3,418 research outputs found

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088

    Adaptive Synergetic Controller for Stabilizing the Altitude and Angle of Mini Helicopter

    Get PDF
    This research proposes ASC (Adaptive Synergetic Controller) for the nonlinear model of MH (Mini Helicopter) to stabilize the desired altitude and angle. The model of MH is highly nonlinear, underactuated and multivariable in nature due to its dynamic uncertainties and restrictions of velocities during the flight. ASC can force the tracking errors of the system states converges to zero in a finite interval of time. The MH system requires smooth controller and fast precise transition response from initial state till the desired state, therefore the parametric calculations and simulations can be done by the proposed ASC algorithm. It is validated that the above simulated results of the proposed controller have a better convergence rate and smoother stability response in order to track the desired altitude and angle when compared with SMC (Sliding Mode Controller). Moreover, it does not need any linearization, transformation and variations in the system model

    Guidance and Control strategies for aerospace vehicles

    Get PDF
    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions

    Changing old habits: the case of feeding patterns in anaerobic digesters

    Get PDF
    A non-linear programming model was developed to maximize the economic profit from an anaerobic co-digester. The model consists of a combination of technical and economic equations, linked through the biogas production variable. Five scenarios were simulated. These differed with regard to substrate inlet mass flow rate, organic loading rate and hydraulic retention time. The impact on biogas production was investigated and an economic analysis was undertaken based on the concepts of profitability and Net Present Value. The model results indicate that varying the substrate inlet mass flow rate and organic loading rate could have a positive impact on the profitability of co-digesters in Flanders. This can be achieved either by increasing the interval time between feedstock input, or by feeding individual streams of feedstock separately into the system, while at the same time reducing the hydraulic retention. time

    On Development of 100-Gram-Class Spacecraft for Swarm Applications

    Get PDF
    A novel space system architecture is proposed, which would enable 100-g-class spacecraft to be flown as swarms (100 s-1000 s) in low Earth orbit. Swarms of Silicon Wafer Integrated Femtosatellites (SWIFT) present a paradigm-shifting approach to distributed spacecraft development, missions, and applications. Potential applications of SWIFT swarms include sparse aperture arrays and distributed sensor networks. New swarm array configurations are introduced and shown to achieve the effective sparse aperture driven from optical performance metrics. A system cost analysis based on this comparison justifies deploying a large number of femtosatellites for sparse aperture applications. Moreover, this paper discusses promising guidance, control, and navigation methods for swarms of femtosatellites equipped with modest sensing and control capabilities

    A Fuzzy Logic-based Cascade Control without Actuator Saturation for the Unmanned Underwater Vehicle Trajectory Tracking

    Full text link
    An intelligent control strategy is proposed to eliminate the actuator saturation problem that exists in the trajectory tracking process of unmanned underwater vehicles (UUV). The control strategy consists of two parts: for the kinematic modeling part, a fuzzy logic-refined backstepping control is developed to achieve control velocities within acceptable ranges and errors of small fluctuations; on the basis of the velocities deducted by the improved kinematic control, the sliding mode control (SMC) is introduced in the dynamic modeling to obtain corresponding torques and forces that should be applied to the vehicle body. With the control velocities computed by the kinematic model and applied forces derived by the dynamic model, the robustness and accuracy of the UUV trajectory without actuator saturation can be achieved

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems
    • …
    corecore