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This progress report consists of the following two  parts: 

I. Fuel-Optimal Trajectories for heroassisted Coplanar Orbital Tranfer 

Vehicles in the Presence of Uncertainties due to Modelling Inaccuracies 

11. Neighboring Optimal Guidance for heroassisted Noncoplanar Orbital 
Transfer . 
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ABSTRACT 

We intend to devise a neighboring optimal guidance scheme for a nonlinear 

dynamic system with stochastic inputs and perfect measurements as applicable 

to fuel optimal control of an aeroassisted orbital transfer vehicle. For the 

deterministic nonlinear dynamic system describing the atmospheric maneuver, a 

nominal trajectory is determined. Then, a neighboring, optimal guidance scheme 

is obtained for open loop and closed loop control configurations. Taking 

modelling uncertainties into account, a linear, stochastic, neighboring 

optimal guidance scheme is devised. Finally, the optimal trajectory is 

approximated as the sum of the deterministic nominal trajectory and the 

stochastic neighboring optimal solution. Numerical results are presented for a 

typical vehicle. 

i i  
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A1 

A2 

ac = Rc/Ra 

ad - Rd/Ra 
b - Ra/Ha 
CD 

- CDO S pR Ha/2m 

= C m  S pR Ha/2m 

- CDO + K c~~ 
c -cI/cm 
Em - (L/D) max 
CLR $z 
h - H/Ha 
CDO - zero-lift drag coefficient 
CL - Lift coefficient 
g - gravitational acceleration 
k - induced drag factor 
m = vehicle mass 

R - radius of earth center 
Ra = radius of atmosphere 

Re = radius of earth 

S = aerodynamic reference area 

H - altitude 
V - velocity 
-y = flight path angle 

p - density 
t = time 

V 



P - costate variable 
- n - Lagrange multiplier 
Av - characteristic velocity 
J - performance index 
J - augmented performance index ' 
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I. INTRODUCTION 

The derivation of the optimal control law resulting from a minimum fuel 

criterion is addressed for the coplanar orbital transfer maneuver [6,7,11]. 

This maneuver involves a transfer from high earth orbit to a low earth orbit 

with the control law minimizing the fuel 

expressed in terms of the characteristic 

[lo]. A TPBVP is solved by applying the 

given initial and final constraints, and 

- 
C$g * 11 

consumption. The performance index is 
6 

velocities for deorbit and reorbit 

Pontryagin minimum principle with 

a fixed terminal time. The open loop 

control arising from the minimum principle requires a new computation of 

the control when the initial and/or final condition is subject to small 

changes; this introduces errors in the solution. Errors are also introduced by 

the inexact knowledge of the true model. 

To be more specific, after solving the second variation problem [ 3 , 4 ]  that 

results from linearizing around a nominal solution, a control is computed that 

describes the correction to the original nonlinear control problem. This 

correction is due to small perturbations in the initial and/or terminal 

conditions. Furthermore, the perturbed control law is used as a control law 

that will drive the stochastic dynamic equation when perfect knowledge of the 

state is assumed (see figure #2 and figure # 3 ) .  The stochastic differential 

equations are subject to uncertainties due to lack of knowing the exact model 

associated with the nonlinear TPBVP. 

This report represents a continuation of the original effort reported in 

There, the coplanar and noncoplanar problem is solved by neglecting [10,11]. 

the contraints imposed on the control, whereas now these constraints are fully 

addressed. 

control and the closed loop feedback control are shown below. 

The outline of the procedure used for the open loop feedback 

1 
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Open Loop Feedback Control: 

Step #1. Solve the TPEVP for the deterministic problem - f(x,u, t). 
Step #2. 

Step #3. 

Save the nominal state xo(t) and nominal control uo(t). 

Solve the neighboring TPBVP along the nominal solution of Step 

#2. 

Save the gain matrices K1 and K2 that correspond to the control 

feedback law generated in step #3, 

Ag = klAX + k2 AE 

where AX are the adjoint variables. 

Step #4 

Step #5 Linearize i = f(X,g,t) along &, &, and add noise n: 

As + n, A 5 ( t o )  = given 

& # g o  &#!& 

Step # 6 .  Simulate the stochastic equation of Step #5 by using the control 

law described in Step #4. 

Closed Loop Feedback Control: 

Step #l. 
Step #2. 

Solve the TPBVP for the deterministic problem i = f(g,g,t). 

Save the nominal state &(t) and nominal control go(t). 

Step U3. Solve the matrix Riccati equation backward in time. 

Step #4. Save the gain matrix k that corresponds to the control 
feedback law 
A 2  - k Az. 

Step # 5 .  Linearize i 9 f(a, g 8  t) along & #  &, and add noise E: 

&#!& &#uO 

2 
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Step #6. Simulate the stochastic equation of Step #5 by using the control 

law given in Step # 4 .  

11. DETERMINISTIC RESPONSE 

The transfer of the space vehicle from a HE0 at radius Rd to a LEO at R, 

is due to the velocity reduction caused by atmospheric drag forces. 

tangential propulsive burn, having characteristic velocity AVd, the vehicle 

travels through an elliptical orbit (figure #l). At point E, the spacecraft 

enters the atmosphere with flight path angle 7e and velocity Ve. During the 

atmospheric flight the vehicle experiences a reduction of velocity. At point 

F, the spacecraft leaves the atmosphere with flight path angle 7f and velocity 

Vf. 

having a characteristic velocity AVc to make the spacecraft enter into the low 

earth orbit. A mathematical model representing this scenario is now proposed. 

1. Deterministic Modeling 

Given a 

As a final stage, the maneuver ends with a circularizing or reorbit burn 

To study the effects of aerodynamic forces on an orbital transfer reentry 

vehicle, the planetary atmosphere in which the flight takes place should be 

modeled. It is convenient to treat the atmosphere as a uniform gas of non- 

varying composition. 

in terms of the density. 

made in order to model the reentry vehicle so that the complexity of the 

problem becomes tractable [l, 21.  

The effect of the atmosphere on the vehicle is considered 

There are some important assumptions that have been 

(a) Assumption of Spherical Symmetry 

A great simplification in the atmospheric modeling is obtained by assuming 

that the atmosphere has a spherical symmetry. 

system should be represented by oblateness. 

However, the true model of the 

3 



(b) Assumption of Non-rotating System 

The earth atmosphere which the space vehicle encounters is considered to 

be stationary with zero rotational speed. 

on the latitude of the vehicle at all times. Furthermore, the rotational 

effects would also depend on the inclination of the vehicle's trajectory to the 

equator. However, the simplification of the model is more important than 

including the rotational effects, so these are excluded. 

The rotational effects would depend 

(c) Assumption of Stationary Atmosphere 

The atmosphere is assumed to be stationary, that is, no winds are 

expressed in the model; also, the time dependence of the parameters is 

neglected. As a result of the above assumptions, the atmospheric density is 

assumed to be exponential and 

p = po e-BH 

where p is a scale factor. 

is given by 

With these assumptions in mind, the re-entry model for an aeroassisted 

coplanar orbital transfer vehicle is given by: 

where 

B - Vsin-y 
D 0 = - gsin7 - - 
m 

L cos7 + - 
mv r V  

2 
P s  'D 

D =  
2 

4 

11.1 

11.2 

11.3 

11.4 



2 
PS CL v 

L -  11.5 
2 

I 
I 
I 

1 
I 
1 

I 
I 

and g is the Newtonian gravitational attraction that is given by 

g - dr2. 
Furthermore, it is assumed that the drag polar is parabolic, given by 

11.6 L CD - CDo + K CL . 

Equation 11.6 is valid if we assume no extreme hypersonic conditions, thereby 

allowing independence of the aerodynamic coefficient on the Mach number and the 

Reynolds number [6]. Using normalized variables the equations of motion can be 

rewritten as 

where 

h - H/Ha 

6 - P/ 
PR 

- dh - bvsinr 
dr 

2 2 2 b sin7 - dv - - Alb(l + C )6v - 
dr (b - l+h) 

2 d7 b Y cos 7 b cos 7 - 9 A2b c 6 Y + - 
dr (b-l+h) (b-l+h) 2 Y 

b 9 Ra/Ha 

AI- CDoS pR Ha/2m 

A2 - CmS pRHa/2m 

'LR ' 4 C D 0 / K  

'DR * 'DO 

11.7 

11.8 

11.9 
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2. Optimization Problem 

For minimum fuel consumption, the performance index is given by 

J 0 AU b d  + AVC # [  x(tf) ] 11.10 

11.11 

11.12 

The atmosphere entry and exit conditions are given by the relationships 

(2 - (2 - u:) at - 2ac + v 2 cos2 rf - 0 
- 2ad + u0 2 cos2 u - 0 

0 

f 

11.13 

11.14 

which are the result of applying the principle of conservation of energy and 

angular momentum at the HEO-entry point and exit point-LEO. 

Also, at the entry and exit point we have: 

h(So) = 1 

Wf) - 1 
The formulation of the prob- 

entry 

exit. 

11.15 

11.16 

em falls into t.,e category of a continuous system 

with functions of the state variables prescribed at a terminal time. 

The two constraining functions are: 

31 - Wf) - 1 

2 
+2 - (2 - u:jaz - 2ac + f f .  

Incorporating these constraints, the performance index becomes 

which is referred to as the augmented performance index. 

11.17 

11.18 

11.19 

6 
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The Hamiltonian function is given by 

1 
2 b sin 7 

(b - l+h) 
H = Ph [bvsinr] + Pv -Alb(l+C2) 6v2 - 

r 0 1 

J bv cos 7 bL cos 7 

2 (b-l+h) Y 
+ p7 lA2bc6u + (b-l+h) 

where Ph, P,, Pr are the adjoint variables. 

11.20 

The unconstrained optimal control is obtained from the necessary condition 

aH - - 0  
ac 

and the adjoint variables are obtained from 

; h = - -  aH 
ah 

. aH 
P,--- 

av 

From equation 11.21 the control is given by 

c -  A2P7 
2A1PUV 

11.21 

11.22 

11.23 

11.24 

11.25 

However, realistically, the control is bounded. The constraint inequality is 

given by 

- Cmax L c I Cmax 11.26 

where the value of Cmax is determined by the aerodynamic characteristics of the 

space vehicle under consideration. The Hamiltonian given by equation 11.20 is 

a quadratic function of the control whose second derivative Huu possesses a 

positive definite condition; therefore the strengthened Legendre-Clebsch 

condition 

7 
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when C 2 Cmax 'max 
C when ICI < Cmax 
-C when C 5 -Cmax max 

\ 

11.27 Huu > 0 

is satisfied. This allows us to get the following explicit form of the optimal 

11.28 

Boundary Conditions: 

The boundary conditions due to the nature of the problem are: 

h(r0) 1 11.29 

v ( r 0 )  - specified 11.30 

-y ( ro)  - known 11.31 

h(rf) - 1. 11.32 

Also there are two terminal constraints given by equations 11.17 and 11.18. 

From the generalized boundary conditions arising from the calculus of variation 

we have [ 4 ]  

11.33 

T where 5 - [  h, y ,  7 1 
T n - [ n1, "2 1 

The six differential equations 11.7 - 11.9 and 11.22 - 11.24 along with the 
three initial conditions 11.29 - 11.31 and three final conditions given by 
11.33, form a two-point boundary value problem with two parameters n1 and n2 to 

be found in equation 11.33 so that the two constrained algebraic equations 

11.17, 11.18 are satisfied. 

3. Deterministic Perturbation Control 

The perturbation control problem arises when small changes in initial 

and/or terminal conditions require a new computation of the entire control. 

Also, since the actual model state vector 5 and control g need to be near 

8 



the nominal path 

mality [9]. 

scheme can be developed [4]. 

& and go, the perturbation variable will preserve the opti- 

Applying the second variation technique a linear feedback control 

(a) Linear-Quadratic Neighboring-Optimal Control. 

The generation of the perturbation variables Ax, A& arise when the non- 

linear model of part I is linearized along a nominal path by considering small 

perturbations in the initial and/or final conditions. The equations associated 

with the linearized model are: 

state differential equations: 

As - fx As + fu Ag 

adjoint variable differential equations: 

T 
A1 -HxxAX - fxAz - Hxu A& 

11.34 

11.35 

~a T HXU = - (Hx) . 
au 

The perturbed feedback control is: 

provided that H 

given by equation 11.36 is only valid in the interval where the control 

constraint is not saturated. When the constraint is saturated the state and 

adjoint differential equations are reduced to 

is not singular in the interval r < r 1. r The control uu 0 -  f' 

Ai = fxAz 11.37 

T 
AI I -H xx Ax - fx AI! 11.38 

where Ag - I). 11.39 

9 



The performance criterion is expanded to second order about the nominal 

trajectory. This causes the first-order terms to vanish, that is, the first 

variation AJ vanishes on the optimal (nominal) path. The remaining second- 

order terms constitute what is called the second variation (A  2 J), given as 

+ 1 
2 

[ AzT AgT ] [ :I:] [ z] dr 11.40 
0 

The boundary conditions associated with the neighboring perturbed optimal 

formulation are given by 

Ax(ri) = specified 

1 kxx + (n 3,) .) A% + 3, AI! 
T T 

11.41 

11.42 

r = Tf 

From the terminal constraints on the final states we have 

= [ +x Ax 1 I T  I rf . 11.43 

The deterministic model does not explicitly take into account errors 

associated with disturbances inputs acting upon the vehicle (i.e., wind gust 

acting upon the vehicle in the reentry phase) [ 9 ] .  Furthermore, nothing has 

been said about nonstationary components such as a time-varying wind model 

associated with the plant dynamics. 

to determine the perturbed control law Au(t). 

yields the feedback control law that will drive the stochastic differential 

sys tem . 

The variational problem needs to be solved 

The perturbed control Ag(t) 

10 
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111. STOCHASTIC N"IATI0N 

The deterministic model is described by equations 11.7 through 11.9. In 

deriving these equations certain assumptions and approximations have been made 

to simplify the model. The addition of white noise to the deterministic model 

implies that there are additional stochastic disturbances that drive the sys- 

tem. 

tions made during deterministic modeling. 

Also white noise would accommodate for oversimplifications and approxima- 

The stochastic model is given by: 

111.1 dh - -  businy + W 
dr rl 

b2siny 
+ 'a1 - * = - Alb(l + C2) 6v2 - 

(b - l+h) dr 
111.2 

111.3 dY bu cos y - b2 cos y - = A2bcCu + 
2 dr (b - l+h) + 'a2 

(b-l+h) u 

where wr/J9 wa19 Wa2 zero mean white noise processes. More precisely, the 

white noise processes are used to account for the following: 

Wrl - accommodates the oblateness term omitted. 
- accounts for incomplete knowledge of the aerodynamic forces, assumption Wa2 of spherical symmetry, and rotational or Coriolis forces. 

a2 - same form as W 'a3 

11 



The process noise also compensates for atmospheric winds acting upon the 

vehicle. Recall the deterministic case where the initial state of the system 

h(ro), v ( r o )  and -y(ro)  was known. 

because the initial state vector can not be measured exactly. 

the initial state is assumed to be a vector valued Gaussian random variable. 

its mean and covariance matrix represent a priori information about the initial 

condition of the plant. 

1. Statistical Description 

We, however, no longer make this assumption 

The modeling of 

The uncertainty in the overall physical process has been modeled in two 

parts. 

(a) Initial uncertainty 

The initial state vector [h(ro), v ( r o )  and y(ro)lT is viewed as a random 

variable. 

(b) Plant uncertainty 

The dynamic equations are driven by mutually independent Gaussian white 

rl' 'al' "a2 noise processes W 

The description of the uncertainty is given as follows. 

vector is Gaussian with known mean and covariance matrix 2,: 

The initial state 

12 
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The plant driving noises WrlD WalD Wa2 have zero mean and covariance matrix 

e(t) h(t-7): 
m m 

L J 

T 

E 1 Val' wa2] [ wrlD Val, Wa2]]- e(t) 6(t - r )  (assumed known). 

The selection of the intensity matrices e(t) and 20 which govern the strength 

of the uncertainty is discussed in the simulation. 

2. Linearized stochastic modeling. 

The deterministic formulation was based on the nominal state vector 

[ ho (7  ) , vo ( r ) , -yo ( r  ) ] 

vector [Ah(r), Av(r), A-y(r)lT and the correction control AC(r). 

stochastic modeling we considered the state vectors [h(r), v ( r )  , ~ ( r )  IT, 
[Ah(r), Av(r), A-y(r)]T and the controls C(r) and AC(r) to be random processes 

instead of deterministic. 

nominal path by using the model of equations 111.1 - 111.3, the following 
equation is obtained: 

and the nominal control Co ( r ) along with the correction 

In the 

If a Taylors series expansion is made about the 

* 
111.4 

.* * 
AX (t) = fxAX (t) + fu&! (t) + n(t). 

Equation 111.4 is a time varying linear state equation. 

feedback scheme that generates the control Ag* to be of the same form as the 

deterministic feedback control Ag obtained from the second variation. 

existence of the white noise process in equation 111.4 can be used to account 

for deterministic modeling errors associated with assumptions (a), (b), and (c) 

of Part 11.1. 

this way. 

been excluded from equation 111.4. 

We expect that the 

The 

For example, wind gust acting on the vehicle can be modeled in 

White noise would also compensate for the high order terms that have 

13 



3 .  Open Loop Feedback Control 

In part I1 we have investigated the deterministic perturbation control 

obtained from the second variation. 

and K2 can be found by solving the linear TPBVP given by: 

The open loop feedback control gains K1 

Ai - fx AX + fU Ag 

T Ai - - HxxAs - fx A2 - Hxu Ag 

-1 T - HUU (Hw AX - fu AI!) Ag 

-1 -1 T 
where K 1 HUU H w D  K2 HUU fu '2. 

The boundary conditions are: 

A;(ro) - specified 

A member of the neighboring optimal correction state and control is deter- 

mined by integrating the linear stochastic model 

14 
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along with the control law 

by using initial conditions 

111.6 

111.7 

Finally a member of the optimal state and control history is evaluated by 

I 

ho(r) + Ah ( r )  

v o ( r )  + Au ( 7 )  

Co(r) + AC ( r )  

111.8 

4. Closed Loop Feedback Control 

In most aerospace and navigational problems a closed loop feedback control 

is very convenient in controlling the plant dynamics and reducing the compu- 

tational time. Recall the linear system given by 

Ai - fx A3 + f, Au, x ( r o )  = specified 

with criterion 

15 



+ fi [ AxT AgT]  1: dt 
2 HUU 

and constraint 

It is well known [l] that the above system can be replaced by the equivalent 

. 
A x  9 fx A x  + fU A g ,  x ( r  ) - specified 111.9 

0 

with criterion, 

T 

r 9 rf 2 

0 
2 

and constraint 

where -1 
fx - fu HUU f (1) 

X 

(1) H-' H Hxx = Hxx - Hxu uu w' 

111.10 

111.11 

111.12 

111.13 

The system given by equation 111.9 is found t o  be controllable by solving the 

16 
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matrix differential equation 
T 

111.14 

W(Tf, rf> - 0 111.15 

where W ( r  r ) is nonnegative definite for rf 2 ro  [17]. Since the system is 
0 '  f 

controllable there exists a control Au which drives the state of the system 

given by 111.9 from some initial value ~ ( 7 ~ )  to x(rf) with rf > r 

make use of the controllability in the later formulation. 

. 
. We will 

0 

Next, the performance criterion given by 111.10 is investigated. Recall 

that the necessary conditions for the linear quadratic performance index are: 

> o  . 
HUU 

However, the matrix HLi) in 111.13 is not positive semidefinite. To 

circumvent this, we use Schwartz's inequality to bound certain entries of the 

matrix H(l) and thereby increase the performance index to be minimized. 

new matrix H ( l )  thus becomes 

The xx 

xx 

a2H 

ah2 

- 

0 

0 

0 

a2H - 
2 

av 

0 

0 

0 

a2H 
2 

a7 

17 



2 
Recall that Schwartz’s inequality is given by I xy I 
the physical meaning of taking the absolute value implies that we are 

minimizing both positive and negative deviations from the nominal path. 

Solving the differential equation 111.14 along with 111.15 we see that the 

system is still controllable. 

5 I x I I y I . Thus, 

The closed loop feedback control is given by 

[41 

Au(r) = - ( S  - RQ-’ RT) Ax(r) + f U TRQ-l A$] 
L 

where 

-1 (1) - fT1) X S + S fU HUU ft S - Hxx B = - Sfx 

(1) T k = - ( fx - S fUHuufU) R 

Q(rf) - 0 . 
Since the system i- con roll-ble, we __n forc th t rmin 1 

111.16 

111.17 

111.18 

111.19 

111.20 

111.21 

ns traint s 

From equation 111.16, the closed loop feedback control law is given by 

T -1 T Au(r) = - H f ( S - RQ R ) A3 uu u 

18 

111.22 f’ r < r < r  
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The sufficient conditions for the existence of a neighboring solution are 

f' S ( r )  - R(r) Q - ' ( r )  RT(r) finite for r o  5 r < r 

As in the case of open loop feedback, a member of the neighboring 

correction state and control is determined by integrating the linear stochastic 

model given by equation 111.5 with the control law given by equation 111.22. 

The initial conditions are given by equation 111.7. Again, a member of the 

optimal state and control history is evaluated by equation 111.8. However, in 

the case of real-time control, the physical system is the one that provides the 

integration[3]. 

function of the 

and the nominal 

is defined as 

* 
AC ( 7 )  - 

The neighboring optimal control is computed as a 

IT difference between the measured state hn(r), vm(r), rm(r) [ 
T 

optimal state [ho(r), v o ( r ) ,  r o ( r ) ]  . The optimal control 

Therefore, the total optimal control is 

* * 
C ( r )  - Co(r) + AC ( r ) .  

5 .  Evaluation of the Variational Cost Function 

The deterministic non-linear cost function and the second variation cost 

are given by equations 11.10 and 11.40, respectively. 

The stochastic cost of the variational performance index can be expressed 

as a trace of the expected values of the second variational cost given by 
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r 1 

2 1 T T 1 A J* - - Tr E [ Ax*T (dxx + (nx+ )x + $x N 3,) AX* 
2 

+ - E  rf [ Ax*T AgT* ] lHXx Hwc ""J HUU [:$I dr 1 . 111.23 
2 T O  

r - r f  

If we assume that the combined optimization of the nominal trajectory and the 

perturbation stochastic feedback control is given by 

+ A2J* ) - [min Jnom] I 
noise - 0 E ( Jnom min 

+ min [E A2J*] 111.24 

we can determine the total minimum cost required. 

In the presence of noise, it is impossible to meet the terminal condition 

3 [ X ( r f ) ,  rf ] - 0 exactly. Hence, in the place of the requirement 

Ad - dx Ax I - 0 the quadratic approximation of the noisy case is 
'f 

T 
X X 

augmented by Ip N Ip where N is diagonal positive definite matrix [4]. 

Equation 111.23 is replaced by 

Hxx 

ff [ Au*~] Hux 
+ E  

T O  
L J 
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In the case of the closed loop feedback control, the performance index becomes 

2 1 T T 
* 1 A J" = - Tr E [ (#xx + (n $xx + $x N 

2 7 9 T f  

rf [A&' AgT*] + E  
7 0  

which i s  simplified to 

0 Hxx 

O HUU 

A 2 J" 9 - 1 Tr [ Xf Sf + rf [Hxx X + Huu U ]  dr I I 
2 7 0  

r 1 

where X = E [A&* AgT] 

and U = E [ AQ* AQ'] . 

-1 
Finally,  since AQ* = - H f T ( S - RQ-1 RT ) &* uu u 

-1  
we obtain c = - H 

u - c x CT 
f T ( s - RQ-1 RT ) uu u 

. 
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IV. " E R I C A L  DATA AND RESULTS 

The data used for simulation are summarized below: 

SDacecraft data 

m/s - .3E03 kg/m3 

CD0 = .21 

CLmax - .9 

RR 9 .6498307 m 

HR = 120.OE03 

VR 9 7.832 m/sec 

tR 887.16 sec 

PR - .39963-2 W m 3  

22 

phvsical data 

m-1 1 8-- 
6900 

PO = 1.316 b / m 3  

Ra - .6498307 m 

Rc .6558E07 - - - -  

Rd 9 .12996EO8 - - - -  

p = .3986E15 m3/sec2 



Using the above mentioned data, simulations are carried out for two cases 

1 
I 
8 
8 

1 
I 
1 
I 
I 
I 
I 
I 
1 

of nominal solutions. The nominal (optimal) solutions of the deterministic 

non-linear TPBVP and neighboring linear TPBVP are obtained by successful use of 

OPTSOL code developed by Deutsche Forschungs - and Versuchsanstalt fur Luft 
Raumfahrt (DFVLR) at Oberpfaffenhofen, West Germany. 

1. Deterministic Solution 

The nominal solution is obtained by solving a TPBVP. The time histories 

of altitude H, velocity V, flight path angle 7 ,  and the control coefficient CL 

for two cases are shown in Figures 3 and 4 .  The flight time through the atmo- 

sphere for the two cases is 480 and 550 seconds, respectively. Using the 

physical data given above, the following entry and exit conditions are 

obtained. 

Case #1 

Entry: He - 120 km; Ve - 9 .025  km/s; ye - 6.14'  

Exit: He = 120 km; Ve = 7 .459  km/s; ye = -0 .025'  

Characteristic velocities: 

Deorbit velocity, Avd = 1.05387 km/s 

Reorbit velocity, AVc - .405493 km/s 

Case #2 

Entry: He = 120 km; Ve = 9.029 km/s; ye = 5.665' 

Exit: He = 120 km; Ve = 7 . 6 6 6  km/s; ye = 0 .302"  

Characteristic velocities: 

Deorbit velocity, AVd = 1.04565 km/s 

Reorbit velocity, AVc = .20083 km/s 

Consider the optimal solution obtained for case #1. Initially, the 

vehicle is in a circular orbit at HE0 moving at a speed Vd = 4%- 5538.14  

m/s. A deorbit impulse AVd = 1053.87 m/s is executed to fly the vehicle 
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through an elliptic orbit. 

vd - vd - Avd - 4484.27 m/s. 
Ha = 120 km, the vehicle attains an orbital velocity Ve - 9.025 km/s. 

The elliptic velocity at the deorbit point D is 

At the atmospheric entry point E of altitude' 

During 

the atmospheric maneuver, the velocity of the vehicle is reduced and the exit 

velocity is Vf - 7.459 km/s. In order to attain the desired circular orbit 

(LEO) at radius Rc - 6558  km, a reorbit impulse AVc - 405.49 m/s is imparted. 

The vehicle is now in a circular orbit with speed Vc - /Rc - 7796.2 m/s - P- 
Cc + AVc where 8, - 7390.71 m/s which is the elliptic velocity along the exit- 
LEO elliptic path. 

The simulation of equation 111.5 is obtained for different strengths of 

white process noise. The criterion used is based on the assumption that the 

cost resulting from the deterministic optimization middet should be 

sufficiently larger than the optimization resulting from the stochastic 

contribution of the cost, min [ EA2.J*]. 
2. Open Loop Feedback Control Law 

Here the neighboring-optimum optimization technique was applied along a 

nominal trajectory obtained from the nonlinear TPBVP. Then, the linear 

stochastic differential equation was implemented to generate a set of optimum 

trajectories for slightly different initial conditions and state covariance 

matrices. The optimum trajectories of altitude, velocity flight path angle and 

lift coefficients are shown for three different sets of data (set #1, Set # 2 ,  

and Set # 3 ) .  Note that the state vector does not converge to the nominal path 

as time is increased. 
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3. Closed Loop Feedback Control Law 

Here the control scheme was applied by first solving the three Riccati 

type equations backward in time. Then, the linear stochastic differential 

equation was solved by considering different sets of initial conditions. 

scheme is significantly important in terms of computational time required to 

solve the overall problem. Note that the control scheme works better for 

A-y(ro) < 0 than for A r ( r o )  > 0. 

is greater than zero. 

flight path angle converge to zero as time approaches the final time. Better 

results are also obtained in terms of a stochastic cost which is less for 

A 7 ( r o )  < 0 than for A r ( r o )  > 0. 

velocity, flight path angle and lift coefficient are shown for six sets of 

initial conditions (Set #4 - Set #9). 

This 

The gain values become very large when  AT(^^) 

Also the correction components of altitude velocity and 

The optimum trajectories of altitude, 

Due to the digital computer simulation, the small magnitude of the numbers 

required some scaling. 

processes are L1, L2, L3. The covariances of the noise Wrl, Wa1, Wa2 are Q1, 

Q2, Q3, respectively. The initial conditions used to generate the state and 

control trajectories are shown in Table 1, Table 2 and Table 3. 

The scaling coefficients of the standard white noise 
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V. CONCLUDING REMARKS 

In this report, we have devised a stochastic neighboring optimal guidance 

scheme as applicable to an AOTV. We have addressed the minimization of fuel 

consumption during the atmospheric portion of an aeroassisted, coplanar, 

orbital transfer vehicle, and examined the effects of uncertainties due to 

modelling on the neighboring optimal guidance. In the first stage, a nominal 

solution has been obtained for the deterministic, nonlinear dynamics 

describing the atmospheric maneuver of a coplanar AOTV. In the next stage, a 

neighboring optimal guidance has been determined. In the third stage, with a 

linear stochastic model, a neighboring optimal solution has been obtained. 

Finally, the approximate solution has been obtained as the sum of the 

deterministic nominal solution and the stochastic neighboring solution. 

Numerical results have been presented for a typical coplanar AOTV. 

Control trajectories are achieved by means of lift modulation. The 

performance index minimized is in terms of energy required for orbital 

transfer. It has been shown that the overall cost is increased when the 

deterministic and stochastic minimal problem is combined and lower and upper 

bounds on the control have been imposed. 

The space vehicle is assumed to have a digital computer on board so that 

different nominal trajectories are stored. 

enter the atmosphere, a nominal trajectory is used along with the desired 

initial conditions so that the linear stochastic differential equation is 

implemented. 

trajectory. This approach reduces the computational time and the requirement 

of large computers on board the vehicle. It also takes into consideration the 

uncertainty associated with the inexact knowledge of the true model describing 

the flight through the atmosphere. 

Whenever the vehicle desires to 

The results obtained are used as a correction to the nominal 
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Table 1 

Set #I Set #2 Set #3  

Jdet  

A%* 

1 E-5 

1 E-4 

1 E-4 

1 

30 

55 

12m 

46.99 m/s 

0.06' 

4E-8 0 [ 5.4E-4 : ] 
0 2E-5 

1459.36 m/s 

74.69 m/s 

5 E-5 

1 E-4 

5 E-4 

1 

30 

55 

3 6m 

39.6 m/s 

0.0573' 

' 1E-7 0 

0 1E-4 : ] 
0 0 1E-4 

1459.36 m/s 

126.07 m/s 

Note: The covariance matrix E [.*' .*] is given in a normalized form. 

1 E-5 

1 E-4 

1 E-4 

1 

30 

55 

36m 

156 m/s 

0.173' 

0 1E-5 0 O l  

' 1E-7 0 

0 o 1E-5 J 

1459.36 m/s 

12.53 m/s 
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Tab le  2 

S e t  #4 Set  #5 Set #6 

1 E-5 

1 E-4 

1 E-4 

1 

30 

55 

12m 

46.99 m / s  

0.057' 

4E-8 0 [ : 1.2E-4 : ] 
0 2E-5 

1459.36 m / s  

212 m/s 

28 

1 E-5 

1 E - 4  

1 E-4 

1 

30 

55 

60m 

39.16 m / s  

0.057' 

0 7 .53-7  0 O l  

' 4E-10 0 

0 0 1E-8 _I 

1459.36 m/s  

131.39 m / s  

1 E-5 

5 E-4 

5 E-4 

0 . 1  

3 

5 . 5  

120m 

70.49 m/s 

.458' 

4E-10 0 [ 7.5E-7 ," ] 
0 2E-7 

1459.36 m/s 

329.33 m/s 



L1 

L2 

L3 

Q1 

42 

4 3  

E [.*' x*] 1 
r - r o  

Jdet  

A ~ J *  

Table 3 

S e t  #7 Set #8 Set #9 

1 E-5 

1 E - 4  

1 E-4 

1 

30 

55 

1.2m 

0 .39  m/s 

2.86 E-3" 

1 E - 8  0 [ : 1E-7 ] 
0 1.5E-7 

1246.47 m/s  

91 .41  m / s  

29 

1 E-5 

1 E-4 

1 E - 4  

1 

20 

30 

120m 

39.16 m/s 

-0 .286" 

5E-8 0 [ : 5E-7 ] 
0 7 .53-7  

1246.47 m / s  

51.69 m / s  

1 E-5 

5 E-4 

5 E-4 

1 E - 1  

5 

5 

96m 

7 .83  m/s 

-0.516'  

0 5E-7 0 O l  

. 1 E - 1 0  0 

o o 1.05E-6 J 

1246.47 m / s  

214.29 m/s 



VI. REFERENCES 

1. Nguyen, X. V., Hypersonic and Planetary Entry Flight Mechanics, The 
University of Michigan Press, Ann Arbor, Michigan 1980. 

2 .  Pedro, R. E., Methods of Orbit Determination, John Wiley, 1965. 

3 .  Steingel, F. R., Stochastic Optimal Control, John Wiley, 1986. 

4. Bryson, A. E., and Y. C. Ho, Applied Optimal Control, Ginn and Company, 
Waltham, MA, 1969. 

5. Sanford, M. R., and Jerome, S .  S., Two-Point Boundary Value Problems: 
Shooting Methods, American Elsevier, 1972. 

6 .  Miele, A., Basapar, V. K., and Lee, W. Y., Optimal Trajectories for 
Aeroassisted Coplanar Orbital Transfer, Journal of Optimization Theory 
and Applications, Vol. 52, No. 1, pp. 1-24, 1987. 

7. Kenneth, D. M., and Nguyen, X. V., Minimum-fuel Aeroassisted Coplanar 
Orbital Transfer Using Lift-Modulation, Journal of Guidance, Vol. 8, No. 
1, pp. 134-141, 1987. 

8. Pesch, H. J., Real-Time Computation of Feedback Controls for Constrained 
Optimal Control Problem, Part I and Part 11, Optimal Control Applica- 
tions and Methods, Vol. 10, pp. 129-171, 1989. 

9. Athans, M., The Role and Use of Stochastic Linear-Quadratic-Gaussian 
Problem in Control System Design, IEEE Transactions on Automatic 
Control, Vol. AC-16, No. 6 ,  529-552, 1971. 

10. Naidu, D. S., Hibey, J. L., and Charalambous, D. C., Fuel-Optimal Tra- 
jectories for Aeroassisted Coplanar Orbital Transfer Problem, Department 
of Electrical and Computer Engineering, Old Dominion University, 1989. 

11. Naidu, D. S., Hibey, J. L., and Charalambous, D. C., The 27th IEEE 
Conference on Decision and Control Austin, Texas, December 7-9, 1988. 

12. Speyer, J. L., and Bryson, A. E., A Neighboring Optimal Feedback Control 
Scheme Based on Estimated Time-to-Go with Applications to Re-entry 
Flight Paths, AIAA Journal, Vol. 6, N.S., pp. 669-676, 1968. 

13. Breakwell, J. V., and Speyer, J. L., "Optimization and Control of Non- 
linear Systems Using the Second Variation, J.S.I.A.H. Control, Ser. A, 
Vol. 1, NO. 2, pp. 193-223, 1963. 

14. Deuflhard, P., A Modified Newton Method for the Solution of Ill-Condi- 
tioned Systems of Nonlinear Equations with Applications to Multiple 
Shooting, Numerical Mathematics, Vol. 22, pp. 289-315, 1974. 

15. Dickmanns, E. D., Optimal Control for Synergetic Plane Change, 
Proceedings of the XXth International Astronautical Congress, Pergamon 
Press, 1972. 

30 



16. Dickmanns, E. D., The Effect of Finite Thrust: and Heating Constraints on 
the Synergetic Plane Change Maneuver for Space-Shuttle Orbiter-Class 
Vehicle, NASA TN D-7211, Oct. 1973. 

17. Sage, P. A., Optimal Systems Control, Prentice-Hall, 1968. 

18. Brockett, R. W., Finite Dimensional Linear Systems, John Wiley, 1970. 

31 



32 



+ + 
xo 

0 
e m  

0 
3 

+ + 

I 

+ '  

33 

p. 
0 
0 

0 
.I 

in - -  a 
I 
L 



I 
I 
I 

I 
I 
I 

%O 

*% t --e---- 
- 

P 

+ + 
* 
3 

T 
+ + 

Q 
0 
0 
J 
'CJ a 
v) 
0 
0 

0 
0 
5 

cn 
ii 

34 



I 
I 
I 

ALTITU DE 

.............................. 

.................... ........................................................ 

-v 

0 60 120 180 240  300 300 420 4 0 0  

TIME (s )  

FLIGHT PATH ANGLE 

GAMMA (OeQ) 

I I 
0 w) 120 100 2 4 0  300 360 420 400  

TIME (s) 

"I 

VELOCITY 
. . . . .  

V (Km/S) 
10 

.......................................................................... 

............................................................................. 

7 .................................................................................................. i 
v 

0 LX) 120 100 240  300 3130 420 480 

TIME (s) 

LIFT COEFFICIENT 

0 w) 120 180 2 4 0  300 300 420 400 

TIME (s) 

Fig. 4 Nominal Solution: Case 1 
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Fig. 8 Stochastic Simulation: Open Loop: Set # 3 
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VII. APPENDIX 

Costate variable differential equations for the nonlinear TPBVP. 

bv cos 7 

(b - l+h) 
2 -Bh Ha 

+ P  B H  A 2 b c e  + 2b sin 

(b - l+h) 7 a 
- 

-1 L 

2 b 2 1  cos7 
VI.1 

(b-l+h) v '1 

-BHah .I p 9 -  P Isin.] + Pv [2 Alb (l+c 2 ) e 
Y h 

2 b cos 7 b cos 7 + 

(b-l+h) (b-l+h)2v2 

-Bh Ha 
+ 

p 9 -  

7 

2 + P  b v sin 7 b sin 7 

2 (b-l+h) Y 
(b-l+h) 

L -I 

A- 1 

VI.2 

VI.3 



Equation associated with the linearized TPBVP are as follows: 

State equations: 

. 
A s  = fx A + fU A& 

fx = 
where 

a fh - - b sin 7 

a fh - - bv COS 7 
a7 

a fh 
ah 

a fV - 
ah 

7 
a f  

ah 
- 

afh - a fh 
av a7 
- 

a fV afv 

7 
af 

7 
af 

2 2 b 2 sin 7 Y n af 
- - Alb CDo (1+C2) /I Ha 6 Y + 
ah (b-1+h13 

Y n 2 af 

au 
- = - 2  Alb CDo (1+C ) 6~ 

2 
Y b cos 7 

a f  
- =  - 

( b  - l+h) a7 

A- 2 

VI.4 



2 b cos 7 + 2  bv cos 7 af  
- ' - - A , , B H _ b C 6 u  - 
ah L a 2 (b - l+h) 

2 7 b cos 7 + b cos af  
- = A , b C 6  + 

L au (b - l+h) 

2 
Y b Y s i n  Y b s i n  Y 

a f  

(b - l+h) 2 (b-l+h) Y 

afh  - - 0  

2 a f  

ac 
- ' 9  -2 A1 b CDo c 6 Y 

Y 
a f  

ac 
- = A2 b 6 Y 

Adjoint var iab le  d i f .  equations: 

where 

2 2  (b-l+h) Y 

I a 2 H  
I -  I ah2 
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The boundary conditions are: 

= ‘f 
Ad - Mx A XI 

Ah(ro) = specified 

A v ( r o )  = specified 

A7(ro)  = specified 

where 

gx = 

gx = 

1 

0 

r = ‘f 

0 O 1  
2 -vf  s in  2 7 

2 2 
f c  f -2v (a -cos 7 ) 

2 2 Ag2 = [ - 2  vf (ac - cos2 7 ) Ilv + [ -  Y s i n  2 7,] A-yf f f  f 

0 

0 

s in7 f 
ac 

0 

s in-yf /ac 

Y cos7 /ac f f  
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The equat-ms govern the closed loop feedback control are as follows 
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be solved backwards in time. 
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Abstract: The fuel-optimal control problem in aeroassisted noncoplanar orbital 

transfer is addressed. The equations of motion for the atmospheric maneuver 

are nonlinear and the optimal (nominal) traJectory and control are obtained. 

In order to follow the nominal trajectory under actual conditions, a 

neighboring optimum guidance scheme is designed using linear quadratic 

regulator (LQR) theory for onboard real-time implementation. One of the state 

variables is used as the independent variable in preference to the time. The 

weighting matrices in the performance index are chosen by a combination of a 

heuristic method and an optimal modal approach. The necessary feedback control 

law is obtained in order to minimize the deviations from the nominal 

conditions. 

Nomenclature 

Ai = C Sp H /2m 
DO s a  

b = Ra/Ha 

CD : drag coefficient 

: zero-lift drag coefficient 

CL : lift coefficient 

: lift coefficient for maximum lift-to-drag ratio 
cLR 

D : drag force 

g : gravitational acceleration 

H : altitude 

h : normalized altitude 

K : induced drag factor 
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m 
1 
I 
' I  
I 
I 
8 
I 
I 
8 
1 
8 
8 
8 
I 
I 
1 
1 
8 

L :  

m :  

R :  

R :  
a 

s :  

t :  

v :  
v :  

u - :  

e :  

a :  

7 ) =  

lift force 

vehicle mass 

distance from Earth center to vehicle center of gravity 

radius of atmospheric boundary 

radius of Earth 

aerodynamic reference area 

time 

velocity 

normalized velocity 

inverse atmospheric scale height 

f 1 ight path angle 

head 1 ng ang 1 e 

bank angle 

down range angle 

cross range angle 

normalized density 

gravitational constant of Earth 

normalized lift coefficient 

density 

density at the sea level 

normalized time 
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I. INTRODUCTION 

In space transportation system, the concept of aeroassisted orbital 

transfer opens new mission opportunities, especially with regard to the 

initiation of a permanent space station i l l .  The use of aeroassisted maneuvers 

to affect a transfer from high Earth orbit (HE01 to low Earth orbit (LEO) has 

been recommended to provide high performance leverage to future space 

transportation systems. The aeroassisted orbital transfer vehicle (AOTV), on 

its return journey from HEO, dissipates orbital energy through atmospheric 

drag to slow down to LEO velocity. Thus, the basic idea is to employ a hybrid 

combination of propulsive maneuvers in space and aerodynamic maneuvers in 

sensible atmosphere. Within the atmosphere, the trajectory control is achieved 

by means of lift and bank angle modulations. Hence, this type of flight with a 

combination of propulsive and nonpropulsive maneuvers, is also called 

synergetic maneuver or space flight. 

Guidance is the determination of a strategy for following a nominal 

flight in the presence of off-nominal conditions, wind disturbances, and 

navigation uncertainties [2-51. There are two fundamentally different 

approaches for guidance of spacecraft through the atmosphere. 

(i) Predicted Guidance: Here, we predict future trajectories at the 

required point of time by either fast computation or use of approximate closed 

form solutions. In prediction using fast computation, the governing equations 

are solved by an air-borne computer to determine all possible future 

trajectories. The main advantage of this type of prediction is the ability to 

handle any possible flight condition and accommodate large off-nominal 
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conditions. The principal objection to the system is the requirement of large 

onboard computer. On the other hand, for the onboard prediction of 

trajectories, the closed form solutions are very simple and convenient for 

implementation. In most of the cases, the closed form solutions are obtained 

based on approximate techniques. Thus, the trajectories are obtained typically 

for constant altitude, constant deceleration, and equilibrium glide paths. 

Guidance using approximate closed-form solutions has the disadvantage of not 

having the flexibility to handle enough off-nominal conditions. 

(ii) Nominal Guidance: In this scheme, the nominal trajectories are 

precomputed on ground taking into all the aspects of constraints with 

optimization and stored onboard. During the flight, the difference between the 

measured values and nominal (stored) values is used in guiding the vehicle 

onto the nominal trajectory (path controller) or generate a new trajectory to 

reach the destination (terminal controller). Here, the nominal trajectory 

being fixed on the ground, does not take into account any contingencies 

arising during the flight. 

In a typical guidance scheme, the final steering command is generated as 

the sum of two components, an open-loop actuating (control) signal yielding 

the desired vehicle traJectory in the absence of external disturbances, and a 

linear feedback regulating signal which reduces the system sensitivity to 

unwanted influences on the vehicle, It is well known that the closed-loop 

system is stable about the nominal trajectory and has additional desirable 

features. 

In this report, we address the fuel-optimal control problem arising in 

noncoplanar orbital transfer employing aeroassist technology. The maneuver 

5 



involves the transfer from HE0 to LEO with a prescribed plane change and at 

the same time minimization of the fuel consumption. It is known that the 

change in velocity, also called the characteristic velocity, is a convenient 

parameter to measure the fuel consumption. For minimum-fuel maneuver, the 

objective is then to minimize the total characteristic velocity for deorbit, 

boost, and reorbit (or circularization). The corresponding optimal (nominal) 

trajectory and control are obtained. The linearization is performed around the 

nominal condition and the resulting model is fitted into the framework of 

linear quadratic regulator (LQR) theory. Instead of using time, one of the 

state variables is employed as an independent variable, thus avoiding any 

control required due to irrelevant timing errors. Also, the elimination of 

time as an independent variable carries with it the advantage of order 

reduction for the system. The choice of weighting matrices in the performance 

index is made by combining a heuristic method and optimal modal control 

approach. The feedback control law is obtained to suppress the perturbations 

from the nominal condition. The results are shown for a typical AOTV. 
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11. FORMULATION OF THE PROBLEM 

The basic equations for orbital transfer from HE0 to LEO, are those for 

deorbit, aeroassist (or atmospheric flight). boost and circularization (or 

reorbit). But, for guidance and control purposes, we consider only the 

atmospheric flight during which phase the vehicle needs to be controlled by 

aerodynamic lift and bank angle to achieve the necessary velocity reduction 

and the plane change. 

Consider a vehicle moving about a nonrotating spherical planet. The 

atmosphere surrounding the planet is assumed to be at rest, and the central 

gravitational field obeys the usual inverse square law. The equations of 

motion for the vehicle are given for kinematics as [61, 

- Vcosycos~/Rcos~ dt- 

d4 - Vcosysin@/R dt- 

dR - Vsiny dt- 

The force equations are 

dV 
dt m- = - D - mgsiny 

d7 
dt mV- = Lcosu + m(V3R - glcosy 

m V a  d* = Lsinu/cosy - (mV?R)cosycos*tantp 

where, 
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L = CLpSV2/2; 

g = NR2; 

D = CDpSV2/2; CD = Cw + KCf 

R = H + RE; p = psexp(-H/3) 

Using the normalized variables, 

and the dimensionless constants, 

h = H/H ; b = Ra/Ha; 6 = p/ps = exp(-hpH 1 
a a 

in (11, we get the normalized form as 

d 9 =  bvcosyslne 
dt ( b-I +h) 

d h  - bvsiny dt- 

b2s i ny 

( b-1 +h) 
Aib( I+g2)6v2 - dv 

d t = -  

bvcosy b2cosy 

(b-1 +h) 2~ 0- dy - A2b#vcosa + dt- 

d* - A2b6r)minc - bvcosycos*tan$ a?-  cosy ( b-1 +h) 

where, AI = C Sp H /2m; A2 = C Sp H /2m 
DO s a  LR 8 a 
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Taking the performance index as the sum of the characteristic velocities 

for deorbit, boost, and recircularization, the above fuel-optimal problem is 

solved by using a multiple shooting method. This is the nominal (optimal) 

solution to be used in obtaining the guidance scheme [71. 

However, under the actual flight conditions, the initial conditions may 

not agree with those assumed for generating the nominal trajectory and more 

important the vehicle may not follow the nominal trajectory due to various 

disturbances. Hence, rather than compute a new nominal trajectory each time 

some disturbance is encountered, it is proposed to implement a closed-loop 

control of the vehicle to compensate for the deviations from the nominal 

condition. 

(a) Se lec t ion  of Independent Variable 

In a typical guidance problem, the vehicle is required to follow a 

specified (nominal) trajectory in three-dimensional space. Suppose, the actual 

vehicle at a particular time is on the nominal trajectory, but much earlier 

than required or reached the desired point at incorrect time. The exact time 

at which the vehicle reaches the various points on the trajectory may be of no 

concern. Thus, if the actual trajectory satisfies the spatial relationship of 

the desired (nominal) traJectory, but the vehicle travelled more slowly or 

more quickly, the regulator (designed with time as independent variable) would 

sense these timing errors as spatial (state) errors along the trajectory, 

although, in fact, these are errors of no relevance to the objective of the 

guidance [2-41. Based on these spurious errors, the regulator tends to "over 

control" the system and thus wastes considerable amounts of control effort. 

Because time is used as the independent variable in the regulator design, not 
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II 

only does the regulator try to follow the desired path, but it tries to force 

the system to follow at a particular rate. 

The LQ regulator can be made significantly more robust by the simple 

technique of using a traJectory (state) variable instead of time as the 

independent variable. Also, if one is concerned only with the relationship 

that should exist between the system traJectory variables on the desired path, 

one of the state variables could be used in place of time as the independent 

variable. The main appeal for this change of the independent variable lies in 

the fact that inherently state dependent events become time-dependent events 

in an indirect manner. Another obvious advantage of eliminating time as the 

independent variable is simply the reduction in the order of the mathematical 

model of the system. 

In the present plane change problem, the down range 8 is monotonic and 

is a good candidate for an independent variable. Thus, the system of equations 

( 4 )  with time as independent variable is converted into the following system 

of equations with down range 8 as the independent variable. 

$ = (b-1 +h) tanycos$/cos* 

2 dv - -Ai(l+g )bv(b-l+h)cos#/cosycos@ de- 

$ = A2&)( b-l +h)cosmos$/cosycos# 

ddJ - cos$tan* de- 
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where, 6 is a function of h, and the controls are normalized lift coefficient 

1) and bank angle u. In the above equations, a valid assumption that the 

gravity and centrifugal forces are negligible compared to either lift force or 

drag force is used in order to get a simplified form of equations. Also, note 

that the order of the system (51 is now only five compared to the sixth order 

system ( 4 ) .  

(bl  Linearization 

The nonlinear equations of motion ( 5 )  are represented in a compact form 

as 

where, x = d x / d e ,  the state vector xT = [h,v,y,$,qIl and the control vector uT 

= (1). ul. Let the system ( 4 )  represent the nominal (optimum) trajectory and 

control which we are interested in flying. The optimization results in an 

open-loop implementation. Unfortunately, the open-loop guidance tends to be 

very sensitive to external disturbances and the vehicle parameter changes. In 

an actual situation, the system equations may differ from reality due to 

various assumptions made in deriving them. Consider the perturbations as 

x = x  + a x ;  u = u  + b u  (7) 
0 0 

where, [xo, u I ,  and [x ,  ul represent nominal and perturbed conditions 

respectively, and [ax, 6ul represent the deviations from the nominal 

condition. 

0 
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If we aim at the guidance laws that meet the performance specifications 

in the presence of off-nominal conditions, it is natural to seek the 

principles of linearity and feedback. Then, it is well known that the 

perturbed system satisfies the linear system [81 

where, A = af/ax, and B = af/au, are evaluated along the nominal traJectory. 

Although the matrices A and B can be evaluated for all values of interest, it 

may sometimes be necessary to keep A and B constant between the intervals of 

updating. The errors due to this quantization procedure are assumed to be 

small enough so that no drastically different changes occur in the 

performance. Keeping A and B constant also enables us to use the 

time-invariant version of the Riccati equation in the regulator problem. 
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111. NEIGHBORING OPTIMAL GUIDANCE 

The basic regulator synthesis problem is that of selecting a control 

policy which generates 6u in such a way that [ax, 6ul are made as small as 

possible [81. The performance index is 

J = i(ZixTQ6x + 6uTR6ulde (9) 

where, the first and second terms under the integral represent the penalty 

from the nominal state and control vectors respectively. The matrix R must be 

positive definite, while Q must be positive semidefinite. These weighting 

matrices are usually symmetric and diagonal to minimize the number of 

parameters to be chosen. 

It is shown that the omission of second order terms in getting the 

linearized equation ( 8 )  is Justified by selecting the performance index (9) 

with quadratic character. Using the minimization procedure, the feedback law 

is obtained as 

6~ = - F ~ x  (10) 

-1 T Where F = R B P and P is the positive definite, symmetric solution of the 

matrix Riccati algebraic equation 

(11) -1 T PA + ATP - PER B P + Q = 0 

The linear optimal control theory results in a feedback law which 

computes corrections to the nominal commands as shown in Fig. 1. 

13 



Desirable Features of LQR Guidance 

(1) The closed-loop optimal control is linear. 

(ii) The control is easy for implementation or mechanization. 

(iii) The closed-loop system using the optimal control is asymptotically 

st able. 

(iv) The closed-loop control is robust in the sense that, if the system 

contains additional white-noise terms which model turbulence, atmospheric 

inhomogeneities, and unmodelled high-frequency vehicle dynamics, the 

closed-loop control will still give the control policy which minimizes the 

expected value of the performance index. 

(VI The closed-loop system possesses attractive sensitivity properties with 

respect to variations in the elements of A and B .  

(vi) The guidance scheme is off-line, in the sense that the feedback 

coefficient matrix f (= R B P I  is calculated in advance and stored for -1 T 

implementation onboard. 
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IV. SELECTION OF WEIGHTING MATRICES 

Guidance requirements during the atmospheric maneuver demand good nominal 

path following, and small errors under a variety of perturbations and 

off-nominal conditions. The designer must be able to come up with a set of 

weighting matrices Q and R that satisfy these specifications. In general, there 

is no simple and systematic way of selecting these matrices. 

As Q is increased, the penalty for deviating from the nominal traJectory 

is increased if R is unchanged. The resulting traJectory tends to be closer to 

the nominal trajectory, but at the expense of greater control requirements. 

When R is large, which means the cost of control is important, the states 

decrease slowly. As R decreases, the control becomes quite large. 

The proper selection of weighting matrices calls for physical and 

engineering intuition and simulation experience with different trial runs. 

However, there are some techniques available for chosing the weighting matrices 

[91. These are 

(i) Heuristic Methods 

( i i )  Optimal Modal Control Methods 

( i i i )  Asymptotic Optimal Root Loci Methods 

(iv) Dynamic Weighting Methods. 

(i) Heuristic Methods 

One of the heuristlc methods is the 'inverse-square method' based on 

rule-of-thumb [ l o ] .  This is still a widely used method for the selection of 

quadratic cost matrices. The basic idea is the normalization with respect to 

their expected maximum values. Also, in most practical applications, the 
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matrices Q and R are selected to be diagonal so that specific components of 

the state and control perturbation vectors can be penalized individually. 

Thus, 

Q =  

1 

ah: 

0 

- 

0 

0 

0 

( i i )  Optimal Modal 

0 

1 

6" 

0 

0 

0 

0 

0 

1 - 
37; 

0 

0 

0 0 

0 0 

0 0 

0 1 - 
69; 

1 - 0 
a*; 

Control Methods 

; R =  1 0 -  
ar; 

(12) 

The modal control approach is to determine a state feedback law u = -Fx. 

so that the closed-loop system matrix D(= A-BF)  has a prescribed set of 

eigenvalues 1111. Optimal modal control is based on the conventional 

pole-placement technique, but, instead of choosing the feedback matrix F(= 

R B P I  directly, the weighting matrices of the performance index in linear 

quadratic regulator problem, are chosen to achieve the objective of placing 

the eigenvalues at the desired locations. The problem is to find the state 

weighting matrix Q for a given control weighting matrix R that corresponds to 

a set of prescribed eigenvalues. The method is based on transforming the given 

linear system into a diagonal (decoupled) system. The approach uses explicit 

formulas relating the elements of the state weighting matrix, the actual and 

-1 T 
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the desired eigenvalues. 

In the modal control approach, the choice of feedback matrix F is not 

unique, so that there may be a number of weighting matrices giving the same 

closed-loop eigenvalues. However, the method is easy for computer 

implementation. The details of the method are omitted and only the algorithm 

is given below for the case of real eigenvalues [ill. 

Algorithm 

Step I: Initialization (i=O) 

Given the system matrices A,  and B and the weighting matrices Q, and R ,  we 

obtain the optimal feedback matrix f, using LQR theory. 

Step 2: Loop 

Obtain the system matrix D, = A - BF, 
Step 3: Eigenvalues/eigenvectors 

vn 
(1) Compute modal (eigenvector) matrix HI = [ v  I , . . . . ,  

(ill Compute diagonal matrix A, = H i l D , H :  

( i i i )  Compute matrix H, = H;'ER-'B~H;' 

Step 4: Update i = i+l 

Step 5: Shifting of eigenvalues 

The actual eigenvalue h 

Compute, 
dJ' 

is to be shifted to the desired position h 
aJ 
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Step 6: 

- 
Form 0, = diag P , O , .  . . , [ G J J ]  ,O,. . . .0} 

1 

( 1 4 )  

Step 7: Matrix Riccati equation 

Using 5, from step 6, solve for from the matrix Riccati algebraic equation, 
1 

- -1 TN N N 

P - PIBR B P1 + = 0 1 1 - 1  + hl-1 1 
( 1 4 )  

Step 8: Feedback matrix 

u -1 T- 
(1) Obtain the feedback matrix 

( i i )  Compute Pl = Fl~;’, 

Fl = R B Pl 

( i i i )  Update F~ = F + Pi 1-1 

Step 9: Weighting matrix 

( i i )  Update Q, = Q ~ - ~  + O1 

Step IO: If the required number of eigenvalues are not shifted, then change j 

and go to step 2. 

In the present work, a combination of the inverse square method and modal 

control method is adapted in arriving at the required weighting matrix for 

state deviations. 
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v. RESULTS 

The nominal traJectory corresponds to the fuel-optimal condition of 

orbital transfer with plane change [71. At a particular point of time, the set 

of nominal values used is 

altitude, H = 44724.24 m 

velocity, V = 9278.73 dsec 

flight path angle, 7 = -1.092 deg 

latitude, # = 0.1954 deg 

heading angle, # = 9.424 deg 

lift coefficient, CL = 0.3231 

bank angle, Q = 75.28 deg 

With this set of' nominal values, the linearized model is obtained and used 1 '01 .  

LQ regulator. For a typical set of perturbations, the solutions are obtained 

and presented in Figs. 2 and 3. Figs. 2(a) through 2(e) show the state 

perturbations, while Figs. 3(a) and 3(b) present perturbed controls. The 

guidance scheme is tested at different points on the nominal traJectory and the 

is found to be good. 

VI. CONCLUDING REnARKs 

A neighboring optimal guidance scheme based on linear quadratic regulator 

-has been designed for controlling an aeroassisted orbital transfer vehicle 

performing a plane change. The down range angle, instead of time, has been 

used as an independent variable. The problem has been formulated as a linear 

quadratic regulator with perturbed states consisting of altitude, velocity, 

flight path angle, latitude, and heading angle, and perturbed controls 

19 



consisting of lift coefficient, and bank angle. The weighting matrices in the 

performance index have been chosen using a combination of hnuristic approach 

and optimal modal control method. The results have been presented for 

fuel-optimal condition of aeroassisted orbital transfer. 
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