986 research outputs found

    Novel Algorithms for Analyzing the Robustness of Difference Coarrays to Sensor Failures

    Get PDF
    Sparse arrays have drawn attention because they can identify O(N²) uncorrelated source directions using N physical sensors, whereasuniform linear arrays (ULA) find at most N−1 sources. The main reason is that the difference coarray, defined as the set of differences between sensor locations, has size of O(N²) for some sparse arrays. However, the performance of sparse arrays may degrade significantly under sensor failures. In the literature, the k-essentialness property characterizes the patterns of k sensor failures that change the difference coarray. Based on this concept, the k-essential family, the k-fragility, and the k-essential Sperner family provide insights into the robustness of arrays. This paper proposes novel algorithms for computing these attributes. The first algorithm computes the k-essential Sperner family without enumerating all possible k-essential subarrays. With this information, the second algorithm finds the k-essential family first and the k-fragility next. These algorithms are applicable to any 1-D array. However, for robust array design, fast computation for the k-fragility is preferred. For this reason, a simple expression associated with the k-essential Sperner family is proposed to be a tighter lower bound for the k-fragility than the previous result. Numerical examples validate the proposed algorithms and the presented lower bound

    A robust approach to the order detection for the damped sinusoids based on the shift-invariance property

    Get PDF

    Reliability Modeling and Improvement of Critical Infrastructures: Theory, Simulation, and Computational Methods

    Get PDF
    This dissertation presents a framework for developing data-driven tools to model and improve the performance of Interconnected Critical Infrastructures (ICIs) in multiple contexts. The importance of ICIs for daily human activities and the large volumes of data in continuous generation in modern industries grant relevance to research efforts in this direction. Chapter 2 focuses on the impact of disruptions in Multimodal Transportation Networks, which I explored from an application perspective. The outlined research directions propose exploring the combination of simulation for decision-making with data-driven optimization paradigms to create tools that may provide stakeholders with optimal policies for a wide array of scenarios and conditions. The flexibility of the developed simulation models, in combination with cutting-edge technologies, such as Deep Reinforcement Learning (DRL), sets the foundation for promising research efforts on the performance, analysis, and optimization of Inland Waterway Transportation Systems. Chapter 3 explores data-driven models for condition monitoring and prognostics, with a focus on using Deep Learning (DL) to predict the Remaining Useful Life of turbofan engines based on sequential sensor measurements. A myriad of approaches exist for this type of problems, and the main contribution for future efforts might be centered around combining this type of data-driven methods with simulation tools and computational methods in the context of network resilience optimization. Chapter 4 revolves around developing data-driven methods for estimating all-terminal reliability of networks with arbitrary structures and outlines research directions for data-driven surrogate models. Furthermore, the use of DRL for network design optimization and maximizing all-terminal network reliability is presented. This poses a promising research venue that has been extended to network reliability problems involving dynamic decision-making on allocating new resources, maintaining and/or improving the edges already in the network, or repairing failed edges due to aging. The outlined research presents various data-driven tools developed to collaborate in the context of modeling and improvement for Critical Infrastructures. Multiple research venues have been intertwined by combining various paradigms and methods to achieve this goal. The final product is a line of research focused on reliability estimation, design optimization, and prognostics and health management for ICIs, by combining computational methods and theory

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA Tech Briefs, July 2009

    Get PDF
    Topics covered include: Dual Cryogenic Capacitive Density Sensor; Hail Monitor Sensor; Miniature Six-Axis Load Sensor for Robotic Fingertip; Improved Blackbody Temperature Sensors for a Vacuum Furnace; Wrap-Around Out-the-Window Sensor Fusion System; Wide-Range Temperature Sensors with High-Level Pulse Train Output; Terminal Descent Sensor Simulation; A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles; Additive for Low-Temperature Operation of Li-(CF)n Cells; Li/CFx Cells Optimized for Low-Temperature Operation; Number Codes Readable by Magnetic-Field-Response Recorders; Determining Locations by Use of Networks of Passive Beacons; Superconducting Hot-Electron Submillimeter-Wave Detector; Large-Aperture Membrane Active Phased-Array Antennas; Optical Injection Locking of a VCSEL in an OEO; Measuring Multiple Resistances Using Single-Point Excitation; Improved-Bandwidth Transimpedance Amplifier; Inter-Symbol Guard Time for Synchronizing Optical PPM; Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules; Light-Curing Adhesive Repair Tapes; Thin-Film Solid Oxide Fuel Cells; Zinc Alloys for the Fabrication of Semiconductor Devices; Small, Lightweight, Collapsible Glove Box; Radial Halbach Magnetic Bearings; Aerial Deployment and Inflation System for Mars Helium Balloons; Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves; Voice Coil Percussive Mechanism Concept for Hammer Drill; Inherently Ducted Propfans and Bi-Props; Silicon Nanowire Growth at Chosen Positions and Orientations; Detecting Airborne Mercury by Use of Gold Nanowires; Detecting Airborne Mercury by Use of Palladium Chloride; Micro Electron MicroProbe and Sample Analyzer; Nanowire Electron Scattering Spectroscopy; Electron-Spin Filters Would Offer Spin Polarization Greater than 1; Subcritical-Water Extraction of Organics from Solid Matrices; A Model for Predicting Thermoelectric Properties of Bi2Te3; Integrated Miniature Arrays of Optical Biomolecule Detectors; A Software Rejuvenation Framework for Distributed Computing; Kurtosis Approach to Solution of a Nonlinear ICA Problem; Robust Software Architecture for Robots; R4SA for Controlling Robots; Bio-Inspired Neural Model for Learning Dynamic Models; Evolutionary Computing Methods for Spectral Retrieval; Monitoring Disasters by Use of Instrumented Robotic Aircraft; Complexity for Survival of Living Systems; Using Drained Spacecraft Propellant Tanks for Habitation; Connecting Node; and Electrolytes for Low-Temperature Operation of Li-CFx Cells

    Advanced information processing system: Inter-computer communication services

    Get PDF
    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented

    Search-based Test Generation for Automated Driving Systems: From Perception to Control Logic

    Get PDF
    abstract: Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving. One of the expectations from fully-automated vehicles is never to cause an accident. However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions caused by other road occupants. Hence, it is important for the system designers to understand the boundary case scenarios where an autonomous vehicle can no longer avoid a collision. Besides safety, there are other expectations from automated vehicles such as comfortable driving and minimal fuel consumption. All safety and functional expectations from an automated driving system should be captured with a set of system requirements. It is challenging to create requirements that are unambiguous and usable for the design, testing, and evaluation of automated driving systems. Another challenge is to define useful metrics for assessing the testing quality because in general, it is impossible to test every possible scenario. The goal of this dissertation is to formalize the theory for testing automated vehicles. Various methods for automatic test generation for automated-driving systems in simulation environments are presented and compared. The contributions presented in this dissertation include (i) new metrics that can be used to discover the boundary cases between safe and unsafe driving conditions, (ii) a new approach that combines combinatorial testing and optimization-guided test generation methods, (iii) approaches that utilize global optimization methods and random exploration to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a publicly-available simulation-based automated vehicle testing framework that enables application of the existing testing approaches in the literature, including the new approaches presented in this dissertation.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Increasing the robustness of autonomous systems to hardware degradation using machine learning

    Get PDF
    Autonomous systems perform predetermined tasks (missions) with minimum supervision. In most applications, the state of the world changes with time. Sensors are employed to measure part or whole of the world’s state. However, sensors often fail amidst operation; feeding as such decision-making with wrong information about the world. Moreover, hardware degradation may alter dynamic behaviour, and subsequently the capabilities, of an autonomous system; rendering the original mission infeasible. This thesis applies machine learning to yield powerful and robust tools that can facilitate autonomy in modern systems. Incremental kernel regression is used for dynamic modelling. Algorithms of this sort are easy to train and are highly adaptive. Adaptivity allows for model adjustments, whenever the environment of operation changes. Bayesian reasoning provides a rigorous framework for addressing uncertainty. Moreover, using Bayesian Networks, complex inference regarding hardware degradation can be answered. Specifically, adaptive modelling is combined with Bayesian reasoning to yield recursive estimation algorithms that are robust to sensor failures. Two solutions are presented by extending existing recursive estimation algorithms from the robotics literature. The algorithms are deployed on an underwater vehicle and the performance is assessed in real-world experiments. A comparison against standard filters is also provided. Next, the previous algorithms are extended to consider sensor and actuator failures jointly. An algorithm that can detect thruster failures in an Autonomous Underwater Vehicle has been developed. Moreover, the algorithm adapts the dynamic model online to compensate for the detected fault. The performance of this algorithm was also tested in a real-world application. One step further than hardware fault detection, prognostics predict how much longer can a particular hardware component operate normally. Ubiquitous sensors in modern systems render data-driven prognostics a viable solution. However, training is based on skewed datasets; datasets where the samples from the faulty region of operation are much fewer than the ones from the healthy region of operation. This thesis presents a prognostic algorithm that tackles the problem of imbalanced (skewed) datasets
    corecore