10,135 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Unstable Attractors: Existence and Robustness in Networks of Oscillators With Delayed Pulse Coupling

    Full text link
    We consider unstable attractors; Milnor attractors AA such that, for some neighbourhood UU of AA, almost all initial conditions leave UU. Previous research strongly suggests that unstable attractors exist and even occur robustly (i.e. for open sets of parameter values) in a system modelling biological phenomena, namely in globally coupled oscillators with delayed pulse interactions. In the first part of this paper we give a rigorous definition of unstable attractors for general dynamical systems. We classify unstable attractors into two types, depending on whether or not there is a neighbourhood of the attractor that intersects the basin in a set of positive measure. We give examples of both types of unstable attractor; these examples have non-invertible dynamics that collapse certain open sets onto stable manifolds of saddle orbits. In the second part we give the first rigorous demonstration of existence and robust occurrence of unstable attractors in a network of oscillators with delayed pulse coupling. Although such systems are technically hybrid systems of delay differential equations with discontinuous `firing' events, we show that their dynamics reduces to a finite dimensional hybrid system system after a finite time and hence we can discuss Milnor attractors for this reduced finite dimensional system. We prove that for an open set of phase resetting functions there are saddle periodic orbits that are unstable attractors.Comment: 29 pages, 8 figures,submitted to Nonlinearit

    Three-dimensional hybrid vortex solitons

    Get PDF
    We show, by means of numerical and analytical methods, that media with a repulsive nonlinearity which grows from the center to the periphery support a remarkable variety of previously unknown complex stationary and dynamical three-dimensional solitary-wave states. Peanut-shaped modulation profiles give rise to vertically symmetric and antisymmetric vortex states, and novel stationary hybrid states, built of top and bottom vortices with opposite topological charges, as well as robust dynamical hybrids, which feature stable precession of a vortex on top of a zero-vorticity base. The analysis reveals stability regions for symmetric, antisymmetric, and hybrid states. In addition, bead-shaped modulation profiles give rise to the first example of exact analytical solutions for stable three-dimensional vortex solitons. The predicted states may be realized in media with a controllable cubic nonlinearity, such as Bose-Einstein condensates.Comment: To appear in the New Journal of Physic

    Localized modes in mini-gaps opened by periodically modulated intersite coupling in two-dimensional nonlinear lattices

    Full text link
    Spatially periodic modulation of the intersite coupling in two-dimensional (2D) nonlinear lattices modifies the eigenvalue spectrum by opening mini-gaps in it. This work aims to build stable localized modes in the new bandgaps. Numerical analysis shows that single-peak and composite two- and four-peak discrete static solitons and breathers emerge as such modes in certain parameter areas inside the mini-gaps of the 2D superlattice induced by the periodic modulation of the intersite coupling along both directions.The single-peak solitons and four-peak discrete solitons are stable in a part of their existence domain, while unstable stationary states (in particular, two-soliton complexes) may readily transform into robust localized breathers.Comment: Chaos, in pres

    Stability analysis of a general class of singularly perturbed linear hybrid systems

    Full text link
    Motivated by a real problem in steel production, we introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in which the variables preserve their nature over time. Secondly, we establish, through singular perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system's stability. Remarkably, this bound is the sum of two terms. The first term corresponds to an upper bound on the minimum dwell-time ensuring the stability of the reduced order linear hybrid system describing the slow dynamics. The order of magnitude of the second term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical illustrations complete our study

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton
    corecore