaluating REST architecture that meets the

expectation of considering “multiple quality attributes” (i.e. more than two at-

tributes). It must be mentioned that the “scenario-based method for designing

and evaluating architectures for capability” considers two quality attributes (i.e.

capability and performance). Finally, even though all the methods consider ma-

jor stakeholders in their analysis, it is only the method for “evaluating REST

architecture” that considers all stakeholders. Here, the method for “evaluating

REST architecture” effectively meets Criteria (c).

2.2.5.2 Observations from Final Comparative Study

We identified two features that we consider to be relevant to our work:

(a) Two of these methods (i.e. ASAAM [206] and method for evaluating REST

architecture, [48]) introduce a form of directives to guide system archi-

tects and relevant stakeholders on how to analyse architectures with their

methods (refer to the “Evaluation Approaches” in Figure 2.10). Here,

[206] presents “heuristics” to identify architectural concerns (as defined by

SAAM), and [48] also provides “guidelines” for identifying risks and trade-

offs during the design of an architecture (as defined by ATAM). With

these directives, the mentioned works are able to narrow the context and

applicability of their proposed methods.

(b) In the work [48], the evaluation method is applied to a “web ecosystem

of physical devices” designed as a REST architecture. As all composing

services of the cloud environment are designed and deployed as REST

web services, this work has a potential of being scaled up to apply to

systems that are designed for the cloud environment. With the cloud

environment being characterised by rapid topological evolution, and the

random interactions of quality attributes, it will be particularly interesting

to apply a custom method to facilitate the design and/or evaluation of

systems in such an environment.
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2.2.6 Classifying the Size of Architectures for Target Anal-

ysis

These discussed architecture analysis methods are effective with regards to the

quality attributes of concern, team size, etc. However, we identify that none of

them consider the size of architecture being analysed. This is relevant because

a very large architecture can introduce complexities to the analysis process,

which may render it ineffective. Some widely used architecture classification

approaches can be used as a reference point in order to focus the analysis pro-

cess to a particular size of architecture. We consider the Common Software

Measurement International Consortium (COSMIC) Functional Size Measure-

ment [141] as a viable option for classifying architectures. This process is sim-

ple to achieve, and yet effective in its application. It takes into account that a

functional process (FP) can be derived from at least one identifiable Functional

User Requirement (FUR) within the agreed scope. The FP is an elementary

component of a set of FUR, comprising a unique, cohesive and independently

executable set of data movements. The COSMIC measurement phase distin-

guishes four types of data movements: entry, exit, read, and write. To measure

the functional size, COSMIC assigns a single unit of measure, one 1 to each

data movement. By convention, it is called 1 CFP (Cosmic Function Point).

The total size of the software being measured, corresponds to the addition of

all data movements recognised by the COSMIC FSM method.

The COSMIC FSM method is based on the application of a set of models,

rules, and procedures to a given piece of software, as it is defined from its

Functional User Requirements (FUR). The FUR is a subset of the user require-

ments describing what the software does in terms of tasks and services. This

FSM standard is suitable for measuring various types of software (such as busi-

ness application software, real-time software or web-based and Internet applica-

tions, etc). Furthermore, in conformity with ISO 14143-1 (specifically ISO/IEC

19761) [101], the COSMIC method is independent of the implementation deci-

sions embedded in the operational artefacts of the software to be measured and

it excludes both the software quality and technical characteristics.
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COSMIC FSM is often applied to the International Software Benchmarking

Standards Group (ISBSG) [210] release 8 dataset for categorising software project

size.

Related Work on Frameworks that Support System Engi-

neering

In this section, we consider related works spanning frameworks or architectures

that support system engineering. We discuss these works along two strands:

non-cloud-based frameworks and cloud-based frameworks.

2.2.6.1 Non-Cloud-Based Frameworks

With regards to the Evidential Tool Bus [186], the authors propose a tool com-

bination of theorem provers, model checkers, static analysers, test generators,

etc. where many tools and methods are used in an ad-hoc combination within

a single analysis. This sort of combination requires an integrating platform - a

tool bus - to connect the various tools together; but the capabilities required

go beyond those of platforms such as Eclipse. In the tool bus, all tools are co-

equals, and are mainly coordinating components of the tool bus. The entities

exchanged among clients of the bus - proofs, counterexamples, specifications,

theorems, abstractions - have logical content, and the overall purpose of the bus

is to gather and integrate evidence for verification or refutation. Even though

this work provides a roadmap for a tools combination framework for system

engineering, it focuses exclusively on applications to formal methods. This fo-

cus in our opinion, is very narrow with regards to system engineering. Also,

such a tool bus is accessible to a limited number of stakeholders of a system

engineering project, and at a limited geographic location.

Another work is the Open Framework for Software Engineering Tools (OPHE-

LIA) [225], [53] platform which provides a unified software engineering tools

integration technology. The concept behind the project involves the definition

of standardised set of interfaces abstracting functionalities of different kinds
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of software development tools. To maintain implementation language inde-

pendence, Common Object Request Broker Architecture (CORBA) technology

[158] is used to define the interfaces. As part of the Object Management Group

(OMG) [159] work, they have developed a comprehensive distributed open sys-

tems framework known as CORBA. It is a standard for object middleware used

in the heterogeneous environment. The main weakness of OPHELIA is of poor

memory management, which is inherited from the CORBA platform. Also, the

use of the CORBA platform as a middleware for integration introduces overhead

costs through its use of brokers or translators.

2.2.6.2 Cloud-Based Frameworks

The cloud platform is currently being applied in various ways to support differ-

ent combinations of software and system engineering phases. Such applications

are generally presented in a form of software systems or architectures. Among

other benefits, this platform provides global access to distributed teams for

global software development. Some of these systems or architectures for system

development are discussed below:

In the Design Assistant Agent for a Vendor (DAAV) system [108], the authors

propose a design assistant agent for defining requirement specifications for a

multi-lingual design team, which plays a roll of a bridge engineer. They ar-

gue the necessity of a bridge engineer for a multi-lingual development team,

who bridges gaps between different languages, cultures and social systems of a

client and a vendor to define a requirement specification of an application sys-

tem. Also, they propose a concept of agent-based support system for defining

requirement specifications, consisting of two design assistant agents: a defini-

tion support subsystem and a language translation web service. The subsys-

tem consists of Graphical Modeling (GM) functions for clients and developers

to draw Unified Modeling Language (UML) diagram or Mindmap for defining

requirement specifications. In essence, this work introduces a multi-lingual ex-

pert system for distributed global software development. This expert system

plays a very important role in terms of catering for the socio-cultural aspect
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of distributed global software development. However, other essential develop-

ment aspects involving project co-ordination and control using information and

knowledge sharing mechanisms are not considered.

The scalability of the cloud (i.e. Amazon Web Service [1]) is used to test a

complex set of test cases of the Google Chrome software. Testing is a critical

phase in the software life-cycle. While small-scale component-wise testing is

done routinely as part of development and maintenance of large-scale software,

the system level testing is much more problematic due to low level of coverage of

potential usage scenarios by test cases and high costs associated with wide-scale

testing of large software. Wide scale software testing requiring substantial com-

putation and storage resources and where the testing process can be automated

through a workflow needing minimal human intervention is representative of

the type of testing that may benefit from the use of the cloud. Such testing

is generally not practicable on typical desktop computers, due to limitation of

resource scalability and consequently time and cost limitations. The ultimate

aim of this work is to verify applicability of network analysis methods to analyse

software engineering data, so that these methods may be adopted for software

analysis to support software testing [212], [163]. That said, only one type of

testing tool is used as multiple instances to process the set of test cases. This

however, presents a limited perspective in terms of the results from the test

tool. A set of multiple test tools with different versions can be coordinated to

facilitate a comprehensive testing process, as well as further demonstrate the

scalability of the cloud.

Eclipse has an on-going project named Eclipse Orion which is building an in-

tegrated web-based tool-set, and targets first the web client languages such as

JavaScript, CSS, and HTML. The project aims to move software development

to the web as a web browser experience and not by cloning the desktop IDE ex-

perience. This is not particularly the direction of our work. We aim to support

system engineering lif-cycle processes on the cloud, and not a complete move-

ment of software engineering. A further look into Orion shows that it consists of

loosely coupled components written in JavaScript, and server-side services ex-

posed via REST-oriented HTTP APIs. These components and services can be
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combined in many different ways to create various kinds of browser-based appli-

cations. However, parts of Orion can also be used in traditional desktop clients

as well as server side applications. The data being manipulated by such tools

can reside either on a remote server or a local machine [209]. Our assessment

of local and remote IDEs is that operating on local data offers better perfor-

mance and facilitates offline usage, but does not provide the always secure, and

backed-up nature of storing data on the server [209].

Similar to the Eclipse Orion project is the Codenvy project [47]. The Co-

denvy structure is also developed as a RESTful web service, which supports

IDEs for Java/Android, PHP, JSP, XML, Python, Perl languages, etc. The

browser-based clients deploy projects to target platforms on the Cloud. The

Codenvy web service is developed to make Platform-as-a-Service (PaaS) such

as Amazon Elastic Beanstalk, CloudBees, etc. flexible and convenient to use.

Codenvy is built upon a scalable, extensible plug-in architecture that includes

an embedded cloud-local builder and runner to package and debug applications.

Codenvy includes the usual IDE tools, integrations, and plug-ins such as syntax

highlighting, code completion, refactoring, packages, build manager, continuous

integration, git, and PaaS deployment. It also provides the flexibility to devel-

opers to use their provided software development kit (SDK) to build their own

extensions. It integrates a wide range of technologies which can be classified

into Languages, Databases, Platforms/Continuous Integration and Build Sys-

tems, Repositories and Agile System Development. The developer can create a

project and virtually navigate the entire Codenvy IDE in a similar way as in

Eclipse. Codenvy does not integrate into desktop IDEs.

2.3 Cloud Deployment Environment

2.3.1 Cloud Computing

Cloud computing [103] is one of the best service provider in the information

technology (IT) industry. The on-demand service is the most important char-
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acteristic, and others are resource pooling, measured service, broad network

access, and rapid elasticity. Cloud Service Providers (CSPs) offer services in

three main categories: Infrastructure as a service (IaaS), Platform as a service

(PaaS) and software as a service (SaaS). Also, there are four deployment mod-

els: private cloud which is owned or operated by a single organisation, public

cloud is available to the general public, but owned and operated by government

organisations, institutions, businesses, etc., community cloud involves a com-

mon infrastructure for organisations of the same community, and hybrid cloud

which is a composition of two or more clouds. Cloud computing offers some

benefits such as low cost, unlimited smart storage, flexibility, improved perfor-

mance, increased data reliability [78]. Some studies have shown that businesses

that adopt SaaS enjoy a return-on-investment of almost 600% [194].

2.3.2 Issues with Cloud Computing

In spite of the mentioned benefits, the cloud platform is faced with some chal-

lenges. We identify some of these challenges from literature as lack of customer

trust, vague SLAs, perceived lack of reliability, threats to security and privacy,

absence of independent quality assurance body, etc. Some of these challenges

are discussed below.

2.3.2.1 Lack of Customer Trust

Cloud computing raises more than economical and technical challenges, but also

has implications on trust [128]. The highly distributed and non-transparent na-

ture of cloud computing represents a considerable obstacle to the acceptance

and market success of cloud services. Potential users of these services often

feel that they lose control over their data and they are not sure whether cloud

providers can be trusted [74]. Also, with the growing number of CSPs, the cus-

tomers are facing a challenge to select the best and most appropriate providers

from numerous offers. In a typical scenario [61], it is pointed out that a CSP can

offer a reasonably secure service while another may not. If the latter charges
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half the price, the majority of organisations will opt for the latter one as there

is no real way to explore the difference.

2.3.2.2 Weak Service Level Agreements (SLAs)

Standard SLAs in the present cloud market are also one of the obstacles that

the cloud users face while adopting the services offered by the cloud providers.

These SLAs are perceived to be weak in terms of assuring the needs of users, and

require non-ambiguous descriptions to cater for clear definition of responsibili-

ties to all cloud stakeholders. Cloud users might face problems that occur from

insufficient security measures, data unavailability, CSP lock-in, hidden costs,

and non-transparent infrastructure. In most cases, SLAs are created to protect

the CSPs and not the customers. CSPs do not provide SLAs guaranteeing min-

imum levels of performance [104]. Most of the above mentioned problems are

sidelined in current SLAs offered by the CSPs.

2.3.2.3 Perceived Lack of Reliability

Availability of resources in cloud computing is identified as one of the biggest

concerns for the cloud users [12]. Here, reference to availability is not only

with respect to the reachability of the cloud service, but also the success rate of

the transaction. The cloud platform’s quality of service involving availability,

reliability and performance are of interest. Most cloud providers do not define

the availability in this way. CSPs use the availability term to show their cloud

users the level of reliability they would get regarding the cloud services. Most

CSPs offer 99.99% availability for their servers, but it is not clear whether

the availability is for a single server where the virtual instance of particular

cloud user resides or for all the servers placed in geographically distributed

datacenters. Many reported outage incidents in the datacenters of the CSPs,

indicate a negative image to the cloud users about the providers regarding

reliability [12].
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2.3.2.4 Absence of Independent Quality Assurance Body

Some CSPs are offering monitoring tools for the cloud users to monitor their

service’s availability and performance in real-time with extra charges [75]. An

example is Amazon Web Service’s CloudWatch service. However, most of the

CSPs are not offering these kind of solutions. Those that provide it do not

really monitor the SLA compliance. This calls for independent quality assurance

bodies for monitoring the performance or quality of the Cloud services, in the

context of SLA compliance.

2.3.3 Cloud Dependability Assurance

To gain some understanding of the assurances provided by CSPs for cloud re-

sources, it is important to be able to have reference points, and widely accepted

benchmarks that clarify such reference points. This work identifies the cloud

SLA as the main reference point for cloud dependability assurance. Also, some

dependability assurance information sources are provided to guide the under-

standing of the SLA.

2.3.3.1 Cloud Service Level Agreements

In this work, we consider Amazon Web Services (AWS) as the choice for the

type of cloud computing platform. In light of this, we assess AWS’ service

level agreement (SLA) for their Elastic Cloud Compute (EC2) service [1]. We

identified that this SLA guarantees two things:

(a) That the EC2’s application programming interface (API) will be available

to allow for the launching of new instances 99.9% of the time.

(b) That at least one user instance will be able to access the Internet 99.9% of

the time (specifically, it’s an outage if 100% of user instances cannot reach

the Internet 99.9% of the time).
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The AWS SLA does not specifically cover the reliability of the AWS EC2 in-

stances. Even with the assurances provided for the availability of the AWS

EC2 instances, they are rather vague. That said, the AWS SLA provides some

grounds for the definition of the boundaries for the assurance of system avail-

ability. The AWS SLA however provides some definitions, service credits and

service commitments. These are presented below:

• “Monthly Uptime Percentage” is calculated by subtracting from 100% the

percentage of minutes during the month in which Amazon EC2 was in the

state of “Region Unavailable”.

• “Region Unavailable” and “Region Unavailability” mean that more than

one Availability Zone in which an instance is running, within the same

Region, is “Unavailable” to users.

(a) “Unavailable” and “Unavailability” mean:- For Amazon EC2, when

all of the user’s running instances have no external connectivity.

(b) A “Service Credit” is a dollar credit, calculated as set forth below,

that AWS may credit back to an eligible account.

Service Credits are calculated as a percentage of the total charges paid by users

(excluding one-time payments such as upfront payments made for Reserved In-

stances) for either Amazon EC2 in the Region affected for the monthly billing

cycle in which the Region Unavailability occurred. For a Monthly Uptime Per-

centage of less than 99.95% but equal to or greater than 99.0%, and less than

99.0%, Service Credit Percentage of 10% and 30% are provided respectively. Fi-

nally, the Amazon EC2 SLA commitment is 99.95% availability for each Amazon

EC2 Region.

2.3.3.2 Cloud IaaS 2016 Benchmark

Standard Performance Evaluation Corporation (SPEC)’s first benchmark suite

to measure cloud performance - SPEC Cloud IaaS 2016 [198]. However, the

benchmark addresses the performance of infrastructure-as-a-service (IaaS) pub-

lic or private cloud platforms, which is designed to stress provisioning as well
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as runtime aspects of a cloud using input-output (I/O) and central processing

unit (CPU) intensive cloud computing workloads. SPEC selects the social me-

dia NoSQL database transaction and K-Means clustering using Map Reduce as

two significant and representative workload types within cloud computing. Also,

the test uses the Red Hat Enterprise Linux Openstack Platform 7 and a KVM

hypervisor in the Dell Inc. USA cloud environment. The key benchmarking

metrics are scalability, elasticity, and mean instance provisioning time.

Figure 2.11: The “Nines” of Availability [224]

2.3.3.3 The “Nines” of Availability

High-demand systems that are commonly in around-the-clock service, the avail-

ability is frequently measured by the number of “nines” [224]. If availability is

99.0%, it is stated to be “2 nines”, and so on. Figure 2.11 depicts the amount

of downtime a system exhibits within one year (365 days) of continuous desired

operation and its associated number of nines, which are calculated using this

formula using the availability equation (2.1) introduced in Section 2.2.2.1. Ob-

taining 5 nines or 99.999% availability is an ambitious goal that often requires

critical system components that are redundant. Such redundant components

can help reduce the time to repair a system.
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2.3.4 Cloud Accountability Analysis

Digital forensics is playing an increasing important role in digital introspection

for evidence collection especially for investigating criminal activity. According

to the Federal Bureau of Investigations (FBI) [182], 4,263 tera-bytes (TB) of

data was processed for digital forensic in 7,629 criminal examinations in 2011,

as opposed to 439 TB and 880 criminal cases in 2003. With the increased migra-

tion of critical information technology services into the cloud, digital forensics

is poised to become instrumental in investigating vulnerabilities and possible

criminal activities committed in cloud environments as well [68]. Such a pro-

cess can be classified as cloud accountability. Here, we define accountability as

a clear disclosure of service obligations; faithfully honouring of disclosed obliga-

tions, or otherwise assuming the liability for the unsatisfactory performance of

the obligations [227] by cloud agents (i.e. service providers, software engineers).

Typically, accountability in service is achieved through the enforcement of a

legal and paper-based contract. In a cloud service context, using a paper-based

contract is no longer effective [228]. The current practice is for service providers

to publish a terms and conditions page and a text-based SLA for their offerings

on their website does. In its plain-text form, a web-enabled paper-based con-

tract can neither be interpreted by software agents, nor be used as a basis for

monitoring the execution of a contract.

It is important for cloud computing services to provide assurance based on

detailed trust-focused auditing to enable forensic conclusions to be drawn for the

purpose of accountability. It is relevant to note that, the indiscriminate addition

of auditing to a run-time environment introduces performance overheads. With

cloud accountability:

• the cloud users can investigate whether the provider is meeting their ex-

pectations according to the service level agreement,

• if violations are reported, the cloud users can provide evidence to verify

who is responsible, and

• if there is a dispute, the cloud users can present proof to a third party (i.e.
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regulator or judge).

Figure 2.12: Architecture of Virtual Machine Introspection (VMI)

2.3.4.1 Digital Forensic Approach

Digital forensic is about obtaining, preserving, analysing, and documenting dig-

ital evidence from digital devices [39]. Digital forensic has been widely accepted

and largely used in investigating cloud security issues [147], [192], [195]. This

activity is called cloud forensic, which is defined broadly by [185] as “an applica-

tion of digital forensic science in cloud computing environments”. Technically,

it consists of a hybrid forensic approach (e.g., remote, virtual, network, live,

large-scale, thin-client, thick-client) towards the generation of digital evidence.

Generally, cloud forensic is based on the well-established and widely accepted
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standard of NIST SP800-86 [114]. The concept of Virtual Machine Introspection

(VMI) for digital evidence collection is briefly presented. Also, some sources for

digital evidence are introduced.

Virtual Machine Introspection (VMI)

VMI [173] is the technique of locating and accessing the digital forensic evidence

on a running virtual machine (VM) (i.e. user-VM) from another isolated running

VM (i.e. admin-VM) which is co-located on the same hardware and which has

required privileges to access the hypervisor layer. VMI is transparent and does

not interrupt the work-flow of the target user-VM nor can it be detected from

there. VMI is especially of interest for security-related techniques, e.g. intrusion

detection. Fine-grained VMI techniques are used to locate, read and write

potential configuration settings of running applications (see Figure 2.12).

The open-source programming library, “LibVMI” is focused on reading and

writing memory from virtual machines [127]. Therefore monitoring applica-

tions can access the memory state, CPU registers and disk activity of target

operating systems in a safe and efficient manner [123]. Memory can directly be

read during runtime of virtual machines. Thus, it is possible to create memory

dumps for further processing. In order to meet safety and integrity require-

ments, target VMs can be paused in order to eliminate the chance of acquiring

inconsistent snapshots. The library itself is written in C and comes with a

Python wrapper to be able to integrate access to VMs to Python scripts [139].

Sources of Evidence

Digital evidence is collected from multiple sources across a cloud system:

• Hypervisor: Hypervisors, also known as virtual machine monitors (VMMs),

such as Citrix’s Xen, VMWare ESXi and Microsoft HyperV, are used to

manage virtual machines (VMs) and their various hardware resources (i.e.

CPUs, RAM, NICs, hard drive, etc.) [202]. It can provide runtime statis-

tics, but also information can be derived from the hypervisor using ad-

vanced techniques like Virtual Machine Introspection (VMI). Evidence col-

lected from the hypervisor can be invaluable, since a VM can be observed
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from the outside.

• The Cloud Management System (CMS): CMS is a large source for

evidence information. It is the central controlling component of a cloud

infrastructure and provides information about user logins, cloud service

usage, access rights, configuration, resource provisioning, policies, loca-

tion, etc. CSPs like Amazon Web Services (AWS) provide monitoring

features such as the AWS CloudWatch and application programming in-

terface (API) for such information gathering.

2.3.4.2 Net Present Value

The idea of Net Present Value (NPV) involves the concept of the time value

of money and takes into consideration that money spent or obtained in future

periods will have a different value than money spent or obtained in the present

[132]. NPV has been a standard method for the financial appraisal of projects.

NPV calculations can be currently found in every project document (i.e. busi-

ness case, project plan, etc.), and project managers throughout the world use

this methodology to compare the value of different projects against investment

targets [223]. In the same light, users of cloud resources should be able to know

the value of their cloud investments relative to their investment expectations.

2.3.4.3 Related Work

We identify some related works that provide an approach to ensuring a level

of transparency or accountability from CSPs. To this end, we first consider

some approaches that encourage or measure transparency towards security on

the cloud platforms. First, the A4Cloud FP7 Project [29] is focused on the ac-

countability of the cloud in terms of data security. In the context of the A4Cloud

FP7 Project, accountability concerns data stewardship regimes in which organ-

isations that are entrusted with personal and business confidential data are

responsible and liable for processing, sharing, storing and otherwise using the
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data according to contractual and legal requirements from the time it is col-

lected until when the data is destroyed (including onward transfer to and from

third parties). Similar works are Cloud Controls Matrix (CCM) Framework

[44] developed by the Cloud Security Alliance (CSA); the Information Assur-

ance Framework [38] also developed by the European Union Agency for Network

and Information Security (ENISA), SMICloud Framework [64] which relies on

the service measurement indexes that have been identified by the Cloud Service

Measurement Index Consortium (CSMIC) [196], and the Complete, Auditable,

and Reportable Approach (C.A.RE) [162]. All of these works are mainly for

intrusion detection, including [82], [179], [23], [191], [201].

However, we consider the few related systems for assuring dependability in

the cloud which are more in line with our work. The three main identified

related works are conceptually similar to our work. The first work [69], measures

and uses quality of service (QoS) information to predict availability, quantify

risk, and consider liability in case of failure. They demonstrate that there is

a pressing need for such an understanding and explore a set of benchmarks

that offers an interesting characterisation of resource performance variability

which can be quite significant. Also, they identify how such information can be

used both directly by a user and indirectly via a Cloud Broker in the automatic

construction and management of SLAs which reference certain kinds of financial

portfolios (i.e. pricing models, risk management). However, this work focuses on

cloud performance and considers the automatic construction of SLAs that would

incorporate expectations over quality of service by referencing benchmarks.

The second work is the Phantom [76] which uses fault injection as a means

of assessing the dependability of cloud systems. Generally, it observes probe

responses to monitor the cloud environment, and generates an alarm when the

quality degrades beyond an acceptable range. It consists of three main com-

ponents, namely Havoc, Monitor, and Analysis. These components interact

independently with the cloud service. More specifically, Havoc injects simu-

lated failure events into the cloud, while Monitor “actively” monitors the cloud’s

behaviour through probes it issues towards the cloud. Phantom’s Analysis com-

ponent observes probe responses, creates a profile of the cloud’s failure detector
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and recovery system performance, and generates an alarm when the quality de-

grades beyond an acceptable range. With this work however, events of failure

are simulated instead of actually observing the cloud platform for actual occur-

rences of failure. That said, Phantom uses its “active meta-monitor” approach

to detect degradation of the cloud’s own failure detector and recovery systems.

On the other hand, the recorded failures are not analysed with respect to the

CSPs SLA. Also, evidence gathering is mainly by observing the metric provided

by the CSP of an open cloud platform.

Similarly, the Cloud Broker Architecture [3] is concerned with fault detection,

fault evaluation and taking decision for recovery or migration as a means for

assuring dependability. It is composed of five modules that collaborate to assure

trust in cloud services with focus on dependability properties. The cloud broker

architecture for dependability involves the main actors of the cloud chain namely

the cloud consumer and the cloud provider and operates consequently. The three

main modules (i.e. service discovery, service composition and service delivery)

are aimed to fulfil the commonly inquired roles from the cloud broker. Each

module can operate independently. The main shortcoming of the Cloud Broker

Architecture is inherited from the CORBA platform [217]. This weakness is

that of poor memory management. This weakness leads to ad-hoc solutions

with regards to avoiding memory leaks. This has the potential of introducing

large overhead cost.

2.3.5 Trust Assurance Methods

Trust is a critical factor in cloud computing; in present practice it depends

largely on perception of reputation, and self assessment by providers of cloud

services. Here, we briefly discuss some mechanisms generally classified under

(a) reputation-based trust, (b) SLA verification based trust, and (c) evidence-

based trust, that have been introduced in literature to assure trust for cloud

services.
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2.3.5.1 Reputation-Based Trust

Trust and reputation are related, but different. Basically, trust is between two

entities; but the reputation of an entity is the aggregated opinion of a community

towards that entity. Usually, an entity that has high reputation is trusted by

many entities in that community; an entity, who needs to make trust judgment

on an trustee, may use the reputation to calculate or estimate the trust level

of that trustee. Reputation systems are widely used in e-commerce and P2P

networks. The reputation of cloud services or CSPs will undoubtedly impact

cloud users’ choice of cloud services; consequently, cloud providers try to build

and maintain higher reputation.

Provisioned cloud resources on-demand are especially vulnerable to cyber at-

tacks (i.e. security breaches, copyright violations, and privacy abuses). The

cloud platforms built by Google, IBM, and Amazon all reveal this weaknesses.

In this work, [91] the authors propose a new approach to integrating virtual

clusters, security-reinforced data-centers, and trusted data accesses guided by

reputation systems. A hierarchy of P2P reputation systems is suggested to

protect clouds and data-centers at the site level, and to safeguard the data ob-

jects at the file-access level. Different security countermeasures are suggested

to protect cloud service models: IaaS, PaaS, and SaaS, currently implemented

by Amazon, IBM, and Google, respectively.

In this work, [2] they investigate the problem of establishing trust in hybrid

cloud computing environments for resource sharing and collaboration. As the

scope of federated cloud computing enlarges to ubiquitous and pervasive com-

puting, there will be a need to assess and maintain the trustworthiness of the

cloud computing entities. This work presents a fully distributed framework that

enables trust-based cloud customer and cloud service provider interactions. The

framework aids a service consumer in assigning an appropriate weight to the

feedback of different raters regarding a prospective service provider. Based on

the framework, the authors developed a mechanism for controlling falsified feed-

back ratings from iteratively exerting trust level contamination due to falsified

feedback ratings. The experimental analysis shows that the proposed framework
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successfully dilutes the effects of falsified feedback ratings, thereby facilitating

accurate and fair assessment of the service reputation.

Many existing reputation based systems either ignore or give less importance to

uncertainty linked with the evidence. The authors in this work, [167] propose an

uncertainty model linked with the evidence and define their approach to com-

pute opinion for cloud service providers. Using subjective logic operators along

with the computed opinion values, they also propose mechanisms to calculate

the reputation of cloud service providers.

Also, this work [216] proposes a combinatorial model for assessing trust dy-

namism in the cloud services. Cloud services and trust value are assessed based

on compliance and reputation. Service logs-based compliance reflects dynamic

trust. The reputation has been calculated from cooperative user feedback. Feed-

back rating is the sight of each user about the appealed services. The exposed

services that fulfill the user necessities are ranked according to their trust values

and top-k cloud services are suggested to the user. The method is well-organised

and noticeably improves service-selection process in cloud applications, in terms

of security, reliability, and dynamicity.

In [40], they have proposed a method for trust and reputation evaluation in the

cloud through the recommendations of “opinion leaders” and eradicating the

effect of troll entities. Trust value was assessed using five factors; accessibility,

reliability, data integrity, identity, and ability. Also, they offered a method for

opinion leaders and malicious entity identification via three topological metrics,

including input degree, output degree, and reputation measures. The method

being assessed in various situations where displays the results of accuracy by

eliminating the effect of malicious entities and the recommendation of opinion

leaders. The results have been obtained with a program, MATLAB. It offers

suitable security, integrity, and safety.

2.3.5.2 SLA Verification Based Trust

After establishing the initial trust and employing a cloud service, the cloud user

needs to verify and re-evaluate the trust. A service level agreement (SLA) is
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a legal contract between a cloud user and a cloud service provider. Therefore,

quality of service (QoS) monitoring and SLA verification is an important basis

of trust management for cloud computing. A number of models that derive

trust from SLA verification have been proposed and some are discussed below.

In this model [79], the authors argue that for business workflow automation in a

service-enriched environment such as a grid or a cloud, services scattered across

heterogeneous Virtual Organisations (VOs) can be aggregated in a producer-

consumer manner, building hierarchical structures of added value. In order to

preserve the supply chain, the Service Level Agreements (SLAs) correspond-

ing to the underlying choreography of services should also be incrementally

aggregated. This cross-VO hierarchical SLA aggregation requires validation,

for which a distributed trust system becomes a prerequisite. Elaborating their

previous work on rule-based SLA validation, the authors propose a hybrid dis-

tributed trust model. This new model is based on Public Key Infrastructure

(PKI) and reputation-based trust systems. It helps to prevent SLA violations

by identifying violation-prone services at service selection stage and actively

contributes in breach management at the time of penalty enforcement.

Also, the work [62] points out the problem of trust management in a multi-cloud

setting based on a set of distributed Trust Service Providers (TSPs). TSPs are

divided over the clouds, and they evoke raw trust proof from different sources

and in different formats. This proof is information concerning the adherence of

the cloud service providers (CSPs) to the Service Level Agreement (SLA) for

the offered services and the feedback sent by cloud service users(CSUs). Using

this information, they calculated an objective trust and a subjective trust of

CSPs. TSPs interconnect between themselves through a trust journal network

that permits a TSP to get trust information about a CSP from other TSPs.

Examinations showed that their proposed framework is effective and relatively

constant in differentiating trustworthy and untrustworthy CSPs in a multi-cloud

setting.

In this work [204], the authors have proposed a selection middleware for the

cloud service based on trust. They suggest an integrated trust evaluation
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method which joins objective trust evaluation and subjective trust evaluation.

The objective trust evaluation is based on quality of service (QoS) monitoring

while the subjective trust evaluation is based on user feedback scores. Exper-

imentations conducted using a synthesised data set display that their offered

technique suggestively outperforms the other trust and reputation approaches.

The experiments have been developed using MATLAB.

An issue with this trust mechanism is that many cloud users lack the capability

to do fine grained QoS monitoring and SLA verification on their own; a pro-

fessional and independent third party is needed to provide these services. In a

private cloud, there may be a cloud broker or a trust authority, which is trusted

in the trust domain of the private cloud; so the trusted broker or trust author-

ity can provide the users in the private cloud the services of QoS monitoring

and SLA verification. In a hybrid cloud or inter-clouds, a user within a private

cloud might still rely on the private cloud trust authority to conduct QoS mon-

itoring and SLA verification; however, in a public cloud, individual users and

some small organisations without technical capability may use a commercial

professional cloud entity as trust broker.

2.3.5.3 Evidence-Based Trust

Evidence-based trust is tightly linked to QoS monitoring and SLA verification.

Here, the actual performance attributes (i.e. evidence) from the cloud service

will have to be compared or analysed relative to the contract (i.e. SLA) provided

by the CSP. A trustor’s belief in the expected behaviour of trustee is based

on the evidence about the trustee’s attributes of competency, goodwill, and

integrity, with respect to that expectation [89]. In evidence-based trust, the

focus is dependent on evidence of the trustee’s attributes of competency or

performance in the context of the service provided. We briefly introduce some

approaches for evidence-based trust below.

We first consider the work [220], which investigates a model dynamic trust-level

scheduling (DLS) for the cloud computing. They have been inspired by Bayesian

cognitive model and mentioning to the trust relationship models of sociology.
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They first proposed a novel Bayesian method based cognitive trust model, then

proposed a trust dynamic level scheduling algorithm via mixing the existing

DLS algorithm. Theoretic analysis and simulation are demonstrated that the

Cloud-DLS algorithm can proficiently meet the requirement of cloud computing

workloads in trust and assure the performance of jobs in a secure way. But it

provided low dependability, integrity and safety in terms of confidentiality.

In terms of assuring system developers of the trustworthiness of the cloud envi-

ronment, a joint project between IBM and Microsoft [165] aims to instil greater

confidence in computations outsourced to the cloud. System developers are

able to verify the correctness of the results returned to them. Pinocchio, a

built system for efficiently verifying general computations while relying only

on cryptographic assumptions is developed. With Pinocchio, the system de-

veloper creates a public evaluation key to describe the computation; this setup

is proportional to evaluating the computation once. The cloud-based worker

system then evaluates the computation on a particular input and uses the eval-

uation key to produce a proof of correctness. Since computational power is often

asymmetric (particularly for mobile devices), a relatively weak client may wish

to outsource computation to one or more powerful workers. Here, the system

developer is able to verify the results returned, to guard against malicious or

malfunctioning workers. They allow the worker to also shed liability; any unde-

sired outputs are provably the result of data the client supplied. Anyone can use

a public verification key to check the proof. The main challenge of Pinocchio is

that, it is co-located with the workers in the same cloud environment, related

to the same set of cloud hardware infrastructure and management software. To

better guard against malicious or malfunctioning workers, Pinocchio should be

deployed to a different cloud environment such that security and dependability

issues affecting the workers cannot compromise the operations of Pinocchio.

In [5], the authors have explained the role of trust in the cloud computing ser-

vices based on empirical proof from interviewing managers of financial organi-

sations in Ghana. This is a descriptive paper that is based on literature review

and experimental data on exploring reasons for the cloud service acquisitions. A

mixture of conferences and attention group discussions was used as approaches
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for data collection. Information and technology, and electronic banking man-

agers of five main mercantile banks in Accra, Ghana, between January and July

2013 were interviewed. A sum of ten respondents was interviewed, two in each

of the selected banks. A purposive sample technique was used in the choice

of informants. This method let the selection of qualified informants to ensure

extensiveness and diversity of opinion.

Another work, [90] proposes a fuzzy trust evaluation based on consistency inten-

sity for cloud services. The main objective of this work is to define an assessment

model for the cloud services to deal with the fuzzy information and offer a novel

fuzzy assessment method based on reliability intensity to examine the quanti-

tative value from the fuzzy information. The offered method can dissolve the

problem on the analysis and synthesis of the fuzzy assessment information. An

instance of trust assessment of the cloud storage service is presented to con-

firm that the proposed method can express the opinions of all assessors more

adequately. It offered suitable security, reliability, and dynamicity.

Furthermore, another work [221] proposes a cloud trust capacity model for

reducing threats of internal troll services. It was used to manage the trust

relationship among the guest services, to evaluate the threats to the unknown

troll services, and to diminish risk associated with leasing the cloud services and

limiting the resource drain caused by troll guest services. Experimental results

showed that the suggested model can effectively limit the scale of the troll

services and considerably lessen the threats of internal attacks. The proposed

mechanism provided better reliability and security.

Another work, [189] have proposed a fuzzy-based trust evaluation scheme for

the cloud services. A dynamic trust model based on evidence was also suggested

to define the dynamic trustworthiness on services in the cloud environment. It

employed fuzzy logic to develop trust in order to handle the uncertainty and

uses ordered weight averaging operator to gather the trust values, thus allowing

the real-time performance. The proposed scheme uses the QoS parameters as a

validation to evaluate the trust for the cloud services. The results in terms of

efficiency and effectiveness of the model were established through simulations.
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It offered suitable security, reliability, and dynamicity, but it suffered from low

integrity, low dependability, low confidentiality and low safety.

Finally, a current work [204] has proposed a new method for recognising the

moderating effect of trust on the adoption of cloud-based services. The purpose

of this research is the identification of the trust factors in the hypothesis of

the cloud services in semiconductor industries. Furthermore, the moderating

efficacy of these trust elements related to the technical, organisational, and

environmental success factors has been propounded. On the base of a literature

survey, an assumptive model has been expanded, and the relations among the

hidden variables have been studied by utilising structural equations.

2.4 Summary

We have introduced the concept of global software development (GSD) as a

pervasive business phenomenon, and its associated benefits for geographically

distributed system engineering. Some leading companies such as IBM, British

Airways, British Telecom and General Electric are increasingly adopting this

model. However, from the literature, we have identified that the absence of

effective information and knowledge-sharing mechanisms, form a crucial part

of GSD’s state-of-the-art problem affecting collaborative software system devel-

opment. Due to the lack of understanding between geographically distributed

teams in GSD, requirements management is particularly difficult. This problem

can be addressed by providing guidelines for the quality management of GSD

projects, and apply a software process improvement model for change man-

agement and traceability. Here, a change management and traceability process

model that is capable of managing the increased scale of requirements’ changes

and their traceability which are characteristic of GSD, has to be introduced by

the guidelines. The guidelines must ensure that all major GSD activities such as

user management, requirement management, change management, and trace-

ability meet a quality management standard. In this regard, a shared artefacts

repository will play a central role for information and knowledge-sharing. We
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believe that such guidelines are capable of facilitating a tight linkage between

system requirements, change management and traceability towards quality man-

agement of GSD projects. This however, informs our objectives (i.e. OB1 to

OB4 ) in Section 1.2.2. We introduce four objectives: Objective 1 defines a

change management and traceability (CM-T) process model, which applies a

software process improvement method to ensure the maturity of the RCM and

traceability processes; Objective 2 identifies a standard quality management

framework to facilitate a significant level of quality for the proposed CM-T

process model; Objective 3 validates the CM-T process model using an expert

panel review process; and Objective 4 demonstrates the defined management

guidelines by applying it to an Airlock Control System case study.

Also, the challenge of appropriate methods to design and evaluate dependable

architectures that support system engineering, directly affects the successful

implementation of GSD. GSD frameworks are defined as software architectures.

The design and evaluation of the dependability of software architectures are

based on quality attributes. In these processes, it is important to consider

the overall effect of design decisions, the inherent trade-offs between quality

attributes, and the trade-offs required to address user, system, and business

requirements. In our opinion, we argue that the existing architecture evalu-

ation methods have limitations when assessing architectures interfacing with

unpredictable environments such as the Cloud. This is because the Cloud en-

vironment is fundamentally different from the classical environments for which

most software evaluation methods were developed. The unpredictability of this

environment requires a bespoke and holistic approach that combines aspects

of both dynamic (i.e. trade-off) and static evaluation of the quality attributes

of software architectures for GSD. Such an approach will be in line with our

objectives (i.e. OB5 to OB8 ) in Section 1.2.2. Here, we present four objectives:

Objective 5 defines a methodology for small-to-medium size GSD architectures;

Objective 6 validates this methodology using a comparative study with current

approaches; Objective 7 demonstrates the methodology by applying it to the

design of a small-to-medium size architecture, Reactive Architecture; and then

Objective 8 analyses the quality attribute trade-off of the Reactive Architecture.
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Finally, Cloud computing has been introduced as a suitable delivery model

for GSD. In fact, GSD seems to be organically integrable with Cloud comput-

ing. Some argue that GSD can be improved by the main characteristics of

cloud computing such as virtualisation, reduced cost, performance, and multi-

tenancy support. That said, this facilitating environment is challenged with lack

of customer trust, vague SLAs, perceived lack of reliability, threats to security

and privacy, and the absence of an independent quality assurance body. Such

concerns lead to the call for cloud accountability. Cloud accountability with

respect to security has been explored to a great extent. Here, outlines for the

technical requirements have been provided. However, from our literature review

we observed that cloud accountability for dependability in areas such as avail-

ability and reliability has not been explored. This is a matter of concern since

cloud users such as system engineers need to be assured of the dependability

of the cloud platform they use for GSD. We believe that a cloud accountability

methodology for assuring the dependability of cloud environments is necessary

(see our objectives OB9 to OB12 in Section 1.2.2). We present these objec-

tives as: Objective 9 defines a cloud accountability methodology; Objective 10

develops a cloud accountability system which facilitates the presented method;

Objective 11 demonstrates the method by applying it to a cloud-based test-bed

of the Reactive Architecture; and Objective 12 conducts an evidence-based trust

analysis on the derived evidence for the purpose of dependability assurance of

the cloud-based Reactive Architecture.
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Chapter 3

Reactive Architecture

This chapter mainly contributes a cloud-based framework for system engineer-

ing. We refer to this framework as Reactive Architecture. Considering the state-

of-the-art in RCM, design and analysis of architecture, and cloud accountability,

this work mainly contributes:

1. an alternative and novel mechanism for effective information and knowledge-

sharing towards RCM and traceability.

2. a novel methodology for the design and analysis of small-to-medium size

cloud-based systems, with a particular focus on the trade-off of quality

attributes.

3. a dependable framework that facilitates the RCM and traceability method

for cloud-based system engineering.

4. a novel methodology for assuring cloud accountability in terms of depend-

ability.

5. a cloud-based framework to facilitate the cloud accountability methodol-

ogy.

In this chapter, we provide an introduction of the Reactive Architecture as a

cloud-based framework to support system engineering in Section 3.1. Also, the
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challenges to the state-of-the-art of GSD is discussed in Section 3.2. In Sec-

tion 3.3, the Reactive Architecture is discussed as a framework that introduces

three approaches that attempt to resolve the discussed challenges. Here, an

approach that presents a mechanism for requirements change management and

traceability is introduced and justified. This mechanism is facilitated by the cen-

tral component of the Reactive Architecture called the Reactive Middleware,

discussed in Section 3.3.1. We follow up in Section 3.3.2 with a description

and justification of our approach for designing and evaluating a cloud-based

architecture. Section 3.3.3 describes and justifies our approach to assure the

dependability of cloud-based systems. We conclude this chapter by providing a

summary in Section 3.4.

3.1 Introduction

The Reactive Architecture aims to support the system engineering process by

employing some state-of-the-art methods. This is necessary to meet the com-

plexities of the systems we are building now and in the future. These complex-

ities introduce challenges that are inherent in the nature of system engineering:

the changing needs of system stakeholders which is more critical for global soft-

ware development (GSD), dependable system composition or integration, and

automated processes. An overview of these challenges are discussed next.

3.2 Challenges of GSD

3.2.1 Effective Information and Knowledge Sharing

Software development is increasingly carried out in a distributed manner with

stakeholders based in different geographical locations. Issues caused by this

trend are related to knowledge management, quality control, synchronous col-

laboration, and risk, project and process management concerns. Here, the ab-

sence of effective information and knowledge-sharing mechanisms, form a crucial
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part of GSD’s current problem affecting collaborative software system develop-

ment. Due to the lack of understanding between geographically distributed

teams, requirements management is particularly difficult. Specifically, GSD,

where teams are distributed worldwide, introduces an additional level of com-

plexity to artefact consistency management tasks. In this respect, areas of

concern are creating and maintaining links among distributed artefacts, mul-

tiple versions of artefacts, and the availability and accessibility of the latest

version of any given artefact. Artefact repositories and version control systems

are often used to mitigate the effects of distribution however, these facilities are

largely limited to the implementation phase of system engineering.

3.2.2 Automation

Tasks associated with artefact consistency management in system engineering,

when performed manually, are error-prone, tedious and require substantial ef-

fort. Some aspects of artefact consistency management can be more easily

automated, such as checking consistency violations, while others may present

non-trivial challenges. For example identifying relationships between diverse

representations is a complex task due to the heterogeneity of artefacts and the

fact that semantics and intentions are not explicitly captured. The extent to

which automation is possible is an open problem.

3.2.3 Diversity of Tools

Software life-cycle tasks are undertaken by stakeholders using a variety of soft-

ware engineering tools. Integrated development environments (IDEs) provide

support to produce source code and tests. Higher-level artefacts are created

using diagram and analysis tools. An ideal framework, to maximise its appli-

cability in software projects, should not impose any specific application on the

user and should be configurable to work with any tool. This therefore, brings

forward the issue with the integration of such tools in a seamless manner.
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3.2.4 System Dependability

Cloud computing has been introduced as a suitable delivery model for GSD.

In fact, GSD can be improved by the main characteristics of cloud computing

such as reduced cost, performance, global multi-tenancy support, etc. However,

the unpredictability and rapid evolution of the topology of the cloud environ-

ment affect the dependability of deployed systems for GSD. In order for GSD

to be dependable in the cloud environment, the design of GSD systems must

master the costs and the quality of the development of such software systems,

relative to the rapid evolution of the topology of the cloud environment. Here,

it is imperative to consider the overall effect of design decisions, the inherent

trade-offs between quality attributes (such as availability, security, reliability,

performance), and the trade-offs required to address user, system, and business

requirements. It is however essential to have a software system design approach

that yields itself readily to an implicit analysis or evaluation method for cloud-

based systems. Since the cloud environment is characterised by rapid interac-

tions between quality attributes, the state-of-the-art of evaluating cloud-based

systems in this context is lacking. Most notable software system evaluation

methods mainly focus on independent quality attributes, and the few that con-

sider multiple quality attributes do not factor the trade-off analysis of system

quality attributes for complex enterprise deployment environments, such as the

cloud.

3.2.5 Accountable Cloud

The concept of cloud accountability, especially for dependability has not been

adequately addressed. This means that the cloud behaviours affecting system

dependability should be transparent to relevant parties, hence the call for ac-

countability. It is important to mention that cloud accountability has been

widely applied towards assuring the security of cloud-based systems, however,

there is no work that employs the forensic auditing techniques of cloud account-

ability towards the assurance of dependability especially for availability and re-
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liability. It is relevant that cloud users such as system engineers are assured of

the availability and reliability of the cloud platform they use for GSD.

3.3 Reactive Architecture

The Reactive Architecture provides approaches (related to the contributions of

this work) intended to remedy the discussed challenges. These approaches are

presented and justified below.

3.3.1 Mechanism for Requirements Change Management

and Traceability

Considering the introduced challenges of (1) effective information and knowledge

sharing, (2) automation, and (3) diversity of tools, we present the definition

of guidelines for managing GSD projects that implement the specific goal -

manage requirements changes - of CMMI Level 2 (discussed in Section 2.1.5.1).

We justify the use and validity of using guidelines or heuristics for identifying

risks and trade-offs during the design and analysis of architectures in Section

2.2.5.2. The GSD guidelines present a process model for change management

and traceability that supports the implementation of the mentioned specific

goal. Also, to support the effective management of the system engineering

processes, the GSD guidelines apply a lean derivative of the PMBOK quality

management process group (discussed in Section 2.1.6) for project life-cycle

practices.

An underlying technology used in the change management and traceability

process model is the open services for life-cycle collaboration (OSLC). This

technology was briefly introduced in Section 2.1.6. OSLC is an open commu-

nity, where the main goal is to create specifications for integrating tools, their

data and workflows in support of life-cycle processes. Fundamentally, OSLC is

based on the concept of linked data. Here, OSLC is organised into work-groups
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Figure 3.1: Overview of Proposed Mechanism for Requirements Change
Management and Traceability

that address integration scenarios for individual topics such as change manage-

ment, traceability, test management, requirements management and configu-

ration management. Such topics are called OSLC domains. Each work-group

explores integration scenarios for a given domain and specifies a common linked

data vocabulary for the life-cycle artefacts needed to support the scenarios. In

very simple terms, OSLC specifications focus on how the external resources of

a particular tool can be accessed, browsed over, and specific change requests

can be made. OSLC is not trying to standardise the behaviour or capability of

any tool. Instead, OSLC specifies a minimum amount of protocol and a small

number of resource types to allow two different tools, data or workflows to work

together relatively seamlessly. To ensure coherence and integration across these

domains, each work-group builds on the concepts and rules defined in the OSLC

Core specification. OSLC Core consists mostly of standard rules and patterns

for using HTTP (Hypertext Transfer Protocol) and RDF (Resource Descrip-

tion Framework) that all the domains must adopt in their specifications. It also
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defines a small number of resource types that help tools to integrate their activ-

ities. In OSLC, each artefact in the life-cycle - a requirement, test case, source

file, etc. - is an HTTP resource that is manipulated using the standard methods

of the HTTP specification (GET, PUT, POST, DELETE). Each resource has

its RDF representation, which allows statements about resources (in particular

web resources) in the form of subject/predicate/object (i.e. RDF triple) ex-

pressions, such as in linked data. OSLC also supports representations in other

formats, like JSON, XML or HTML. The central organising concept of OSLC is

ServiceProvider, enabling tools to expose resources and allowing consumers to

navigate to all of the resources, and create new ones. Importantly, OSLC allows

artefacts (e.g. requirement document) to be exposed as a unit and even specific

elements of the artefacts (e.g. individual requirements) can also be exposed as

sub-units for monitoring.

Figure 3.1 provides an overview of the requirements change management and

traceability mechanism. The GSD guidelines apply a widely used quality man-

agement approach to a change management and traceability (CM-T) process

model for GSD projects. The CM-T process model complies to or reflects the

CMMI Level 2 capability. This mechanism is facilitated by a Reactive Middle-

ware. The Reactive Middleware plays a key role in the Reactive Architecture,

and provides a novel Change Management and Traceability-as-a-Service (CM-

TaaS) on the cloud platform for system engineering.

3.3.1.1 Reactive Middleware

After considering literature on requirements engineering; both old but signifi-

cant, and current (discussed in Section 2.1.2) approaches, the identified areas

that have not been sufficiently addressed can provide a basis for extracting a

high-level set of requirements. Such areas are the independence of artefacts,

globally accessible framework for development, large capacity to store differ-

ent and changing artefacts, automation of change management and traceability

processes, and seamless tool integration. Furthermore, we introduce these re-

quirements under the three discussed challenges of effective information and
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knowledge sharing, automation, and diversity of tools below:

(a) Effective information and knowledge sharing:

• R1: Artefact independence - The suitable framework should have the

capacity to cater for different types or formats of artefacts.

• R2: Supports globally distributed development - Software system de-

velopment is now practiced globally, a suitable approach should be

globally accessible and also provide avenues for solving challenges re-

lated to globally distributed software system development.

• R3: Ability to handle different and large numbers of changing artefacts

- Since software systems are different in terms of their complexity and

size, a suitable approach should consider handling artefacts of vary-

ing complexities and large numbers. Also, its capacity for handling

changes to such artefacts should scale appropriately (such that it does

not affect performance).

(b) Automation:

• R4: Automated as far as possible - In order for the framework to be

adopted in software projects and to reduce manual effort, it should

provide automated support for consistency management tasks.

(c) Diversity of tools:

• R5: Tool integration - The suitable approach should consider that

software artefacts are created and edited in a variety of tools. It should

work with both new and existing tools, new and old versions of a tool,

and should support seamless integration into different environments.

The Reactive Middleware provides cloud-based services for quality requirements

change management and traceability. It is “reactive” because it responds to

changes made to artefacts and such changes are consistently propagated to all

dependent artefacts and relevant stakeholders. The cloud platform identified

and used as a deployment platform for the Reactive Middleware because of

the global accessibility of services for collaboration in GSD, scalability to meet
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varying complexity of GSD projects, and cost-efficiency. To achieve an effec-

tive change management and traceability process, some key steps are adopted.

These steps are:

Figure 3.2: Requirements Change Management and Traceability Processes

(a) trace creation and maintenance,

(b) detect change,

(c) analyse change impact,

(d) check for consistency, and

(e) propagate change.

Refer to Figure 3.2 for the interaction of the above mentioned steps. The Arte-

fact Data is a repository of specific details of artefacts, and more contextual

data such as the dependencies between artefacts and the trace information of

a set of artefacts. Avenues for conflict resolution are also provided. Also, the

Reactive Middleware introduces a structured role-based management of system

development artefacts. Role in this context is described as stakeholders’ re-

sponsibility (i.e. privilege) to system artefacts. This approach assigns priority
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to system requirements relative to their importance. Also, the approach uses six

main privileges (with roles): None:- Have no access to the system artefact(s) for

PAWNS, View:- Only sees the system artefact(s) for PAWNS, Modify:- Can see

(view) and change the system artefact(s) for MODIFIERS, Review:- Can see

and change a modification to system artefact(s), in response to a set of notifica-

tions for REVIEWERS, Create:- Can create and modify (view, modify) system

artefact(s) for CREATORS, and Own:- Full access (view, modify, review, delete,

recall) to the system artefact(s) for TEAM LEADERS. Here, recalled artefacts

are reinstated deleted artefacts. In the Reactive Middleware, the original for-

mats of artefacts are maintained but their metadata which identifies the trace

links are represented in XML format.

This work aims to answer the research question (RQ): “How can the Reactive

Middleware guide system engineering to ensure the continual tight linkage of

stakeholders’ requirements and system engineering processes?”. It hypothesises

that changes in system requirements’ artefacts are captured and consistently

propagated to all the related system engineering processes and stakeholders

using a matured process model. This hypothesis constitutes the conceptual

foundation of the proposed approach, which is aimed at fulfilling the high-level

requirements discussed earlier.

3.3.2 Design and Analysis Methodology for Cloud-Based

Architecture

We argue that the existing architecture evaluation methods have limitations

when assessing architectures interfacing with unpredictable environments such

as the Cloud. The unpredictability of this environment is attributed to the

dynamic elasticity, scale, and continuous evolution of the cloud topology. More

specifically, this is as a result of the rapid introduction of new services, mash-

ups, unpredictable modes of service use, fluctuations in QoS provision due to

unpredictable load or growth, etc. As a result, architectures interfacing such

unpredictable environments are expected to encounter many uncertainties. This

is also relevant because the cloud environment is fundamentally different from
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the classical environments for which most software evaluation methods were

developed. It is however, important to focus on, and present holistic approaches

combining aspects of both dynamic and static analysis of architecture resilience

attributes. From literature, we identify a set of twelve relevant architecture

analysis or evaluation methodologies, and conduct comparative studies (refer

to at Section 2.2.5.1) based on a set of justified criteria:

(a) A goal of sensitivity and trade-off analysis,

(b) A focus on multiple quality attributes, and

(c) The involvement of multiple or all architecture stakeholders.

Figure 3.3: cloud-ATAM: Adapted ATAM with Two-Staged Analysis Ap-
proach

The comparative studies resulted in the identification of the Architecture Trade-

off Analysis Method (ATAM), which satisfied the three criteria above. ATAM

has the potential of considering several architectural quality attributes and ap-

propriately represent an architecture, and analysing the sensitivities of and
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trade-offs between these multiple quality attributes in a hyper dynamic en-

vironment such as the cloud.

That said, ATAM is presented as a generic methodology for analysing the qual-

ity attributes of all sizes of architectures. The nine-step approach of ATAM

is perceived to be complex especially in terms of analysing small-to-medium

sized architectures. There is an obvious need for tailor-made variations of this

methodology to fit small-to-medium sized architectures, which are considered

to be the largest classification of architectures worldwide.

In this work, we provide an enrichment to ATAM with a derived methodology

called cloud-ATAM, which is used to guide the design, analysis and evaluation of

cloud-based architectures. The cloud-ATAM also presents a two-stage approach

for the qualitative analysis and evaluation of small-to-medium size cloud-based

software architectures. Here, the derived methodology is used to design, analyse

and evaluate the Reactive Architecture as a proof of concept.

The introduced methodology (i.e. cloud-ATAM) depicted in Figure 3.3, is mo-

tivated by the complex and iterative nature of the ATAM even for small-to-

medium scale architecture. Typically, small-to-medium scale systems do not

need to undertake all the steps of the ATAM. Due to the limited size of such

projects, some steps can be combined into a new step and some activities of

some steps can be optional. Here, “generating the quality attribute utility tree”

process of “Step 5” can be combined with the “prioritising scenarios” process of

“Step 7”. Also, the duplication of the “analysing the architectural approaches”

process of “Step 6” and “Step 8”, can be combined into one process. This

new step (i.e. “analysing the architectural approaches”) can be extended by

“noting the impact of scenarios on the architectural approaches” as undertaken

in “Step 8”. Activities such as critical requirements, technical constraints, and

quality attributes are necessary under “Step 2: Present Project Drivers”. These

changes are particularly important especially in addressing the perceived weak-

ness of ATAM due to its iterative nature which requires a substantial number of

human experts on the team at different times. It is often expensive to speculate

the availability of such domain experts for small-to-middle size software projects
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due to budgetary or time constraints. The resulting steps for cloud-ATAM is

provided below:

1. Present the cloud-ATAM

2. Present the Project Drivers

3. Present the Architecture

4. Identify Architectural Approaches

5. Generate the Quality Attribute Utility Tree and Scenarios

6. Analyse the Architectural Approaches

7. Present Results

Table 3.1: Utility Trees vs. Scenario Brainstorming

Utility Trees Facilitated Brainstorm-
ing

Stakeholders Architects, Project
Leader

All stakeholders

Typical
Group Size

2 Evaluators; 2-3
Project Personnel

4-5 Evaluators; 5-10
Project-Related Personnel

Primary
Goals

1. Elicit, concretise
and prioritise the driv-
ing quality attribute
requirements.
2. Provide a focus for
the remainder of the
evaluation.

Foster stakeholder commu-
nication to validate quality
attribute goals elicited via
the utility tree.

Approach Top-down (general to
specific)

Bottom-up (specific to gen-
eral)

Here, steps (1) to (5) are used to design small-to-medium size architectures.

Also, cloud-ATAM presents an enrichment in terms of analysis coverage under

steps (6) and (7) to ATAM in the form of a two-stage scenario-based analysis

and evaluation approach:
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(a) Utility Tree, and

(b) Stakeholders’ Brainstorming

Table 3.1 highlights the differences between the utility tree mechanism and the

stakeholders’ brainstorming mechanism.

Utility Tree Analysis Mechanism

Utility tree analysis mechanism provides a top-down mechanism for directly

and efficiently translating the project drivers of a system into concrete quality

attribute scenarios. We need to understand the relative importance of these

project drivers as against other quality attribute drivers to determine where

the architecture evaluation focus should be. Utility trees help to detail and

prioritise quality goals. We empirically analyse the Reactive Architecture by

qualitatively reasoning (i.e. using the Utility Tree Mechanism) about a set of

scenarios of the Reactive Architecture, with the goal of identifying sensitivities

and trade-offs with system quality attributes, and providing a healthy balance

between the risk points identified among the quality attributes of the cloud-

based Reactive Architecture.

Stakeholders’ Brainstorming Mechanism

The scenario brainstorming mechanism is stakeholder-centric, which elicits points

of view from a more diverse and larger group of stakeholders, and verifies, and

then builds on the results of the first phase. It involves the evaluation of the

cloud-ATAM, and this is undertaken through an organised group work of stake-

holders who analyse the trade-off themes on the project drivers. Here, it uses

the expert panel review process to evaluate the architecture. The expert panel

review process has been discussed in Section 2.1.5.4. This mechanism is rele-

vant in facilitating communication among stakeholders and also the stakeholders

with the team of architects of the architecture.

These analysis approaches (i.e. utility tree and stakeholders’ brainstorming

mechanisms) are based on quality attributes in identified scenarios of an archi-

tecture. This work focuses on the sensitivities and trade-offs between multiple

dependability quality attributes such as availability and performance. The jus-
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tification of the choice of availability and performance is mainly as a result of the

nature of the cloud environment, which in turn affects the deployed system such

as the Reactive Architecture. As discussed in Section 2.3.2, the cloud environ-

ment is characterised by rapid evolution of the cloud topology, which has a high

potential of resulting in hardware faults and software errors. Since hardware

and software faults are stimuli for availability (discussed in Section 2.2.3), it is

very relevant to focus on availability as a quality attribute. In characterising

availability, the strategies adopted or parameters are redundancy, voting, retry

and failover support. Also, the responses are service availability, reliability, and

the level of the service. Here, the cloud service providers (CSPs) use the service

level agreements (SLA) to assure clients of the availability and performance of

their platforms. However, these SLAs are perceived to be weak and hence, lack

customer trust, and the cloud platforms are perceived to lack reliability (see

Section 2.3.2.2).

In Section 2.2.2.1, we provide the definitions and taxonomy of software system

dependability. Here, a directly proportional correlation is identified between

availability and performance. The presence of faults as a result of internal

and external events in the cloud platform can affect latency, throughput and

precedence. Since cloud resources are mainly shared (e.g. co-tenancy of virtual

instances), uncontrolled and malicious activities can also affect the performance

of other deployed systems. Even though security is a major area of concern now

and essential, we identify availability and performance as more fundamental.

Security attacks such as distributed denial of service (DDoS) fundamentally

affect availability of service and performance. More so since current literature

(see Section 2.2.5.1) do not effectively address the issues of availability and

performance for software systems deployed to the cloud environment.

cloud-ATAM generates a number of outputs such as: a prioritised list of quality

attributes, a list of architectural decisions made, a map linking architectural

decisions to attributes, lists of risk and non-risks, and lists of sensitivities and

trade-offs. In this work, we use the derived cloud-ATAM to design the Re-

active Architecture, and to analyse the trade-off between the availability and

performance attributes. To support the analysis of the Reactive Architecture,
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cloud-ATAM considers a non-trivial set of scenarios, and uses a two-staged anal-

ysis approach. We answer the research question: “What is the trade-off between

availability and performance quality attributes identified by the cloud-ATAM

for the cloud-based Reactive Architecture?”

3.3.3 Assuring Dependability in the Cloud

The cloud computing technology of today and the future promises to bring

demonstrable benefits to people’s lives. It presents an outsourcing model which

is attractive for businesses that wish to minimise their computing and storage

infrastructure cost. Here, the cloud service provider (CSP) is responsible per

the service level agreement (SLA), for the availability of services and clients

are free from maintenance and management problems of the resource machines.

However, the responsibility of the CSP is often called to question. Literature

review (refer to Section 2.3.4.3) shows that these concerns are largely related

to the assurance of security (in terms of intrusion detection) and dependability

on the cloud. This work pays a closer attention to the dependability assurance

provided by the CSPs, with specific focus on availability and reliability. This

choice is justified by the large quantity of literature focusing on security (see

Section 2.3.4.1), and a few for dependability. From our observation, most of

these literature identify some aspects of dependability as very critical. Such

aspects are the level of service and reliability (see availability charaterisation in

Section 2.2.3). These two aspects are the responses or character of availability

and also reliability. Here, a good plan for availability and reliability in terms

of software and hardware redundancy can also help to mitigate the impact of

security attacks.

With the movement of software engineering from local computers to the cloud

for global software development (GSD), software developers need to be assured

of the dependability of the engineering support deployed to the cloud and the

cloud environment. The predefined and mutually agreed upon business logic

and SLA provided by CSPs attempt to assure developers of the cloud per-

formance, availability, reliability, etc. However, due to the cloud platform’s
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inherent complexity and large scale, production cloud computing systems are

prone to various run-time problems caused by hardware and software faults,

cloud run-time management decisions and environmental factors (see Section

2.3.2). Such SLAs in this context are considered weak, and unable to guar-

antee minimum levels of performance (see Section 2.3.2.2). Cloud agents such

as system developers, CSPs, and cloud regulators need to be informed about

possible or actual violations of the SLAs (when for instance, there is a request

time-out due to the developer specifying a longer time-out than the cloud’s SLA

provides). A robust mechanism is needed for violation detection, notification,

logging and a means towards resolution. Once the cause of the violation is

found, each violator is regarded as being accountable for their fault.

This however highlights the need for cloud accountability (discussed in Section

2.3.4). Creating accountability in the cloud is seen as a solution to users’ lack of

trust. Accountability refers to a situation, where both the CSP and the clients

are able to check whether the cloud is running the service as agreed. If a prob-

lem appears, they should be able to determine which of them is responsible,

and to prove the presence of the problem to a third party, such as an arbitrator

or a judge. Such an activity should be based on evidence. An advanced ap-

proach for using the cloud infrastructure’s hypervisor for providing evidence in

digital forensics is Virtual Machine Introspection (VMI) (Section 2.3.4.1). VMI

leverages the capabilities of the hypervisor to look “inside” the virtual machine

during runtime and using information collected this way for evidence-based au-

diting. The VMI is largely used for system security investigations (i.e. digital

forensic) especially in the area of intrusion detection (e.g., detecting malware).

To support the trustworthiness of the data collected and methodology, we

consider some trust assurance methods: reputation-based, SLA-based, and

evidence-based (see Section 2.3.5). However, we identify that the reputation-

based trust assurance methods are very subjective as this trust assurance method

considered the opinions of cloud agents. These agents may be biased and will

not accurately assess the cloud platform and associated CSPs. In this work, a

combination of SLA-based and evidence-based trust assurance methods is con-

sidered. These methods are dependent on evidence which can provide a more
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accurate representation of the level of trust assurance.

A contribution of this work is a Cloud Accountability System (CAS) which is

a component of the Reactive Architecture. It provides dependability assurance

of cloud resources to cloud agents. This assurance is provided relative to the

cloud SLA and evidence collected from the cloud platform. The CAS facilitates

the Cloud Accountability Methodology which is guided by the NIST SP800-

86 forensic model, that motivates the collection, examination and analysis of

data from the cloud infrastructure, and the generated evidence including logs

and context are reported to appropriate cloud agents. This work also presents

a novel approach to collecting digital evidence to support cloud-based system

dependability, using the VMI technique. This methodology aims to:

• Assure cloud agents of the dependability of the cloud infrastructure with

reference to cloud SLAs.

• Quantify (in monetary terms) the violations to SLAs, using the Net Present

Value (see Section 2.3.4.2). This can serve as a reference point for com-

pensating cloud agents, as well as providing punitive charges to violators.

• Serve as an evidence-based benchmark for choosing a relatively dependable

cloud provider.

The broad research question (RQ) that we seek to answer is “Can a cloud

accountability method be used to meaningfully assure availability and reliability

of deployed systems, relative to the cloud platform’s service level agreement

(SLA)?”. To answer this question, we validate the hypothesis (H1): “The cloud

accountability method can be used to meaningfully assure the availability and

reliability of cloud-based systems”.

3.4 Summary

This chapter initially discusses the challenges of GSD as the absence of an

effective information and knowledge sharing facility, automation of such facility,
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application of diverse set of tools, the dependability of such facility, and an

accountable cloud as a GSD operational environment. We introduced a cloud-

based framework called the Reactive Architecture which has the potential to

address the discussed challenges (this meets contribution 3 in Section 1.3). Here,

the Reactive Architecture presents three approaches to the challenges:

(a) mechanism for requirement change management and tracebility which is

facilitated by the Reactive Middleware (which meets contribution 1 in

Section 1.3),

(b) design and analysis methodology for cloud-based architectures (which meet

contribution 2 in Section 1.3), and

(c) a methodology for assuring the dependability of systems in the cloud

(which meets contributions 4 and 5 in Section 1.3).

The following chapter looks at managing requirement change and traceability.

It also elaborates on the design decisions pertaining to the Reactive Middleware,

software engineering artefact and their trace links, as well as data representa-

tion.
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Chapter 4

Managing Requirement Change

and Traceability

This chapter contributes a Reactive Middleware which facilitates a set of guide-

lines defined to manage change and traceability in Global Software Develop-

ment (GSD). The Reactive Middleware is a critical and central component of

the Reactive Architecture, as it provides cloud-based services for user manage-

ment, requirement management, change management, and traceability of GSD

project requirements and system development phases. We first present a gen-

eralised process model for change management and traceability for GSD, and

then detail our management approach for system engineering processes as part

of the presented GSD guidelines. This contribution satisfies Objectives 1 and 2

presented in Section 1.2.2.

In this chapter, Section 4.1 introduces our work, and the Reactive Middleware

that facilitates the defined system engineering guidelines is presented in Section

4.2. Here, the components of the Reactive Middleware are discussed as well

as the management guidelines, which is composed of the change management

and traceability process model and the system engineering management process

approach. Also, Section 4.3 discusses the approaches and services provided by

the Reactive Middleware in the context of an optimal set of high level require-

ments for a GSD framework operating in the cloud environment, presented in
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Section 3.3.1.1. Finally, the conclusions of this chapter is drawn and presented

in Section 4.4.

4.1 Introduction

In this chapter, we present details of the Reactive Middleware for coordinat-

ing and tracing changes made to system engineering artefacts created and/or

used at various system engineering phases. In this vein, we present the core

process model for change management and traceability along with discussion

of the management approach for system engineering processes and coordinat-

ing agents. Our GSD management guidelines involving the application of the

presented management approach for the change management and traceability

process model, are easily generalised to other system engineering phases.

4.2 Reactive Middleware

4.2.1 Overview

The Reactive Middleware (RM), which is the chapter’s main contribution in-

troduces a structured role-based management of system development artefacts.

Role in this context is described as stakeholders’ responsibility (i.e. privilege) to

system artefacts. Also, this approach assigns priority to system requirements

relative to their importance. The role-based management approach uses six

main privileges (with roles): None: Have no access to the system artefact(s)

for PAWNS, View : Only sees the system artefact(s) for PAWNS, Modify :

Can see (view) and change the system artefact(s) for MODIFIERS, Review :

Can see and change a modification to system artefact(s), in response to a set of

notifications for REVIEWERS, Create: Can create and modify (view, mod-

ify) system artefact(s) for CREATORS, and Own: Full access (view, modify,

review, delete, recall) to the system artefact(s) for TEAM LEADERS. Here,

recalled artefacts are reinstated deleted artefacts.
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Figure 4.1: Reactive Middleware Interactions

4.2.2 Change Management and Traceability as a Service

The RM is composed of the Publish/Subscribe system (PSS) and the Artefacts

Monitoring system (AMS), which together provides cloud-based services to-

wards user management, requirement management, change management, and

traceability. The PSS facilitates the subscription of system stakeholders to

relevant artefacts, to which they will initiate change requests or will receive

change notifications. Also, the AMS is responsible for monitoring the relevant

artefacts for changes, and then triggers the PSS to notify appropriate stakehold-

ers or change agents. The RM interacts with the system stakeholders, System

Engineering Tools, and a Shared Artefacts Repository. The RM facilitates man-

agement guidelines for GSD projects that applies quality process management,

to a change management and traceability process model. From Figure 4.1, the

GSD Team Members have the flexibility to adopt any type of software devel-

opment life-cycle (SDLC) approach (e.g. waterfall, agile, spiral, etc.) that suits
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their development style (i.e. Step 1 ). Then following the prescribed manage-

ment guidelines featured by the Reactive Middleware, the GSD Team Members

manage the development process with the PMBOK process group for system

engineering life-cycle (i.e. Step 2 ). When there are change requests that are

related to the high priority requirements, the GSD change managers apply the

change management and traceability process (CM-T) model to either approve,

note (i.e. to be applicable in the future) or disapprove the request (i.e. Step

3* ). This CM-T model takes into consideration the bidirectional traceability

of the change agents (i.e. system stakeholders, artefacts and tools) involved in

the change request. System engineering tools form an important change agent

in the development process (i.e. Step 4 ).

Table 4.1: Mapping the Key Steps for Effective Requirements Manage-
ment and Traceability Processes with Proposed Change Management and
Traceability Services

5 Key Steps Proposed Change Management and
Traceability Services

Trace creation and
maintenance

The PSS facilitates the initiation of change re-
quests and receiving change notifications.

Detect change The AMS monitors the relevant artefacts for
changes, and then triggers the PSS to notify ap-
propriate stakeholders or change agents.

Analyse change im-
pact

the GSD Team Members manage the develop-
ment process and change with its impact using
the GSD guidelines.

Check for consis-
tency

When there are change requests that are re-
lated to the high priority requirements, the GSD
change managers apply the change management
and traceability process (CM-T) model to ap-
prove, note or disapprove the request.

Propagate change This CM-T model takes into consideration the
bidirectional traceability of the change agents
(i.e. system stakeholders, artefacts and tools)
involved in the change request.

In Table 4.1, we provide a mapping of the identified five key steps for effective
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requirements management and traceability processes (refer to Section 3.3.1.1)

with our proposed approach facilitated as services by the Reactive Middleware.

Figure 4.2: Overview of the Components of the Reactive Middleware

4.2.2.1 Publish/Subscribe System

This system implements a Publish/Subscribe mechanism. Here, all actors (i.e.

system stakeholders and tools) involved in the development and evolution of

an artefact subscribe to that artefact (see Figure 4.2). Artefacts can only be

accessed by specific authorised actors. The Artefacts Monitoring System notifies

the Publish/Subscribe System when there is a change made to an artefact. The

Publish/Subscribe System then identifies and notifies all the actors that have

registered their interest in the artefact.

That said, the Publish/Subscribe System specifically provides services for user

management as the stakeholders (1) register to use the Reactive Middleware,

and (2) roles and privileges are assigned to them. Also, the system provides

services for requirements management: (1) subscription to a set of artefacts to

which they (2) receive notifications.
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Table 4.2: Description of Artefacts in the Shared Artefacts Repository

SDLC Phases Artefacts Description
Requirements System models are saved as artefacts. These require-

ments artefacts are obtained from tools such as ProR.
Specification Developed system model specification are saved as

artefacts. The model specification contains elements
such as invariants, guards, actions, etc. Such ele-
ments are also extracted as dependent artefacts.

Implementation Implementable source codes of model specifications
are saved as artefacts. These source codes are gen-
erated with appropriate tools such as EB2ALL. It
supports automatic code generation from Event-B
to C, C++, Java and C. Another tool example is
EventB2Dafny. This tool extends the Boogie and
Dafny tools, and allows the use of Dafny static analy-
sis machinery based on design-by-contract principles.
This yields artefacts in the form of executable input
code for Boogie and Dafny.

Documentation Documentation artefacts are in the form of: (1) trace-
ability logs, (2) incident reports, and (3) others such
as designs, test plans, execution results, etc.

4.2.2.2 Artefacts Monitoring/Interpretation System

The Artefacts Monitoring/Interpretation System (AMS) is a subsystem of the

Reactive Middleware. This subsystem interacts with the Shared Artefacts

Repository to monitor changes made to artefacts. The OSLC technology (dis-

cussed in Sections 2.1.6 and 3.3.1) used for monitoring in AMS provides stan-

dardised methods to represent, access, and link to resources. With OSLC spec-

ifications, tools can freely understand each other’s data and artefacts. This

makes it easy to better analyse, track, and explore that data to make better

decisions. There are feature to support change management, traceability, etc.

In OSLC, resources are identified by OSLC annotations. So projects and their

composing elements being developed in IDEs are tagged with these OSLC an-

notations, to reveal their artefacts to the client plug-in. Information about
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Table 4.3: Global Software Development Management Guidelines

Guidelines
Steps ID

Guidelines

GS1 System development teams should appoint team leaders.
GS2 These team leaders will constitute the GSD change man-

agers
GS3 System requirements should be classified based on iden-

tified dependability quality attributes (i.e. safety, relia-
bility, robustness, etc.), and are then prioritised relative
to their importance to the system stakeholders.

GS4 Team leaders must assign roles to all team members with
the prioritised requirements in mind, and manage the
development process with the adapted PMBOK guide.

GS5 All other change agents especially the system engineer-
ing tools should be assigned a default privilege of review.

GS6 All system artefacts should be saved in a shared artefacts
repository.

GS7 The privileges (i.e. none, view, modify, review, own) of
system stakeholders or change agents will determine the
access privileges to system artefacts.

GS8 Change agents must subscribe to relevant artefacts after
they are created, in order to receive notifications when
they are changed.

GS9 All related artefacts must be linked together to facilitate
traceability.

GS10 Changes made to any system artefacts must be logged.
GS11 When changes affect the high priority set of require-

ments, appropriate local team leader must lead the
change request review process (i.e. involving the CM-T
model) of the GSD change managers.

GS12 On the other hand, conflicts arising from changes to low
priority set of requirements are resolved locally, lead by
the local team leader.

GS13 Changes in system artefacts should be traceable to man-
age its impact on related/linked requirements or arte-
facts.
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these resources/artefacts are gathered and formatted as XML files. These files

are sent from the client plug-in periodically to the OSLC sub-system in the

Reactive Architecture. Here, all various versions of the XML files are saved.

The main functionality of this sub-system is to ensure change management and

traceability of artefacts. For traceability, all activities on an artefact such as

creation, modification, deletion are recorded and stored. Also for change man-

agement, the latest information about artefacts is compared with information

from newly arrived XML files. Whenever a change in the files is identified, a

notification is sent to the Publish/Subscribe sub-system.

Here, the services provided are requirements management, change management

and traceability. Here, changes to artefacts relating to a set of requirements are

managed, and then traced to ensure consistency through impact management

and logging.

Different types or formats of artefacts are considered here (see Table 4.2). This

enhances the capacity of the AMS to support independent artefacts, however

metadata are created as XML formats. This format allows for managing trace-

ability.

Figure 4.3: PMBOKR© Process Group for System Engineering Life-Cycle
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4.2.2.3 Management Guidelines for System Engineering

We introduce the defined management guidelines for GSDs (see Table 4.3).

The GSD guideline essentially defines a generic development policy for software

engineering projects. As part of the GSD guidelines, we present our PMBOK

process group for managing quality system engineering processes, and then the

change management and traceability (CM-T) process model. The PMBOK

process group for managing quality system engineering life-cycle (see Figure 4.3)

plays an overarching role in the GSD guidelines. This management approach is

applied to the CM-T process model.

4.2.2.4 PMBOK 5-Step Process Group for System Engineering Life-

Cycle

The PMBOK is a project management guide that is a well accepted standard

which provides a general framework for project management. The PMBOK

contains 42 project management (PM) practices organised by two orthogonal

categories: Process Groups (PG) and Knowledge Areas (KA). Here, each of the

42 processes belongs to exactly one process group and to exactly one knowledge

area. The PG organisation shows the project’s life cycle (see Figure 4.3), in-

volving 5 groups: Initiating, Planning, Executing, Monitoring & Control, and

Closing. These five process groups are introduced below:

(a) Initiating : An idea for a project will be carefully examined to determine

whether or not it benefits the organisation. During this phase, a decision

making team will identify if the project can realistically be completed.

(b) Planning : A project plan and/or project scope may be put in writing,

outlining the work to be performed. During this phase, a team prioritises

the project, calculate a budget and schedule, and determine what resources

are needed.

(c) Executing : Resources’ tasks are distributed and teams are informed of

responsibilities. This is an appropriate time to bring up important project

related information.
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(d) Monitoring and Controlling : Project managers compare project status

and progress to the actual plan, as resources perform the scheduled work.

During this phase, project managers may need to adjust schedules or do

what is necessary to keep the project on track.

(e) Closing : After project tasks are completed and the client has approved

the outcome, an evaluation is necessary to highlight project success and/or

learn from project history.

The KA organisation groups the processes into 9 knowledge areas, according to

their application to a specific aspect of project management, such as cost, sched-

ule, quality, risks, etc. The PMBOK’s chapters follow the KA organisation,

where the order of processes in each KA is determined by their chronological

application in the project, according to the PG organisation.

4.2.2.5 Change Management and Traceability Process Model

The (CM-T) process model is expected to ensure a matured change management

and traceability processes relative to the specific practices of the CMMI Level

2. To begin the definition of the process model, we indicate the main processes

involved in validating the CM-T process model as to:

1. Provide objective(s) for building the model;

2. Show the criteria identified during the initial stages of model devel-

opment;

3. Design a validation instrument to test the success criteria (to include

methods for reporting/analysing responses);

4. Select an expert panel to reflect the population of experts in Soft-

ware Engineering, Requirements Engineering (RE), and CMMI; and

5. Present results of the validation instrument.
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Table 4.4: CM-T Process Model Validation

Criterion Purpose Rule Source

Adherence to
CMM

Characteristics

The new model should be
recognisable as a derivative of
established models - both in
structure and concept. By
tapping into the established
models, the CM-T model takes
the strengths of a proven
improvement structures and
becomes more accessible and
compatible, avoiding redundant
activities.

- CMM maturity level concepts
must be implemented
- Each level should have a
theme consistent with CMM
- Requirement engineering (RE)
processes must be integrated
- The model should be
recognisable as a CMM offshoot
- The CM-T must be
systematic and sequential

Where possible we
should adapt existing
models rather than
create new ones

Maturity levels help
characterise a process
and set out a strategy
for its improvement

Limit Scope

CMM goals, RE phases and RE
processes define the boundaries of
the model. The model does not
include all RE processes.

- Key activities relating to technical
and organisational RE processes
are included
- Processes are prioritised.
- Processes relate directly to the
CM-T process areas
- The scope/level of detail should
be appropriate (i.e. depth and
breadth of processes presented)

It is important to know
the scope of the model,
i.e. what the model
includes and excludes

Consistency

Having an acceptable level of
’construct’ validity will help users
navigate within levels of maturity
as well as between different levels
of process maturity. Model
development and adaptation
depends on an acceptable level of
consistency.

- There should be consistent use
of terms and CMM features at
this level of development
- There will be a consistency in
structure between model
components at the same level of
granularity that are modelling
different maturity levels.

To understand a model
it is important that there
is a common language.
Each stage of development
should describe
processes at similar
levels of granularity

Understandable

All users of the model should have
a shared understanding of the RE
process in order to identify where
improvement is needed. There
should be no ambiguity in
interpretation, especially when
goals are set for improvement.

- All terms should be clearly
defined (i.e. have only one
meaning).
- All relationships between
processes and model
architecture should be
unambiguous and functional.

The importance of clear
definitions. Understanding
is a prerequisite for effective
process improvement and
management

Ease of Use

Over-complex models are unlikely
to be adopted as they require extra
resources and may be too
challenging for the user to interpret
without extensive training. The
model will have differing levels of
decomposition starting with the
most high level in order to
gradually lead the user through
from a descriptive model towards a
more prescriptive solution

- The model should be
decomposed to a level that is
simple to understand
- The model should be simple yet
retain meaning
- The chunks of information should
clearly relate as they develop
into more complex structures
- The model should require little or
no training to be used

Usability is a key
requirement of any
process improvement
model

Verifiable

Model strengths and weaknesses
need to be tested to help direct
future model development.
Validation of the model will help to
improve the model, add confidence
in its representation and help with
research in this area.

- The model must be verifiable, i.e.
we must be able to test/measure
how well model meet its
objectives and whether meeting
these objectives leads to a high
quality CM-T process model.

To assess whether a
process is useful, well
implemented the model
needs to be verifiable
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Figure 4.4: Candidate Processes Reflecting a CMMI Level 2 (Baseline)
Capability
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Stakeholders Change Request

Change Request Pool

Consideration by Change ManagersRequest Noted

Request Approved

Request Disapproved

System Documentation

Effect Change

Verify and Validate Change

Update Cause-and-Effect of Change

Trace Change

Close Change Request

Figure 4.5: Change Management and Traceability Process Model
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1. Provide objective(s) for building the model

We aim to develop a model that represents key practices in RE within a maturity

framework mentioned earlier. Here, our objectives are:

(a) A primary objective of our CM-T model is to guide software stakeholders

to relate key change management and traceability processes to goals in

order to prioritise their requirements process improvement activities.

(b) The CM-T process model should strengthen components of the CMMI (in-

volving software requirements) to clearly focus on the change management

and traceability processes.

(c) Our model should complement the CMMI (Level 2) so that practitioners

are not required to learn another software process improvement method-

ology.

(d) Finally, we aim to link theory to practice through a model that is easy to

use and interpret.

2. Show the criteria identified during the initial stages of model

development

We initially identify six relevant success criteria based on CMMI Level 2 base-

line capability (see Figure 4.4) to guide the development of the CM-T model.

Success criteria were established per evaluation question. These success cri-

teria are presented in Table 4.4. The criteria were identified using a method

similar to that used in the SPICE trials (see Section 2.1.5.2) to support the

ISO/IEC 15504 emerging standard. The resulting CM-T process model (see

Figure 4.5) considers the development teams and system engineering tools as

the main agents of change. In order for the change process to be initiated, a

change request must be initiated in a GSD project. All such change requests are

drafted as a change request form. All submitted change request forms go into a

centralised change request pool. The change managers group is made up of all

the GSD team leaders and other relevant stakeholders. The change managers

consider and timely decide on all the submitted change requests. During meet-

ing sessions for considering submitted change requests, the GSD team leaders
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will lead the consideration of all change requests that originates from their team.

Team leaders are expected to have critically assessed, and understand change

requests before they are approved for submission. The decisions take a form

of an approval, disapproval, or noted. A disapproved change request means a

termination of its consideration, and hence not to be effected. Also, a noted

change request means an acknowledgement of relevance, but cannot be effected

at the point of time in the GSD project. Such a change request, can be recon-

sidered at a future time determined by the change managers or resubmitted

when deemed relevant by the initiator and approved by the GSD team leader.

On the other hand, the initiators of the change requests that are approved are

notified to effect the change. This change is verified and validated after the

change has been effected. The verification and validation process assesses the

immediate impact of the change on the GSD project. A detailed assessment

of the cause-and-effect of the change is then undertake, and all minor conflicts

(i.e. affecting less prioritised project requirements) are resolved within the local

GSD team. In situations where the initial change affects a prioritised project

requirement, the GSD team leader will advice the most relevant stakeholder to

submit a change request to the change managers for consideration. From the

point where an accepted change is being effected till the point where it has

been implemented successfully, a process to trace all the change with regards to

participating stakeholders, associated software development life-cycle (SDLC)

phase, corresponding system engineering tools, impact on other artefacts, etc.

is undertaken in parallel. This period also sees the creation or modifications to

system documentations. At this point, the change managers accept the change

and it is marked as successful. Then a generation of notification to all stake-

holders of the change, and finally the change request is closed.

3. Design a validation instrument to test the success criteria (to

include methods for reporting/analysing responses)

We design a validation instrument to test the success criteria provided in Table

4.4. We choose a questionnaire as a validation instrument since it mainly pro-

vide relatively precise responses for evaluations,compared with interviews. This

questionnaire is provided in Appendix C.15. We consider a set of experts who
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provides their responses to the questionnaire for validation.

The validation process meeting objective (i.e. 4. Select an expert panel to

reflect the population of experts in Software Engineering, Require-

ments Engineering (RE), and CMMI), and the reporting process meeting

objective (i.e. 5. Present results of the validation instrument) are pre-

sented as the validation of the CM-T process model by the expert panel and

evaluation of Reactive Middleware with regards to the services it provides re-

spectively in Section 7.1.

4.2.3 Shared Artefacts Repository System

The Shared Artefacts Repository is a component of the Reactive Architecture,

and it stores all relevant system engineering artefacts (see Table 4.2). An arte-

fact is one of many kinds of tangible by-products produced during the devel-

opment of software systems. Some artefacts (e.g. requirements, plans, designs,

source code, test plans and results, problem reports, reviews, notes, use cases,

class diagrams, and other Unified Modeling Language (UML) models and de-

sign documents) help describe the function, architecture, and design of software

systems. Other artefacts are concerned with the process of development itself

such as project plans, business cases, and risk assessments. For this version of

the architecture, focus will be on defining artefacts that describes the functions

and design of the components of the architecture.

4.2.4 System Engineering Tool Support System

The Toolbox system is composed of tools that have been classified based on

system engineering phases. The Toolbox is a component of the Reactive Ar-

chitecture. The Reactive Middleware interacts with the Toolbox by notifying

system engineering stakeholders of changes that tools in the Toolbox make to

artefacts. The tools in the Toolbox can be coordinated in a form of composi-

tions. System engineers can choose to compose the tools into either parallel or
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Table 4.5: Meeting the High Level Requirements of an Effective GSD
Framework

GSD Requirements Description of Approaches
Effective information
and knowledge sharing:
R1 : Artefact independence Artefacts in the Shared Artefacts Repository are

saved in their original formats, some generic XML
derivatives are are generated for interoperability , as
well as the generation of metadata for each artefact
in XML format to facilitate change management and
traceability. (GS6)

R2 : Supports globally dis-
tributed development

The Reactive Middleware is deployed to the cloud
environment to facilitate global accessibility. Also,
it provides GSD services towards user management,
requirement management, change management, and
traceability. (GS1, GS2, GS3, GS4, GS5, GS7)

R3 : Ability to handle dif-
ferent and large numbers of
changing artefacts

The Shared Artefacts Repository has a high scalable
capacity for varying formats of artefacts. Also, the
CM-T process model has been designed to keep up
with large volumes of changing to artefacts. An Air-
lock Control System case study has been provided in
Section 7.1.2 to assess this. (GS9, GS10, and GS11)

Automation:
R4 : Automated as far as
possible

The Reactive Middleware has been developed as a
set of cloud-based REST web services to provide
the mentioned set of GSD services. It mainly min-
imizes the manual effort involved in artefact con-
sistency management involving change management
and traceability. (GS8, GS11, GS12, and GS13)

Diversity of tools:
R5 : Tool integration The System Engineering Toolbox provides a set of

tools with different versions. These tools are inte-
grated using the OSLC technology such that a work-
flow can be created. Also, outputs of one tool is re-
formated as an input for another. Plug-in for the
toolbox is provided for variations of the Eclipse de-
velopment environment. (GS5)
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sequential scenarios. Such compositions can be applied to a set of tools that are

classified across system engineering phases. In this situation, tools that support

Requirements Engineering can be composed as a set. Also, tools that support

different system engineering phases such as Requirements and Verification, can

be composed in a workflow set. To achieve such a workflow, the OSLC technol-

ogy is used. The OSLC technology facilitates the integration of different tools

by providing a standardised liked data formats.

The Toolbox system receives requests from the Architecture Interface, which is

then directed to the specified tool(s). The Web Service running the collection of

tools implements the OSLC technology. Here, all data and artefacts generated

by the tools are annotated as resources. The annotation process allows the

definition of the format (plain text, XML, JSON-RDF, etc.) of data or artefacts.

After this process, data or artefacts can either be sent to the Shared Artefacts

Repository to be saved, or passed on to other tools in a workflow.

Developers have an option of selecting a particular set of tools from the list of

tools on the plugin’s “properties page”. With this selection, artefacts can be

passed to these particular tools. This selection can be changed at any time, but

it can only take effect in the REQUEST that follows it. We demonstrate the ap-

plication of the Toolbox to facilitate co-engineering and verification (i.e. model

checking and theorem proving) of formal models relative to their requirements

in Appendix B.12.

4.3 GSD Requirements Discussion

In Section 3.3.1.1, a set of high level requirements were discussed as optimal

for GSD in the cloud environment. Here, we want to reassess our proposed

approach of the Reactive Middleware in the context of the mentioned high level

requirements. Table 4.5 shows this assessment.

With the successful mapping of the approaches or services provided by the Reac-

tive Middleware and presented by the proposed GSD management guidelines,

to the high level requirements of a desirable framework to provide solutions
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to the state-of-the-art challenges in practicing GSD in the cloud environment,

we are confident that the Reactive Middleware will guide system engineering

to ensure the continual tight linkage of stakeholders’ requirements and system

engineering processes. That said, we evaluate this in Chapter 7.

4.4 Summary

In this chapter, we introduce a cloud-based Reactive Middleware that applies a

defined change management and traceability (CM-T) process model, within the

context of an adapted PMBOK quality process management approach to GSD.

This is in line with Objectives 1 and 2 presented in Section 1.2.2. The Reactive

Middleware provides cloud-based services for user managament, requirement

management, change management and traceability, and are facilitated by our

GSD management guidelines.

To ensure that the defined CM-T process model complies with the CMMI Level

2 (Baseline) Capability, an expert panel review process is used to validate it in

Chapter 7. Also in that chapter, we demonstrate how the Reactive Middleware

will guide system engineering to ensure the continual tight linkage of stakehold-

ers’ requirements and system engineering processes, by applying it to the GSD

of an Airlock Control System.
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Chapter 5

Designing Architectures for

Global Software Development

This chapter presents the description and the design of the Reactive Archi-

tecture. The main contributions of this chapter are the introduction of a novel

architectural trade-off analysis methodology referred to as cloud-ATAM, and the

design of the Reactive Architecture for cloud-based system engineering. These

contributions satisfy Objectives 5 and 7 respectively presented in Section 1.2.2.

The introduced methodology (see Section 1.3) assists in analysing the trade-

off of quality attributes of software architectures. Here, we focus on software

architectures with their sizes spanning the range of “base functional process”

(BFP) to “macro functional process” (MFP) as classified with functional size

measurement under the ISO/IEC 19761:2011 and COSMIC Full Function Point

2.2 standards. This size range is referred to as “small-to-medium size” in this

chapter.

In this chapter, we discuss the design and analysis of the the Reactive Architec-

ture using the cloud-ATAM. We begin by giving a preliminary introduction to

the Reactive Architecture, and describe its components (i.e. Reactive Middle-

ware, Shared Artefacts Repository System, System Engineering Toolbox, and

Cloud Accountability System) and their relationships in Section 5.1. In Section

5.2, we classify the size of the Reactive Architecture using the “COSMIC func-
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tional size measurement” approach. Section 5.3 presents a brief overview of the

Architecture Trade-off Analysis Method (ATAM) as a precursor to our derived

methodology. Then, the derived trade-off analysis methodology - cloud-ATAM

- for the design and analysis of the small-to-medium size cloud-based Reactive

Architecture is discussed. Finally, Section 5.4 concludes this chapter.

5.1 Designing the Reactive Architecture

We introduce a Reactive Architecture for system engineering in the cloud. This

architecture supports various phases of system engineering processes. The main

aim is to provide a dynamic and dependable framework that addresses the issues

of complexities of system engineering in terms of its processes.

Figure 5.1: Layered View of Reactive Architecture

The main components of this architecture are an Architecture Interface, Re-

active Middleware, Shared Artefacts Repository System, System Engineering
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ToolBox, and Cloud Accountability System (see Figure 5.1 - Layered View).

For an effective collaboration of system engineers and other stakeholders, there

should be a standardised medium or means of reliable information flow. Such

information is often a product of the system engineering process. The system

engineering process produces different types of artefacts, and changes made to

these artefacts will have to be propagated to all relevant stakeholders. There is

also a need to record all these changes as well as the system engineering tools

and system developers that/who made them. Hence, change management and

traceability of artefacts of the development process is crucial. It is therefore

necessary to support a kind of reactive system engineering. Here, system devel-

opers will be able to react to such changes and ensure traceability and change

management of all development artefacts.

To achieve this, we introduce a Reactive Middleware. Our definition of the

Reactive Middleware is a system deployed to the cloud platform that provides

services for change management, traceability, and stakeholder notification dur-

ing cloud-based system engineering. The “reactivity” feature of the architecture

is supported by this Reactive Middleware, which is largely aided by the Shared

Artefacts Repository System. The Reactive Middleware is composed of a pub-

lish/subscribe mechanism and a change monitoring system. This middleware

reacts to changes made to artefacts saved in the Shared Artefacts Repository.

This reaction involves a notification sent to the corresponding system devel-

opers and relevant stakeholders to inform them of the changes made. This

middleware introduces a form of dynamism and advancement to the system

engineering process.

At a high and abstract level, the Reactive Architecture is designed based on

the server-client relationship. Service Oriented Architecture (SOA) might be

treated as a state of the art approach to the design and implementation of

enterprise software, which is driven by business requirements. Within the last

decade a number of concepts related to SOA have been developed, including En-

terprise Service Bus (ESB), web services, design patterns, service orchestration

and choreography and various security standards. Due to the fact that there
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are many technologies that cover the area of SOA, the development and evalu-

ation of SOA compliant architectures is especially interesting. The concept of

cloud computing represents a combination of most of these concepts and hence,

serves as a good SOA example. In view of this, the Reactive Architecture con-

sists of a set of interconnected web services. We use web services as our service

delivery framework since the cloud platform mainly supports such definition of

services. Here, the architecture and its components are mainly servers. The

clients (i.e. system developers and relevant stakeholders) access the interface

of the Reactive Architecture using plug-ins, developed into integrated develop-

ment environments (IDEs). In web services, clients’ plug-ins and services are

assumed to be loosely-coupled, which means that they are stand-alone systems

independent of each other. The web service implementation details and internal

structure are hidden from clients.

These web services are classified into architecture interface, Reactive Middle-

ware, System Engineering Toolbox, Shared Artefacts Repository system, and

the Cloud Accountability System. The classified web services function differ-

ently to achieve their specific goals. All of these web services can be used by

clients (i.e. system developers) independently of the others. Here, if a client

requires the services of a model checker tool such as ProB, all other tools in

the System Engineering Toolbox, as well as all other web services can be dis-

regarded. Also, some web services can interact with each other to create work-

flows. Communication among the web services is fundamentally based on the

web standard Hypertext Transfer Protocol (HTTP), but more specifically on

JSON-RPC. JSON-RPC is a remote procedure call protocol encoded in JSON.

We use it as it is a very simple protocol, defining only a handful of data types

and commands. Also, JSON-RPC allows for (1) “notifications” where data sent

to the server does not require a response, which is suitable for workflows, and

for (2) “multiple calls” to be sent to the server which may be answered out of

order. We also make provisions for XML-RPC as an alternative communication

protocol.

The overview of the proposed architecture supporting system engineering on the

cloud (see Figure 5.1) is now described briefly in terms of interfaces, components,
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connectors, constraints, and dependability.

5.1.1 Architecture Interface

Clients send requests to the Reactive Architecture. The requests are first re-

ceived by the architecture interface. Here, requests are translated and directed

appropriately to the intended component or constituent web service. This func-

tion of the architecture interface assists in regulating all requests made to the

web services in the Reactive Architecture. In this situation, all requests that

do not conform to the expected requests format are classified as malicious; they

are dropped and noted.

5.1.2 Components

The main sub-systems of this architecture are briefly introduced as System and

Component Interfaces, System Engineering Toolbox, Shared Artefacts Repos-

itory, Reactive Middleware, and Cloud Accountability System. System and

Component Interfaces provide globally unique names of web services’ handlers,

based on internet domain names. This is generally specified as a unique uni-

form resource identifier (URI). Also, the interface determines the capacity and

ordering of resource requests. A standard of the relationships between compo-

nents are described in the component interface(s). This defines the type, means

and scope of resource request transactions between components. The System

Engineering Toolbox manages central updates of tools, defines the relationships

between tools (i.e. establishing workflow of tools), manages system artefacts

manipulation processes, and facilitates data presentation in different predefined

(standard) formats. Also, the Shared Artefacts Repository manages search

and retrieval of artefacts. This repository management supports the Reactive

Middleware. These tools and repository management together ensure real-time

monitoring of artefacts, change management, and traceability. The Toolbox

brings together various tools that support the system engineering phases. It

also provides access to various versions of tools, and facilitates communication
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between tools. The Shared Artefacts Repository stores system engineering arte-

facts (source code, test cases, models, patterns, documentations, requirements,

etc.), it employs an efficient indexing process (to facilitate prompt access to arte-

facts), and it asynchronously backs its contents up in a cloud-based repository.

The components of the Reactive Architecture are further discussed in Section

5.3.3 and in the following chapters: Reactive Middleware and Shared Artefacts

Repository in Chapter 4, and Cloud Accountability System in Chapter 6.

5.1.3 Connectors

A connector defines the type of relationships between the components of a

system. In the Reactive Architecture, we consider a set of connectors that are

appropriate to use at various facets of its design. Such connectors are:

(a) Asynchronous Event Notification (AEN) is a process or procedure

that may be used by system component targets to notify a system compo-

nent initiator of “events” that occur in the target. More specifically, we

identify some components that will be suited to the asynchronous event

notification connector:

• the Architecture Interface can use the asynchronous event notification

to notify architecture components when a request is received from a

client. Here, client requests are noted as events and the appropriate

component(s) are notified accordingly.

• with the Reactive Middleware, the asynchronous event notification is

able to identify changes made to artefacts as events in the Shared

Artefacts Repository, and all appropriate component(s) such as the

tools in the System Engineering Toolbox is/are notified.

• the coordination of tools in the System Engineering Toolbox for the

purpose of creating workflows can benefit from asynchronous event

notification connectors. Here, an event of an instruction defined by

the coordination of tools by system developers initiate tools and in

turn notify other tools in the workflow.

115



• the Cloud Accountability System can use the asynchronous event no-

tification connectors to collect dependability metrics data from tar-

get virtual machines of the Reactive Architecture. In this situation,

timed dependability metrics collection events from the target virtual

machines notify the Cloud Accountability System after metrics are

collected.

(b) Synchronous Procedure Call (SPC) is a protocol that allows the con-

struction of client-server applications, using a demand/response protocol

with management of transactions. The client is blocked until a response is

returned from the server, or a user-defined optional time-out occurs. RPC

guarantees at-most-once semantics for the delivery of the request. It also

guarantees that the response received by a client is definitely that of the

server and corresponds effectively to the request (and not to a former re-

quest to which the response might have been lost). SPC also allows a client

to be unblocked (with an error result) if the server is unreachable or if the

server (or virtual machine) has crashed before emitting a response. Finally,

this protocol supports a mechanism called abort propagation that is, when

a thread that is waiting for an reply is aborted, this event is propagated to

the thread that is currently servicing the client request. We consider the

synchronous procedure call connector between the Shared Artefacts Repos-

itory and the Back-Up Repository. Here, the extra guarantee of back-up

request of artefacts from the Shared Artefacts Repository and the Back-Up

Repository, over a dedicated channel is essential. This type of connector

assures a high level of a reliable artefacts back-up process.

5.1.4 Constraints

Some general constraints identified in the Reactive Architecture and compo-

nents design are classified as resources (time, budget, etc.), technology con-

straint, local standards (development, coding, etc.), public standards (HTTP,

XML, XML Schema, RDFXML, WSDL, WADL, etc.), standard communication

protocols, standard message formats, and skill profile of architecture developer.
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Also, project constraints (e.g., time to market or deploy, customer demands,

standards, cost, etc.) and technical constraints (e.g., COTS, interoperation

with other systems, required hardware or software platform, reuse of legacy

code, etc.).

5.1.5 Dependability

The Reactive Architecture is expected to be designed with dependability in fo-

cus. More precisely, meeting the dependability attributes’ requirements of avail-

ability, performance, and reliability are important when designing the Reactive

Architecture. The architecture’s Cloud Accountability System has respective

modules to monitor the dependability of all components in the Reactive Ar-

chitecture. These modules collect dependability metrics from corresponding

components to assess the dependability of the Reactive Architecture. Also, the

Cloud Accountability System collects dependability metrics from the Cloud Ser-

vice Provider (CSP), and compares them with those from the modules. CSPs

such as the Amazon Web Service, make dependability metrics available to all

their users’ virtual machines. These metrics are mainly classified as availability

and reliability metrics. The activities of the Cloud Accountability System is

expected to assure the dependability of the Reactive Architecture running in

the cloud, to system developers or other relevant stakeholders.

5.2 Classifying the Size of the Reactive Archi-

tecture

We complete this section by classifying the size of the Reactive Architecture.

Here, we apply the COSMIC FSM approach (see Section 2.2.6) for classifying

software project size. Also, we use the requirements (see Appendix C.13) and

more specifically the use cases (see Figure 5.2 and Appendix C.14 for functional

requirements) of the Reactive Architecture to identify functional processes for

classification.
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Figure 5.2: Overview of Reactive Architecture Use Cases

Table 5.1: COSMIC FSM Software Project Size Classification Benchmark

Size Bin (Full Functional Points)
XXS 10
XS 30
S 100

M1 300
M2 1000
L 3000

XL 9000
XXL 18000

XXXL More
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Classifying the Functional Processes derived from the Use Cases of the Reactive Architecture
Use Cases Use

Case ID
Functional Processes TOTAL

User Management
(see Figure 12)

UMUC Register (fp1), UserID (fp2), SaveUserID (fp3), ackSave (fp4),
JoinUserGroup (fp5), ackJoin (fp6), IsGroupAvailable (fp7),
ackAvailability (fp8), CreateGroup (fp9), ackCreateGroup
(fp10), AddUserToGroup (fp11), ackAdd (fp12), SetUserPriv-
ilege (fp13), ackPrivilege (fp14), UpdateGroup (fp15), ackUp-
date (fp16), Unregister (fp17), ackUnregister (fp18), Update-
GroupRemove (fp19), ackUpdateGroupRemove (fp20).

20

Adding Tools (see
Figure 13)

ATUC SelectDefaultTools (fp1), ackChoice (fp2), ParallelComposition
(fp3), ackParallelComposition (fp4), SequentialComposition
(fp5), ackSequentialComposition (fp6), SelectTool (fp7), ack-
ToolChoice (fp8), ToolSelection (fp9), ackToolSelection (fp10),
ChooseToolCoordination (fp11), ackToolCoordination (fp12),
CallTools (fp13), ackResults (fp14), ToolAddition (fp15), ack-
ToolAddition (fp16)

16

Saving Artefacts
(see Figure 14)

SAUC SelectArtefact (fp1), ackSave (fp2), ArtefactName (fp3), ack-
Choice (fp4), ArtefactHash (fp5), ackHash (fp6), ArtefactDate
(fp7), ackDate (fp8), ArtefactOwner (fp9), ackOwner (fp10)

10

Download Artefacts
(see Figure 15)

DAUC DownloadArtefact (fp1), ackDownload (fp2), ArtefactName
(fp3), ackChoice (fp4), ArtefactHash (fp5), ackHash (fp6), Arte-
factDate (fp7), ackDate (fp8), ArtefactOwner (fp9), ackOwner
(fp10)

10

Sharing Artefacts
(see Figure 16)

ShAUC ShareWith (fp1), ackAccess (fp2), SetAccessPrivilege (fp3), ack-
Privilege (fp4), SetRead (fp5), ackRead (fp6), SetWrite (fp7),
ackWrite (fp8), SetOwn (fp9), ackOwn (fp10), SetNoAccess
(fp11), ackNoAccess (fp12)

12

Change Management
(see Figure 17)

CMUC ChangeArtefact (fp1), ackNotify (fp2), IsArtChanged (fp3),
ackChange (fp4)

4

Traceability (see
Figure 18)

TAUC CreateArtefact (fp1), ackCreate (fp2), InformRepository (fp3),
ackTrace (fp4), ChangeArtefact (fp5), ackChange (fp6), In-
formRepository (fp7), ackTrace (fp8), UseTools (fp9), ackTool-
sTrace (fp10), InformMiddleware (fp11), ackTrace (fp12), ack-
ToolsChange (fp13)

13

Backup Repository
(see Figure 19)

BRUC AssynchronousBackUp (fp1), ackAssynBackUp (fp2), Syn-
chronousBackUp (fp3), ackSynBackUp (fp4), Restore (fp5), ack-
Restore (fp6)

6

Evidence Collection ECUC ChooseSystemAttribute (fp1), ackAttributeChoice (fp2), Tar-
getVM (fp3), ackTargetSet (fp4), HyperCalls (fp5), ackMet-
ricsCalls (fp6), FormatMetrics (fp7), ackMetricsFormat (fp8),
CallCloudAPI (fp9), ackAPICall (fp10), LogActivities (fp11),
ackLog (fp12)

12

Arbitrate Metrics ArMUC SortMetrics (fp1), ackSort (fp2), ExamineMetrics (fp3), ack-
Exam (fp4), LogActivities (fp5), ackLog (fp6)

6

Audit Metrics AuMUC ClassifyMetrics (fp1), ackClassify (fp2), ComputeMeans (fp3),
ackCompute (fp4), CompareMeans (fp5), ackCompare (fp6),
TriggerRM (fp7), ackTrigger (fp8), ComputeNPV (fp9), ack-
NPVCompute (fp10), DeriveMonetaryValue (fp11), ackMone-
taryValue (fp12), LogActivities (fp13), ackLog (fp14)

14

Manage Notifications MNUC SendNotification (fp1), ackNotification (fp2), ClaimCompensa-
tion (fp3), ackClaim (fp4), SendTimedReport (fp5), ackTime-
dReport (fp6), LogActivities (fp7), ackLog (fp8)

8

TOTAL 131

Table 5.2: Classification of Functional Processes based on the Reactive
Architecture Use Cases 119



In classifying the Reactive Architecture, we apply the COSMIC FSM approach

for categorising software project size. We reference the categorisation bench-

mark of software project size with COSMIC FSM in Table 5.1, for classifying

the functional processes derived from the use cases of the Reactive Architecture

(shown in Table 5.2). Here, Bin is the COSMIC full function points, and it is

considered to be a “generic set of size category”. The total number of func-

tional processes identified from the Reactive Architecture through its use cases

are 131. At this point, we can reliably identify the Reactive Architecture as a

“level 1 medium size software project/architecture” as it falls in the M1 range

of more than 100 functional processes but less than or equal to 300 functional

processes.

5.3 Analysing the Reactive Architecture

5.3.1 Present cloud-ATAM

One of our main objectives of this chapter is to present a methodology, cloud-

ATAM for analysing the trade-off between multiple quality attributes of the

small-to-medium scale Reactive Architecture deployed to the cloud environ-

ment.

The reasoning in cloud-ATAM is not always highly formal and mathematical,

but it is predictive and repeatable. The reasoning might manifest itself as

a discussion that follows from the exploration of the architectural approaches

that address a scenario; it may be a qualitative model of attribute-specific

behaviour of the architecture; or it may be a quantitative model that represents

how to calculate a value of a particular quality attribute. Attribute-Based

Architectural Styles (ABASs) and quality attribute characterisations provide

the technical foundations for creating these reasoning models.

As introduced earlier, the ATAM is considered a mature and validated scenario-

based Software Architecture (SA) evaluation method. Similarly, the inputs of

cloud-ATAM are scenario elicited by stakeholders and documented descriptions
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Figure 5.3: cloud-ATAM Concept Interactions

of the architecture. The goal of the cloud-ATAM is to analyse architectural

approaches with respect to scenarios generated from project drivers for the

purpose of identifying “risk points” in the architecture. This is achieved by a

disciplined reasoning about SA relating to multiple quality attributes. There

are two important classifications of risk points in cloud-ATAM namely “sensi-

tivity points” and “trade-off points”. A “sensitivity point” refers to a param-

eter of the architecture that affects the achievement of one quality attribute.

On the other hand, a “trade-off point” refers to a parameter of the architec-

ture that affects the achievement of more than one quality attribute. In this

situation, one quality attribute improves and the other degrades. These risk

points, together with extensive documentations of the architecture, scenarios,

and quality-attributes analyses are the products of cloud-ATAM. The cloud-

ATAM also explicitly relates architectural risks and trade-offs to project drivers

(i.e. architectural requirements) as shown in Figure 5.3.

1. Present the cloud-ATAM

• Method

• Process

• Agenda

2. Present the Project Drivers

• Critical requirements
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• Technical constraints

• Quality attributes

3. Present the Architecture

• Architecture drivers

• High-level architecture views

• Architecture styles

• Important scenarios

4. Identify Architectural Approaches

• Architecture decisions

5. Generate the Quality Attribute Utility Tree and Scenarios

• Quality tree

• Scenarios

6. Analyse the Architectural Approaches

• Decisions

• Risks

• Trade-offs (Project drivers, Trade-off themes, and Impact of trade-off

themes on project drivers)

• Sensitivity points

7. Present Results

The seven steps of cloud-ATAM are provided above. This chapter discusses

the design of the the Reactive Architecture which is based on Steps 1 to 5.

On the other hand, Steps 6 and 7 are used to analyse or evaluate a designed

small-to-medium size cloud-based architecture.

5.3.2 Present the Project Drivers

The predominant drivers of this project are the target quality attributes: avail-

ability and performance. The expectation is that the Reactive Architecture
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Reactive Architecture Quality Attributes of Interest
Quality
Attribute
Goals

ID Attribute-Specific Requirements

Operability

O1 The Reactive Architecture must store all artefacts created in all of its
components.

O2* It must monitor and trace all changes to these artefacts to inform system
developers (i.e. clients). (also P1)

O3 The System Engineering Toolbox must facilitate sequential and parallel
execution of tools in a workflow manner.

O4 The Cloud Accountability System must gather dependability metrics
from several virtual machines, and perform a synchronous analysis of
these metrics.

Performance

P1* It must monitor and trace all changes to these artefacts to inform system
developers (i.e. clients). (also O2)

P2* The Reactive Middleware must enable heterogeneous access and analysis
operations on artefacts in the Shared Artefacts Repository. (also A2)

P3 Security mechanisms must not degrade defined performance threshold.
Specifically, response time for create, delete, update, and display artefact
operations should not exceed 5 seconds at peak cloud period and less than
1 second during off-peak period. (also S1)

P4 The Reactive Architecture must provide high performance and availabil-
ity to allow it to keep up with the sturdy stream of data and operations
on artefacts from the system engineering processes. (also A4)

Scalability
Sc1 The Reactive Architecture must support at least 20 users concurrently.
Sc2* The Reactive Architecture must provide capacity to scale quickly to ac-

commodate changing demands of system developers, and failures. (also
A1)

Availability

A1* The Reactive Architecture must provide capacity to scale quickly to ac-
commodate changing demands of system developers, and failures. (also
Sc2)

A2* The Reactive Middleware must enable heterogeneous access and analysis
operations on artefacts in the Shared Artefacts Repository. (also P2)

A3 Critical systems such as the Reactive Middleware must not constitute a
single point of failure which will affect the uptime of the system and the
Reactive Architecture. (also R1)

A4 The Reactive Architecture must provide high performance and availabil-
ity to allow it to keep up with the sturdy stream of data and operations
on artefacts from the system engineering processes. (also P4)

Maintainability M1 The Shared Artefacts Repository must be backed up asynchronously to
facilitate roll-back of repository artefacts.

Reliability R1 Critical systems such as the Reactive Middleware must not constitute a
single point of failure which will affect the uptime of the system and the
architecture. (also A3)

Security S1 Security mechanisms must not degrade defined performance threshold.
Specifically, response time for create, delete, update, and display artefact
operations should not exceed 5 seconds at peak cloud period and less than
1 second during off-peak period. (also P3)

Table 5.3: Mapping Requirements to Quality Attributes of Reactive Archi-
tecture
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will maintain a high level and healthy balance between availability and perfor-

mance. The relationship between the quality attributes are directly dependent

on the requirements provided by the stakeholders of the Reactive Architecture.

Also, the constraints of the architecture are contributory drivers of the project.

Finally, the major stakeholders of the project are presented.

5.3.2.1 Requirements

We present the requirements of the Reactive Architecture in Appendix C.13.

However, these requirements are formulated in terms of the architectural compo-

nents in Table 5.3. Also, we map the requirements of the Reactive Architecture

to identified quality attributes; operability, performance, scalability, availability,

maintainability, reliability, and security.

5.3.2.2 Constraints

The constraints affecting the Reactive Architecture are identified along two

perspectives:

(a) Reactive Architecture:

• Cost of development.

• Time to market, which is dictated by customer demands.

• Skill set of architect.

• Technical standards.

(b) Environment of Architecture (i.e. Cloud Environment):

• Co-location of potentially risky systems on a cloud server.

• Architecture is highly dependent on the dependability of the cloud

infrastructure.

• Security of the architecture and data is largely out of the control of

the architect.

• Reliance on the performance of Commercial Off-The-Shelf (COTS)

products on the cloud platform.
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5.3.2.3 Project Stakeholders

The main stakeholders of the Reactive Architecture are briefly introduced below

as users of the architecture, and with regards to the roles they play in GSD

projects:

• Systems Architect: They define the architecture of a computerised sys-

tem (i.e. a system composed of software and hardware) in order to fulfill

certain requirements. Such definitions include a breakdown of the system

into components, the component interactions and interfaces (with the en-

vironment, and the user), and the technologies and resources to be used

in the design. The Systems Architect’s work avoids implementation is-

sues and readily permit unanticipated extensions or modifications in future

stages. Due to the extensive experience required for this, the Systems Ar-

chitect is typically a very senior technician with substantial, but general,

knowledge of hardware, software, and similar systems. But above all, the

systems architect must be reasonably familiar with the users’ domain of

experience.

• Project Managers: A project manager is the person who has the over-

all responsibility for the successful initiation, planning, design, execution,

monitoring, controlling and closure of a project. The role of the project

manager encompasses many activities including: planning and defining

scope, activity planning and sequencing, resource planning, developing

schedules, time estimating, cost estimating, developing a budget, docu-

mentation, creating charts and schedules, risk analysis, managing risks

and issues, monitoring and reporting progress, team leadership, strategic

influencing, business partnering, working with vendors, scalability, inter-

operability and portability analysis, controlling quality, and benefits real-

isation.

• Cloud Service Provider: This is the entity that provides the cloud

service. The Cloud Service Provider (CSP) owns and controls the cloud

computing platform. The services include SaaS (Software as a Service),
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PaaS (Platform as a Service), and IaaS (Infrastructure as a Service).

Based on the services provided, the CSPs can be broadly categorised

into 3 types: Application Provider, Resource Provider, and Infrastructure

Provider. The Application Provider directly provides access to an applica-

tion without the need to know about the resources or layers underneath.

Also, the Resource Provider provides virtualisation systems on top of their

servers and lets clients buy resources such as RAM, computing cycles and

disc space. Then the Infrastructure Provider leases servers and associated

infrastructure from their datacenters. The infrastructure includes servers,

storage, bandwidth and the datacenter (with power, space and personnel

to man them).

• System Developers: The System Developer interprets business require-

ments and translates them into a deployable solution that meets func-

tional and non-functional needs. Their responsibilities are to (1) work

with Testers to iteratively develop: the deployable solution, models re-

quired for the properly controlled development of the solution, and models

and documentation required for the purpose of supporting the solution in

live use; and (2) recording/interpreting the detail of any: changes to the

detailed requirements, changes to the interpretation of requirements which

result in re-work within the solution, information likely to impact on the

ongoing evolution of the solution, adhering to technical constraints laid

out in the System Architecture Definition, adhering to standards and best

practice laid out in the Technical Implementation Standards, participating

in any quality assurance work required to ensure the delivered products

are truly fit for purpose, and testing the output of their own work prior to

independent testing.

• System Testers: The System Tester is fully integrated with the System

Development Team and performs testing in accordance with the Technical

Testing Strategy throughout the project. Their responsibilities are to work

with other roles to define test scenarios and test cases for the evolving sys-

tem. Also, in accordance with the Technical Testing Strategy, the System

Tester: carries out all types of technical testing of the solution as a whole,
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creates testing products, e.g. test cases, plans and logs, reports the results

of testing activities to the Technical Co-ordinator for Quality Assurance

purposes, and keeps the Team Leader informed of the results of testing

activities.

• Database Administrators: A Database Administrator (DBA) is respon-

sible for the performance, integrity and security of a database. They are

also involved in the planning and development of the database, as well as

troubleshooting any issues on behalf of the users. The DBA role naturally

divides into three major activities: ongoing maintenance of production

databases (operations DBA); planning, design, and development of new

database applications, or major changes to existing applications (develop-

ment DBA, or architect); and management of an organisation’s data and

metadata (data administrator). One person may perform all three roles,

but each is profoundly different.

• Tool Developers: A Tool Developer builds software tools that are used

to create, debug, maintain, or otherwise support other programs and ap-

plications. Such tools can be combined together to accomplish a software

development task in a project.

5.3.3 Present the Architecture

The Reactive Architecture provides support for system engineering to system

developers. The architecture is deployed to the cloud to make use of its benefits.

Cloud computing provides relatively cheap resources, multi-user access, global

access, scalability, etc.

We present two main views of the Reactive Architecture: layered view depicted

in Figure 5.1, and component-connector view also depicted in Figure 5.4. A

detailed description of the Reactive Architecture has been provided earlier in

Section 5.1. We then briefly introduce the components of the Reactive Archi-

tecture below.
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Figure 5.4: Component and Connector View of the Reactive Architecture

5.3.3.1 Reactive Middleware

The reactivity feature of the architecture is based on this Reactive Middleware

which is largely supported by the Shared Artefacts Repository System. This

middleware reacts to changes made to artefacts saved in the Shared Artefacts

Repository. This reaction involves a notification sent to the corresponding stake-

holders (i.e. system developers, managers) to inform them of the changes made.

This Reactive Middleware introduces a form of dynamism and advancement to

the system engineering process.

The Reactive Middleware is made up of two sub-systems: Artefacts Monitoring
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System (AMS) and Publish/Subscribe System (PSS). The PSS registers actors

(i.e. tools, and developers) to development artefacts that they are interested

in. This registration assigns permissions to only relevant stakeholders or actors.

Based on this registration, notifications are generated as a result of changes to

the artefacts and are sent to corresponding stakeholders. Also, the AMS pro-

vides an industry standard framework for system engineering tool integration

that in particular supports requirements, change management and traceabil-

ity. This AMS traces all changes made to artefacts or elements of artefacts

from integrated development environments, and links them to the stored arte-

facts in the repository. The AMS then triggers a call to the PSS to notify all

stakeholders. The Reactive Middleware is further discussed in Chapter 4.

5.3.3.2 Shared Artefacts Repository System

This system is made up of the Shared Artefacts repository and the Back-up

repository. Here, all requests from the Architecture Interface is received by the

Shared Artefacts Repository. The Shared Artefacts Repository facilitates a re-

covery process using the Back-up Repository. The Reactive Middleware is used

to collect and interlink system engineering artefacts to support traceability and

change management. By recording the history of all system development and

storing all development artefacts in the dedicated Shared Artefacts Repository,

the Reactive Architecture is able to support reactive system engineering pro-

cesses. In this situation, a change in any development artefact is propagated

to all relevant stakeholders (i.e. developers), tools, and also to dependent arte-

facts. The Shared Artefacts Repository is a critical element of this architecture.

It is important to mention that the Shared Artefacts Repository also links the

artefacts with the tools and system engineering phases in which they are either

produced or used. Here, artefacts that specify the origin of artefacts (i.e. tool

source), format, etc. are also stored. Also, a timed back-up of all the artefacts

in the Shared Artefacts Repository into the Back-up Repository is undertaken.

The Shared Artefacts Repository is further discussed in Chapter 4.
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5.3.3.3 System Engineering Toolbox

The System Engineering Toolbox is made up of tools for software projects.

All client tool-related requests to the Architecture Interface are directed to the

Toolbox. The tools in the Toolbox are classified based on the system engineering

phase (i.e. Specification, Requirements, Design, etc.) they support. These tools

are presented to be interoperable, hence can be coordinated to support system

engineering. The main artefacts generated in the toolbox system are those from

the tools: processing results, processing time, tool version, etc. These tools are

composed into either parallel coordination or sequential coordination scenarios.

Such compositions can be applied to a set of tools that supports a particular

system engineering phase. The Toolbox also supports tools management; tool

patches and updates are installed. Also, new and older versions of tools are made

available to developers. The System Engineering Toolbox is further discussed

in Chapter 4.

5.3.3.4 Cloud Accountability System

This system consists of components that collect dependability-related data from

the components of the Reactive Architecture, to assure system developers of the

dependability of the cloud-based architecture. Here, availability and reliability

metric data are collected from the Toolbox system, Reactive Middleware and

the Shared Artefacts Repository system. The data collected is passed on for ex-

amination, analyses and then compared to the CSP’s contract (i.e. Service Level

Agreement - SLA). Notifications are sent to the system developer(s), the CSP

and other stakeholders, when there is a breach to the SLA. Relevant information

is provided to the system developer towards the assurance of the dependabil-

ity of the Reactive Architecture. We discuss the Cloud Accountability System

further in Chapter 6.
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5.3.4 Identify Architectural Approaches

Our research focuses on the availability and performance quality attributes of

the Reactive Architecture, so we will then pay a closer attention to, and present

the architectural requirements related to them. We then characterise these qual-

ity attributes, and ask attribute-specific questions to have a clearer appreciation

of their interaction in the context of the Reactive Architecture. Finally, we iden-

tify architectural approaches to facilitate the achievement of the architectural

requirements.

• Availability:

(a) The Reactive Architecture must provide capacity to scale quickly to

accommodate changing demands of system developers, and failures.

(b) The Reactive Middleware must enable heterogeneous access and anal-

ysis operations on artefacts in the Shared Artefacts Repository.

(c) Critical systems such as the Reactive Middleware must not constitute

a single point of failure which will affect the uptime of the system and

the Reactive Architecture.

(d) The Reactive Architecture must provide high performance and avail-

ability to allow it to keep up with the sturdy stream of data and

operations on artefacts from the system engineering processes.

• Performance:

(a) It must monitor and trace all changes to these artefacts to inform

system developers.

(b) The Reactive Middleware must enable heterogeneous access and anal-

ysis operations on artefacts in the Shared Artefacts Repository.

(c) Security mechanisms must not degrade defined performance thresh-

old. Specifically, response time for create, delete, update, and display

artefact operations should not exceed 5 seconds at peak cloud period

and less than 1 second during off-peak period.
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(d) The Reactive Architecture must provide high performance and avail-

ability to allow it to keep up with the sturdy stream of data and

operations on artefacts from the system engineering processes.

5.3.4.1 Quality Attribute Characterisations

Evaluating an architectural design against quality attribute requirements re-

quires a precise characterisation of the quality attributes of concern. From the

knowledge that is already in the various quality attribute communities, we apply

an already created characterisations for the quality attributes of performance

and availability. These characterisations have been discussed in Section 2.2.3.

5.3.4.2 Attribute-Specific Questions

Some attribute-specific questions are asked to help narrow the design of the

Reactive Architecture, and clarify the expectations of the architecture. Through

these questions and the understanding of the attribute characterisations, we aim

to improve the architectural documentation. The questions asked are:

• What facilities exist in the software architecture (if any) for self-testing

and monitoring of software components? (Availability)

• What facilities exist in the software architecture (if any) for redundancy,

liveness monitoring, and fail-over? (Availability)

• How is data consistency maintained so that one component can take over

from another and be sure that it is in a consistent state with the failed

component? (Availability)

• What is the process and/or task view of the system, including mapping

of these processes/tasks to hardware and communication mechanisms be-

tween them? (Performance)

• What functional dependencies exist among the software components? (Per-

formance)
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• What data is kept in the database? How big is it, how much does it change,

who reads/writes it? (Performance)

• How are resources allocated to service requests? (Performance)

• What are the anticipated frequency and volume of data transmitted among

the system components? (Performance)

5.3.4.3 Architectural Approaches

We identify some architectural approaches to meet the requirements of the

Reactive Architecture, and are enumerated below:

(a) We use the component-and-connector architectural style to represent the

various components and connections/interfaces of the Reactive Architec-

ture. This is particularly relevant because it expresses the runtime be-

haviour of the architecture under review.

(b) We avoid the distributed data repository approach in designing the Shared

Artefacts Repository. This prevents situations such as issues with database

consistency and possible modifiability concerns.

(c) The client-server approach is a best fit for the data-centric Shared Arte-

facts Repository system.

(d) The Reactive Middleware will be adequately represented using the client-

server approach.

(e) Since the Reactive Middleware and the Shared Artefacts Repository con-

stitute a single point of failure, we present the following approaches:

i. Backup of artefacts in the Shared Artefacts Repository. (towards the

architecture’s availability requirements)

ii. Distributed services (or modular set of services) for the components

of the Reactive Middleware. (towards the architecture’s availability

requirements)
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Identified Architectural Styles in Reactive Architecture
Architectural
Styles

ID Requirements

Data-Centered
DC1 The Reactive Architecture must store all

artefacts created in all the components of the
main composing systems.

DC2 The Reactive Middleware must enable het-
erogeneous access and analysis operations on
artefacts in the Shared Artefacts Repository.

Client-Server

CS1 It must monitor and trace all changes to
these artefacts to inform system developers
(i.e. clients).

CS2 The System Engineering Toolbox must facili-
tate sequential and parallel execution of tools
in a workflow manner.

CS3 The Cloud Accountability System must
gather dependability metrics from several
virtual machines, and perform a synchronous
analysis of these metrics.

Event-Driven ED1 The Shared Artefacts Repository must be
backed up asynchronously to facilitate roll-
back of repository artefacts.

Peer-To-Peer P2P1 The Cloud Accountability System must
gather dependability metrics from several
virtual machines, and perform a synchronous
analysis of these metrics.

Table 5.4: Mapping Architectural Styles to Requirements of Reactive Ar-
chitecture

(f) Schema-free NoSQL data management system (DMS) is necessary for the

Shared Artefacts Repository to minimise or remove bottlenecks. (towards

the architecture’s performance requirements)

(g) An independent communication components approach for communication

between the Reactive Middleware together with the Shared Artefacts Repos-

itory, and the Cloud Accountability System. Such communication ap-

proach is particularly relevant for the distributed components of the Cloud
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Accountability System.

Each of these approaches was probed for risks, sensitivities, and trade-offs via

our attribute-specific questions. Also, we have presented some architectural

styles that correspond to some of the Reactive Architecture requirements being

considered (see Table 5.4).

Figure 5.5: Utility Tree with Prioritised Scenarios
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5.3.5 Generate the Quality Attribute Utility Tree and

Scenarios

5.3.5.1 Eliciting and Prioritising Scenarios

Scenarios are elicited and prioritised in cloud-ATAM using different mechanisms

at different times with different stakeholder participation. The two mechanisms

used here are utility trees and structured brainstorming. We apply the utility

tree mechanism to elicit and prioritise scenarios at this point. We organise a

scenario brainstorming with the stakeholder community to reconcile the util-

ity tree. This scenario brainstorming mechanism used, and the reconciliation

process are discussed in Chapter 7. The description of our utility tree scenario

elicitation approach is provided below.

5.3.5.2 Utility Tree

The utility tree generated in this exercise is shown in Figure 5.5. This pre-

sented utility tree guides the remaining analysis process. It is important at

this point to prioritise, and refine the Reactive Architecture’s most important

quality attribute goals. The utility tree starts with “Utility” as the root node.

This indicates the general “goodness” of the Reactive Architecture. The sec-

ond level is constituted with the quality attributes of interest: performance

and availability. In the third level, there are specific quality attribute refine-

ments. From the performance quality attribute, we identify “data latency” and

“transaction throughput” as relevant refinements. Such refinements are major

determinants of performance. Also, availability is refined to “hardware failures”

and “software failures”. From this point, we are able to identify attribute goals

as “quality attribute scenarios” that are concrete enough for prioritisation and

analysis. These quality attribute scenarios form the “leafs” of the utility tree.

Here, the “hardware failures” (i.e. see third level) refined from availability is

further refined into “power outage at Availability Zone 1 requires traffic redirect

to Availability Zone 2 in less than 5 seconds”, “disk crash must have a backup

that takes over in less than 3 seconds”, and “network failure is detected and
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recovered in 10 seconds”. These specific scenarios are prioritised relative to each

other and then analysed in Chapter 7.

Table 5.5: Classified Quality Attribute Scenarios according to Types

Scenario
Type

Scenario
Type ID

Quality Attribute Scenarios Scenario
ID

Use Case USC1 Deliver change requests and re-
ports in real-time.

P1

USC2 Reduce storage latency for users
to 200 milliseconds.

P2

Growth GS1 Disk crash must have a backup
that takes over in less than 3 sec-
onds.

A2

GS2 Network failure is detected and
recovered in 10 seconds.

A3

GS3 COTS/Third party software up-
date with bug that causes fail-
ures is reverted to stable version
in less than 5 seconds.

A4

GS4 One system (e.g. Reactive Mid-
dleware) should not constitute a
lag greater than 1 second.

P3

GS5 Accommodate over 500 queries
per second.

P4

Exploratory ES1 Power outage at Availability
Zone 1 requires traffic redirect to
Availability Zone 2 in less than
5 seconds.

A1

In cloud-ATAM, we use three types of scenarios: (1) use case scenarios; (2)

growth scenarios; and (3) exploratory scenarios. Use case scenarios involve typ-

ical uses of the existing system, and are used for information elicitation. Also,

growth scenarios cover anticipated changes to the system. Then, exploratory

scenarios cover extreme changes that are expected to “stress” the system. These

different types of scenarios are used to probe a system from different angles, to

further optimise the chances of identifying architectural decisions that are at
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risk. In this work, we consider some scenarios bordering use case, growth and

exploration. We have provided some use cases derived from our scenarios in

Appendix C.14. The scenarios are classified and shown in Table 5.5.

5.3.6 Analyse the Architectural Approaches

As mentioned earlier in Section 5.3, the Steps 6 and 7 of the cloud-ATAM in-

volves the analysis/evaluation and results presentation of a small-to-medium

size cloud-based architecture. For the analysis process, we adopt a two-staged

approach to qualitatively and quantitatively analysing the design of the Reac-

tive Architecture: Utility Tree analysis, Scenario Brainstorming (stakeholder

group work) constitute qualitative analysis approach, and the Attribute-Based

Architectural Style (i.e. reliability tri-modular redundancy) facilitate the quan-

titative reasoning of the quality attributes of the Reactive Architecture.

(a) Utility Tree Analysis:

This mechanism involves the use of the discussed utility tree (see Figure

5.5) for the analysis of quality attribute scenarios to identify sensitivities

and trade-offs.

(b) Scenario Brainstorming (Stakeholders’ Group Work):

The scenario brainstorming mechanism is stakeholder-centric, which elicits

points of view from a more diverse and larger group of stakeholders, and

verifies, and then builds on the results of the first phase. It involves the

evaluation of the cloud-ATAM, and this is undertaken through an organised

group work of stakeholders who analyse the trade-off themes on the project

drivers.

The two qualitative reasoning approaches are conducted and discussed in detail

in Chapter 7.
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5.3.7 Present Results

The presented set of Reactive Architecture requirements related to the avail-

ability and performance quality attributes (see Section 5.3.2) have all been met

by first considering relevant “quality attribute-specific questions” in Section

5.3.4, which then led to the identification of appropriate architectural styles or

approaches in Section 5.3.4.3.

Based on the information collected during the design of the Reactive Architec-

ture with the cloud-ATAM, the cloud-ATAM team of architects presents the

findings to the stakeholders and writes a report detailing this information along

with any proposed mitigation strategies. As mentioned earlier, this section is

presented in detail in Chapter 7.

5.4 Summary

In this chapter, we contribute a Reactive Architecture for cloud-based system

engineering (see Section 1.3). The cloud-ATAM is introduced for the design,

analysis and evaluation of small-to-medium size cloud-based architectures (see

Objective 5 of Section 1.2.2.

The cloud-ATAM presents a derived seven-step methodology from an estab-

lished architecture evaluation methodology known as Architecture Trade-off

Analysis Method (ATAM). The Reactive Architecture is designed using the

cloud-ATAM (see Objective 7 of Section 1.2.2, and also analysed using a focal

pair of quality attributes (i.e. availability and performance) and the relevant

identified quality attribute scenarios of the Reactive Architecture.

Further analysis of the architecture is discussed in Chapter 7. Our study can

help system engineers to design and analyse small-to-medium size cloud-based

software architectures with quality attributes (such as availability, performance)

trade-off being the main focal point. This approach is very practical and dy-

namic as the deployment environment (i.e. cloud platform) is unpredictable and

changes often, hence affecting the quality attributes of systems.
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Chapter 6

Cloud Accountability

This chapter contributes a novel methodology for assuring cloud dependability,

and the Cloud Accountability System (CAS) which is a component of the Reac-

tive Architecture. The Reactive Architecture is deployed to the cloud platform.

The CAS facilitates the Cloud Accountability Method (CAM) that enables the

provision of assurance for dependability (i.e. availability, reliability) of the

cloud-based Reactive Architecture for system engineering (refer to Objectives 9

and 10 in Section 1.2). Our work discusses this methodology which is guided by

a well-established digital forensic model to assure and inform system engineers

of cloud dependability during the use of cloud resources. This digital forensic

model shows how digital forensics can support incident handling.

In this chapter, Section 6.1 introduces our research, and the Cloud Accountabil-

ity System is introduced in Section 6.2. The Cloud Accountability Methodology

that facilitates the assurance of dependable cloud environments is presented in

Section 6.3. Finally, the conclusions of this research are drawn and presented

in Section 6.4.
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6.1 Introduction

Cloud computing promises to be an effective business model for staging varying

sizes of enterprise systems to provide services to intended users. It is a model for

enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. servers, storage, etc.) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.

Figure 6.1: Conceptual Model of the Cloud Accountability System

From our literature review (see Section 2.3.4.3), we identify that there is no

work that employs forensic auditing techniques to check the CSPs’ SLA to-

wards the assurance of dependability especially for availability and reliability.

It is relevant that cloud users such as system engineers are assured of the avail-
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ability and reliability of the cloud platform they use for GSD. In this work, we

collect data from the CSPs and also from the cloud server’s hypervisor. The

collection of this pair of data until it is processed into evidence, is guided by a

digital forensic model. This model is standardised by NIST SP800-86 to support

incident handling.

6.2 Cloud Accountability System

The Cloud Accountability System is constituted by four main components (Fig-

ure 6.1). These components are the Evidence Collector, Auditor, Reactive Mid-

dleware, and a Logging System. The functions of these components are briefly

introduced.

Figure 6.2: Evidence Collector

(a) Evidence Collector (EC): This system collects data for the availability

and reliability metrics from the required set of the RA’s VM hypervisor

using two main approaches; Virtual Machine Introspection (VMI) tech-

nique and the Cloud Management System (CMS). Refer to steps 2 and 3

of Figure 6.1. The VMI uses a VMI library in C language, and Python

scripts to collect these metrics data. Also, the CMS uses Amazon Web

Services (AWS) API known as the AwsSdkMetrics. Figure 6.2 provides
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an overview of the Evidence Collector system. The Arbitrator sub-system

reconciles the data from the two sources to support data integrity. All

relevant activities in steps 2 and 3 are saved as logs (see step 5 in Figure

6.1).

(b) Auditor: The Auditor conducts an evidence-based trust analysis. Here,

a simplistic yet relatable and effective weighted trust value approach is

used. All systems are initialised to zero, the absence of violations gets one,

however the presence of it gets negative one. Generally, the Auditor works

by collating the set of metrics data relating to availability and reliability

from the Evidence Collector (see step 4 in Figure 6.1). Then the availabil-

ity and reliability are computed for each system being monitored. At this

point, the availability and reliability values from each monitored system

are obtained from the CSPs API, and then compared with those from the

VMI. Violations from the two data sources are checked in the context of

the stipulated SLA. A call is triggered to the Reactive Middleware if there

are violations (see step 6 in Figure 6.1). Also, the Auditor computes the

Net Present Value (NPV) of the investments that cloud agents (i.e. system

developers) have made subject to the recorded dependability violations. In

this process, the system derives the monetary value of the dependability

violations over time to provide a clearer understanding to the investor or

cloud agents typically, the system developers. All activities are saved as

logs (see step 5 in Figure 6.1). These logs are periodically updated since

cloud service performance varies due to the dynamic quality attributes

which affects the metrics over time.

(c) Reactive Middleware (RM): The RM helps to manage notifications.

The RM notifies system agents of dependability violations, and afford them

the option of managing these violations (see step 7 in Figure 6.1). All

violations, activities in response to the violations, NPV computations and

responsible agents are documented as logs. Also, the cloud agents can

access the logs of their systems (see step 8 in Figure 6.1).

(d) Logging System (LS): In this system, all the activities of the CAS com-
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ponents are documented and saved as logs. This is where all the generated

evidence and associated cloud events are stored. These logs can be used

as evidence to claim compensation (i.e. “Service Credits”), and also serve

as a source of data for predicting dependability violations using a form of

machine learning.

The CAS is implemented to collect data from the RA’s VM in run-time as per

the metrics that are related to the architecture reliability and availability. Such

metrics are Mean Time to Failure (MTTF) or Mean Time Between Failures

(MTBF), Mean Time to Repair (MTTR), system operation time, etc. The

data gathered are compared with those from the cloud platform and the SLA,

and then notifications are triggered to the cloud agents: the system developers,

the cloud service provider, and the cloud regulators if there are dependability

violations. Figure 6.1 provides a conceptual overview of the CAS.

Figure 6.3: Forensic Process

6.3 Cloud Accountability Methodology

This research introduces a Cloud Accountability Method (CAM), which is fa-

cilitated by the CAS. This methodology is guided by a digital forensics model.

The model is based on the well-established and widely accepted standard of

NIST SP800-86. The NIST SP800-86 guide shows how digital forensics can

support incident handling.
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The forensic process shown in Figure 6.3 comprises the following basic phases:

• Collection: The first phase in the process is to identify, label, record, and

acquire data from the possible sources of relevant data, while following

guidelines and procedures that preserve the integrity of the data. Collec-

tion is typically performed in a timely manner because of the likelihood of

losing dynamic data such as current network connections.

• Examination: Examinations involve forensically processing large amounts

of collected data using a combination of automated and manual methods to

assess and extract data of particular interest, while preserving the integrity

of the data.

• Analysis: The next phase of the process is to analyse the results of the

examination, using legally justifiable methods and techniques, to derive

useful information that addresses the questions that were the reason for

performing the collection and examination.

• Reporting: The final phase is reporting the results of the analysis, which

may include describing the actions used, explaining how tools and proce-

dures were selected, determining what other actions need to be performed

(e.g. forensic examination of additional data sources, securing identified

vulnerabilities, improving existing security controls), and providing recom-

mendations for improvement to policies, guidelines, procedures, tools, and

other aspects of the forensic process. The formality of the reporting step

varies greatly depending on the situation.

The steps of our proposed cloud accountability method as well as its algorithm

(see Algorithm 1) are provided below:

1. The Evidence Collector (EC) is assigned to the composing systems of the

Reactive Architecture (RA), deployed on virtual machines (VMs) in the

cloud.

2. The EC collects metrics data for availability, [A] and reliability, [R], in-

cluding processing times in a synchronised manner from their respective

VMs at a defined constant time duration, [ti, ti+1] (i is initialised to zero).
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3. The gathered metrics data are sorted and examined for data integrity by

the Arbitrator.

4. The set [A,R]N is sent to the Auditor using synchronous procedure calls

(SPC).

5. The Auditor initialises the trust values of the VMs to 0.

6. The Auditor classifies [AN] and [RN] for the VMs.

7. The Auditor compares the sets of metrics data from the cloud evidence

sources (i.e. VMI, CMS) to understand their relationship based on the

SLA (i.e. acceptable metric range, [AMR]mc ) of the cloud platform.

8. If any metric data of the two evidence sources violates the SLA’s [AMR]mc ,

the Auditor assigns a value of -1 to the trust value of the related VM, and

then triggers a call to the Reactive Middleware (RM).

9. All activities including VM users, duration of VMs observation, date, de-

tails of failed VMs, analysis of failure, etc. are logged.

10. The RM then sends a notification to the cloud agents when all VMs are

“unavailable”.

11. The RM provides options such as requesting for “Service Credits” from

the CSP using the log from (9).

12. The Auditor also computes the Net Present Value (NPV) of the set of cloud

resources with respect to the processing times from (7), and/or violations

from (8).

13. If there was no violation from (8), the Auditor assigns 1 to the trust value

of the related VM, an analysis of the comparison in (7), and the NPV from

(12) are saved as a log, [lN].

14. This log, [lN] is sent as a notification to the cloud agents as periodic reports

(e.g. monthly, yearly).

15. The method continues in a loop at (2) for time duration,[ti, ti+1] if none of

the assigned VMs in (1) failed.

16. If there is any recorded failure, the method will continue in a loop at (1)

for the given time duration, [ti, ti+1].
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Algorithm 1 Analyse Data from Cloud for Evidence-Based Dependability Assurance

Require: VMRM(A,R), V MSET (A,R), V MSAR(A,R), V MFDS(A,R)
Ensure: notify (lN)

1: ECRM ← VMRM(A,R)
2: ECSET ← VMSET (A,R)
3: ECSAR ← VMSAR(A,R)
4: ECFDS ← VMFDS(A,R)
5: duration← 0
6: i← 0
7: trustVMN

← 0
8:

9: top:
10: while ti ≤ duration ≤ ti+1 do
11: arbitratetime(ECRM , ECSET , ECSAR, ECFDS)
12: auditSPC(ECRM , ECSET , ECSAR, ECFDS)
13: auditclassify(ECRM , ECSET , ECSAR, ECFDS)AR
14: computeAN , RN

15: auditmetricsdata(ECRM , ECSET , ECSAR)VMI
CMS

16:

17: if (ECRM , ECSET , ECSAR, ECFDS)VMI
CMS violates SLA′s[AMR]mc then

18: trustVMN
← −1

19: lN(violationVM , trust)
20: notify (lN)
21: requestServiceCredit()
22:

23: if VM is unavailable then
24: notify (lN)
25: auditNPV (auditmetricsdata(), violationVM())
26: else {lN(auditmetricsdata(), auditNPV ()}
27: end if
28:

29: else {lN(auditNPV (), auditmetricsdata(), violationVM())}
30: trustVMN

← 1
31: lN(violationVM , trust)
32: end if
33:

34: end while
35: goto top
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6.4 Summary

In this chapter, we make two contributions: a novel methodology for assuring

cloud dependability, and the Cloud Accountability System that facilitates the

aforementioned methodology. This meets Objectives 9 and 10 in Section 1.2.

Our work aims to provide a meaningful level of assurance of cloud dependability

in terms of availability and reliability of cloud based architectures. This assur-

ance is enabled by the proposed methodology. This approach is guided by a well

established digital forensic model to assure cloud agents of cloud dependability.

This model is standardised by NIST SP800-86 to support incident handling.

Here, cloud agents are provided with logs that give concise information about

cloud resource activities. The information from our work aims to provide more

detailed assessment of the cloud agents’ cloud-based resources than what is pro-

vided from the CSPs. Here, we check the data based on the SLA from the CSPs,

with those collected from the digital forensic process. An evidence-based trust

analysis is then conducted.
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Chapter 7

Evaluation

The aim of this chapter is to report on the evaluation of the Reactive Archi-

tecture proposed in Chapter 3. We conduct three main evaluations which are

discussed below. Section 7.1 presents the evaluation of the Reactive Middleware

which is undertaken using expert panel review process for validating the matu-

rity of the CM-T process model (see Section 7.1.1). In Section 7.1.2, an Airlock

Control System case study is used as a running example for the presented GSD

guidelines facilitated by the Reactive Middleware. These are aimed to meet

Objectives 3 and 4 in Section 1.2.2.

Also, Section 7.2 presents and discusses the evaluation of the Cloud Account-

ability Method. Here, the method is applied to the Reactive Architecture to

evaluate how meaningful the cloud accountability method can be used to assure

availability and reliability of cloud-based systems, relative to the cloud plat-

form’s service level agreement. This is in line with meeting Objective 11 in

Section 1.2.2.

Then in Section 7.3, we evaluate the Reactive Architecture using a two-staged

analysis approach defined by cloud-ATAM. This work mainly contributes the

qualitative trade-off reasoning of quality attributes of a cloud-based Reactive

Architecture using the two-staged analysis approach of cloud-ATAM (see Ob-

jective 8 in Section 1.2.2). Finally, we draw conclusion in Section 7.4.
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7.1 Reactive Middleware

The research evaluates the Reactive Middleware discussed Chapter 4. First,

we validate the “change management and traceability (CM-T) process model”

by conducting an “expert panel review process” in Section 7.1.1. This is used

to assess the maturity of the CM-T process model in light of the CMMI Level

2 specific practices - requirements change management. The next section (i.e.

Section 7.1.2) demonstrates the continuous tight linkage between requirements

and system engineering processes provided by the introduced GSD guidelines,

by an Airlock Control System case study.

At this point, we present our research question as “How can the Reactive Mid-

dleware guide system engineering to ensure the continual tight linkage of stake-

holders’ requirements and system engineering processes?”, and a validating hy-

pothesis below:

H1: Changes in system requirements’ artefacts are captured and consistently

propagated to all the related system engineering processes and stakeholders

using a matured process model.

7.1.0.1 Panel Review Process

At this stage, we evaluate whether the motivation for building the Reactive Mid-

dlware’s CM-T process model is justified, and if the process model is matured

in relation to the CMMI Level 2 practice for managing change and traceability.

We have motivated the use of expert panels to review or validate a software

process model in Section 2.1.5.4. Also, the constitution of the expert panel

is presented as a table (i.e. Table 2) in Appendix A.8. Then, we present our

analysis of the feedback from the experts on the maturity of the CM-T model

processes in light of the CMMI Level 2 (baseline) capability (refer to Table 7.1).
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Table 7.1: Evaluation Criteria and Related CMMI Level 2 Capability Ques-
tions

Validation
Criteria (Table

4.5)

Rule (Table 4.5) CMMI Level 2 Capa-
bility Questions (Fig-
ure 4.4)

Adherence to
CMM

Charateristics

- CMM maturity level concepts must be
implemented - Each level should have a
theme consistent with CMM - Require-
ment engineering (RE) processes must
be integrated - The model should be
recognisable as a CMM offshoot - The
CM-T must be systematic and sequen-
tial.

How repeatable are the
following processes: (1)
change management, (2)
Traceability, (3) Analysis
& Negotiations, (4) Doc-
umentation, and (5) Val-
idation

Limited Scope - Key activities relating to technical
and organisational RE processes are in-
cluded - Processes are prioritised. -
Processes relate directly to the CM-T
process areas - The scope/level of de-
tail should be appropriate (i.e. depth
and breadth of processes presented)

How repeatable are the
following processes: (3)
Analysis & Negotiations,
and (4) Documentation

Consistency - There should be consistent use of
terms and CMM features at this level
of development - There will be a consis-
tency in structure between model com-
ponents at the same level of granular-
ity that are modelling different matu-
rity levels

How repeatable are the
following processes: (1)
change management, (2)
Traceability, (3) Analysis
& Negotiations, (4) Doc-
umentation, and (5) Val-
idation

Understandable - All terms should be clearly defined
(i.e. have only one meaning). - All rela-
tionships between processes and model
architecture should be unambiguous
and functional.

How repeatable are the
following processes: (3)
Analysis & Negotiations,
and (4) Documentation

Ease of Use - The model should be decomposed to
a level that is simple to understand
- The model should be simple yet re-
tain meaning - The chunks of informa-
tion should clearly relate as they de-
velop into more complex structures -
The model should require little or no
training to be used

How repeatable are the
following processes: (3)
Analysis & Negotiations,
and (4) Documentation

Verifiable The model must be verifiable, i.e. we
must be able to test or measure how
well model meet its objectives and
whether meeting these objectives leads
to a high quality CM-T process model.

How repeatable are the
following processes: (4)
Documentation, and (5)
Validation
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7.1.1 Analysis of Expert Review

In this expert review, a panel of sixteen experts are constituted to validate

the change management and traceability (CM-T) process model. Here, seven

experts are from the industry, while nine are from academia. Experts from the

industry are selected based on their experience in requirements engineering (RE)

and software process improvement (SPI). Also, the research focus (i.e. RE and

SPI) and publications of academics informed the selection of these academics.

To facilitate the collection of data from the panel, a designed questionnaire

is used as our data collection method. A questionnaire is appropriate for the

type and nature of data we aim to collect and analyse. In terms of the type and

nature of data for our analysis, we classify the questionnaire in relevant sections

covering the “assessment of expertise” and the six relevant success criteria for

validating the CM-T model. The related analysed results are provided as bar

charts in Appendix A. For the type and nature of questions, the responses

from the experts are expected to be classified as “Strongly agree”, “Agree”,

“Neutral”, “Disagree”, “Strongly disagree”. The “Neutral” option caters for

both “uncertainty” and “no opinion” or “unwillingness to answer”. In our

analysis, we disregard the reasons for all the selected “Neutral” option. The

classification of the questionnaire and the analysed results are provided below:

(A) Self-Assessment of Expertise

In the assessment of the expertise of the panel, we identified that 100% of the

experts indicated their expertise in both “Software” or “System Engineering”,

“RE” and in “SPI”. However out of the sixteen experts, one indicated no ex-

pertise in “CMMI”.

(B) Validating the CM-T Model

• Validation Overview

(a) “A matured model for change management and traceability is very

relevant for requirement engineering?”
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Towards the validation of the CM-T model, 100% of the experts’ responses

are supportive to question 1 above. Here, seven (7) experts “strongly

agree” and nine (9) of them “agree” to this question.

• Success Criteria One “Adherence to CMMI Characteristics”

(a) “The classification of questions is representative of the CMMI Level 2

goal?”

In assessing the adherence of the CM-T process model to CMMI char-

acteristics, 62.5% of the experts “agree”. However, six (6) experts

indicated “neutral”. Here, one (1) of the experts commented that

CMMI is not his particular area of expertise, but the five (5) remain-

ing experts chose not to provide further comments on this question.

(b) “The CMMI processes have been adequately mapped to the identified

questions?”

Unanimously, all the sixteen (16) experts agree that the CMMI pro-

cesses have been adequately mapped to the identified questions. Here,

four (4) experts “strongly agree”, and twelve (12) “agree”.

• Success Criteria Two “Limited Scope”

(a) “How complete is the CM-T model relative to the CMMI Level 2

processes?”

In the assessment of the completeness of the CM-T model relative

to the baseline processes of the CMMI Level 2, twelve (12) experts

“agree” and four (4) are “neutral”.

(b) “How appropriate is it to include change management processes and

traceability processes in one model?”

Most of the experts (i.e. 87.5%) “agree” that it is appropriate to com-

bine change management processes with traceability process in one

model. More precisely, four (4) “strongly agree”, and ten (10) “agree”.

However, one (2) remained “neutral” in response to this question.

(c) “How well do the questions and assigned processes cover the key ac-

tivities in change management and traceability of requirements?”

The experts assessed how well the questions and assigned processes
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cover the key activities in change management and traceability of re-

quirements, and they were generally supportive: Four (4) “strongly

agree”, and eight (8) “agree”. However, four (4) chose to be “neu-

tral”.

• Success Criteria Three “Consistency”

(a) “How consistent is the level of detail given within the CM-T model?”

The assessment of the consistency of the level of detail given within

the CM-T model is very supportive (i.e. 100%). Here, five (5) experts

“strongly agree”, and eleven (11) “agree”.

(b) “All key processes are represented (at a baseline level)?”

The experts provided a mostly supportive (i.e. 75.0%) response to

the assessment that all the key processes associated with the defined

questions (see Figure 4.4) are represented at a CMMI Level 2 baseline.

Here, two (2) expert “strongly agree”, as ten (10) “agree”. On the

other hand, four (4) provided a “neutral” response.

(c) “All processes listed are at a similar level of abstraction?”

In assessing the similarity of the level of abstraction for all the pro-

cesses, the experts are mostly in agreement (i.e. 75.00%) in their re-

sponse. This assessment shows five (5) experts “strongly agree”, and

seven (7) “agree”. It was noticed that four (4) indicated a “neutral”

position on this “consistency” question.

• Success Criteria Four “Understandability”

(a) “How easy is it to understand the path from initial goal, to question,

to final process?”

In assessing the “understandability” of the CM-T model, the experts’

response to “question 1” above is largely supportive (i.e. 87.50%): one

(1) expert “strongly agree”, and thirteen (13) others “agree”. How-

ever, two (2) expert indicated a “neutral” option for this question.

(b) “Each individual process is easy to understand (i.e. they are clearly

defined and unambiguous)?”

The experts are generally supportive (i.e. 68.75%) in response to “ques-
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tion 2”. Seven (7) experts “strongly agree” and four (4) experts

“agree” that each individual process is easy to understand. However,

five (5) experts chose the “neutral” option to this question.

(c) “How clear is this presentation of the model?”

Based on the relevant information about the CM-T model presented

to the experts, they unanimously agree that the presentation was clear

to understand. More specifically, three (3) experts “strongly agree”,

as thirteen (13) “agree” to “question 3” above.

• Success Criteria Five “Ease of Use”

(a) “Do you think that a considerable amount of prior knowledge of CMMI

is needed to be able to interpret the CM-T model?”

To assess the “ease of use” of the CM-T model, all the experts “dis-

agree” that a considerable amount of prior knowledge of CMMI is

needed to be able to interpret the CM-T model. Here, five (5) experts

“strongly disagree” and eleven (11) “disagree” to “question 1”.

(b) “Dividing the RE process into smaller activities in this way will help

practitioners to implement the process?”

Most of the experts (i.e. 87.50%) support the claim that dividing the

requirements engineering process into smaller activities in the CM-T

model will help practitioners to implement the process. Specifically,

five (5) experts “strongly agree”, and nine (9) “agree” to “question

2”. However, two (2) experts chose to be “neutral”.

• Success Criteria Six “Verifiability”

(a) “Has the level of detail provided with the questionnaire allowed you

to give a fair assessment of the strengths and weaknesses of the CM-T

model?”

In assessing the verifiability of the CM-T model, a majority of the

experts (i.e. 81.25%) are supportive that the level of detail provided

allowed them to give a fair assessment of the strengths and weaknesses

of the CM-T model. To provide more details, five (5) experts “strongly

agree”, and eight (8) others “agree” to this question. That said, three

155



(3) experts remained “neutral” in their response.

In terms of validating the CM-T model, a total average of 84.38% of the ex-

perts at least agree (i.e. indicating “Strongly agree” and “Agree”) to the six (6)

success criteria of the CM-T model. This high percentage of acceptance indi-

cates the high level of conformance of the CM-T model to the CMMI Level 2

baseline processes. The composition of this high percentage is that, an average

of 60.94% of the experts “strongly agree”, and also an average of 23.44% of

the experts “agree” to the questions in the questionnaire relating to the suc-

cess criteria of the CM-T model. That said, 100% of the experts “disagree”

that “a considerable amount of prior knowledge of CMMI is needed to be able

to interpret the CM-T model” under the “ease of use” success criteria. With

this supportive choice, a new total average of 85.58% of the experts accept the

maturity of the CM-T model. It must also be mentioned that an average of

14.42% chose to remain “neutral” on the questions.

Figure 7.1: The Airlock Control System

For those who remained “neutral”, we gathered three general comments from

them, that we will consider in future work:
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(a) Ambiguous process definitions for the “Consistency” criteria.

(b) The CM-T process model is incomplete for the “Adherence to CMMI Char-

acteristics” criteria.

(c) The assessment component is not self-explanatory for the “Verification”

criteria.

After validating the CM-T process model, we then apply the defined GSD guide-

lines (composing of the PMBOK project quality management approach and the

CM-T model) to an airlock control system (ACS) case study.

7.1.2 Airlock Control System Case Study

A submarine airlock control system (ACS) (see Figure 7.1) case study from [94]

is used to demonstrate the proposed management guidelines provided by the

Reactive Middleware. The main function of the ACS is to separate two areas

(i.e. external and internal) with different air pressures and allow users to pass

safely between the areas. Let us assume that the pressure outside is lower than

inside. In order to allow a user to pass from inside through the airlock into the

external area, the system needs to perform the following steps:

• equalise the chamber pressure to that of the internal environment,

• open the second door to allow the user into the chamber,

• close the second door,

• equalise the pressure in the airlock to that of the external environment,

and

• open the first door to let the user out.
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Table 7.2: Classified Requirements of the Airlock Control System

Airlock Control System Requirements (Resilient Quality Attribute - SAFETY)
Requirements
Classification

ID Requirements

Environment

ENV1 The airlock system separates two different environ-
ments. The pressure of the external environment is lower
than that of the internal one.

ENV2 In order to maintain different pressures, the two envi-
ronments must be physically separated.

ENV3 The system has two doors and a chamber. Each door
when closed separates the chamber from the appropriate
environment.

ENV4 Each door is equipped with three positioning sensors and
a two-way motor. The sensors consist of two boolean
sensors representing the fully closed (SNS CLOSED)
and opened (SNS OPENED) door states, and a range-
value position sensor (SNS POS ) that returns values in
a range between the fully closed and the fully opened
states inclusively. The two-way motor (ACT MOTOR)
is the actuator that can open and close the door within
its physical range of movement.

ENV5 There is a pressure sensor in each of the ar-
eas, three in total (SNS PRESSURE OUT,
SNS PRESSURE CHAMBER, SNS PRESSURE IN ).

ENV6 The pressure in the chamber can be changed by the
pump actuator (ACT PUMP).

ENV7 Any of the sensors and actuators may fail to provide a
correct function.

Safety

SAF1 The pressure in the chamber must always be between
the lower external pressure and the higher internal one.

SAF2 A door can only be opened if the pressure values in the
chamber and the conjoined environment are equal.

SAF3 Only one door is allowed to be opened at any moment
of time.

SAF4 The pressure in the chamber shall not be changed unless
both doors are closed.

Function FUN1 When in operation, the airlock system must be able to
let users pass safely between the two environments via
the airlock.
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Moreover, the opposite scenario needs to be performed to allow the user pass

from outside through the airlock into the external area. The system is equipped

with a number of actuators - door motors, a pressure pump, as well as sensors

- pressure sensors, door positions sensors and buttons. The goal of the GSD

Team members spread over three geographical areas (i.e. Europe, Africa and

Australia), is to develop control software that would allow a user to safely pass

through the airlock. The GSD teams at Europe, Africa and Asia prioritise the

safety and liveness properties (i.e. SAF1, SAF2, SAF3 and SAF4) of the ACS,

leaving aside issues of its usability, operation speed, reliability and maintain-

ability. It must be mentioned that safety properties described in this section

do not completely cover all safety concerns that would arise for a real system.

For example, a user would be required to wear special equipment while in the

chamber in order to survive the change of pressure. We implicitly assume that

this and other possible safety requirements are satisfied. We only focus on a

particular part of system properties described in this section to limit the context

of the case study. The high-level requirements of the system are presented in

Table 7.2.

Table 7.3: Classified GSD Guidelines Steps

Classification of The GSD Guidelines Steps Into Stages/Services
Stages/Services GSD Guidelines Steps ID
User Management GS1 and GS2
Requirement Management GS3 and GS4
Change Management GS5, GS6, GS7, GS8, GS10, GS11, and

GS12
Traceability GS9 and GS13

Airlock Control System Development Using the GSD Guidelines

The ACS case study is used as a running example of the Reactive Middleware’s

GSD guidelines in this section. In this activity, we develop a prototype of the

Reactive Middleware and use it to demonstrate its set of services (or func-

tionalities). Here, the development of Company X’s (i.e. an assumed owning

company name with simulated developers) ACS case study is guided by this

set of guidelines. The set of GSD guidelines can be classified with respect to
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the Reactive Middleware’s services (i.e. User Management, Requirement Man-

agement, Change Management, and Traceability - see Table 7.3). However, the

ACS case study presents the above classification under the five basic “process

groups” (PG) (i.e. Initiating, Planning, Executing, Monitoring and Controlling,

and Closing) of the PMBOK specific “knowledge area” (KA) of “project quality

management”. Company X expects that an effective change management and

traceability in the development process of the ACS will improve the quality of

the management of the project.

7.1.2.1 Initiating the ACS Project

The ACS is the core product of Company X. Company X sends some of its de-

velopment activities offshore, but maintains a team of practitioners (i.e. Team

Europe) in the European based central office who work mainly from 9 am to 5

pm five days a week. This team focuses on requirements gathering, prioritis-

ing requirements (and focus on “safety-related requirements”), developing their

core product (i.e. the ACS), managing the offshore or GSD teams, and test-

ing the bespoke software. The GSD teams (i.e. Team Africa and Team Asia)

are more focused on product deployment and integration. Such a geographical

spread of the set of teams is critical for Company X to be competitive in the

airlock control system market, by managing a continuous “follow-the-sun” de-

velopment approach. This approach ensures a continuous and around the clock

development of the ACS, as well as having access to global skilled labour.

As part of Company X’s ACS development policy, the Reactive Middleware

(RM) is used to aid the effective management of the project, as well as to

provide an automated facility to ensure that a matured (i.e. CMMI-compliant)

change management and traceability process model is applied.

7.1.2.2 Planning the ACS Project

Team Europe focuses on the development of the airlock chamber (see Figure

7.1) of the ACS. Since the airlock chamber interfaces with both the external
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environment and internal environment, the team can manage the changes that

affect the “safety properties” of the ACS, and their traceability. Also, Team

Africa and Team Asia are responsible for developing the external environment

and internal environment respectively. In this project, the GSD teams use

the cloud-based Reactive Middleware to manage the changes and traceability

affecting the “safety properties” of the ACS during development. It is also

identified to be essential that the development processes meet the “CMMI Level

2 practice”. Company X decides to apply the GSD guidelines to its development

process. Before the execution of the ACS project, Team Europe generates some

project diagrams to guide the execution process. Here, a class diagram (see

Figure 9), a package diagram (see Figure 8), and an interaction diagram (see

Figure 10) are provided.

7.1.2.3 Executing the ACS Project

At this point, team leaders are appointed for the three respective GSD teams

(i.e. Team Europe, Team Africa, Team Asia). These activities are guided by

the user management set of guidelines (i.e. GS1 and GS2) defined under the

GSD guidelines.

GS1: System development teams should appoint team leaders.

GS2: These team leaders will constitute the GSD change managers.

Here, team leaders play the role of “Team Leader” with an associated privilege

of “Own” where they have permission to perform any activities on development

artefacts (such as specification, requirements, configurations, documentation,

etc.). In the same light, team leaders assign roles (e.g.“Reviewer”, “Modifier”,

“Pawn”, etc.) and privileges (i.e.“Review”, “Modify”, “View” respectively) to

team members. Then the team leaders form the development supervisory team

referred to as the GSD Change Managers. This GSD Change Managers team

performs a crucial role of managing changes that affects prioritised ACS “safety

requirements”, and “trace” the changes’ cause-and-effect on requirements and
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Figure 7.2: Snippet of the Terminal Output for the Reactive Middleware
User Management Service for the Airlock Control System Case Study

associated artefacts. Figure 7.2 shows a snippet of the Reactive Middleware’s

user management service.

The next set of activities relating to the ACS requirements are guided by the re-

quirements management set of guidelines (i.e.GS3 and GS4) defined under

the GSD guidelines.

GS3: System requirements should be classified based on identified re-

silient quality attributes (i.e. safety, reliability, robustness, etc.), and are

then prioritised relative to their importance to the system stakeholders.

GS4: Team leaders must assign roles to all team members with the

prioritised requirements in mind, and manage the development process

with the adapted PMBOK guide.
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Figure 7.3: Snippet of the Terminal Output for the Reactive Middleware
Requirements Management Service for the Airlock Control System Case
Study
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Figure 7.4: Snippet of the Terminal Output for the Reactive Middleware
Requirements Management Service (Priority) for the Airlock Control Sys-
tem Case Study
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Firstly, the ACS requirements are assigned as either a priority or not, and then

they are uniquely identified (see Figure 7.3). The GSD Change Managers set

the safety requirements as the priority of the project’s quality attributes (see

Figure 7.4).

After all these activities have been undertaken, the three GSD teams begin the

development of the ACS. Here, the development of the three ACS environments

are initialised as well as the doors, sensors and actuators.

7.1.2.4 Monitoring and Controlling the ACS Project

The GSD Change Managers together with some project stakeholders at the

European based central office, “monitor and control” the development process

to meet the project requirements. Particular attention is placed on the set of

safety related ACS requirements. In this activity, a set of the GSD guidelines

are for change management (i.e.GS5, GS6, GS7, GS8, GS10, GS11, and

GS12) and traceability (i.e.GS9 and GS13).

GS5: All other change agents especially the system engineering tools

should be assigned a default privilege of review.

GS6: All system artefacts should be saved in a shared artefacts reposi-

tory.

GS7: The privileges (i.e.none, view, modify, review, own) of system

stakeholders or change agents will determine the access privileges to sys-

tem artefacts.

GS8: Change agents must subscribe to relevant artefacts after they are

created, in order to receive notifications when they are changed.

GS10: Changes made to any system artefacts must be logged.

GS11: When changes affect the high priority set of requirements, ap-

propriate local team leader must lead the change request review process

(i.e.involving the CM-T model) of the GSD change managers.

GS12: On the other hand, conflicts arising from changes to low priority

set of requirements are resolved locally, lead by the local team leader.
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Figure 7.5: Snippet of the Terminal Output for the Reactive Middleware
Change Management Service for the Airlock Control System Case Study

During the development process, a set of “change requests” relative to the

ACS requirements are raised. This process requires the Change Management

and Traceability (CM-T) process model (see Section 4.2.2.5) of the Reactive

Middleware. The steps of the CM-T process model are followed to resolve all

“change requests”.

Change requests are expected to contain information about the artefact in-

volved, the identification of the initiating stakeholder, the relevant requirement

identification, and the change request details. Here, two change requests are

submitted to the change request pool (see Figure 7.5). The GSD Change Man-

agers consider the change requests based on their priority, and then select which

one to make a decision on. At this point, GSD Change Managers decide that the

change request with a unique identification CR1685232414 is of high priority

(i.e. as a safety related request - SAF3) and needs to be considered further.
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Figure 7.6: Snippet of the Terminal Output for the Reactive Middleware
Traceability Service for the Airlock Control System Case Study
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The change request with a unique identification CR280744458 is related to the

ACS’ environmental requirements (i.e. ENV3).

That said, the details of the change request being considered is that ’prioritising

the opening of door requests from both the internal and external environments’.

The team leader for the team (i.e.Team Asia) that presented the change request

defends the criticality of the request, and leads the decision-making process.

This is a critical change request as it is important to only have one door of the

ACS open at a given time, and hence door opening requests that occur simulta-

neously from both the internal and external environments must be prioritised.

This ensures a level of safety. As a result of the need for such a change, the

change request (i.e. CR1685232414 ) is approved by the GSD Change Managers.

The decision taken for CR1685232414 is logged as part of the documentation

of the change request. The initiator (i.e.R003 ) of the change request is notified

to “effect the change”. Effecting this change requires a close monitoring by the

team leader of Team Asia to make sure that it is undertaken as expected. When

the process of effecting the change is completed. The team leader assesses the

process, and then “verifies and validates” the change. The log of the verified

and validated change is updated accordingly.

The next step undertakes a detailed assessment of the “cause-and-effect” of

the change on project artefacts, and all minor conflicts (i.e.involving less pri-

oritised project requirements) are resolved within the local GSD team. In sit-

uations where the initial change affects a prioritised project requirement, the

team leader advises the most relevant stakeholder to submit a change request

to the GSD change managers for consideration. During the assessment of the

“cause-and-effect” of the change, it identified to have an impact on three re-

quirement artefacts (see Figure 7.6). The affected requirements are ENV6,

SAF2, and SAF4. Here, the minor conflict relating to the ENV6 ACS environ-

ment requirement is resolved within Team Asia. However, the conflict involving

prioritised safety requirements (i.e.SAF2 and SAF4) are submitted as change

requests to the change request pool to be considered by the GSD Change Man-

agers. This requires the spawning of a new change process based on the CM-T
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process model.

Figure 7.7: Snippet of the Terminal Output for the Reactive Middleware
Notification Service for the Airlock Control System Case Study

From the point where an “approved” change is effected till the point where it has

been implemented successfully, a process to “trace” this change with regards to

participating stakeholders, associated software development life-cycle (SDLC)

phase, corresponding system engineering tools, impact on other artefacts, etc.

is undertaken in parallel. The activities for tracing changes also facilitates “roll-

back” in situations where the resulting conflicts from the “cause-and-effect” of a

change is highly undesirable relative to the project requirements. This activity

is guided by the set of GSD guidelines (i.e. GS9 and GS13). During this process,

the log of this change is updated.
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GS9: All related artefacts must be linked together to facilitate traceabil-

ity.

GS13: Changes in system artefacts should be traceable to manage its

impact on related/linked requirements or artefacts.

Lastly, the GSD Change Managers accept the change and the change process

is marked as successful. Then a “notification” is generated and distributed to

all the relevant stakeholders of the change in Team Asia (see Figure 7.7). The

change request is then “closed”.

7.1.2.5 Closing the ACS Project

After the ACS development process involving a series of change processes that

are “monitored and controlled” relative to the ACS requirements, the system is

demonstrated to the project stakeholders (i.e.Project Approval Board of Com-

pany X, and relevant users). The stakeholders undertake an evaluation of the

ACS according to the prioritised requirements and expectations. During the

evaluation process, highlights of the ACS development process are identified

and discussed. Also, lessons are learnt from the process.

7.1.2.6 Summary

In this section, we introduce a cloud-based Reactive Middleware that applies a

defined change management and traceability (CM-T) process model, within the

context of an adapted PMBOK quality process management approach to GSD.

This is in line with Objectives 1 and 2 presented in Section 1.2.2. The Reactive

Middleware provides cloud-based services for user managament, requirement

management, change management and traceability, and are facilitated by our

GSD management guidelines.

To ensure that the defined CM-T process model complies with the CMMI Level

2 (Baseline) Capability, the CM-T process model is validated using an expert

170



panel review process (see Section 7.1.1) where a total average 85.58% of the ex-

perts supported the maturity of the CM-T process model. Also, we demonstrate

the application of the GSD management guidelines provided by the Reactive

Middleware with an Airlock Control System case study (see Section 7.1.2). Here,

we highlight the continual tight linkage of stakeholders’ requirements and system

engineering processes towards change management and traceability, through the

application of our prototype of the Reactive Middleware to the case study. This

continual tight linkage between the set of requirements and the system engi-

neering processes is enabled using the Reactive Middleware which supports the

bidirectional tracking of prioritised system requirements.

7.2 Cloud Accountability System

In this section, we aim to provide support for assuring the dependability (i.e.

availability and reliability) of the cloud for system engineering with a cloud

accountability method (see Objective 5 of Section 1.2.2). This assurance is

achieved in relation to the CSPs’ SLA. We however, conduct an assessment of

the SLA for the relevant cloud platform to this work in Section 2.3.3.1. Here, a

set of assured values for cloud availability and compensation or “service credit”

are also identified. To achieve our objective, we define our research question as

“Can a cloud accountability method be used to meaningfully assure availability

and reliability of deployed systems?”

Figure 7.8: AWS/EC2 CAS Test-Bed Instances
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In this section, we evaluate our work by answering our research question and

draw conclusions on this chapter. We begin by describing how we apply the

cloud accountability method (CAM) (see Section 6.3) to the Reactive Architec-

ture (RA). To achieve this, we implement a prototype of the cloud accountability

system (CAS) to facilitate the active monitoring of the RA. Our evaluation is

performed using a cloud-based test-bed in the Amazon Web Service (AWS)

Elastic Cloud Compute (EC2) environment. The AWS/EC2 test-bed is run

in the eu-west-1b and eu-west-1c availability zones (i.e.geographic locations of

AWS cloud infrastructure/service) in Ireland. Such a decision is necessary since

these availability zones provide the least network latency to Newcastle Univer-

sity where the evaluation is conducted. It also allows for the monitoring or

introspection of the group of VMs for the set of RA components from another

availability zone. For the test-bed, we create a set of 5 Linux virtual machines

(i.e. Ubuntu 16.04 x64 t2.micro with 1 GB of memory, 1 vCPU, SSD Volume

Type and variable ECU - see Figure 7.8).

Figure 7.9: Test-Bed’s VMs Introspection in Two AWS Availability Zones

The 5 instances are classified into two main VMs; the target VMs and the moni-

toring VM (see Figure 7.9). The target VMs are constituted with vmiGuestFDS

(i.e. Formal Decomposition System), vmiGuestRM (i.e. Reactive Middleware),

vmiGuestSAR (i.e. Shared Artefacts Repository), and vmiGuestSET (i.e. Sys-

tem Engineering Toolbox) VM instances. The target VMs are located at the

eu-west-1b availability zone. Also, the monitoring VM is the vmiMONITOR
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VM instance located at the eu-west-1c availability zone. The separation of

the availability zones allows for the effective introspection of the target VMs

by the vmiMONITOR VM, without being subjected to the same dependability

situation at the eu-west-1b availability zone.

Table 7.4: Classified Steps of Cloud Accountability Method with The Foren-
sic Process Phases (NIST SP800-86 Guide)

The Forensic Process Phases
(NIST SP800-86 Guide)

Cloud Accountability
Method Steps

Collection 1, 2, 4, 5, 15 and 16
Examination 3 and 6

Analysis 7, 8, 11 and 12
Reporting 9, 10, 13, and 14

Accountability Method for Cloud Dependability Assurance

We classify the steps of the presented cloud accountability method according to

the phases of the NIST SP800-86 guide (see Table 7.4). The conceptual model

(i.e. Figure 6.1) of the cloud accountability system is also used to support this

classification.

7.2.1 Collection

To implement the CAS, we look at the source of digital evidence collection. In

our work, we identify two sources for accessing data related to dependability

metrics from the hypervisor of the RA virtual machines (discussed in Section

2.3.4.1). The choice for the two sources of data is because the data from the

CSPs are perceived to be untrustworthy, so a second data source using a reliable

digital forensic approach is considered to check the former data source. These

are:

7.2.1.1 AWS CloudWatch

The API used here is the AmazonCloudWatchClient API, which provides data

related to metric statistics. The metrics data provided by the AWSCloudWatch-
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Client API also provide information for CPU utilisation, status checks for VMs

and system, network packets, network state, disk write operations, disk read

operations, CPU credit usage, and CPU credit balance.

Figure 7.10: Some AWS/EC2 Instance and System Metrics

Status check metrics are available at 1 and 5 minute frequencies. However,

we focus exclusively on the CPU utilisation, status checks for VMs, and status

check for system metrics data collected at a frequency of 5 minutes. This

time frequency is appropriate since it is long enough to accommodate our 1

minute data collection call from the target VMs, and network latency which

can be unpredictable. We believe that this set of metrics are representative

for providing a reliable picture of the dependability of a set of cloud-based

VMs. All the mentioned metrics are also provided to users of AWS as graphs

in AWS CloudWatch relative to users’ AWS resources (e.g. EC2). In this work,

we consider metrics from the AWS CloudWatch API, as well as the generated

graphs from AWS CloudWatch. In Figure 7.10, we provide a brief description of

some of the focal metrics we consider in our evidence collection. Also, a snippet

of Java code showing the implementation of AWS/EC2 CloudWatch API for

collecting the data for the CPU utilisation metric in Listing 1 (see Appendix

D.16). This same approach is used to collect the other three focal metrics.
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Figure 7.11: vmiGuestFDS: AWS CloudWatch Line Graphs for Some Met-
rics

Figure 7.12: vmiGuestRM: AWS CloudWatch Line Graphs for Some Met-
rics
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Figure 7.13: vmiGuestSAR: AWS CloudWatch Line Graphs for Some Met-
rics

Figure 7.14: vmiGuestSET: AWS CloudWatch Line Graphs for Some Met-
rics
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(a) Page Table Lookup Function

(b) System Map Function

Figure 7.15: LibVMI API Functions used in the vmiMONITOR Instance

Initially, we took a look at the focal metrics as presented by the AWS Cloud-

Watch for the test-bed. From Figures 7.11, 7.12, 7.13, and 7.14, we observed

a set of line graphs that indicate that the instances are “healthy” per the set

of metrics. Here, the data for the status checks metrics indicate results of “0”,

implying that there has not been any recorded failures for the target VMs in

the 3-hour observation period. That said, our work takes a step further to col-

lect our own set of evidence relative to the said set of metrics. We consider a

well used digital forensic process known as virtual machine introspection as our

reliable means of accessing such data. This process is discussed below. Here,

with the aid of the metrics provided by the APIs, we aim to deduce the state of

dependability of the CAS target VM instances by obtaining the mean time to

failure (MTTF ) or mean time between failures (MTBF ), mean time to recover
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(MTTR), and system operation time.

7.2.1.2 Virtual Machine Introspection (LibVMI)

The LibVMI API for virtual machine introspection is considered for evidence

collection. Here, we first install Xen with dom0 getting 1GB RAM assigned and

1 dedicated vCPU core on the vmiMONITOR VM. The LibVMI API provides

functions such as “vmi-pagetable-lookup”, specifically “vmi-pagetable-lookup-

extended” to check the performance status of VMs. Importantly, it returns

VMI SUCCESS for an “active” and “healthy” VM, or VMI FAILURE if the

VM is “invalid” or “inactive”. To further check for VM introspection failure,

we consider “vmi-get-linux-sysmap” to show a linux system path to an active

VM. Figure 7.15 shows the set of LibVMI API functions that are considered for

introspection by the Evidence Collector system on the four target VMs.

1: The Evidence Collector (EC) is assigned to the composing systems of

the Reactive Architecture (RA), deployed on virtual machines (VMs) in

the cloud.

2: The EC collects metrics data for availability, [A] and reliability, [R],

including processing times in a synchronised manner from their respective

VMs at a defined constant time duration, [ti, ti+1] (i is initialised to zero).

4: The set [A,R]N is sent to the Auditor using synchronous procedure

calls.

5: The Auditor initialises the trust values of the VMs to 0.

It must be said that other equally effective LibVMI API functions can be used,

but we are also cautions since the performance of both the monitoring VM (i.e.

vmiMONITOR) and the target VMs are sensitive to the size of request parame-

ters and the resulting return values. The API functions called by “module-list”

(such as “vmi-pagetable-lookup-extended()”) have fewer parameters and small

return values (i.e., primitive variable type) compared to “process-list” such as

“vmi read pa( )”, which returns specified size of physical memory in binary will

introduce more significant overhead. This identified API function call is used to
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help in observing the times between VMs fail (i.e. obtaining MTBF or MTTF),

times for VMs to recover (i.e. obtaining MTTR), and system operation time.

That said, we proceed to apply our defined CAM to the CAS test-bed.

With the provided overview for our evidence collection approach supported by

Steps 1, 2, 4 and 5, we synchronise the collection of operation times for the

respective VMs from both the AWS CloudWatch and LibVMI APIs evidence

sources. This activity is undertaken between 11:00 GMT and 14:00 GMT which

falls within the range of time considered to be AWS/EC2 peak time in the

Ireland availability zone. Such a time period sees a higher level of user requests,

processing and scaling of AWS/EC2 resources. We presume that it will be

relatively easier to identify dependability issues at this time period. Also, the

“trust values” for the VMs are initialised to 0.

15: The method continues in a loop at (2) for time duration,[ti, ti+1] if

none of the assigned VMs in (1) failed.

16: If there is any recorded failure, the method will continue in a loop at

(1) for the given time duration, [ti, ti+1].

During the 3-hour period, the evidence collection process for both evidence

sources is repeated every 5 minutes in line with Steps 15 and 16 of the cloud

accountability methodology.
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(a) LibVMI API (b) AWS CloudWatch API

Figure 7.16: Processing Times (ms) from the Evidence Sources
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7.2.2 Examination

3: The gathered metrics data are sorted and examined for data integrity

by the Arbitrator.

6: The Auditor classifies [AN] and [RN] for the VMs.

The two sets of collected processing times are first assessed by the Arbitrator for

“outliers” in relation to Step 3. Here, we consider processing times that span

a period of 100 ms to 650 ms as the acceptable processing time, and hence any

other processing time is classified as an “outlier”. However, we identify process-

ing times less than 100 ms as a “failure” of the VM. This failure classification is

informed by an earlier assessment of the the minimum latency to each VM, and

it was observed to be an average of 119 ms. Also, this decision is complemented

by at least one evidence source API check of the VM in consideration.

Following from this, an “outlier” was observed for the vmiGuestRM instance

at 12:15 GMT (see Figure 7.16). The LibVMI and AWS CloudWatch API

recorded processing times of about 93.23 ms and 84.53 ms respectively. Since

the recorded processing times are below 100 ms, the Arbitrator indicates a VM

failure. However, the next sets of processing times recorded after 5 minutes

shows values of an average of 300 ms. This shows the vmiGuestRM instance

“recovered” during the said time. Such recovery is made possible by cloud

virtualisation features such as snapshot, autoscaling, load balancing, etc. All

other processing times are considered to be “acceptable” by the Arbitrator, and

hence passed on to the Auditor.

Table 7.5: Classification of Availability and Reliability for the Test-Bed
VMs

Instances [SN]
Availability Reliability

MTBF/MTTF (hr) MTTR (hr) [AN] MTBF/MTTF (hr) TIME (hr) [RN]
vmiGuestFDS 3 0 1 3 3 0.36788
vmiGuestRM 1.15 0.30 0.7931 1.15 3 0.07363
vmiGuestSAR 3 0 1 3 3 0.36788
vmiGuestSET 3 0 1 3 3 0.36788

The computation of system availability and reliability is often a laborious and

complex process requiring system observation of many months to a year, or even
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longer. This period usually records several incidents of failure and recovery from

failure, which facilitates a more easily acceptable analysis of system availability

and reliability. We are however limited by time to conduct such a detailed

process; the amount of data to analyse from the two evidence sources; and by the

cost of using the cloud platform over a prolonged period. Our aim for this work

is to provide information towards the assurance of cloud platform’s availability

and reliability. That said, we base our analysis on the data collected during 3

hours of the peak time for the AWS cloud platform, to mainly demonstrate that

our methodology can provide relatively more information towards the assurance

of cloud dependability to cloud agents.

In this context, we proceed to Step 6, where the availability, [AN] and reli-

ability, [RN] of the Reactive Architecture VMs are derived and classified. A

classification of [AN] and [RN] values with respect to their corresponding VMs

is shown in Table 7.5. Using the autoscaling feature for AWS VMs, a stop-start

cycle for recovering from failure is provided as less than three minutes. So

in computing the availability, [ARM] of vmiGuestRM after its failure at 12:15

GMT, we consider the MTTR as three minutes instead of five minutes for our

evidence collection frequency.

7.2.3 Analysis

We analyse the examined processing times from the Evidence Collector towards

meaningfully assuring availability and reliability of deployed cloud-based sys-

tems using the presented cloud accountability method. The processing times

for the set of VMs from the two evidence sources are compared to identify

significant variance(s) that may exist between the two sets of processing times.
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7: The Auditor compares the sets of processing times from the cloud

evidence sources (i.e. VMI, CMS) to understand their relationship based

on the SLA (i.e. acceptable metric range, [AMR]mc ) of the cloud platform.

8: If any metric data of the two evidence sources violates the SLA’s

[AMR]mc , the Auditor assigns a value of -1 to the trust value of the related

VM, and then triggers a call to the Reactive Middleware (RM).

Figure 7.17: Evidence-based Trust Analysis of Reactive Middleware’s VM

We also observed that the AWS CloudWatch API collected evidence at an

average of 48.25 ms faster than that of the LibVMI API. We believe that the

implementation of the LibVMI API introduces some overhead cost which affects

its processing time, and/or it is as a result of efficiency on the part of the AWS

CloudWatch API. That said, comparing the failure incident of vmiGuestRM at

12:15 GMT recorded by both the AWS CloudWatch API and LibVMI APIs,

with the AWS CloudWatch generated line graph (refer to Figure 7.12) shows

a supportive recording. Here, the AWS CloudWatch line graph shows a drop

in network data for both NetworkIn and NetworkOut metrics. However, this
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drop in network data does not seem out of place. The oscillation of the network

data in the line graph seems to follow a regular pattern. Furthermore, the

StatusCheckFailed, StatusCheckFailed System, and StatusCheckFailed Instance

metrics from the AWS CloudWatch generated line graph indicates no failure for

the vmiGuestRM VM.

Here, our evidence-based trust analysis which has been assigning trust value of

1 to VMs with no violations to the SLA, and -1 to to VMs with violations, a

resulting graph is generated as Figure 7.17. With the recorded failure incident of

vmiGuestRM at 12:15 GMT, a trust value of -1 is assigned to this VM. A history

of the trust values are made available to cloud agent for their consideration. As

mentioned earlier, trust values are assigned to all VMs every five minute cycle

to assure real-time monitoring.

11: The RM provides options such as requesting for “Service Credits”

from the CSP using the log from (9).

12: The Auditor also computes the Net Present Value (NPV) of the cloud

resources with respect to the identified processing times from (7), and/or

violations from (8).

Since there is no justified reason according to the AWS SLA to request for

“Service Credit” compensation, Step 11 is not undertaken. At this point, the

Auditor computes the net present value (NPV) of the Reactive Architecture’s

VMs as in Step 12. The formula for NPV varies slightly depending on the

consistency with which returns are generated, and if the investment was a one-

time event. Also, since each period generates returns in equal amounts and the

observation time is relatively short, the mathematical expression for the NPV

in our case is:

NPV =
C

(1 + r)i
− C0 (7.1)

where;

C - the expected cash flow per period (i.e. $ 96.82 per 3 hours for

5 AWS t2.micro VMs including data transfer cost, storage cost, and
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VAT. Exchange Rate: £77.5602 as $1 to £0.801077 at 30/01/17),

r - the required rate of return. The recommended UK public service

discount rate is 3.5%,

T - the number of periods over which the project is expected to

generate income (i.e. 3 hours), and

C0 - the initial investment (no initial investment is made here).

NPV =
77.5602

(1 + 0.035)3
− 0 (7.2)

NPV = £69.9548 (7.3)

The positive NPV value from equation (7.3) indicates that the investment in

the 5 AWS virtual machines is desirable subject to its prevailing discount rate

over the three-hour period. Since there was no violation to the SLA, the NPV

value indicates the value of the cloud investment after the said time.

7.2.4 Reporting

Generally, our examination and analysis of evidence using a wide range of anal-

ysis options (i.e. availability and reliability classification, evidence-based trust

analysis, and line graphs from two evidence sources), combined with a widely

accepted forensic process model, make our analysis considerably trustworthy.

Here, our analysis provide relatively more detailed information than the state-

of-the-art towards the assurance of dependability (i.e. availability, reliability) of

the cloud-based Reactive Architecture.
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Figure 7.18: CAS XML Log for Cloud Agents

9: All activities including VM users, duration of VMs observation, date,

details of failed VMs, analysis of failure, etc. are logged.

10: The RM then sends a notification to the cloud agents when all VMs

are “unavailable”.

13: If there was no violation from (8), the Auditor assigns 1 to the trust

value of the related VM, an analysis of the comparison in (7), and the

NPV from (12) are saved as a log, [lN].

14: This log, [lN] is sent as a notification to the cloud agents as periodic

reports (e.g. monthly, yearly, etc.).

The cloud agents are provided with a log of the analysis (i.e. comparison of the

processing times, and the NPV). Refer to Figure 7.18 for an XML presentation
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of the mentioned log. This log, together with the figures (including the evidence-

based trust graph - Figure 7.17) and tables generated in the forensic process is

provided to the cloud agents for assuring dependability of AWS resources. This

activity is in line with Steps 9, 10, 13, and 14.

To compare our analysis to a relevant benchmarking of the performance of

cloud infrastructure, we realised that the closest work is the Standard Per-

formance Evaluation Corporation (SPEC)’s Cloud IaaS 2016 Benchmark (see

Section 2.3.3.2). SPEC’s key benchmarking metrics are scalability, elasticity,

and “mean instance provisioning time”, and this performance evaluation is con-

ducted over a period of “forty-six minutes”. This evaluation period mentioned

justifies our 3-hour period as a suitable time interval to observe cloud-based

resources for analysis. That said, in a survey reported by [69] of the 40 largest

CSPs, an average cloud service availability in 2010 was 99.948%, equivalent to

273 minutes of downtime per year. AWS EC2 (99.95% yearly) met their SLA

but their S3 service (99.9% monthly) fell short. Based on the “downtime per

week” availability from the “Nines of Availability” (refer to Figure 2.11), our

3-hour AWS EC2 peak time recording which was 94.828% (refer to Figure 7.5),

has 2.8 hours of weekly downtime. This indicates about 99.0% availability (i.e.

2 nines) with a potential 3.65 days downtime per year. The reliability during

the said time is 0.2943175.

7.2.5 Summary

We undertake our evaluation by implementing a prototype of the cloud account-

ability system (CAS) to facilitate the active monitoring of the Reactive Archi-

tecture (RA) components. Our evaluation is performed using a cloud-based

test-bed in the Amazon Web Service (AWS) Elastic Cloud Compute (EC2) en-

vironment comprising 5 Linux VMs over a period of 3 hours. The 5 instances

are classified into two main VMs; the “target VMs” of the RA components

and the “monitoring VM” of the CAS. The Forensic Process Model (NIST

SP800-86) is used to guide the collection, examination, analysis, and report-

ing of dependability metrics as digital evidence to assure dependability of the

187



AWS cloud environment. Here, we identified the failure of vmiGuestRM VM

at 12:15 GMT that was not reported by the CSP to the cloud agents especially

to the system engineers. The CAS reports relevant cloud related activities such

as failures, conducted availability and reliability computations, evidence-based

trust analysis, the net present value of cloud resource investment, and a log

supported by graphical representations of our analysis. These logs can be used

as: (1) evidence to claim compensation (i.e. “Service Credits”), and also (2)

serve as a source of data for predicting dependability violations using a form

of machine learning. With these in place, we are convinced that our Objective

11 and 12 of Section 1.2.2 have been met, and that the cloud accountability

method is sufficiently capable of being used to meaningfully assure availability

and reliability of deployed systems in the cloud.

7.3 Reactive Architecture

In this section, cloud-ATAM is presented as a method for analysing and eval-

uating the trade-off of quality attributes for small-to-medium size cloud-based

systems. The novelty of this method is identified and validated using a com-

parative study. These are in line with Objectives 6 and 8 in Section 1.2.2. The

cloud-ATAM has been used to design the Reactive Architecture based on the

performance and availability quality attributes in Chapter 3. Here, we analyse

and evaluate the Reactive Architecture.

This work focuses on analysing the Reactive Architecture using the defined

two-staged approach (see Figure 7.19) of the cloud-ATAM. This approach is

(1) stakeholder-centric, (2) elicits points of view from a more diverse and larger

group of stakeholders, and (3) verifies and then builds on the results of the

architecture design in Chapter 3.

Here, the cloud-ATAM uses a non-trivial set of scenarios to analyse the cloud-

based architecture. A final report of the analysis results include a summary

of the project drivers, the architectural approaches, a utility tree, the analysis

of each chosen scenario, and important conclusions drawn. All these results
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Figure 7.19: cloud-ATAM Two-Staged Evaluation Approach

are recorded visually, so stakeholders can verify the correct identification of the

results. cloud-ATAM presents an enrichment in terms of coverage to ATAM

in the form of the two-staged scenario-based analysis approach. The research

question asked for this section is “what is the trade-off between availability and

performance quality attributes identified by the cloud-ATAM for the cloud-

based Reactive Architecture?”

The comparative study to validate cloud-ATAM is presented in Section 7.3.1.

Also, the mentioned two-staged analysis approach defined in cloud-ATAM is

respectively discussed in the following sections of the chapter: Section 7.3.2 and

Section 7.3.3.

7.3.1 Comparative Study

The Architecture Trade-off Analysis Method (ATAM) has been presented as

a very effective state-of-the-art architecture analysis method. This was estab-

lished in a comparative study in Section 2.2.5.1. cloud-ATAM is derived from

from ATAM. We argue that even though ATAM is very relevant as a method,

it is overly general in its application, and hence ideal for analysing large ar-

chitectures owned by large organisations. Here, its relevance and effectiveness

may be challenged in analysing architectures of a smaller size, varying opera-

tional environments of architectures, number of stakeholders available, budget
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constraints, etc.

To get a better appreciation of the differences, we conduct a comparative study

of cloud-ATAM and ATAM software system architecture evaluation methods,

based on a defined set of criteria. Considering the rapidly evolving nature of the

cloud platform as a currently popular and suitable deployment environment for

most software systems, we provide the main criteria for our comparative study

as:

(a) A goal of sensitivity and trade-off analysis:- In a rapidly evolving

environment, an efficient evaluation method should be capable of identi-

fying the quality attributes that change relative to others. Also, it must

be able to inform architectural decisions regarding an acceptable trade-off

between quality attributes.

(b) A focus on multiple quality attributes:- In the described environment

above, typically there will be multiple competing quality attributes. It

is, however, relevant that an appropriate evaluation method can consider

varying quality attributes.

(c) A focus on applicable architecture size:- In the cloud environment,

there are several elements that are changing rapidly. This therefore neces-

sitates that at least the size of the architecture being analysed be known

and catered for. Also, it affords the methodology the opportunity to pro-

vide specialised features to that type of architecture. Such features can be

the support of an ideal but specific number of stakeholders to undertake a

set of activities.

(d) Nature of method to guide design and analysis:- An architecture

analysis method should not be limited to post design activities, but present

itself in a way as to facilitate design. This makes such a method useful

and versatile for both design and analysis of cloud-based architectures.

(e) Relevance of method for cloud environment in terms of complex-

ity:- Architecture analysis methods must have reasonably shorter processes

and activities. The cloud environment hosts mainly small-to-medium size
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architectures and are deployed by small organisations with fairly limited

resources. A complex method requiring big budgets and many stakeholders

may not be attractive.

(f) Tool support:- To reduce the introduction of errors by stakeholders dur-

ing analysis, some form of automation or tool support will be beneficial.

Table 7.6: Comparative Study of ATAM and cloud-ATAM

Criteria ATAM cloud-ATAM
(a) Method goal Sensitivity and trade-

off analysis
Sensitivity and trade-
off analysis

(b) Quality
attributes

Multiple Multiple

(c) Applicable
architecture size

Any Small-to-medium

(d) Nature of
method

Architectural analysis Architectural design
and analysis

(e) Relevance of
method for cloud

environment

Complex and generic,
hence well suited to
large architectures

Fewer activities
with good sup-
port especially for
small-to-medium size
architectures

(f) Tool support No No, but Reactive Ar-
chitecture can be ex-
tended to support the
method

7.3.1.1 Discussion of Comparative Study Results

The comparative study has been provided in Table 7.6. In this study, there are

the same or similar features in terms of criteria (a), (b) and (f). This because

both methods are fundamentally (i.e.Method goal, Quality attributes, and Tool

support) the same. A slight distinction regarding criteria (f) (i.e.Tool support)

is that cloud-ATAM’s facilitating framework - Reactive Architecture - can be
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extended to provide tool support. This framework supports cloud-based system

engineering.

The distinguishing set of criteria can be identified as (c), (d) and (e). For criteria

(c): (Applicable architecture size), ATAM is presented as generic method that

can be used to analyse any size of architecture. Here, the nine-step method with

several activities has been daunting for analysing especially small architectures.

On the other hand, cloud-ATAM specialises on small-to-medium size architec-

ture. Most architectures in the world fall under this classification. That said,

even though this focus is narrow, its application has a wider potential. Criteria

(d) looks at the nature of the methods with regards to their applicability to

architectures in system engineering projects. As discussed earlier, ATAM is a

popular method for architecture analysis. In this light, ATAM is limited to only

analysing architectures whiles cloud-ATAM is used to design and analyse archi-

tectures. Finally, for criteria (e): (Relevance of method for cloud environment),

ATAM is shown to be relatively complex and generic. ATAM is relatively com-

plex and typically requires large organisations with large resources and experts

to effectively conduct its analysis. This may not be particularly appealing to

a greater number small and medium size organisations which are increasingly

dominating the cloud environment. That said, cloud-ATAM presents relatively

fewer steps and activities which does not compromise its effectiveness for design

and analysis of cloud-based architectures.

The following section provides qualitative analysis of the Reactive Architecture

using the utility tree analysis mechanism.

7.3.2 Utility Tree Analysis Mechanism

As discussed earlier in Chapter 3, the utility tree analysis mechanism is pre-

sented as a top-down mechanism for directly and efficiently translating the

business drivers of a system into concrete quality attribute scenarios. For ex-

ample, in an e-commerce system two of the business drivers might be stated as:

“security is central to the success of the system since ensuring the privacy of our
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customers’ data is of utmost importance”; and “modifiability is central to the

success of system since we need to be able to respond quickly to a rapidly evolv-

ing and very competitive marketplace.” Before we can assess the architecture,

these system goals must be made more specific and more concrete. Moreover,

we need to understand the relative importance of these goals versus other qual-

ity attribute goals, to determine where we should focus our attention during

the architecture evaluation. Utility trees help to prioritise quality goals.

Quality goals of a system are often presented as a set of system descriptions

to facilitate modular system analysis. Typically the first job of an architec-

ture analysis is to precisely elicit the specific quality goals against which the

architecture will be judged. The mechanism that we use for this elicitation is

the “scenario”. Scenarios are applied not only to determine if the architecture

meets a functional requirement, but also for further understanding of the sys-

tem’s architectural approaches and the ways in which these approaches meet

the quality requirements such as performance, availability, modifiability, and so

forth. They represent specific examples of current and future uses of a system.

They are useful in understanding both vague development-time qualities (e.g.

modifiability) and run-time qualities (e.g. performance, availability). In terms

of run-time qualities, scenarios specify the kinds of operations over which per-

formance needs to be measured, or the kinds of failures the system will have

to withstand. The utility tree generated in this exercise with a set of scenarios

based on the Reactive Architecture is shown in Figure 5.5.

The presented utility tree guides the remaining analysis process. It is important

at this point to prioritise, and refine the Reactive Architecture’s most important

quality attribute goals. The utility tree presented starts with “Utility” as the

“root node”. This indicates the general “goodness” of the Reactive Architec-

ture. The “second level” is constituted with the quality attributes of interest:

“performance” and “availability”. In the “third level”, there are specific quality

attribute refinements. From the “performance” quality attribute, we identify

“data latency” and “transaction throughput” as relevant refinements. Such

refinements are major determinants of performance. Also, “availability” is re-

fined to “hardware failures” and “software failures”. From this point, we are
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Table 7.7: Prioritised Quality Attribute Scenarios

Quality Attribute Scenarios Scenario
ID

Relative
Ranking
[X,Y]

Numbered
Value
[X,Y]

Power outage at Availability
Zone 1 requires traffic redirect to
Availability Zone 2 in less than 5
seconds

A1 [L, M] [3, 2]

Disk crash must have a backup
that takes over in less than 3 sec-
onds

A2 [H, L] [1, 3]

Network failure is detected and
recovered in 10 seconds

A3 [M, L] [2, 3]

COTS/Third party software up-
date with bug that causes fail-
ures is reverted to stable version
in less than 5 seconds

A4 [M, M] [2, 2]

Deliver change requests and re-
ports in real-time

P1 [H, M] [1, 2]

Reduce storage latency for users
to 200 milliseconds

P2 [H, L] [1, 3]

One system (e.g. Reactive Mid-
dleware) should not constitute a
lag greater than 1 second

P3 [M, L] [2, 3]

Accommodate over 500 queries
per second

P4 [H, M] [1, 2]

able to identify attribute goals as “quality attribute scenarios” that are concrete

enough for “prioritisation” and “analysis”. These “quality attribute scenarios”

form the “leafs” of the utility tree. Here, the “hardware failures” (i.e. see

“third level”) refined from “availability” is further refined into “power outage

at Availability Zone 1 requires traffic redirect to Availability Zone 2 in less than

5 seconds”, “disk crash must have a backup that takes over in less than 3 sec-

onds”, and “network failure is detected and recovered in 10 seconds”. These

constitute specific “scenarios” that can be prioritised relative to each other and

194



Table 7.8: Prioritised Quality Attribute Scenarios. Ordered based on the
importance of each scenario to the success of the Reactive Architecture (X)

No. Quality Attribute Scenarios Scenario
ID

Numbered
Value

1 Disk crash must have a backup that
takes over in less than 3 seconds

A2 1

2 Deliver change requests and reports in
real-time

P1 1

3 Reduce storage latency for users to 200
milliseconds

P2 1

4 Accommodate over 500 queries per sec-
ond

P4 1

5 Network failure is detected and recov-
ered in 10 seconds

A3 2

6 COTS/Third party software update
with bug that causes failures is reverted
to stable version in less than 5 seconds

A4 2

7 One system (e.g. Reactive Middleware)
should not constitute a lag greater than
1 second

P3 2

8 Power outage at Availability Zone 1
requires traffic redirect to Availability
Zone 2 in less than 5 seconds

A1 3

also analysed.

The utility tree is prioritised based on “the importance of each scenario to

the success of the Reactive Architecture (X)” and “the degree of perceived risk

posed by the achievement of this node (Y)” (i.e.how easy the architecture teams

feel this level of performance or availability will be to achieve). To facilitate the

prioritisation process, we apply a relative rankings approach such as High (H),

Medium (M), and Low (L). These will be assigned to the scenarios as a pair (i.e.

[H,M]) to represent a “high” importance in terms of (X), and medium level of

perceived risk in terms of (Y)). Furthermore, we assign a numbered value such

as (H) corresponds to 1, (M) corresponds to 2, and (L) corresponds to 3 (see
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Table 7.9: Classified Quality Attribute Scenarios according to Types

Scenario
Type

Scenario
Type ID

Quality Attribute Scenar-
ios

Scenario
ID

Use Case USC1 Deliver change requests and re-
ports in real-time.

P1

USC2 Reduce storage latency for
users to 200 milliseconds.

P2

Growth GS1 Disk crash must have a backup
that takes over in less than 3
seconds.

A2

GS2 Network failure is detected and
recovered in 10 seconds.

A3

GS3 COTS/Third party software
update with bug that causes
failures is reverted to stable
version in less than 5 seconds.

A4

GS4 One system (e.g. Reactive Mid-
dleware) should not constitute
a lag greater than 1 second.

P3

GS5 Accommodate over 500 queries
per second.

P4

Exploratory ES1 Power outage at Availability
Zone 1 requires traffic redirect
to Availability Zone 2 in less
than 5 seconds.

A1

Table 7.7). This is relevant in making the ordering process easy by arranging

the numbered values in an ascending order. With this method, the high priority

quality attribute scenarios will be arranged from the top of the list or table to

the low priority at the base. That said, we proceed with the analysis of the

quality attribute scenarios based on the relative rankings of the importance of

each scenario to the success of the Reactive Architecture (X) (see Table 7.8).

In cloud-ATAM, we use three types of scenarios: use case scenarios (these in-

volve typical uses of the existing system and are used for information elici-
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Table 7.10: Prioritised Quality Attribute Scenarios (Ordered)

No. Quality Attribute Scenarios Scenario
ID

Numbered
Value

1 Disk (i.e. data repository) crash must
have a back-up that takes over in less
than 3 seconds

A2 1

*2* Deliver change requests and re-
ports in real-time

P1 1

3 Reduce storage latency for users to 200
milliseconds

P2 1

4 Accommodate over 500 queries per sec-
ond

P4 1

5 Network failure is detected and recov-
ered in 10 seconds

A3 2

6 COTS/Third party software update
with bug that causes failures is reverted
to stable version in less than 5 seconds

A4 2

7 One system (e.g. Reactive Middleware)
should not constitute a lag greater than
1 second

P3 2

8 Power outage at Availability Zone 1*
requires traffic redirect to Availability
Zone 2* in less than 5 seconds

A1 3

tation); growth scenarios (these cover anticipated changes to the system), and

exploratory scenarios (these cover extreme changes that are expected to “stress”

the system). These different types of scenarios are used to probe a system from

different angles, optimising the chances of surfacing architectural decisions at

risk. In this work, we consider some scenarios bordering “use case”, “growth”

and “exploration”. We have provided an introduction to some “use case sce-

narios” in Appendix C.14. The scenarios are classified and shown in Table

7.9.
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Figure 7.20: Component and Connector View of Reactive Architecture for
Scenario (P1) Analysis
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Table 7.11: Analysis of Sensitivities, Trade-offs, Risks & Non-Risks for the
Utility Tree

Sensitivities: * S1: Concern over network latency.
* S2: Using a data-centric and client-server approach
for the central repository can facilitate data integrity
and consistency, but it makes the architecture sensitive
to its faults and bottlenecks.
* S3: Similarly, the central role played by the Reactive
Middleware makes the architecture sensitive to faults,
resource (i.e. CPU, memory) malfunctions or unavail-
ability.

Trade-offs: * T1: Availability (+) vrs Performance (-) vrs Relia-
bility (-): defining a central artefacts repository makes
artefacts readily available, but may be faced with bottle-
necks when there are a burst of queries on the repository.
* T2: Availability (+) vrs Performance (+): using APIs
for component interfaces facilitate readily access to re-
sources, and boosts performance.
* T3: Availability (+) vrs Performance (-): client-server
approach for the Reactive Middleware allows for multi-
client service, but there can be an overwhelming network
management performance constraint.
* T4: Availability (+) vrs Performance (-) vrs Reliabil-
ity (+): backing up the artefacts in the primary Shared
Artefacts Repository allows for fail-over assurance and
increased reliability, but the asynchronous back-up pro-
cess can affect performance.

Risks: * R1: Data integrity.
* R2: The risk is that the Reactive Middleware and the
Shared Artefacts Repository constitute a single point of
failure.

Non-Risks: * N1: The non-risk is the use of application program-
ming interface (API) approach which should stay com-
patible.
* N2: The independent communication connections
should enable real-time data transfer.
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Table 7.12: Analysis of Performance Scenario - P1 - (see Table 7.11 for
the description of S1, S2, T1, etc.) and (C&C + API: Component-and-
connector architectural style and API, SAR: Shared Artefacts Repository,
RM: Reactive Middleware, and ICC: Independent Communication Com-
ponents)

Analysis of Architectural Approach using a Performance-related Scenario
Scenario ID :
P1

Scenario: Deliver change requests and reports in real-time

Attribute(s) Performance
Environment Normal Operations
Stimulus Responsiveness to change events
Response real-time
Architectural
Decisions

Sensitivity Trade-off Risk Non-Risk

AD1 C&C + API S1 N1
AD2
AD3 Client-Server SAR S2 T1 R1, R2 N1
AD4 Client-Server RM S3 T3 R2 N1
AD5 Back-up S1,S2 T4 N1
AD6 DS RM S1 R1 N1
AD7 Schema-free-SAR R2
AD8 ICC S1 N2
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7.3.2.1 Analysis Process

The analysis process begins by considering a high priority scenario of the Re-

active Architecture. From Table 7.8, all generated scenarios of the Reactive

Architecture are identified and ordered based on their importance to the suc-

cess of the architecture. These scenarios are considered to be of high priority

in the analysis of the architecture. At this point, we consider scenario P1

(i.e.“Deliver change requests and reports in real-time” - see Table 7.10) for fur-

ther analysis towards the identification of sensitivity points (i.e. trade-off and

risk points).

Considering scenario P1, we first identify the related components of the Reac-

tive Architecture. The interactions of such components will help us to identify

and understand the sensitivity points. Now from scenario P1, we notice “change

requests and reports” which constitutes the main feature of both the Reactive

Middleware and the Shared Artefacts Repository. The Reactive Middleware

provides facilities to stakeholders to submit “change request” affecting “high

priority system artefacts” for consideration by change managers. Such artefacts

are stored in the Shared Artefacts Repository. Also, the decision made by the

change managers is delivered to the stakeholder as a report. Hence, the inter-

action between the Reactive Middleware and the Shared Artefacts Repository

is relevant in our analysis at this point (see Figure 7.20).

From the interactions of the mentioned components, some sensitivity points

(i.e. S1, S2, S3) were identified (see Table 7.11). A further assessment of

these sensitivity points introduced trade-off points (i.e. T1, T2, T3, T4), and

risk points (i.e. R1, R2). Also, some Non-Risk points (i.e. N1, N2) were

identified. However, a Non-Risk point (i.e. N1) mitigates the trade-off point (i.e.

T2) involving application programming interfaces (APIs). Here, no risks were

identified to make the trade-off (i.e. T2) necessary for further consideration.

Finally, an overview of our analysis is provided in Table 7.12.

After the analysis of the Reactive Architecture with the Utility Tree Analysis

Mechanism, we continue the analysis process by soliciting the opinion of the

system stakeholders on this analysis approach in the next section.
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7.3.3 Stakeholders’ Brainstorming Analysis Mechanism

At this point, the cloud-ATAM as well as the analysis conducted with the utility

tree analysis mechanism are presented to the stakeholders, to brainstorm and

provide their feedback on them. A stakeholders’ brainstorming group work is

organised between the team of system analysts (i.e. designers and analysts of

the Reactive Architecture) and the relevant stakeholders (i.e. owners, users,

software testers, database administrators, legal team, auditors, etc. of the Re-

active Architecture).

7.3.3.1 Stakeholders’ Brainstorming Group Work

In the stakeholders’ group work, stakeholders numbering up to twenty-on (21)

were specifically introduced to the Architecture Trade-off Analysis Methodology

(ATAM) as the parent methodology, the cloud-based Reactive Architecture,

and our utility tree analysis with the derived methodology - cloud-ATAM. To

these three sections, stakeholders were asked to provide some answers to some

questions. Here, a “questionnaire” is designed to facilitate the data gathering

from the feedback of the stakeholders (see Appendix C.15).

We considered the following questions:

• SECTION 1: Presentation of ATAM

(a) The overview of architecture evaluation and ATAM were presented

reasonably well?

(b) Quality attributes (i.e. availability, performance, etc.) play a critical

role in architecture evaluation?

(c) Scenario-based architecture evaluation methods are adequate in analysing

software architecture of varying sizes?

(d) ATAM presents a matured/convincing approach to architectural eval-

uation?

• SECTION 2: Reactive Architecture
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(a) The Reactive Architecture was clearly presented?

(b) The requirements of the Reactive Architecture are representative enough?

(c) The presented constraints and focal quality attributes are relevant to

the architecture?

(d) The architecture components, their relationships, and initial scenarios

are useful in understanding the Reactive Architecture?

• SECTION 3: cloud-ATAM Evaluation and Results

(a) The cloud-ATAM was clearly presented?

(b) The quality attribute characterisation was well presented?

(c) The attribute-specific questions and the identified approaches provide

adequate coverage of the quality attribute characterisation?

(d) The presented scenario (generated from the utility tree) was ade-

quately analysed?

(e) The reasoning behind the analysis process was sound?

Stakeholders were encouraged to provide their answers in the range of the clas-

sification: (1) “Strongly agree”, (2) “Agree”, (3) “Neutral”, (4) “Disagree”, and

(5) “Strongly disagree”. However, some questions (such as questions 1 of both

Section 1, and Section 2 ) only required either a “Yes” or “No” answer. They

were provided the option to comment about each of the three sections of the

questionnaire, and also to provide general comments.

7.3.3.2 Analysis of Stakeholders’ Feedback

In our approach to analyse the feedback from the stakeholders, we consider each

of the questions and their corresponding responses. We begin by taking a look

at question 1 from Section 1. Question 1 seeks to understand if the overview

of architecture evaluation and ATAM were presented reasonably well. There

was a unanimous agreement that the mentioned topics were reasonably well

presented. This however provides a good basis for an adequate representation

of the perception of the stakeholders.
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(a) Pie Chart (b) Bar Chart

Figure 7.21: The Role Played by the Quality Attributes in Architecture
Evaluation

We proceed to question 2 of Section 1, which seeks to identify if in the opinion

of the stakeholders, quality attributes play a critical role in architecture evalua-

tion. The feedback is shown graphically in Figure 7.21. This figure specifically

shows a pie chart depicting a percentage distribution of the feedback, and a bar

chat also showing the frequency of the feedback of stakeholders relative to this

question. From Figure 7.21, 13 of the stakeholders (representing 62% ) indicated

strongly in agreement that quality attributes play a critical role in architecture

evaluation. Also, 7 of the stakeholders (representing 33% ) indicated that they

agree, whiles 1 stakeholder (representing 5% ) was neutral. Here, none of the

stakeholders either disagreed or disagreed strongly to our claim.

The responses to question 3 (i.e. adequacy of Scenario-Based Methods for Ar-

chitecture Evaluation? ) of Section 1 was generally positive (see Figure 7.22).

Here, 2 of the stakeholders (representing 9% ) responded strongly in agreement,

and 10 stakeholders (representing 48% ) agree to our claim. However, the re-

maining 9 stakeholders (representing 43% ) were neutral in their response to

this question.

With question 4 of Section 1, we seek to solicit the opinion of the stakeholders if

“ATAM presents a matured/convincing approach to architectural evaluation?”

(see Figure 7.23). We identified that 2 of the stakeholders representing 10%

strongly agreed to this claim, whiles 12 stakeholders representing 57% agree.
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(a) Pie Chart (b) Bar Chart

Figure 7.22: Adequacy of Scenario-Based Methods for Architecture Evalu-
ation

(a) Pie Chart (b) Bar Chart

Figure 7.23: Maturity of ATAM for Architecture Evaluation

However, 7 stakeholders were neutral, and no one disagreed to this claim.

Considering the Reactive Architecture being analysed by cloud-ATAM in Sec-

tion 2, we received very positive responses. With regards to: question 1 - “The

Reactive Architecture was clearly presented?”, question 2 - “The requirements

of the Reactive Architecture are representative enough?”, question 3 - “The

presented constraints and focal quality attributes are relevant to the architec-

ture?”, and question 4 - “The architecture components, their relationships,

and initial scenarios are useful in understanding the Reactive Architecture?”

the responses are categorised respectively as:
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(a) Pie Chart (b) Bar Chart

Figure 7.24: Representativeness of the Reactive Architecture’s Require-
ments

(a) Pie Chart (b) Bar Chart

Figure 7.25: Relevance of the Reactive Architecture’s Constraints and
Quality Attributes

• 21 representing 100% of the stakeholders thought that the Reactive Ar-

chitecture was clearly presented,

• Strongly agree: 4 representing 19%, Agree: 16 representing 76%, Neutral:

1 representing 5% (see Figure 7.24),

• Strongly agree: 1 representing 5%, Agree: 16 representing 76%, Neutral:

4 representing 19% (see Figure 7.25),

• Strongly agree: 6 representing 28%, Agree: 9 representing 43%, Neutral:

6 representing 29% (see Figure 7.26).
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(a) Pie Chart (b) Bar Chart

Figure 7.26: Usefulness of Reactive Architecture’s Components, Relation-
ships and Scenarios

(a) Pie Chart (b) Bar Chart

Figure 7.27: Clarity of the Presentation of cloud-ATAM

In the final section, we seek to present cloud-ATAM, our evaluation and results,

and then assess how the stakeholders appreciate our approach. Here, we identi-

fied that 24% (i.e. 5) of the stakeholders strongly agree that the presentation of

the cloud-ATAM was clear (see Figure 7.27). Also to this question (i.e. ques-

tion 1), 57% (i.e. 12 ) of the stakeholders agree. However, the remaining 29%

(i.e. 4 ) were neutral in their response.

The second question in Section 3 looks at how well the presentation of quality

attribute characterisation was. The characterisation of the quality attributes

(i.e. availability and performance), are very relevant and serves as the foundation
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(a) Pie Chart (b) Bar Chart

Figure 7.28: Well Presentation of Quality Attribute Characterisation

of the analysis with cloud-ATAM. From Figure 7.28, we identify that 38% (i.e.

8) of the stakeholders strongly agree and 43% (i.e. 9) of the stakeholders agree

that the presentation went well. That said, the remaining 19% (i.e. 4) of the

stakeholders were neutral.

(a) Pie Chart (b) Bar Chart

Figure 7.29: Coverage of Attribute-Specific Questions

Focusing on the analysis of the Reactive Architecture with cloud-ATAM, we

begin by building on the quality attribute characterisation by assessing the

coverage of attribute-specific questions. From our assessment (see Figure 7.29),

14% (i.e. 3 ) of the stakeholders strongly agree whiles 62% (i.e. 13 ). Also, 24%

(i.e. 5 ) of the stakeholders are neutral.

From the attribute-specific questions asked, we are able to understand the
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(a) Pie Chart (b) Bar Chart

Figure 7.30: Adequately Analysed Scenarios of Reactive Architecture

(a) Pie Chart (b) Bar Chart

Figure 7.31: Sound Reasoning of cloud-ATAM Analysis

how the identified quality attributes will be achieved using the architectural

approaches or decisions for the Reactive Architecture. In this process, use

architecture-related scenarios to analyse the Reactive Architecture. At this

point, we ask the stakeholders to assess the adequacy of the scenario-based

analysis of the Reactive Architecture using the cloud-ATAM. The responses

gathered are shown in Figure 7.30. Here, 38% (i.e. 8 ) of the stakeholders

strongly agree, and 48% (i.e. 10 ) of the stakeholders agree that our analysis

was adequately undertaken. That said, 14% (i.e. 3 ) are neutral to the claim.

Finally, we asked the stakeholders if the reasoning behind the analysis process

was sound after identifying sensitivity points, trade-off points, and risky points
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in the Reactive Architecture design. From Figure 7.31, the stakeholders who

strongly agree with the soundness of the analysis were 14% (i.e. 3 ), and those

who agree are 62% (i.e. 13). The stakeholders who were neutral are 5 consti-

tuting 24%.

7.3.4 cloud-ATAM Analysis Report

The cloud-ATAM delivers the main products: sensitivities, trade-offs, and archi-

tectural risks from the two-staged analysis approach (see Figure 7.19). Firstly,

the Utility Tree Analysis Mechanism delivered the analysis products in Table

7.11. From Table 7.12, the cloud-ATAM completed a full cycle by linking the

“architectural decisions” to the “quality attributes” (i.e. availability, perfor-

mance), and back to the “business goals” of the Reactive Architecture. The

results from Tables 7.11 and 7.12 indicate that the cloud-ATAM found some

trade-offs (i.e. T1, T3, T4).

Also, the Stakeholders’ Brainstorming Analysis Mechanism was used to assess

the Utility Tree Analysis Mechanism approach. Here, the cloud-ATAM, and the

Utility Tree Analysis Mechanism approach were presented to the stakeholders of

the Reactive Architecture. They were expected to brainstorm and provide their

feedback on the methodology and analysis. We then gathered the opinion of the

stakeholders about the presentation and our analysis, using a facts gathering

approach where a designed “questionnaire” was used. In the three sections of

the questionnaire, we identified that the stakeholders were very appreciative of

the information we provided to them, and generally supportive of our analysis

process. Here, 77.818% of the stakeholders on an average “strongly agreed”

or “agreed” to all of our presentation and analysis. However, an average of

22.182% (i.e. almost 5 ) of the stakeholders chose to be “neutral” in all of the

questions from the questionnaire. Their concerns were that:

(a) the description of ATAM was not clear,

(b) a concrete case study of ATAM would be useful in the presentation,

(c) the distinction between ATAM and cloud-ATAM was not clear,
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(d) they wanted to know how quality attributes apply in real-world,

(e) if the scenario analysis is manually done or it is automated,

(f) the scenarios were not clear,

(g) they wanted to know the use of the Reactive Architecture, and

(h) whether the Reactive Architecture is a software and/or hardware.

Such concerns afforded the team of analysts the opportunity to respond by

clarifying some aspects of our analysis and providing further information.

7.4 Conclusions

In this chapter, we have conducted evaluations for three main sections: the

Reactive Middleware, the Cloud Accountability System, and the Reactive Ar-

chitecture. We briefly present them below.

A summary of the main activities for evaluating the Reactive Middleware have

been presented in Section 7.1.2.6. These are in line with Objectives 1 and 2

presented in Section 1.2.2.

Also, the Cloud Accountability System facilitates the Cloud Accountability Sys-

tem. In this section, we have demonstrated the method by applying it to a

cloud-based test-bed of the Reactive Architecture. Also, we have conducted an

evidence-based trust analysis on the derived evidence for assuring the depend-

ability of the cloud-based Reactive Architecture. With these two activities, we

are convinced that our Objective 11 and 12 of Section 1.2.2 have been met,

and that the cloud accountability method is sufficiently capable of being used

to meaningfully assure availability and reliability of deployed systems in the

cloud.

We have also motivated the need for architecture evaluation methods suitable

for the dynamic unpredictable cloud environments. In particular, we have pre-

sented an evaluation method - cloud-ATAM - derived from Architecture Trade-

off Analysis Method (ATAM) for evaluating the availability and performance
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quality attributes of a cloud-based Reactive Architecture (see Objective 5 in

Section 1.2.2). We have validated cloud-ATAM with a comparative study with

ATAM (see Objective 6 in Section 1.2.2). This methodology specifically presents

a two-staged analysis approach (i.e. (1) Utility Tree Analysis Mechanism, and

(2) Stakeholders’ Brainstorming Analysis Mechanism) for analysing the cloud-

based Reactive Architecture. Approaches (1) and (2) are for qualitative system

analysis, whiles approach (3) is for quantitative system analysis. However,

this methodology as well as the two-staged analysis approach are generic for

analysing cloud-based architecture with particular focus on small-to-medium

sized systems. This section also presents the results which led us to conclude

that the cloud-ATAM is able to identify trade-offs between the availability and

performance quality attributes for the Reactive Architecture.
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Chapter 8

Conclusion and Future Work

This chapter summarises the contributions of the thesis in Section 8.1. We also

show some threats to the validity of our work in Section 8.2, and some of the

possible directions of future research in Section 8.3.

8.1 Conclusion

The research presented in this thesis makes several key contributions:

1. The design, development and evaluation of a novel Reactive Middleware,

that supports a set of management guidelines for a high quality GSD

change management and traceability. The middleware facilitates a novel

change management and traceability process model (meets Objective 1 pre-

sented in Section 1.2.2), within the context of quality management for GSD

projects (meets Objective 2 ). An expert review panel process is conducted

to assess the maturity of the process model (meets Objective 3 ). Also, an

Airlock Control System case study is used to demonstrate the GSD man-

agement guidelines (meets Objective 4 ). Chapters 4 and 7 present this

contribution.

2. The proposal of a novel methodology for the design and analysis of small-

to-medium size cloud-based systems (meets Objective 5 ). This method

considers the unpredictable character and rapidly evolving topology of the
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cloud deployment environment, and its impact on dependability in the

bespoke design of systems to be deployed to the cloud. The methodology

targets systems that are classified within the range of small to medium size.

A comparative study of the current state-of-the-art methods is initially

undertaken to identify methods that present a high potential to remedy this

challenge (meets Objective 6 ). The method is demonstrated by applying

it to the design of the Reactive Architecture (meets Objective 7 ), and then

an analysis of the quality attribute trade-off of the Reactive Architecture

is conducted to meet Objective 8. This contribution is met in Chapters 5

and 7.

3. The design, development and evaluation of the Reactive Architecture,

which is used for cloud-based system engineering (refer to Objectives 7 and

8 ). The Reactive Architecture presents critical components for system

engineering such as the introduced Reactive Middleware, with a Shared

Artefacts Repository, and a System Engineering Toolbox. Here, this con-

tribution is satisfied in Chapters 3 and 7.

4. The proposal of a novel methodology for assuring cloud accountability in

terms of dependability to meet Objective 9. A forensic analysis process

is taken to guide the data collection, examination, evidence analysis, and

reporting of information (meets Objective 11 ). This contribution is met in

Chapters 6 and 7.

5. The design and development of the Cloud Accountability System to facil-

itate the cloud accountability methodology (meets Objective 10 presented

in Section 1.2.2). The Cloud Accountability System is used to conduct

virtual machine introspection of some key components of the Reactive Ar-

chitecture, where data is collected also from the Cloud Service Providers

based on availability and reliability related metrics. Also, an evidence-

based trust analysis of the reported information from the forensic process

is conducted, to assure cloud users of the dependability of the cloud envi-

ronment (meets Objective 12 ). This contribution is met in Chapters 6 and

7.
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Table 8.1: Mapping High-Level Requirements to Components of Reactive
Architecture

ID High-Level
Requirements

Reactive Architecture
Components

R1 Artefacts independence Shared Artefacts
Repository (see Chapter 4)

R2 Supports globally
distributed development

Reactive Middleware (see
Chapter 4, 5)

R3 Ability to handle different
and large numbers of

changing artefacts

Reactive Middleware (see
Chapter 4) and Shared

Artefacts Repository (see
Chapter 4, 5)

R4 Automated as far as
possible

Reactive Middleware (see
Chapter 4, 6)

R5 Diversity of tools System Engineering
Toolbox (Chapter 4)

We also introduced a set of high-level requirements for a framework that has

the potential of addressing the state-of-the-art challenges of GSD: (1) effective

information and knowledge sharing, (2) automation, and (3) diversity of tools.

At this point we relate the components of our proposed Reactive Architecture

with these high-level requirements in Table 8.1.

8.2 Limitations

8.2.1 Designing a Cloud-Based Architecture

This work has introduced cloud-ATAM for the design and analysis of small-

to-medium size cloud-based architectures. This method has been presented

as a qualitative architecture reasoning approach. This however introduces a

threat to the validity of cloud-ATAM. This is so because, qualitative reason-

ing approaches are subjective and may not be widely accepted as a wholly

accurate method. We are motivated by the quantitative reasoning approaches

215



provided by ATAM through the Attribute-Based Architectural Styles (ABASs).

An example which is the Reliability Tri-modular Redundancy (RTmR) ABAS

provides a means to design and analyse a system that focuses on providing the

facility to quantitatively assess the trade-off between a set of quality attributes.

8.2.2 Ensuring Traceability with the Reactive Middle-
ware

The Reactive Middleware introduces a change management and traceability

(CM-T) process model. This process model is facilitated in terms of change

management and traceability by the open services for lifecycle management

(OSLC) approach. In this regard, the limitation of this process model is that

the correctness of each consistency management stage is heavily reliant upon

the correctness of trace links. OSLC is very effective in identifying artefacts

and resources within artefacts. The dependence on trace links between artefacts

(including these resources) raises the question of how CM-T process model could

be more tolerant to errors introduced during trace creation, especially for a GSD

service (i.e. change management and traceability-as-a-service: CM-TaaS) based

on the rapidly evolving cloud platform. This is a significant issue considering

that the current approach to creating trace links using the OSLC, by nature,

is not likely to provide 100% accuracy. Thus, user intervention is required to

ensure correct links are established prior to consistency management.

8.2.3 Cloud Accountability Analysis

The cloud accountability analysis undertaken in this thesis presents two main

threats to validity. First, the evidence-based trust analysis conducted in this

work can be perceived as simplistic even though it is considerably effective in

assigning trust values to introspected virtual machines. This simple approach

is preferred to make the analysis readily accessible and acceptable to cloud

agents. We however take note that there are other established and widely

applied evidence-based trust analysis approaches that can be accepted widely
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in the niche research community.

Also, the reliability analysis was undertaken over a very limited time frame.

Typically, reliability analysis is conducted over a protracted period of time (e.g.

three months, six months, a year, etc.). The major constraint was the cost of

using the cloud environment over a longer period.

8.2.4 Constitution of the Expert Panel

The choice of using an expert panel process to validate the change management

and traceability (CM-T) process model has proved very useful in identifying

some of the process model’s potential strengths and weaknesses. We believe

that the involvement of such a high calibre panel adds weight and rigor to

our results. The high response rate and the many additional comments and

contributions made, suggest that the experts to the task seriously. Also, the

range of responses elicited from this relatively small group formed a good basis

for us to guage how the CM-T process model might be viewed in practice.

The constitution of the expert panel is from colleagues at Newcastle University,

researchers and practitioners from conferences attended, and other experts who

were identified through their research or industrial work. These experts were

selected exclusively based on their expertise. That said, the varying levels of

the relationship between some of the experts and the author could be perceived

as a source of bias. Despite some polarisation of views, there was relatively

strong agreement that the requirement engineering process is in need of further

support and hence, the CM-T process model has a high potential of enhancing

this process.

8.3 Future Work

The work described in this thesis can be extended in a number of ways. We

consider the use of repository mining and machine learning approaches for the
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stock of development artefacts in the Shared Artefacts Repository, the automa-

tion support for the cloud-ATAM for architecture design and analysis, and the

consideration of a larger set of dependability attributes for cloud accountability.

We discuss these areas in order of relative importance. We complete this section

by looking at a future case study.

8.3.1 Shared Artefacts Repository Mining and Machine
Learning

In this thesis, and specifically in Chapters 2 and 4, we introduce a Shared Arte-

facts Repository with a Reactive Middleware as an important consideration for

GSD as an effective information and knowledge-sharing mechanism. However,

we realise that this repository has a large collection of artefacts spanning var-

ious software development life-cycle (SDLC) phases. This is a vital resource

for system engineering as critical patterns and correlations can be drawn for

process optimisation and efficiency. Such a collection can be mined to ascertain

correlations between GSD team dynamics and the SDLC phases, the develop-

ment behaviour of different GSD teams to understand the impact of culture

and perception of authority on the SDLC phases, etc. Such correlations can

be appropriately identified using the increasingly popular concept of machine

learning. This will then align our work with the domain of data science for the

identification of patterns which otherwise would be unknown.

8.3.2 Tool Support for the cloud-ATAM

In Chapter 3, we introduced the cloud-ATAM for designing and evaluating

small-to-medium size cloud-based architectures. We then presented the seven

derived steps of the cloud-ATAM, which are used to guide the design of the

Reactive Architecture. To analyse the architectural approaches (i.e. Step 6 of

cloud-ATAM), cloud-ATAM further provides a two-staged scenario-based anal-

ysis approach in a form of Utility Tree and Stakeholders’ Brainstorming (see

Chapter 7). We believe that the automation of the cloud-ATAM will help to

218



further make the design and analysis processes efficient. This is motivated by

the partial tool support (i.e. Ex:SAAMTOOL) for the Software Architecture

Analysis Method (SAAM) discussed in Section 2.2.5. Even though cloud-ATAM

presents a lean methodology compared to ATAM, it is still considerably com-

plex, and the use of a tool here will reduce inefficiencies (including those from

human experts) that may be present. Furthermore, presenting this tool as an

open source and cloud-based will enable a wider global accessibility, where more

data can be obtained towards optimising cloud-ATAM.

With such a tool support, we can consider more quality attributes in the design

and analysis phases of cloud-ATAM. This is important since multiple quality

attribute analysis will provide a better representation of the quality of small-to-

medium size architectures in their deployed cloud environments. It is obvious

though that multiple quality attribute analysis will lead to more complex design

and analysis processes. However, this automation process will be beneficial in

taking away most of the workload by human-experts.

8.3.3 Cloud Accountability of Other Dependability At-
tributes

In Chapter 6, we identify an area that can be improved. The evaluation of

the Reactive Architecture with the cloud accountability method was limited in

terms of the 3-hour observation period. In this work, we argue that the Stan-

dard Performance Evaluation Corporation (SPEC)’s Cloud IaaS 2016 Bench-

mark used less than one hour for performance evaluation. However, an effective

analysis of the Reactive Architecture’s quality attributes (i.e. availability, relia-

bility) could not be undertaken in our work. Even though, our availability and

reliability analysis fit well with our objective of providing information to assure

cloud agents, it fell short of a regular and acceptable analysis for the quality

attributes. To further this work, an observation period of at least six months

will be used for a more critical analysis of multiple quality attributes, and hence

obtaining a larger set of data for effective analysis.
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8.3.4 Future Case Study: Artificial Bee Colony Model-
Inspired Traffic Light Control System

To apply cloud-ATAM to the design, analysis and evaluation of a more complex

system, we plan to create a traffic light control system (TLCS). The TLCS

is aimed at providing an optimised alternative to the coordination of vehicles

and pedestrians at traffic lights and at a wide geographical location. This

approach is motivated by the artificial bee colony model. The system works

by networking traffic light systems. Each traffic light system is referred to as

a hive, and each hive has a queen bee and a pool of worker bees. The queen

bee is the local coordinating server at a traffic light location that determines

the order of movement of vehicles and pedestrians based on priorities, and the

worker bees are the vehicles and pedestrians. Priorities are given to emergency

service vehicles, and to pedestrians at certain times of the day. The network of

queen bees facilitate an intelligent coordination of traffic, as the state of traffic

at individual hives are considered for an equitable and efficient traffic control

mechanism. This mechanism can only be influenced at a control center. A

facilitating framework is provided and deployed to the cloud to benefit from its

elasticity and scalability. The safety and security of the coordination mechanism

and the framework forms the focus for the design, analysis and evaluation with

cloud-ATAM.
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Appendix A: Expert Review of
Change Management and
Traceability Process Model

This appendix contains the results of the feedback analysis from the expert

review for the change management and traceability process model discussed in

Chapter 4. This analysis is presented here as bar graphs, and classified under

seven (7) sections of the developed questionnaire.

A.1 Overview of CM-T Process Model

Figure 1: (A.1) Overview of CM-T Process Model
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A.2 Adherence to CMMI Characteristics

(a) The classification of questions is representative of the CMMI
Level 2 goal?

(b) The CMMI processes have been adequately mapped to the iden-
tified questions?

Figure 2: (A.2) Adherence To CMMI Characteristics
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A.3 Limited Scope

(a) How complete is the CM-T model relative to the CMMI
Level 2 processes?

(b) How appropriate is it to include change management
processes and traceability processes in one model?

(c) How well do the questions and assigned processes cover
the key activities in change management and traceability
of requirements?

Figure 3: (A.3) Limited Scope
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A.4 Consistency

(a) How consistent is the level of detail given within the
CM-T model?

(b) All key processes are represented (at a baseline level)?

(c) All processes listed are at a similar level of abstraction?

Figure 4: (A.4) Consistency
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A.5 Understandability

(a) How easy is it to understand the path from initial goal,
to question, to final process?

(b) Each individual process is easy to understand (i.e. they
are clearly defined and unambiguous)?

(c) How clear is this presentation of the model?

Figure 5: (A.5) Understandability
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A.6 Ease of Use

(a) Do you think that a considerable amount of prior
knowledge of CMMI is needed to be able to interpret the
CM-T model?

(b) Dividing the RE process into smaller activities in this
way will help practitioners to implement the process?

Figure 6: (A.6) Ease of Use

A.7 Verifiability

Figure 7: (A.7) Verifiability - How clear is this presentation of the model?
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A.8 Constitution of the Expert Panel

Table 2: (A.8) The Expert Panel

Name of
Participant

Current Institution Position/Relevant Experience

1. M. Mehr (Ph.D.) School of Computer Science, New-
castle University, UK

Researcher (expert in RE methods
and Security)

2. S. Alajrami
(Ph.D.)

Praqma, Norway DevOps Consultant, and trained
SPICE Assessor

3. R. Ebrahimy
(Ph.D.)

DTU, Denmark Post-Doc (expert in RE methods)

4. D. M. Dias (Ph.D.) SIGMA Consult, Germany IT Business Analyst and Program-
mer

5. R. Materre (Ph.D.) School of Computer Science, New-
castle University, UK

Post-Doc (expert in RE methods)

6. S. F. Shahandashti
(Ph.D.)

Department of Computer Science,
University of York, UK

Lecturer (expert in RE methods and
Security)

7. L. L. Bastos Accenture, Newcastle, UK Software Engineer and trained ISO
9001 Auditor

8. P. B. Mahama Blue Oak System Ltd., Ghana Quality Manager, IT Business An-
alyst - requirements, and Program-
mer

9. E. Dadzie IT Systems Quality Control, United
States Department of Agriculture,
USA

Quality Manager and SPICE Asses-
sor

10. E. Toreini (Ph.D.) School of Computer Science, New-
castle University, UK

Post-Doc (expert in RE methods)

11. R. Ahmed Department of Computer Science,
Sulaimani Polytechnic University,
Iraq

Lecturer (expert in RE methods and
Security)

12. Z. Wen (Ph.D.) School of Informatics, University of
Edinburgh, UK

Post-Doc (expert in RE methods)

13. M. Dzandu School of Computer Science, Univer-
sity of Reading, UK

Ph.D. Student and Lecturer (expert
in RE methods)

14. Anonymous TalkTalk, UK SCRUM Master and Quality Man-
ager

15. Anonymous School of Computer Science, Tallinn
University, Estonia

Senior Lecturer (expert in RE meth-
ods)

16. Anonymous Institute for Applied Software Sys-
tems Engineering, Clausthal Univer-
sity of Technology, Germany

Senior Research Associate (expert in
RE methods)
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Appendix B: Reactive
Middleware Implementation
Details

B.9 Package Diagram of the Airlock Control

System Case Study

Figure 8: (B.9) Package Diagram of the Airlock Control System Case Study
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B.10 Class Diagram of the Airlock Control Sys-

tem Case Study

Figure 9: (B.10) Class Diagram of the Airlock Control System Case Study
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B.11 Interaction Diagram of the Artefacts Mon-

itoring System

Figure 10: (B.11) Interaction Diagram of the Airlock Control System Case
Study
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B.12 Applying the System Engineering Tool-

box to Formal Verification

The Toolbox system has been introduced in [99], [96], [98]. The Toolbox has

been developed as a web service that is deployed to the Amazon Web Service’

Elastic Cloud Compute’s (EC2) environment. This system has been applied

to formal verification involving our model checking web service and theorem

proving web service. These applications are discussed below.

Model Checking Tool

In this project, a model-checker called ProB [81] is wrapped as a web service

based on the REST protocol to become part of the architecture toolbox. A

client plug-in created for the SafeCap IDE [95] sends specifications of railway

signalling models for verification on the developed web service. The web service

is deployed on Tomcat Server 6.0. The main CRUD (Create, Read, Update and

Delete) operation used is the POST to receive REQUESTS from client IDEs as

new entries of data (JSON file) into the web service. Another operation, GET

is used to facilitate a RESPONSE with POST to return the verification results

to the client.

Theorem Provers on the Cloud

In this work [97], we have created a theorem prover tool as part of our architec-

ture toolbox and a plugin that connects the Rodin IDE [60] to this tool. The

Rodin Platform supports modelling in the Event-B specification language and

features a set of automated provers (pp, npp and AtelierB provers) as well an

interactive proving environment. The tool is using the Why3 software [32] that

brings together a collection of some well-known theorem provers (Alt-Ergo, Z3,

Yices, Vampire, SPASS, etc.). The web service is hosted on the Amazon AWS

cloud. The plugin maps Event-B mathematical language into the Why3 nota-

tion, the tool uses Why3 to implement subsequent translation into TPTP [213]

and SMT-LIB formats compatible with a wide range of existing provers.
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Figure 11: (B.12)Theorem Provers ToolBox Interactions in the AWS ECS
Cloud

The main steps of this cloud-based verification tool-chain (see overview from

Figure 11) are: (1) a client generates n verification conditions; (2) these are

sent, individually to a scalable, cloud-based service; (3) each verification con-

dition spawns, through a private sub-service, n prover instances; since provers

are services themselves and the proof load is evenly distributed over physical

nodes of the cloud; (4) prover results are collated and, if necessary, some prover

instances are terminated before they complete; and (5) an adjudicated response

is communicated back to the client.

Table 3: (B.13) Performance Benchmark

Model Total
POs

Open,
built-in

Open, built-in
FA

Open, built-in
+ z3(c · ∗)

prime15r3 625 281 18 201
paxos3a3 348 121 4 27

fishers 82 14 0 14
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There are two significant points presented by this project. First is the fact

that a prover is internally accessed as a service to make use of cloud elasticity

in resource scaling. Second is the prover managing facility that distributes

verification conditions to prover services.

The connection with the Rodin IDE provides an immediate access to hundreds

of formal specifications containing many thousands of verification conditions.

It also significantly strengthens the Platform (i.e. Open, built-in + FA) proving

capability as illustrated in Table 3. In one of the models, fishers, the addition

of the service makes the proof completely automatic; even more impressive is

the fact that 14 previously undischarged proofs included two long interactive

proofs which, originally, took several days to complete. For the case of paxos3a3

model, the service proofs all but 4 POs which are genuinely challenging and

require manually setting up an induction scheme. Finally, model prime15r3

had 18 proof obligations (POs) undischarged due to a combination of incomplete

axiomatisation of the Event-B language and a fairly short prover time-out hard-

wired into the Platform. The last column of the table gives the performance of

a scenario made of a single, though quite capable prover, - z3 [144].

We have also created and experimented with a Shared Artefact Repository (see

Section 4.2.3) as part of our Reactive Architecture. The cloud-based theorem

prover service keeps a detailed record of all artefacts for every proof attempt

in the shared artefact repository. These artefacts are mainly proof obligations,

supporting lemmas and translation rules. Provisions are made to obfuscate sen-

sitive proof obligations. The repository is a relational database service running

on the Amazon AWS cloud [9]. Here, all queries from the prover service are

made as HTTP requests using the repository’s URI.
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Appendix C: Requirements and
Sample Use Cases of the
Reactive Architecture

C.13 Requirements

We present the requirements of the Reactive Architecture below:

(a) The Reactive Architecture must store all artefacts created in all of its

components.

(b) It must monitor and trace all changes to these artefacts to inform system

developers.

(c) The Reactive Architecture must support at least 20 users concurrently.

(d) The Reactive Architecture must provide capacity to scale quickly to ac-

commodate changing demands of system developers, and failures.

(e) The Reactive Architecture must enable heterogeneous access and analysis

operations on saved artefacts.

(f) All saved artefacts must be backed up asynchronously to facilitate roll-back

of artefacts.

(g) Critical systems that manage developers and artefacts must not constitute

a single point of failure which will affect the uptime of the system and the

Reactive Architecture.

(h) The toolbox must facilitate sequential and parallel execution of tools in a

workflow manner.
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(i) The Reactive Architecture must provided a high capacity and dedicated

channel to coordinate real-time analysis on artefacts for local client com-

puters and on remote cloud environment.

(j) The Reactive Architecture must gather dependability metrics from several

virtual machines, and perform a synchronous analysis of these metrics.

(k) Security mechanisms must not degrade defined performance threshold.

Specifically, response time for create, delete, update, and display arte-

fact operations should not exceed 5 seconds at peak cloud period and less

than 1 second during off-peak period.

(l) The Reactive Architecture must provide high performance and availability

to allow it to keep up with the sturdy stream of data and operations on

artefacts from the system engineering processes.

C.14 Use Cases

To provide a clarification of the functional requirements of the Reactive Archi-

tecture, we present some of its use cases. The set of use cases presents possible

sequences of interactions between the components of the Reactive Architecture,

and with the clients of the architecture in the cloud environment. These iden-

tified interactions or activities in the use cases have significance to the clients

of the Reactive Architecture. Some of such use cases are: client management

(i.e. registration, collaboration, etc.), how to add tools to the toolbox, sav-

ing artefacts, sharing artefacts, upload and download artefacts, notification to

stakeholders resulting from change to artefacts, and repository back-up or fail-

over support. These use cases are briefly introduced below.
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Figure 12: (C.14) UML Sequence Diagram: Client Management
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Figure 13: (C.15) UML Sequence Diagram: Adding Tools to the Supporting
Toolbox
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Client Architecture Interface Shared Artefacts Repository

SelectArtefact()

ArtefactName()

“ackCHOICE”
ArtefactHash()

“ackHASH”
ArtefactDate()

“ackDATE”
ArtefactOwner()

“ackOWNER”

“ackSAVE”

Figure 14: (C.16) UML Sequence Diagram: Saving Artefacts

Client Architecture Interface Shared Artefacts Repository

DownloadArtefact()

ArtefactName()

“ackNAME”
ArtefactHash()

“ackHASH”
ArtefactDate()

“ackDATE”
ArtefactOwner()

“ackOWNER”

“ackART”

Figure 15: (C.17) UML Sequence Diagram: Download Artefact
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Figure 16: (C.18) UML Sequence Diagram: Sharing Artefacts

C.14.1 Client Management

Every client (i.e. system developer) of this architecture should register to use

the Reactive Architecture. All transactions with the architecture or other clients

will bare a unique identification for authentication. In the case of the formation
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Client/Project Team Reactive Middleware Shared Artefacts Repository

ChangeArtefact()

IsArtefactChanged()

“ackCHANGE”

“ackNOTIFY”

Figure 17: (C.19) UML Sequence Diagram: Change Management of Arte-
facts

Client/Project Team Shared Artefacts Repository Reactive Middleware Toolbox

CreateArtefact()

Inform()

“ackTRACE”

“ackCREATE”
ChangeArtefact()

Inform()

“ackTRACE”

“ackCHANGE”
UseTools()

ChangeArtefact()

InformMiddleware()

“ackTRACE”

“ackCHANGE”

“ackTOOLTRACE”

Figure 18: (C.20) UML Sequence Diagram: Traceability of Artefacts

of a collaborating group for a project, the group leader will invite or add system

developers to a group using their unique identifications. In such a situation, a

group name will be provided including the client identification of the team

creator/leader. The client identification also helps to track the activities of

system developers in a project, which is necessary for traceability. It must

be mentioned that clients can switch from local system development to cloud-
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Shared Artefacts Repository Primary BackUp Repository

AssynchronousBackUp()

“ackBACKUP”
SynchronousBackUp()

“ackBACKUP”
Restore()

“ackRESTORE”

Figure 19: (C.21) UML Sequence Diagram: Primary Repository Back-Up

based development provided by the Reactive Architecture. Figure 12 provides

a sequence diagram that illustrates the introduced use case.

C.14.2 Adding Tools to the Supporting Toolbox

The Toolbox provides a set number of tools by default. These tools are classified

based on the development phase they support, and there are different versions

to also support back-ward compatibility. However, client can add new tools to

the Toolbox (see Figure 13). Also, some of the tools can be composed either

in a parallel or sequential order. This facilitates a form of workflow among the

tools.

C.14.3 Saving Artefacts

Most activities with the Reactive Architecture generate a form of artefact.

These artefacts are saved to the Shared Artefacts Repository (see Figure 14).

External artefacts have to be saved by the system developer. Here, the client

selects the artefacts on his local computer, provide details about the artefacts

and the client identification, in order to save those artefacts.
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C.14.4 Downloading Artefacts

System developers can download artefacts from the Shared Artefacts Reposi-

tory. This activity requires the system developer to either provide the name

of the artefact or select the artefact from a list of all permissible artefacts (see

Figure 15). The downloaded artefact is stored on the local computer of the

client.

C.14.5 Sharing Artefacts

Saved artefacts can be shared by the system developer who created them, with

other collaborating system developers. Here, the creator of the artefact provides

the client identifications of the collaborating developers, which are then assigned

to the artefacts to allow access. The system developer also assigns varying levels

of permissions (i.e. read, write, own) to the artefacts for the collaborating

developers. The collaborating developers can now access these artefacts, but

within the restrictions of their permissions (see Figure 16).

C.14.6 Change Management of Artefacts

Artefacts such as model specifications and their composing elements are moni-

tored to observe changes made to them. So whenever changes are made to an

artefact, a notification is triggered to all collaborating system developers who

have permissions (through subscription) to the artefact. Here, a Publish/Sub-

scribe mechanism is used to distribute these notifications (see Figure 17).

C.14.7 Traceability of Artefacts

The traceability scenario is directly linked to the artefact change management

scenario presented above. All changes to artefacts are traced. The tracing

process identifies all “subscribers” to an artefact, name of system engineering

team, name of artefact, unique identification of the artefacts (i.e. name and

hash) that are derived or dependent on the artefacts to be traced, and all
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associated artefacts (see Figure 18). Here, “subscribers” to an artefact can

either be a client or tool. These are the primary change agents.

C.14.8 Primary Back-Up Repository

A back-up repository is provided for the Shared Artefacts Repository. The

group leader(s) set the frequency of back-up. The frequency options are for

asynchronous and synchronous back-ups. Synchronous back-up is preferred

to guarantee up to date or real-time back-up, but it introduces latency as it

interrupts the operations of the Shared Artefacts Repository. Asynchronous

back-up provides timely and off-peak back-up of all the contents of the Shared

Artefacts Repository. The main function of the Back-up Repository is to provide

fail-over support for the Shared Artefacts Repository (see Figure 19).
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C.15 Questionnaire for cloud-ATAM Stakehold-

ers’ Brainstorm
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Appendix D: Cloud
Accountability System
Implementation Details

D.16 Java Code Snippet for Metrics Data Col-

lection on AWS

Listing 1: Snippet of Java Code for Collecting “CPUUtilization” Metric
using AWS/EC2 CloudWatch API

1 private static GetMetricStatisticsRequest request(final

2 String instanceId) {

3 final long twentyFourHrs = 1000 * 60 * 60 * 24;

4 final int oneMin = 1 * 60;

5 return new GetMetricStatisticsRequest ()

6 .withStartTime(new Date(new Date()

7 .getTime()- twentyFourHrs ))

8 .withNamespace("AWS/EC2")

9 .withPeriod(oneMin)

10 .withDimensions(new Dimension ()

11 .withName("InstanceId")

12 .withValue(instanceId ))

13 .withMetricName("CPUUtilization")

14 .withStatistics("Average", "Maximum")

15 .withEndTime(new Date ()); }

16

17 private static GetMetricStatisticsResult result(

18 final AmazonCloudWatchClient client ,

19 final GetMetricStatisticsRequest request) {

20 return client.getMetricStatistics(request ); }
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