248 research outputs found

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization

    Toward Fault-Tolerant Applications on Reconfigurable Systems-on-Chip

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Silicon on ferroelectric insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Get PDF
    Title from PDF of title page, viewed on March 12, 2014Thesis advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (pages 116-131)Thesis (M. S.)--School of Computer and Engineering. University of Missouri--Kansas City, 2013Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in subnanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor’s Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-lowpower applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.Abstract -- List of illustrations - List of tables -- Acknowledgements -- Dedication -- Introduction -- Carbon nanotube field effect transistor -- Multi-gate transistors -FinFET -- Subthreshold swing -- Tunneling field effect transistors -- I-mos and nanowire fets -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for soi-finfet -- Silicon-on-ferroelectric insulator field effect transistor (SOF-FET) -- Current-voltage characteristics of sof-fet -- Advantages, manufacturing process and future work of the proposed device -- Appendix -- Reference

    Variability analysis of FinFET AC/RF performances through efficient physics-based simulations for the optimization of RF CMOS stages

    Get PDF
    A nearly insatiable appetite for the latest electronic device enables the electronic technology sector to maintain research momentum. The necessity for advancement with miniaturization of electronic devices is the need of the day. Aggressive downscaling of electronic devices face some fundamental limits and thus, buoy up the change in device geometry. MOSFETs have been the leading contender in the electronics industry for years, but the dire need for miniaturization is forcing MOSFET to be scaled to nano-scale and in sub-50 nm scale. Short channel effects (SCE) become dominant and adversely affect the performance of the MOSFET. So, the need for a novel structure was felt to suppress SCE to an acceptable level. Among the proposed devices, FinFETs (Fin Field Effect Transistors) were found to be most effective to counter-act SCE in electronic devices. Today, many industries are working on electronic circuits with FinFETs as their primary element.One of limitation which FinFET faces is device variability. The purpose of this work was to study the effect that different sources of parameter fluctuations have on the behavior and characteristics of FinFETs. With deep literature review, we have gained insight into key sources of variability. Different sources of variations, like random dopant fluctuation, line edge roughness, fin variations, workfunction variations, oxide thickness variation, and source/drain doping variations, were studied and their impact on the performance of the device was studied as well. The adverse effect of these variations fosters the great amount of research towards variability modeling. A proper modeling of these variations is required to address the device performance metric before the fabrication of any new generation of the device on the commercial scale. The conventional methods to address the characteristics of a device under variability are Monte-Carlo-like techniques. In Monte Carlo analysis, all process parameters can be varied individually or simultaneously in a more realistic approach. The Monte Carlo algorithm takes a random value within the range of each process parameter and performs circuit simulations repeatedly. The statistical characteristics are estimated from the responses. This technique is accurate but requires high computational resources and time. Thus, efforts are being put by different research groups to find alternative tools. If the variations are small, Green’s Function (GF) approach can be seen as a breakthrough methodology. One of the most open research fields regards "Variability of FinFET AC performances". One reason for the limited AC variability investigations is the lack of commercially available efficient simulation tools, especially those based on accurate physics-based analysis: in fact, the only way to perform AC variability analysis through commercial TCAD tools like Synopsys Sentaurus is through the so-called Monte Carlo approach, that when variations are deterministic, is more properly referred to as incremental analysis, i.e., repeated solutions of the device model with varying physical parameters. For each selected parameter, the model must be solved first in DC operating condition (working point, WP) and then linearized around the WP, hence increasing severely the simulation time. In this work, instead, we used GF approach, using our in-house Simulator "POLITO", to perform AC variability analysis, provided that variations are small, alleviating the requirement of double linearization and reducing the simulation time significantly with a slight trade-off in accuracy. Using this tool we have, for the first time addressed the dependency of FinFET AC parameters on the most relevant process variations, opening the way to its application to RF circuits. This work is ultimately dedicated to the successful implementation of RF stages in commercial applications by incorporating variability effects and controlling the degradation of AC parameters due to variability. We exploited the POLITO (in-house simulator) limited to 2D structures, but this work can be extended to the variability analysis of 3D FinFET structure. Also variability analysis of III-V Group structures can be addressed. There is also potentiality to carry out the sensitivity analysis for the other source of variations, e.g., thermal variations

    Conception et fabrication de FinFET GaN verticaux de puissance normalement bloqués

    Get PDF
    Abstract: The tremendous demands for high-performance systems driven by economic constraints forced the semiconductor industry to considerably scale the device's dimensions to compensate for the relatively modest Silicon physical properties. Those limitations pave the way for III-V semiconductors, which are excellent alternatives to Silicon and can be declined in many compositions. For example, Gallium Nitride (GaN) has been considered a fabulous competitor to facilitate the semiconductor industry's horizon beyond the performance limitations of Silicon due to its high mobility, wide bandgap, and high thermal conductivity properties for T>300K (Bulk GaN). It promises to trim the losses in power conversion circuits and drive a 10 % reduction in power consumption. Both lateral and vertical structures have been considered for GaN power devices. The AlGaN/GaN HEMT device's immense potential comes from the high density, high mobility electron gas formed at its heterojunction. The device is vulnerable to reliability issues resulting from the frequent exposure to high electric field collapse, temperature, and stress conditions, thus limiting its performance and reliability. Contrariwise, the vertical GaN power devices have attracted much attention because of the potential to reach high voltage and current levels without enlarging the chip's size. Furthermore, such vertical devices show superior thermal performance to their lateral counterparts. Meanwhile, Vertical GaN devices have the challenges of high leakage current and the breakdown occurring at the corners of the channel. Another challenge associated with Normally off devices is the lack of an optimized method for eliminating the magnesium diffusion from the p-GaN layer. This thesis has two strategic objectives; Firstly, a Normally-OFF GaN Power FinFET has been designed and optimized to overcome the vertical GaN FinFET challenges. It was done by optimizing the performance parameters such as threshold voltage VTH, high breakdown VBR, and the specific ON-state-resistance RON. Accordingly, the impact of both structural and physical parameters should be incorporated to have an exact optimization process. Afterward, the identification and optimization of a low-cost and high-quality fabrication process for the proposed structure underlined this thesis as the second objective.Les énormes demandes de systèmes à hautes performances motivées par des contraintes économiques ont forcé l'industrie des semi-conducteurs à réduire considérablement les dimensions des dispositifs pour compenser les propriétés physiques relativement modestes du silicium. Ces limitations ouvrent la voie aux semi-conducteurs III-V, qui sont d'excellentes alternatives au silicium et peuvent être déclinés dans de nombreuses compositions. Par exemple, le nitrure de gallium (GaN) a été considéré comme un concurrent fabuleux pour faciliter l'horizon de l'industrie des semi-conducteurs au-delà des limitations de performances du silicium en raison de sa grande mobilité, de sa large bande interdite et de ses propriétés de conductivité thermique élevées pour T>300K (Bulk GaN). Il promet de réduire les pertes dans les circuits de conversion de puissance et de réduire de 10 % la consommation d'énergie. À l'heure actuelle, les structures latérales et verticales ont été considérées pour les dispositifs de puissance en GaN. L'immense potentiel du dispositif HEMT AlGaN/GaN provient du gaz d'électrons à haute densité et à haute mobilité formé au niveau de son hétérojonction. Le dispositif est vulnérable aux problèmes de fiabilité résultant de l'exposition fréquente à des conditions d'effondrement de champ électrique, de température et de contrainte élevés, limitant ainsi ses performances et sa fiabilité. En revanche, les dispositifs de puissance verticaux en GaN ont attiré beaucoup d'attention en raison de leur capacité à atteindre des niveaux de tension et de courant élevés sans augmenter la taille de la puce. De plus, ces dispositifs verticaux présentent des performances thermiques supérieures à leurs homologues latéraux. Par ailleurs, les dispositifs GaN verticaux sont confrontés aux défis d'un courant de fuite élevée et de claquage se produisant aux coins du canal. Un autre défi associé aux dispositifs normalement bloqués est l'absence d'une méthode optimisée pour éliminer la diffusion de magnésium de la couche p-GaN. Cette thèse a deux objectifs stratégiques ; premièrement, un dispositif de puissance FinFET GaN normalement bloqué a été conçu et optimisé pour surmonter les défis du FinFET vertical en GaN. Cela a été fait en optimisant les paramètres de performance tels que la tension de seuil VTH, la tension de claquage VBR et la résistance spécifique à l'état passant RON. En conséquence, l'impact des paramètres structurels et physiques doit être incorporé pour avoir un processus d'optimisation précis. Par la suite, l'identification et l'optimisation d'un processus de fabrication à faible coût et de haute qualité pour la structure proposée à souligner cette thèse comme deuxième objectif

    Perpendicular STT-MTJs with Double Reference Layers and its Application to Downscaled Memory Cells

    Get PDF
    Chip design presents problems due to scaling as the technology node reaches to the physical limits. The roadmap to 7nm technology node and beyond is already traced and overcome the problems in power and energy dissipation have become a fundamental part in the chip design...El diseño del chip presenta problemas debido al escalamiento de dispositivos a medida que el nodo tecnológico llega a sus límites físicos. La ruta para el desarrollo de nodos de 7nm en adelante se ha trazado, y superar los problemas de potencia y disipación de energía se ha convertido una parte fundamental para el diseño de chips..
    • …
    corecore