
INCREASING THE ROBUSTNESS OF AUTONOMOUS

SYSTEMS TO HARDWARE DEGRADATION USING

MACHINE LEARNING

by

Georgios Fagogenis

Submitted for the degree of

Doctor of Philosophy

Institute of Sensors, Signals and Systems

School of Engineering and Physical Sciences

Heriot-Watt University

June 2016

The copyright in this thesis is owned by the author. Any quotation from the report or

use of any of the information contained in it must acknowledge this report as the source

of the quotation or information.

I would like to dedicate this thesis to my family

Abstract

Autonomous systems perform predetermined tasks (missions) with minimum super-
vision. In most applications, the state of the world changes with time. Sensors are
employed to measure part or whole of the world’s state. However, sensors often fail
amidst operation; feeding as such decision-making with wrong information about
the world. Moreover, hardware degradation may alter dynamic behaviour, and sub-
sequently the capabilities, of an autonomous system; rendering the original mission
infeasible.

This thesis applies machine learning to yield powerful and robust tools that can
facilitate autonomy in modern systems. Incremental kernel regression is used for dy-
namic modelling. Algorithms of this sort are easy to train and are highly adaptive.
Adaptivity allows for model adjustments, whenever the environment of operation
changes. Bayesian reasoning provides a rigorous framework for addressing uncer-
tainty. Moreover, using Bayesian Networks, complex inference regarding hardware
degradation can be answered.

Specifically, adaptive modelling is combined with Bayesian reasoning to yield
recursive estimation algorithms that are robust to sensor failures. Two solutions are
presented by extending existing recursive estimation algorithms from the robotics
literature. The algorithms are deployed on an underwater vehicle and the perfor-
mance is assessed in real-world experiments. A comparison against standard filters
is also provided.

Next, the previous algorithms are extended to consider sensor and actuator fail-
ures jointly. An algorithm that can detect thruster failures in an Autonomous
Underwater Vehicle has been developed. Moreover, the algorithm adapts the dy-
namic model online to compensate for the detected fault. The performance of this
algorithm was also tested in a real-world application.

One step further than hardware fault detection, prognostics predict how much
longer can a particular hardware component operate normally. Ubiquitous sen-
sors in modern systems render data-driven prognostics a viable solution. However,
training is based on skewed datasets; datasets where the samples from the faulty
region of operation are much fewer than the ones from the healthy region of op-
eration. This thesis presents a prognostic algorithm that tackles the problem of
imbalanced (skewed) datasets.

Acknowledgements

I would like to offer my many thanks to Prof. David Lane and Dr. David Flynn, my
research supervisors for their guidance and support throughout these three years of
study at Heriot-Watt University. Notably, Prof. Lane has shown great confidence
in my research and provided a comfortable working environment. Moreover, Prof.
Lane funded several trips to international conferences, helping me in this way to
stay up-to-date and get exposed to high-end research.

I would also like to thank Dr. Zeyn Saigol for his scientific advice, as well as for
his patience while proofreading my manuscripts. I am particularly grateful to Dr.
Tom Larkworthy for providing me with various research stimuli in the first one year
and a half, during which we shared the same office.

Special thanks to all my fellow Ph.D. students and Research Associates within
the Ocean Systems Lab for the research discussions, the technical tips and in par-
ticular Mr. Valerio De Carolis for providing me with experimental data from the
field. I wish to thank Mr. Len McLean, our lab technician. Even though, we never
worked together he largely contributed to having a functional research platform in
the lab.

At this point, I wish to thank my former advisers, namely Prof. Kostas Kyr-
iakopoulos, Prof. Bradley Nelson, Prof. Oliver Brock and Dr. Christos Bergeles.
Each one of them contributed to shaping a strong research working profile, which
eventually led to the completion of this thesis.

I would like to express my very great appreciation to my loving parents and sister
for their unlimited and multifaceted support over the complete course of my studies.
I consider my professional accomplishments as jointly achieved by my family and
me. Both my parents believed in my skills from the very beginning of my school
years and gently kept me on track when necessary.

Many thanks deserve to my friends for putting up with my mood swings and
for always calming me down when I most needed it. Everything would have been
much harder without my better half Eirini. Therefore, I would like to thank Eirini
Papadaki separately for her endless patience, love and support throughout these
years.

i

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Approach . 4

1.3 Contribution . 5

1.4 Structure . 7

2 Relevant Work 8

2.1 Diagnostics . 9

2.1.1 Model-based approaches . 14

2.1.2 Statistical approaches . 19

2.1.3 Artificial Intelligence approaches 22

2.2 Prognostics . 24

2.2.1 Model-Based Approaches . 25

2.2.2 Statistical Methods . 26

2.3 Applications in Underwater Navigation 29

3 Dynamic Modelling 34

3.1 Introduction . 34

3.2 State-space Formulation . 35

3.3 Model Specifications . 37

3.3.1 LWPR hyperparameters . 40

3.3.2 LWPR Training . 41

3.4 Experimental Evaluation . 44

3.4.1 Order of the dynamic model 46

ii

3.4.2 Model Perfomance . 47

4 Robustness to Sensor Failures 51

4.1 Bayesian Filtering . 54

4.2 A Simple Outlier Robust Filter . 59

4.2.1 Filter Derivation . 60

4.3 A synthetic example . 63

4.3.1 Experimental Results . 65

4.4 Self-Tuning Kalman Filter . 68

4.4.1 Prediction step . 69

4.4.2 The update step . 70

4.4.3 STKF summary . 74

4.4.4 Velocities in the world coordinate frame 75

4.4.5 State Integration . 76

4.5 Experiments . 77

4.5.1 Wave tank experiments . 77

4.5.2 CMRE experiments . 79

4.5.3 Trajectory computation . 83

4.6 Sensor Diagnostics . 86

4.6.1 HMM training . 89

4.7 Remarks . 91

5 Robustness to Changes in the Process Dynamics 92

5.1 Introduction . 92

5.2 Fault Detection and Dynamic Adaptation Algorithm 94

5.2.1 Model Adaptation . 96

5.3 Experimental results . 98

5.4 Remarks . 104

6 Prognostics 105

6.1 Introduction . 105

6.2 Adaptive Autoregression . 108

iii

6.3 Robust Classification . 109

6.4 Remaining Useful Life Computation 112

6.5 Experiments . 113

6.6 Remarks . 117

7 Conclusion and Future Work 118

7.1 Conclusion . 118

7.2 Future Work . 120

A Regression 123

A.1 Linear Regression . 123

A.2 Non Linear Regression . 123

A.3 Locally Weighted Projection Regression 125

A.3.1 Jacobian Computation . 129

A.3.2 Confidence Intervals . 131

B Classification 134

B.1 Boosting . 135

B.2 Bagging . 136

C Variational Bayesian Inference 137

Bibliography 140

iv

List of Tables

3.1 Tunable LWPR Parameters . 41

3.2 Nessie’s navigation sensors . 46

3.3 LWPR Hyperparameters after optimisation 49

3.4 Cross Validation Statistics . 49

4.1 Confusion Matrix of the Diagnostics System 90

4.2 Failure Mode Probabilities . 90

5.1 Prediction Accuracy and Model Activation 102

6.1 Confusion matrices for AdaBoost (above) and RUSBoost (below) . . 111

v

List of Figures

3.1 The problem of local minima in optimisation 43

3.2 Nessie is the main research platform of the Oceans System Lab. It is

a hover capable torpedo shaped AUV with a variety of sensors that

are used for navigation (DVL,Gyro,Compass) as well as a Blueview

forward looking sonar for perception. 45

3.3 illustration of Nessie’s thrusters . 45

3.4 illustration of Nessie’s dofs . 46

3.5 Normalized Mean Square Error (nRMSE) as a function of n; the

number of previous states that are used as input to the model. For

each value of n, ten models were trained on random permutations of

the training set. Next, the nRMSE was computed for all the models

using the cross-validation set. The geometric mean of each group of

models was plotted against n. The resulting learning curve indicates

the number n = 4 as the optimal choice. 48

3.6 Partial auto-correlation for the surge dimension. In time series anal-

ysis, the partial auto-correlation α(n) is the correlation between the

samples Xk and Xk−n of a time series X. The partial auto-correlation

is used to define the order of auto-regression in an ARMA model;

namely, the number of past samples used to forecast the value of a

process. For n > 4 the influence of the n-th sample becomes negligible. 48

3.7 Comparison between the actual surge velocity and the predictions

from the hydrodynamics and from our method. 49

3.8 Comparison between the actual sway velocity and the predictions

from the hydrodynamics and from our method. 50

vi

3.9 Comparison between the actual sway velocity and the predictions

from the hydrodynamics and from our method. 50

3.10 Comparison between the actual yaw acceleration and the predictions

from the hydrodynamics and from our method. 50

4.1 Example of mixtures of Gaussians 53

4.2 Sample Bayesian Network . 55

4.3 A Hidden Markov Model (HMM) depicted as 2-slice Dynamic

Bayesian Network . 56

4.4 Kalman Filter with variable measurement noise model used for outlier

robust filtering . 58

4.5 Kalman Filter with varying measurement covariance; the resulting

covariance is equal to the initial, scaled by a weight. The weight is

computed at runtime [1] . 60

4.6 The top figure compares the performance of the algorithm with the

standard Kalman filter for the simulated system, as described in equa-

tion (4.23). In this experiment, the measurements were corrupted

with outliers. The bottom figure shows the sampled weight in each

iteration of the algorithm . 64

4.7 The top figure illustrates the output of the algorithm for the sim-

ulated system, as described in equation (4.23). In this experiment,

the measurement was stuck to a constant value of 0.15. The bot-

tom graph shows the effective measurement uncertainty (i.e., R/wk)

throughout the simulation. 65

4.8 Probability distribution P (wk) ∼ Gamma(a, b). The computed shape

and scale parameters for the distribution are such that the probability

of small values for wk tends infinity. Intuitively, the algorithm does

not rely on the sensor reading and favours the model prediction. This

is a result of the constant mismatch between the sensor and the model,

which followed the simulated sensor failure. 66

vii

4.9 The figure on the top compares the estimated surge velocity, as com-

puted by the standard Kalman filter and the suggested algorithm.

At the bottom, the outlier corrupted measurement which is consid-

ered by both filters is shown. The time instant at which the failure

occurred is marked with a black diamond. 67

4.10 The figure on the top compares the surge velocities when the mea-

surement is stuck at a constant value equal to 0.01. At the bottom,

the output of the ”stuck” sensor is plotted against the original mea-

surement. 67

4.11 Schematic representation of the Self-Tuning Kalman Filter (STKF)

that estimates the instantaneous velocity of the vehicle in the body

frame. During the prediction step, the dynamic model, based on Lo-

cally Weighted Projection Regression, estimates the robot’s state (i.e.,

the surge velocity, the sway velocity and the yaw rate). The prediction

step is executed synchronously at a frequency of 30 Hertz. The pre-

dicted state x̂pred and the respective confidence interval σmodel define

a probability distribution N (x̂pred, σ
2
model) for the state. Conversely,

the update step occurs asynchronously; whenever a new measurement

zk arrives. During the update step, the algorithm estimates the vari-

ance of the measurement σsensor, as in the Outlier Robust Kalman

Filter; yielding a probability distribution N (zk, σ
2
sensor) for the mea-

surement. The resulting probability distributions are combined as in

the standard Kalman Filter, to compute the instantaneous velocity

of the vehicle in the body frame . 69

4.12 The top graph compares the estimated surge velocity with the respec-

tive DVL measurement. The bottom graph illustrates the stream of

measurements that was available navigation algorithm. The RMSE

of the algorithm’s estimation for this experiment is equal to 0.041

m/sec . 78

viii

4.13 The top graph compares the estimated sway velocity with the respec-

tive DVL measurement. The bottom graph illustrates the stream of

measurements that was available navigation algorithm. The RMSE

of the algorithm’s estimation for this experiment is equal to 0.024

m/sec . 79

4.14 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.048 m/sec 79

4.15 The top graph compares the estimated sway velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.0248 m/sec 80

4.16 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.055 m/sec 80

4.17 The top graph compares the estimated sway velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.025 m/sec 81

ix

4.18 In this experiment the gyro measurement was corrupted with out-

liers. The outlier generation probability was equal to 0.4. The fault

occurred at a certain time instant denoted by a black diamond. The

top graph compares the estimated yaw rate with the actual gyro mea-

surement. Moreover, the output of the standard Kalman Filter is also

given for comparison. At the bottom the actual measurement and the

measurement after simulating the failure are provided. This experi-

ment took place in the wave tank in Heriot-Watt. The RMSE for this

experiment is equal to 0.19 rad/sec 81

4.19 In this experiment the gyro measurement was stuck at a constant

value of 0.4 rad/sec. The fault occurred at a certain time instant

denoted by a black diamond. The top graph compares the estimated

yaw rate with the actual gyro measurement. Moreover, the output

of the standard Kalman Filter is also given for comparison. At the

bottom the actual measurement and the measurement after simulat-

ing the failure are provided. This experiment took place in the wave

tank in Heriot-Watt. The RMSE for this experiment is equal to 0.178

rad/sec . 82

4.20 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.073 m/sec 82

4.21 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.05 m/sec 83

x

4.22 The top graph compares the estimated yaw rate with the actual gyro

measurement. Moreover, the output of the standard Kalman Filter is

also given for comparison. The bottom graph illustrates the stream

of measurements that was available both to our navigation algorithm

and the Kalman Filter. The RMSE for this experiment is equal to

0.165 rad/sec . 83

4.23 Wave tank experiment summary. The surge and sway RMSE is in

[m/sec], whereas for the yaw rate in [rad/sec]. The compound fault

in the last experiment was simulated by introducing outliers to the

DVL, while in parallel the gyro’s output got stuck at a constant value. 84

4.24 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.17 m/sec 84

4.25 The top graph compares the estimated surge velocity with the re-

spective DVL measurement. Moreover, the output of the standard

Kalman Filter is also given for comparison. The bottom graph il-

lustrates the stream of measurements that was available both to our

navigation algorithm and the Kalman Filter. The RMSE for this

experiment is equal to 0.05 m/sec 85

xi

4.26 In this experiment the gyro measurement was corrupted with out-

liers. The outlier generation probability was equal to 0.2. The fault

occurred at a certain time instant denoted by a black diamond. The

top graph compares the estimated yaw rate with the actual gyro mea-

surement. Moreover, the output of the standard Kalman Filter is also

given for comparison. At the bottom the actual measurement and the

measurement after simulating the failure are provided. This exper-

iment took place in the SAUC-E competition arena at CMRE. The

RMSE for this experiment is equal to 0.16 rad/sec 85

4.27 Comparison of the robot’s estimated path, as computed by integrat-

ing the output of the proposed navigation algorithm, with the path

computed by integrating appropriately the actual DVL measurements

(ground truth). In this experiment the DVL went suddenly offline

(black diamond). The experiment took place in the wave tank in

Heriot-Watt . 86

4.28 Comparison of the robot’s estimated path, as computed by integrat-

ing the output of the proposed navigation algorithm, with the path

computed by integrating appropriately the actual DVL measurements

(ground truth). In this experiment the DVL measurement was cor-

rupted with outliers with probability p = 0.4. The experiment took

place in the wave tank in Heriot-Watt 87

4.29 Comparison of the robot’s estimated path, as computed by integrat-

ing the output of the proposed navigation algorithm, with the path

computed by integrating appropriately the actual DVL measurements

(ground truth). In this experiment the DVL measurement was stuck

to a constant value of zero. The experiment took place in the wave

tank in Heriot-Watt . 87

xii

4.30 Comparison of the robot’s estimated path, as computed by integrat-

ing the output of the proposed navigation algorithm, with the path

computed by integrating appropriately the actual DVL measurements

(ground truth). In this experiment the DVL measurement was cor-

rupted with outliers with probability p = 0.2. The experiment took

place in the SAUCE-E competition arena in CMRE. 88

5.1 Representation of the fault detection algorithm as two-slice Dynamic

Bayesian Network. 94

5.2 Importance weighing of previous training data samples for a forget-

ting factor λ = 0.995 . 97

5.3 Sigmoid function with α = 10 and c = 0.5.This function regulates

the forgetting factor for the model adaptation given the probability

p(s2 = 1) . 98

5.4 Approximation of the probability distribution p(s2) as a histogram

for the activation value of the adaptive model for the healthy case . . 99

5.5 Approximation of the probability distribution as a histogram for the

activation value of the adaptive model for the defective case (complete

thruster failure). 100

5.6 Comparison between the nominal and adaptive model prediction.

Sensor measurements are utilised to indicate the validity of each

model prediction (complete thruster failure). 100

5.7 Comparison between the nominal and adaptive model prediction.

Sensor measurements are utilised to indicate the validity of each

model prediction (thruster output limited at 68% of maximum thrust).101

5.8 Approximation of the probability distribution as a histogram for the

activation value of the adaptive model for the defective case (thruster

output limited at 68% of maximum thrust). 101

5.9 Comparison between the nominal and adaptive model prediction.

Sensor measurements are utilised to indicate the validity of each

model prediction (thruster output limited at 51% of maximum thrust).101

xiii

5.10 Approximation of the probability distribution as a histogram for the

activation value of the adaptive model for the defective case (thruster

output limited at 51% of maximum thrust) 102

5.11 Approximation of the probability distribution as a histogram for the

activation value of the adaptive model. In this experiment the sensor

output was corrupted with randomly generated outliers. The proba-

bility of outlier generation is poutlier = 0.1. 103

5.12 Comparison between the sensor provided to the algorithm and the

yielded state. Obviously the system is able to reject outliers without

considering that particular situation as a possible dynamic shift. . . . 103

6.1 Schematic representation of diagnostics and prognostics overlap . . . 106

6.2 Synthetic example of a skewed dataset within a classification problem 107

6.3 This graph shows the one step prediction from the model on a cross-

validation set compared with the original value. The size of the cross-

validation set consists of approximately 20% of the full data. The

mean square error for the one-step prediction was 1.1 · 10−4. 109

6.4 This graph shows the reconstructed trajectory of the first state of the

engine as computed by our model. The auto-regressive model uses

8 lags for both the input and the output. To create this graph the

actual input of the engine was used. We can see that the estimated

trajectory accurately follows the original state trajectory of the engine.110

6.5 This figure shows the miss-classification rate for the RUSBoost classi-

fier versus the number of weak learners used. The performance of the

algorithm was evaluated on a cross-validation set. The classification

error converges asymptotically to its minimum after 700 weak learners.111

xiv

6.6 This graph shows the total engine life, as given by the dataset, com-

pared to the total life, computed by our prognostic algorithm. The

total life is computed by adding the time when the forecast started

with the remaining useful life prediction of the engine. The input

used in this experiment was assumed to be known (the input history

from the dataset has been used) . 114

6.7 In this experiment, the computation was repeated as described in

Figure 6.6 with different assumptions over the input. Here we didn’t

use the true values of the future input. A constant value equal to the

last known input was used for the future predictions of the model.

We can see that the accuracy of the estimation dropped significantly. 114

6.8 In this experiment, the input was assumed to be equal to the mean

value of the previous input trajectories. Again, the performance be-

comes worse for the majority of the test engines. 115

6.9 In this experiment, the input was forecasted by an Auto-Regressive

model (AR). The AR model was of order 4 and its parameters were

identified using the past input history. In this figure, we can see that

the algorithm still predicts the total life of the engine quite accurately.115

6.10 We repeated the experiment described in Figure 6.6 on another

dataset provided by Ames Centre. The difference in that one is that

it comprises engines with two types of fault. The purpose of this ex-

periment was to check the robustness of the RUSBoost classifier in

the case of multiple faults. The figure above shows the results when

the original input is used. The figure below was created using an

autoregressive model to forecast the input. 116

A.1 Example of least-squares regression. The line the best fits the ob-

served data (in red) is: y = 5x; as yielded by the least-squares

method. The indicated line is also plotted. 124

A.2 Locally Weighted Regression using a Gaussian Kernel 125

A.3 LWPR schematic representation . 127

xv

B.1 Illustration of the sigmoid function used for Logistic Regression . . . 135

C.1 Illustration of the Variational Bayes Approximation. Given that the

term lnP (y) is constant, maximization of the lower bound L is equiv-

alent to the minimisation of the Kullback-Leibler divergence between

the approximate distribution P̃ (x) and the conditional distribution

P (x|y) . 138

xvi

Chapter 1

Introduction

1.1 Problem Statement

An autonomous system performs a prescribed task without any external supervi-

sion or support. Autonomous systems (AS) have long been used for tasks where

human intervention is problematic. Space exploration and unmanned -aerial and

underwater- missions are among the most common applications of autonomous sys-

tems. Also, many researchers investigate the use of such systems in search-and-

rescue operations. Apart from scientific missions and research, autonomous systems

are also ubiquitous in industry. Over the last decades, the autonomy of produc-

tion has increased significantly. A typical example from the energy sector is that of

’smart grids’. The smart grid adapts autonomously to shifts in client demand and

changes in the network topology. In this way, the network efficiency is optimised

based on real-time information about clients’ power consumption. In general, there

is an observable increase in systems that are intelligent to carry out a task and adapt

to changes autonomously.

Making a system fully autonomous is very difficult. Apart from physical con-

straints, (e.g., energy autonomy, data storage and communications) autonomous

agents require sophisticated decision mechanisms to plan their actions. System

complexity, as well as the inherent unpredictability of the operating environment,

further exacerbate this problem. For this reason, systems are often designed to be

autonomous in narrow regions of their operating range. Control theory provides

1

Chapter 1: Introduction

the means to achieve system stability in a neighbourhood around an operational

point. Optimal control schemes drive the system along trajectories that optimise

certain criteria. Robust control techniques assist a system’s function in the presence

of bounded disturbances.

Global autonomy (i.e., not within a specific region of operation) requires more

sophisticated deliberation capabilities. Autonomous systems sense and reason about

the environment; appropriately adjusting their actions towards fulfilling the mission

at hand. Failure to complete a mission often comes as a result of the uncertainty

about the world; this includes uncertainty about the system’s integrity as well.

Hardware failures, for example, may render a system inoperable, and hence incapable

of achieving its goal. In such cases, human intervention is needed to restore the lost

functionality.

To this end, the notion of reliability, namely preserving the functionality of the

system, is an area of significant importance in the development of truly autonomous

systems. Using information about the health state of the system helps to plan in

a way, that the effect of hardware failures on the mission’s outcome is kept to a

minimum. This is done by either preventing failure or by treating failures in an

optimal fashion. An autonomous underwater agent, for example, may deliberately

use just part of its actual locomotion capabilities (e.g., move with reduced speed),

to protect a thruster that is about to fail.

Several issues need to be addressed on the way towards persistent autonomy.

Highly non-linear dynamics often govern real-world autonomous systems. An ac-

curate dynamic model will play an instrumental role in the development of the

presented algorithms. It is important to have a convenient and accurate method for

dynamic modelling. Moreover, variability in either the operational conditions or the

dynamic parameters requires a flexible representation; one that can easily adapt to

dynamic alterations.

An integral part of practically every modern engineering asset is sensor instru-

mentation. Sensors are widely used to measure quantities relevant to a system.

The information of the sensors is often used to make decisions at runtime. Quite

2

Chapter 1: Introduction

commonly, however, sensors fail; leaving the system with unreliable information, if

any at all. Long term autonomy requires that the system detects whether there

is a problem with the sensors, and consequently it relies on alternative sources of

information to operate further.

Apart from dynamic and operational variability, autonomous systems may ex-

hibit altered dynamic behaviour due to a hardware failure. An underwater vehicle,

for example, may lose acceleration capabilities because of a defective thruster. Even

worse in some cases, the vehicle might lose a full degree of freedom; i.e., the vehicle

will not be able to move along one dimension that it previously could. Identifying

such a situation provides the opportunity for reaction; i.e., that the policy of the

autonomous system is revisited to accommodate the new situation. In this way,

alternative capabilities may be exploited to pursue the achievement of the mission

persistently.

Assuming that a sensor failure is more probable than a dynamic alteration (and

vice versa) simplifies the problem significantly. It is hard to understand whether

the autonomous system started behaving differently, or if a sensor has failed and

the discrepancy originates from the observations. To properly address this issue,

additional information may be required.

Whereas fault mitigation systems for sensor failures and model alterations con-

sider what has happened, prognostics pertain to the computation of how long a

component will be functional. This information will be taken into account during

mission planning; producing as such more reliable plans that maximise the probabil-

ity of mission completion. Prognostics can also alter the agent’s policy in real-time.

Given that the life expectancy of a component falls critically low, the agent may

switch to an alternative plan. For example, the power grid may change topol-

ogy (e.g., disconnect/connect an extra generator) after realising that one certain

hardware component is about to fail. An underwater vehicle may drop the inspec-

tion of remote targets - despite a hypothetical higher utility - and visit targets that

are nearby, in light of an impending thruster failure.

3

Chapter 1: Introduction

1.2 Approach

As mentioned earlier, modern systems are equipped with a plethora of diverse sen-

sors. The sensors provide useful information about the monitored system. This

information is often high-dimensional; hence, it requires suitable algorithms to ex-

tract the part that is relevant to the task. Contemporary data mining and machine

learning algorithms constitute a powerful arsenal for this matter.

As previously mentioned, the autonomous agent needs to infer about the state

of the world. Such inference is subject to all sorts of uncertainty. For this reason,

a suitable framework, i.e., one that considers uncertainty, is required. This frame-

work is provided by Bayesian Networks (BN). A Bayesian Network is a graphical

representation of conditional dependencies between a set of random variables. In

other words, a BN is used to decompose the joint probability of a set of random vari-

ables (i.e., variables that are sampled from a probability distribution) to a product of

simpler factors; exploiting the conditional dependences of the latter. Given the joint

probability distribution, any query combination can be answered by setting the vari-

ables that represent the observations and marginalising (summing over all possible

events) the variables that are neither evidence nor query variables. Marginalisa-

tion is what hinders efficient computation of the queries; sometimes making them

even computationally intractable. To this end, several, algorithms have been devel-

oped both for answering the exact question or an approximate one; i.e., exact and

approximate inference respectively.

The choice between exact and approximate inference depends on the constraints

of the application. Exact inference accurately answers a query, whereas approximate

inference provides a mere estimation. However, approximate inference is, in general,

much faster. In what follows, Bayesian Networks are widely used to answer queries

about the system’s hardware integrity. Due to real-time constraints, approximate

inference was the machinery employed in this thesis. Non-linear regression and

Bayesian inference (together with some other machine learning algorithms) have

been combined to advance the state-of-the-art in fault detection and mitigation.

Bayesian reasoning has met great success and appreciation within most research

4

Chapter 1: Introduction

fields. It is a straightforward way of explaining the world in a probabilistic fashion.

Prior knowledge is rigorously incorporated in the initialisation of the probability

distribution. Accumulated evidence, in turn, alters the initial distributions to abide

with the observation in the world. With the use of probability distributions, uncer-

tainty is addressed in an elegant and efficient manner.

Machine learning offers several options for approximating non-linear relations.

Such algorithms are presented with a set of examples (training data). Given ade-

quate training, the algorithm can compute estimates for new queries. Specifically,

non-parametric (kernel-based) algorithms have been used in this thesis. The main

reason for that is that kernel methods do not require any assumptions; in partic-

ular, about the class of candidate functions. Moreover, machine learning provides

several algorithms that can adapt at runtime. In this way, the problem of dynamic

variability can be alleviated by using a core model, and use the adaptive traits of

the algorithm for fine-tuning.

This technology has matured within the cycles of computer science. Neverthe-

less, other engineering fields have not fully exploited the power of machine learning.

In particular, fault mitigation and prognostics can benefit strongly from such al-

gorithms. Robotics, and, in particular, autonomous underwater vehicles, are more

up to date; albeit the current state-of-the-art lags significantly from computer sci-

ence research frontier. The goal of this thesis is to tailor cutting-edge algorithmic

technology to the engineering specifications of autonomous systems. The following

chapters attempt to bridge this gap by using machine learning techniques to develop

robust algorithms to be used in real-world autonomous systems.

1.3 Contribution

The contribution of this thesis is that it bridges the gap between the algorithmic

advances in computer science and the real-world demands of modern autonomous

systems. A versatile reasoning system has been developed that can deal with sensor

failures in real time. The latter was extended appropriately, to reason for alter-

ations in the dynamics. This capability has been showcased again on underwater

5

Chapter 1: Introduction

navigation; particularly, for thruster failure detection. Adaptive modelling, and in

particular Locally Weighted Projection Regression (LWPR), have been widely ex-

plored. The integration of LWPR within a Bayesian Filtering framework is another

contribution of this work. Even though the algorithm was demonstrated for un-

derwater navigation, it provides a general substrate for sensor failure prone systems

with highly non-linear dynamics. The algorithms presented in the following chapters

require minimum tuning by the user. Expert knowledge is incorporated formally by

the use of prior distributions. A novel algorithm for data-driven prognostics has

been developed. The presented algorithm not only exhibits adaptive behaviour to

remedy ageing and dynamic variation; it also, through the use of a robust high-

end classifier, tackles the problem of imbalanced datasets, which often appears in

the prognostics literature. The main points of contribution accompanied by the

respective publication, if available, are summarised below:

• the thesis showcases the application of adaptive, data-based modelling to un-

derwater dynamic modelling for navigation [156]

• we combined LWPR with bayesian filtering to yield a navigation algorithm that

is robust to common sensor failures and tested the algorithm on experimental

data [184]

• we used mixtures of Gaussians and bayesian filtering to yield an algorithm

that can distinguish sensor failures from dynamic alterations; the algorithm

was tested on experimental data [185]

• the thesis presents a new data-driven prognostic algorithm that solves the

problem of misclassification of failures due to misrepresentation of the latter

in the training dataset [186]

• the thesis provides a systematic way of designing and implementing a bayesian

filter from scratch; theory about approximate inference is presented as the

means to derive the recursive equations of any bayesian filter.

6

Chapter 1: Introduction

1.4 Structure

The structure of this thesis is as follows: Chapter 2 provides an in-depth review of

the state of the art in fault detection and prognostics. Moreover, a separate section in

that particular chapter is devoted to underwater navigation. This is mainly because

underwater navigation was the main application scenario, on which most of the

algorithms have been showcased. Chapter 3 introduces general concepts in dynamic

modelling. Moreover, chapter 3 explains the particular algorithm that has been used

for dynamic modelling. Next, chapter 4 describes two outlier robust algorithms

that have been used to mitigate sensor failures. Chapter 5 extends the previous

algorithms to the case of actuator failures. Following that, chapter 6 presents a

novel algorithm for data-driven prognostics. Lastly, chapter 7 concludes this brief;

summarising the main achievements and presenting possible future directions that

would further advance the state-of-the-art in autonomous systems.

7

Chapter 2

Relevant Work

Many of the concepts, utilised in this thesis, originate from recursive estimation;

in particular, recursive bayesian estimation. In recursive Bayesian estimation, the

goal is to estimate the unknown state of a system given measurements and a model

for the system’s dynamics. Increasing hardware robustness, in this context, means

to identify which source of information to trust more; i.e., sensor measurements, or

estimation of the model dynamics. When a sensor fails, model predictions can help

to continue operation or -at least- to stop operations safely. Model estimates, on the

other hand, indicate whether the autonomous system operates as expected. Recur-

sive estimation bears considerable resemblance to diagnostic algorithms since many

of the latter are special cases of recursive state estimation problems. Nevertheless,

diagnostics are more application dependent, whereas recursive estimation attacks

the problem in a more general way.

Increasing the robustness of autonomous systems combines several fields of re-

search. Mainly, for hardware degradation, several papers have reported on algo-

rithms that treat faults at different levels. Some approaches deal with failures that

have occurred in the present or the recent past. These methods fall into Diagnos-

tics. Diagnostics is a well-established field of engineering, albeit it can significantly

benefit from recent advances in Machine Learning. Briefly, diagnostics attempt to

detect, isolate and recover from failure. Section 4.2 offers an extended review of the

field.

Conversely, prognostics revolve around the notion of Remaining Useful Life;

8

Chapter 2: Relevant Work

that is, to estimate how long a hardware component can operate above a predefined

threshold level. The above problem is, in fact, a diagnostic problem shifted in the

future. Hence, prognostic algorithms often share many similarities with diagnostic

algorithms. However, prognostics is still a budding field of research; it has not

reached the level of maturity of diagnostics. That is because, involved systems

are hard to model; hence, hard to predict robustly future behaviour. Section 2.2

describes some early attempts, as well as recent advances in prognostic algorithms.

Much of the experimental validation of this thesis is performed on an Au-

tonomous Underwater Vehicle. Specifically, the developed algorithms were applied

to aid navigation in case of hardware (sensor and actuator) failures. For this reason,

the last section of this chapter 2.3 is devoted to work from the underwater navigation

literature.

2.1 Diagnostics

Diagnostics pertain to the detection and isolation of both abrupt and incipient

faults in machines. Abrupt faults occur suddenly, whereas incipient faults cause a

gradual degradation before complete failure. Another categorisation is based on how

a defect influences the process state. Additive faults (e.g. sensor and actuator faults)

corrupt the state evolution by adding an unknown quantity; the fault is modelled as

an external disturbance entering the system. On the other hand, parameter faults

act in a multiplicative manner. Diagnostic systems detect deviations from normal

operation as a result of faults. It is often hard to infer whether such a difference

is due to a defect or caused by other factors (normal ageing, a shift in operating

conditions). Also, for the sake of reliability, the number of false alarms needs to be

kept to a minimum [2]. Following fault detection, the system attempts a diagnosis ;

it tries to reason about what led the process to an out-of-control situation.

Many diagnostic algorithms reason about failures by examining features of raw

signals [3]. Depending on the application, features reveal different aspects that could

potentially influence diagnostic performance. Signals may be processed in either the

time domain or the frequency domain. Time domain analysis involves statistical

9

Chapter 2: Relevant Work

computation of signal properties in the signal’s original form; i.e., as recorded by the

sensors. Examples of time domain features include, a signal’s mean and standard

deviation, as well as signal peak and peak-to-peak intervals. Often, high-order

statistics are also computed (e.g., root mean square, skewness, kurtosis). A prevalent

amongst time-domain approaches is the Time Synchronous Average (TSA); where,

before computing the above statistics, several time series are averaged to decrease

the signal’s noise.

An overview of TSA approaches may be found in [4]; moreover, [5] discusses the

shortcomings briefly. Commonly, Autoregressive (AR) models have been applied

to time-domain signals. For example, Poyhonen et al. [6] fitted an autoregressive

model to vibration signals, originating from an electrical motor. Next, the coef-

ficients of the autoregressive model have been utilised as features for diagnostic

inference. Apart from standard autoregression models, several time-series approxi-

mation tools have been put to the task of feature extraction. Specifically, Baillie and

Mathew [7] provide a comparison of AR models, with standard neural networks and

radial basis function networks. Because of sensor abundance of modern autonomous

systems, feature extraction can often become a high-dimensional problem. To this

end, Garga et al. [8] combined autoregressive models with dimensionality reduction.

Autoregression, expressed as a state-space model, has also been exploited for the

analysis of vibration signals [9]. In general, time-domain approaches suffer from

complexity in building the model, as well as, from determining the order of the

model. For these reasons, many researches have shifted focus to different feature

extraction regimes.

Contrary to time-domain analysis, an alternative approach is to process the

signal after transforming it to the frequency domain. This is particularly useful

in the case of periodic phenomena (e.g., in the diagnostics of rotating machinery).

Moreover, often hardware degradation is accompanied by unexpected vibrations.

The latter would appear as an unexpected peak in the respective frequency range.

This undesired vibration may be easily isolated. The most common way to perform

such a signal transformation is the Fourier Transform; particularly, the Fast Fourier

10

Chapter 2: Relevant Work

Transform (FFT). Most commercial engineering software provides a FFT as a built-

in functionality.

The prevalent metric that appears in frequency domain methods is the power

spectrum of the signal. The latter is defined as the expected value of the squared

Fourier transform of the original signal, and is indicative of the presence of each

signal frequency. Graphical tools for the facilitation of spectrum analysis have been

widely used for fault detection and diagnostics; examples of the latter include fre-

quency filters, envelope analysis [10], side band structure analysis [11], Hilbert trans-

form [12, 13]. As mentioned before, power spectrum analysis has ubiquitous success

stories in the diagnostics literature. However, other spectra-analysis methods also

provide an interesting insight in certain cases. One class of approaches, namely

Cepstrum relies on the detection of harmonics and side-band combinations of fre-

quencies. A more rigorous definition of cepstrum can be found in [14]. Among

several definitions, the most commonly used is as follows: cepstrum is the inverse

Fourier transform of the logarithmic power spectrum. A slightly modified analysis

is presented in [15]. Some approaches utilize high-order spectra for fault detection,

especially in the case of non-Gaussian signals; i.e., when signals are corrupted with

non-Gaussian noise. Specifically, bispectrum and trispectrum, namely the Fourier

transform of the third and forth order statistics of the original time-domain wave-

form respectively, have been extensively used for diagnostics on mechanical systems.

For example, bispectrum analysis have been applied by [16] for fault detection per-

taining to gears; [17] applied bispectrum for bearing diagnostics. Bispectrum has

been also used for rotating [18] and induction machines [19, 20]. Bispectrum and

trispectrum as a means to bearing fault diagnostics was discussed in [21]. A new

approach, namely holospectrum, was first reported by Qu et al. [22]. Holospectrum

exploits all sort of signal traits, including phase, amplitude and signal frequency.

Application of holospectrum to fault detection is reported in [23].

Frequency domain analysis is restricted to stationary signals. The stationarity

assumption is often not viable for failing hardware. To remedy this limitation, time-

frequency analysis examines the signal in both the time and frequency domain.

11

Chapter 2: Relevant Work

Specifically, time-frequency techniques use two-dimensional energy functions with

respect to time and frequency. Emerging patterns of this energy function facilitate

accurate diagnostics. Another way to tackle the problem of non-stationary wave-

forms is to approximate them locally as stationary; known in the literature as the

Short-time Fourier transform (STFT) [24].

Most prominent on this analysis regime is the wavelet transform. In wavelet

transform analysis the signal is decomposed into a series of periodic functions with

different frequencies at different times; i.e., not merely sinusoid functions as in the

Fourier transform. Similarly to the phase in the frequency domain a translation

parameter shifts the wavelets to reconstruct the original signal. The main advantage

in using wavelets is that they yield non-uniform resolution in different parts of the

time-frequency domain. Specifically, for signals with high-duration low frequency

content and short duration high frequency, the wavelet transform will have high

frequency resolution in low frequencies and high time resolution at high frequencies.

Moreover, the wavelet transform is robust to noise infected signals. [25] report the

use of wavelet transform for the detection of faults in gears. [26], in turn, provide

an example of the wavelet transform applied on gears; whereas, [27] utilize the

same diagnostic principle on other mechanical systems. A comparison between the

wavelet transform and other available vibration analyses is presented in Dalpiaz and

Rivola [28]. The wavelet transform attracted the strong interest of many researchers

in the field: Addison et al. [29] used low-frequency wavelets for feature detection.

The Haar wavelet has been employed by [30]. In an effort to combine the advantages

of both methods, [31] composed wavelet transform with standard Fourier transform

to aid the extraction of features related to component failure. Another common

approach for fault detection is known as wavelet packet transform [32]. Using the

basis from the wavelet packet decomposition, the signal can be filtered and the more

salient wavelets are used to compose features for fault detection. This approach is

known as basis pursuit [33]. A detailed review on the applications of wavelet packet

transform in the context of machine reliability can be found in [34].

Characterisation of faults in terms of signal features has had various success

12

Chapter 2: Relevant Work

stories. However, deciding which features to consider for fault detection is often a

daunting process, for it requires extensive understanding of the dynamics of each

particular failure mode. Moreover, the resulting features require additional sensors.

In many systems, space limitation prohibits auxiliary instrumentation. Frequency

methods have exhibited robustness to noise and have been successfully applied in

versatile fault detection applications. Successful as it is in the component level,

feature based diagnostics fails to scale to complex systems. Finally, feature based

techniques provide detection and isolation, yet they do not assist continuation of

operation; they merely provide information on what went wrong. Nevertheless,

feature-based diagnostics constitutes a valuable tool for post-failure evaluation of

the incurred hardware damage.

Quite often engineers install multiple components of the same functional-

ity(hardware redundancy), to ensure the safe operation of the plant in case of fail-

ure. The same concept can be applied to diagnose defective sensors. By having

multiple sensors measuring the same or similar signals, detection and isolation of

faulty sensors becomes quite easy. Nevertheless, this approach is intrusive and often

not applicable in practice. Furthermore, it increases the cost of instrumentation

as well as the computational cost of information processing. For the case of au-

tonomous systems, in particular, hardware redundancy is hardly ever the choice;

unless, a mission critical component is proven to fail very frequently. Rather than

hardware redundancy, most systems leverage either the concept of analytical redun-

dancy - model-based approaches (see section 2.1.1)- or historical data (see sections

2.1.2, 2.1.3) to perform fault detection. There are three main approaches for fault

detection in the literature:

• Model-based approaches

• Statistical approaches

• Artificial Intelligence approaches

In the remaining part of this section, the most representative methods for the afore-

mentioned categories are presented.

13

Chapter 2: Relevant Work

2.1.1 Model-based approaches

Model based approaches use a mathematical representation to estimate the future

state and output of the system. This estimation, combined with measurements from

the sensors yields the residuals that are used for fault detection. Next, the system

infers whether these residuals are indicative of faulty behaviour (residual evaluation).

For this reason, the generated residuals must be zero - zero mean in practice - in

the absence of a fault [35]. Some systems are also able to provide deeper insight on

the nature of the failure based on the form of the residual.

In model-based approaches the residuals are generated using Analytical Redun-

dancy Relations (ARR). An Analytical Redundancy Relation is a constraint between

the observed variables of a system [36]. The combination of all these relations builds

up a model of the system which can estimate the value of the output variables. This

model combined with the readings from the sensors produces the residuals.

One early expression of analytical redundancy, on which several fault detec-

tion methods have been based, is that of parity relations. Complying to the ARR

paradigm, parity relation based fault diagnostics relied on the residuals between

the system and model output. Next, a linear transformation is applied to rotate

the data along the dimension most discriminative for the faulty behaviour. The

described two-step process constitutes a residual generation mechanism; indicative

for one or a set of faults that are known a priori. The set of faults depends on prior

knowledge about the fault dynamics. The linear transformation that is applied on

the generated residuals is often expressed as a linear filter. Residual generation fil-

ters are built in a way that facilitates fault isolation, namely the identification of

a particular fault. To this end, they must exhibit some kind of sensitivity -either

directional or structural- to the properties of the fault. Moreover, residual filters

must be robust to noise originating either from modelling errors or inherent sensor

uncertainty. As one of the earliest model-based approaches, fault-detection litera-

ture offers extensive survey papers on parity relations [37, 38, 39]. Specifically, [37]

reports on the process of residual generation for additive and multiplicative faults;

moreover, implementation issues are also addressed.

14

Chapter 2: Relevant Work

The construction of the model is hard in most cases due to the large number of

state variables involved. Another way of constructing a residual-based fault detec-

tion system is by using bond graphs. Bouamama et al. [40] use bond graphs [41]

to eliminate the unknown system variables and provide an input-output mapping,

namely the analytical redundancy relations. Bond graphs are compact representa-

tions of dynamic systems that can capture interactions between various subsystems

in a common framework. This feature is pretty useful in practice, since most systems

consist of various subsystems with different -yet coupled- dynamics. A limitation of

the Bond Graphs is that they fail to model hybrid systems, i.e., systems with both

continuous and discrete states. The Hybrid-Bond Graphs [42] have been employed

to remedy this limitation [43].

Following fault-detection, isolation of the fault becomes relevant. As mentioned

above, following residual generation, by any available model, the residuals are fur-

ther processed by a linear filter in a way that promotes fault isolation(enhanced

residuals). Appropriate choice of the transfer function of the filter eliminates the

influence of noise [35]. Additionally, it imposes certain behaviour of the residuals

in response to specific faults. An in depth description of the computation methods

of such residuals -both for additive and multiplicative faults- can be found in [44].

The most common types of enhanced residuals are the following:

• Diagonal residuals : each dimension of the residual vector is sensitive to one

fault only. In this way multiple faults can be isolated simultaneously

• Directional residuals : in this approach the fault response lies within a specific

direction (e.g., line) in the residual space. Multiple faults can be isolated

simultaneously if the respective directions are independent

• Structured residuals : the residuals are sensitive to a subset of faults. The

dependency between fault-residual is encoded in a matrix that has as rows the

residual elements and as columns the faults under consideration. An entry of

value “1” in the ij -th position means that the residual i is sensitive to fault

j. This induced fault matrix can be read in two ways: a) a row indicates the

faults that can influence a specific residual element b) a column is the fault

15

Chapter 2: Relevant Work

signature of a specific fault; the set of residuals that are influenced. A fault is

detectable if there is at least one non-zero entry in the corresponding column.

Furthermore, it can be isolated, if its fault signature is unique within the fault

matrix.

Observers: Luenberger observers are a well established way of reconstructing the

internal state of a system from known inputs and outputs. The state space formu-

lation can easily integrate additive faults as disturbances in the state equations.

Multiplicative faults are often transformed to additive faults with time-varying

disturbance-to state matrices [35]. The difference between the estimated and the

actual state forms the error vector, which is later multiplied by a weight matrix to

give the residuals. The gain of the observer as well as the weight matrix are chosen

appropriately to achieve either of the following objectives:

• robustness to input disturbances

• sensitivity to predefined faults

There is a trade-off in the choice of the aforementioned matrices. Sensitivity to

faults improves fault isolation but lacks robustness to disturbances. As an effort to

remedy the above limitation, unknown input observers have been developed. This

type of observer is explicitly designed to be robust to input uncertainty [45, 46].

Using full state unknown-input observers provides the designer enough flexibility

for fault isolation. Some researchers use Kalman filters to estimate the state before

the residual generator [47].

The gain of a fault-detection observer must provide stability and ensure that the

error corresponds to a specific fault and not to noise. This is achieved by ensuring

that error due to faults remains in direction in the state-space (a subspace). If

the set of subspaces, corresponding to individual faults, are linearly independent,

multiple faults can be detected in parallel; achieving as such fault isolability. Park

et al [48] describe the procedure of designing a fault-detection filter based on full-

state observers. In [49] a fault-detection filter is used to enhance aircraft reliability,

by monitoring the sensors and the actuators of an aircraft. In regions of marginal

16

Chapter 2: Relevant Work

stability, i.e., when the observer’s eigenvectors are ill-conditioned, the filter becomes

sensitive to parameter uncertainty. Filter robustness has been discussed in [50,

51]. [52] employs a game-theoretic approach to design a robust fault-detection filter.

Filter robustness has been approached from a completely alternative point of

view; optimisation schemes have been applied to design fault-detection filters with

minimum sensitivity to uncertainty, albeit with maximum fault-isolation sensitiv-

ity. Stoustrup and Niemann [53] provide a survey of optimisation-based approaches.

Specifically, fault detection and isolation is formulated as a general robust control

problem. It is the first complete discussion of both closed-loop control performance

and fault-detection capability. [53] showed that there is a trade-off between control

performance of the closed-loop system and performance of the reliability framework

for systems with unknown parameters. [54] investigated fault detection for linear

systems with modelling uncertainties using the parameter-dependent bounding ap-

proach and multiplier theory [55]. Authors in [55] report that such approach is less

conservative than systems derived using the small gain theorem and general Lya-

punov stability concepts. Minimisation to parameter disturbance is then posed as

an optimisation problem subject to a Ricatti equation constraint. The yielded fault-

detection algorithm is applied on a flight control system.[56] derived a complete fault

detection and isolation algorithm using optimal estimation, where the objective is

to build an optimal estimator that is stable in the presence of noise. Both an H1

and an H2 norm of the signal have been exploited.

Another observer based-approach, that deals with multiplicative faults in their

original form, is the set-valued observer method [57]. The unknown parameters are

assumed to lie in a convex polytope. The estimation of the state produces a set of

possible states rather than a single value [58, 59]. This set is rarely convex, even

if the set of previous states is. To remedy that, the convex hull of the resulting

estimation set is computed. A fault is detected when the set of estimated states

is empty; there is no possible explanation for the state evolution. Furthermore, a

bank of Kalman filters is used for fault isolation. For every parameter in the convex

parameter polytope, a Kalman filter is designed. Following the detection of a fault,

17

Chapter 2: Relevant Work

all the filters are activated.

There are two common observer-based architectures for fault isolation [60]

• Dedicated Observer Scheme: the s-th residual is sensitive to one specific fault

and decoupled from all the others (strongly resembles the diagonal residuals

described above)

• Generalized Observe Scheme: the s-th is residual is sensitive to all but the

s-th fault

In the latter case the s-th fault is detected if all the residuals but the one associated

with s are above a certain threshold.

A special case of optimisation methods is that of Kalman Filter; it merely uses

a linear quadratic objective function. [61] introduced the Kalman filter as general

method for generating residuals, namely innovations. In the presence of a fault,

residual distribution exhibits a distinct bias; contrary to the healthy cases, where

residuals are merely corrupted by white noise. In this way, fault detection is per-

formed by testing the residual whiteness. Further statistical testing occurs on the

mean and covariance of the residuals. Exemplary statistical tools pertain fault de-

tection by residual evaluation are the Maximum-Likelihood (ML) method and the

generalized likelihood ratio (GLR).

A well-known Kalman filter for fault detection is based on the multiple-model

adaptive estimation principle (MMAE) [62]. In this approach the system dynamics

are modelled by a stochastic linear model with uncertain parameters. The param-

eters, which include the faults, take values from a discrete, countable set. For each

parameter permutation, a separate Kalman filter is instantiated; yielding a bank of

filters. MMAE can be found in many aerospace application comprising navigation

systems [63] and aircraft control systems [64]. Residual classification of the latter

has been considered by [65]. The yielded scheme was applied to sensor and actuator

failure in a flight control system. Since the number of imminent faults is known from

before and is finite, respective mitigation strategies may be developed. Nevertheless,

complete enumeration of faulty modes is unrealistic in many autonomous systems.

18

Chapter 2: Relevant Work

An increased number of possible faults would increase the computation cost to non-

applicable levels. Moreover, in many systems the known-faults assumptions is not

realistic.

Residual Evaluation After residual generation, the diagnostic system needs to

reason about the importance of a potential deviation from zero. A simple way to

do so is to use a threshold value, above which the difference from zero is considered

significant. The choice of the threshold is not straightforward. If the threshold is

set too low, the number of false alarms is likely to increase. To the contrary, a

high threshold will fail to detect faults. A static threshold may be inadequate, if

the residual generation is not inherently robust to input noise. Parameter shifts

due to aging cause additional problems in the application of static thresholds. A

way to mitigate this is to vary the threshold over time(adaptive thresholding). An

early version of adaptive thresholds based on fuzzy logic [66, 67] is presented in [68].

Zhang et al. in [69] describe a method to adjust the thresholds on-line given an

upper bound for the parameter uncertainty.

2.1.2 Statistical approaches

Model-based approaches have been used extensively for fault detection and isolation.

There are many situations, however, where acquiring the dynamic model of the sys-

tem is not straightforward. Several methods from the statistics literature have been

employed for fault detection in the absence of a mathematical model [3]. Historical

data are processed to extract feature properties for the nominal case (normal plant

operation), as well as for the faulty case.

The fault detection problem is posed as a statistical test; where, the null hy-

pothesis H0 represents the faulty mode of operation, and the alternative hypothesis

H1 which stands for operation in absence of faults. The data used for this particu-

lar inference are similar to data used for maintenance; intrusive machine inspection

is not required. A hypothesis test is chosen, providing as such an answer to the

fault-detection problem. Exemplary papers on this approach are [70]. A more re-

cent framework for fault diagnosis, namely the structural hypothesis tests, extends

19

Chapter 2: Relevant Work

single statistical tests to the case of multiple distinct faults. Another method, orig-

inating from quality control theory, has been widely applied: Statistical Process

Control (SPC) measures the deviation between a reference (baseline) representing

the normal operation and the actual measured state of the monitored agent. SPC

provides the reference values, above which the system is considered as broken. [71]

presents an application of statistical process control for damage detection.

Other examples of this paradigm are the Sequential Probability Ratio Test [72]

and the Cumulative Sum Ratio Test [73]. The latter also takes into account in-

cremental shifts that occurred in previous time instants. Hence,it is more effective

in detecting slow evolving incipient faults. Another common method uses control

charts [74], as in Statistical Process Control, to check whether the state variables

are within the plant’s in-control limits. Modern industrial processes have numer-

ous variables that need to be monitored. Instead of constructing individual control

charts for each, multivariate statistical metrics are used such as Hotelling’s T 2 or

the Q statistic [75].

One large limitation of all the above is the independence assumption for the

process variables. This assumption is often too crude in real world applications.

For this reason, tools from the field of multi-variate statistics have been used to

eliminate this drawback. Principal Component Analysis(PCA) [76] maps the data

to another space -often of lower dimension- using a linear transformation. The

bases vectors of the resulting space are sorted with respect to their contribution

in the data variance(first coordinate indicates the direction of most variance in the

data). Since the aforementioned vectors are orthogonal,the data is uncorrelated

in the transformed space. Dynamic PCA [77] has been developed to capture the

series correlation along the time axis as well. Dynamic PCA implicitly makes a

stationarity assumption, namely that process statistics do not change over time.

Recently, Mina et al. [78] presented an extension that also accounts for drifts of

the process variables’ means. Another method for dimensionality reduction is the

Partial Least Square(or Projection to Latent Structure) [79]. It is applied when

some of the process variables(predictors) are used to predict the values of a set of

20

Chapter 2: Relevant Work

Quality variables. A transformation is computed such that the principle directions

of the transformed space maximize the covariance between the predictors and the

quality variables. Fault detection methods based on PLS can be found in [80].

After the detection, the data undergoes additional processing for the analysis of

what actually caused the fault. One approach is based on the decomposition of the

T 2 statistic to a number of orthogonal factors which are also statistical distances [81].

The factor responsible for the deviation of the residual from zero is identified. Next,

the cause of the fault is isolated based on the way in which the relevant system

variables interact. The problem with this method is the combinatorial explosion of

the number of possible decompositions as a function of the cardinality of the state

space. A more informed way of performing such a decomposition leverages causal

relations between the process variables. To this end, Bayesian networks are used

to encode the causality information that guides the decomposition. [81] present a

Bayesian framework both for the detection and the isolation of the fault.

Clustering is a powerful and well studied way of grouping objects based on feature

similarity. The algorithms, used for clustering, maximize feature similarity within

the groups, as well as inter-group diversity. The outcome of a clustering algorithm

is a set of diverse groups of objects, where each of those groups contains object that

are similar with respect to the classification task. In the case of fault detection, the

objects are the data samples and the clusters are associated with faults. Based on

predefined features on the signals, clustering algorithms attempt to approximate a

map between those features and the faults. Some early application of cluster anal-

ysis on fault diagnosis are discussed in [82]. One of the most common algorithms

in the clustering literature is K-Means. A notion of “distance” is used to model the

similarity between different clusters. Various distances can be found in the statis-

tics literature, e.g., Euclidean distance, Mahalanobis distance. More sophisticated

metrics that generalize the notion of distance for distributions have been used for

diagnostics (e.g., Kullback-Leibler divergence). In particular, distance functions for

fault detection can be found in [82]. Additionally, Support-Vector-Machines [83] and

their kernel based extensions [84] can be used to optimise the boundaries between

21

Chapter 2: Relevant Work

the clusters. In these approaches detection and identification happen simultane-

ously. Apart from standard distance metrics from statistics and machine learning,

new metrics have also been developed, tailored to the traits of the diagnostic tasks.

Specifically, [85] is the first to use a new distance metric, namely quotient distance

for engine diagnostics. Besides distance metrics, the correlation of feature vectors

has been employed as another similarity measure [86].

Some methods [87, 88] use Hidden Markov Models (HMMs) as a tool for fault

detection. In its simplest form, a binary variable -indicating faulty or normal system

behavior- is used as the HMM’s state. The observation sequence of the HMM con-

sists of appropriate features of the monitored signals. As new observations become

available, the Viterbi algorithm [89] computes the most probable state sequence,

given the observations. Moreover, the state variable can be augmented to a vector,

whose coordinates are indicator variables of different faulty modes. In this way fault

isolation can be achieved in parallel to fault detection.

2.1.3 Artificial Intelligence approaches

Artificial Intelligence methods provide rigorous tools for regression and classifica-

tion that can be applied to the problem of machine diagnosis. In many occasions,

artificial intelligence methods outperform standard approaches. The main short-

coming of these approaches is the need for labelled data: that is, data that have

been recorded during both faulty and normal operation. These data are essential to

train the algorithm. Part of the training can be done using artificial data, resembling

normal operation as well as a set of faults of interest. Most researchers, however,

use experimental data to train AI fault-detection algorithms. The most common

algorithms in the literature are artificial neural networks (ANN) and expert sys-

tems (ES). Other AI algorithms include fuzzy logic systems, fuzzyneural networks

(FNNs), neuralfuzzy systems and evolutionary algorithms (EAs).

Artificial Intelligence techniques have been employed as an alternative to statis-

tical approaches. Numerous variations of Artificial Neural Networks were applied

to the problem of fault detection. Neural networks consist of basic processing units

22

Chapter 2: Relevant Work

(neurons) which combined together form a complex structure, that can approximate

non-linear functions. The need of training data to compute the network parameters

is the main drawback of this approach when applied in practical fault detection

problems [90], [91]. Following a supervised learning paradigm the user needs to ex-

plicitly feed the network with the target values (faults in this case). Self-Organized

Maps have been used [15] as a remedy to this limitation.

ANN can also be used in a model-based, yet data driven framework. Adaptive

Autoregressive Neural Networks are used to approximate the evolution of the sys-

tem variables based on the data history. Furthermore, the networks can adapt to

slow changes in the parameter space, providing robustness to parameter change due

to machine ageing. In [69] the authors use such a network in parallel with a state

space model to approximate the effect of multiplicative faults in the state estimation.

The lack of physical interpretation of the net is often considered a significant draw-

back against the model-based approaches. Similarly to the model based methods

described in section 2.1.1 ,a bank of ANNs [92] can be used to model the dynamics

of the process under a finite set of faults. These often called fault estimators are

activated after a fault detection event to figure out what went wrong.

Another prominent AI approach is based on expert systems [93]. Expert systems

represent human knowledge, in a way that facilitates computer aided reasoning. One

typical representative of such systems is based on if-then rules(rule-based reason-

ing) [94]. The problem with rule-based systems arises in the maintenance of the

knowledge base. Incorporating a new rule while preserving the knowledge base’s

logical consistency is not trivial. This approach, however, has been proven quite

effective in situations where expert knowledge is ubiquitous. It is often used in

a complementary manner to other methods or when modeling or learning of the

system process is prohibitive. An extension to rule-based systems is case-based

reasoning [95]; relying on experience from previous situations to reason new obser-

vations.

The described approaches also suffer from limitations. Expert systems require

extensive enumeration of possible machine states. For this reason, a vast number

23

Chapter 2: Relevant Work

of ES rules is required to cover the combinatorial number of possible states. More-

over, the computational cost increases with the number of rules. Neural Networks,

in turn, are often hard to train and require large datasets. Moreover, the struc-

ture of the neural network is chosen by the network designer; this might influence

the performance of the network significantly. Simple architectures might be unable

to capture the dynamics of the phenomenon adequately; whereas, convoluted net-

works are often prone to overfitting. Moreover, neural networks provide no physical

interpretation of the implicit computation represented by their respective neuron

connectivity. [96] combined artificial neural networks with expert systems to infer

the wear state of machine tools. Likewise, [97] used a combination of ANN and ES

to create a diagnostic systems for gas turbines.

Some researchers investigated the use of Petri nets for machine diagnostics. Petri

nets are bipartite graphs with two different types of nodes: states and transitions.

Arcs (graph edges) connect states with transitions and vice versa; but, never two

states or two transitions. It is a compact graphical representation between conditions

and events [98]. [99] used a Petri net for fault detection of complex systems. [100]

combined Petri nets with Kalman filter and [101] first used case-based reasoning with

Petri nets on induction motors, outperforming conventional case-based reasoning

fault detection systems.

2.2 Prognostics

While diagnostic systems are concerned with the detection and identification of a

fault, prognostics address the problem of predicting a fault before it actually oc-

curs. Based on these predictions, proper actions can be taken to avoid failure.

Therefore, prognostics are of uttermost importance for an effective condition-based

maintenance system. Compared to prognostics, diagnostics may look inferior or

even redundant. Yet, in practice, the two systems run in a complementary manner.

There are always cases where the fault can not be foreseen. Furthermore, diag-

nostic information can be used not only to develop better prognostic systems but

also to improve the design of the monitored plant in the first place. Most of the

24

Chapter 2: Relevant Work

prognostic methods in the literature, focus on the computation of the Remaining

Useful Life (RUL). RUL is the time interval for which a system operates without

failure. An alternative approach is to assess the probability of fault-free operation

up to a certain time horizon (e.g. next inspection interval)[3]. Following the con-

sensus within the prognostics community, this section concentrates on methods for

the computation of the remaining useful life. An example of the second approach

can be found in [102]. Prognostic methods fall into the following categories:

• Model-based approaches

• Statistical approaches

In what follows, the current status of the prognostic research is reviewed.

2.2.1 Model-Based Approaches

Physics-of-Failure: Physics of Failure attempts to capture the breakdown mech-

anism of a component in a mathematical model [103]. This model is most often

derived from first principles. In addition to the system dynamics the degradation

phenomenon is also modelled. The derived model is used to determine the compo-

nent’s current health status and later to extrapolate in the future using trending

analysis to predict the time of failure. Thresholding is used to discriminate be-

tween normal and faulty operation. Failure Effects, Mechanisms and Modes anal-

ysis (FEMMA) is employed to model the failure mechanism of a component [104].

To this end, the following steps take place: 1) identify the failure modes , 2) analyse

the effects that failure modes have on the system. Failure modes are then sorted

based on their impact on the system as well as on their frequency of occurrence. The

top ranked failure modes are investigated further to acquire a detailed model of the

failure dynamics. With such a model at hand, the current health status is computed

and an informed prognostic estimate can be made. Accelerated aging techniques are

often used for the first step of the FEMMA; to identify the way accrued damage

influences the system. First,the variables that are indicative of the failure mecha-

nism are extracted. Next, their relationship with the failure mechanism is assessed.

25

Chapter 2: Relevant Work

Based on the application, various empirical fatigue models (e.g. Coffin-Manson law),

have been used to model failure dynamics. An example application on a MOSFET

can be found in [105]. Some of the most common failure models used in electronics

prognostics are reported in [106]. The resulting model is later used to trend the

fault precursor variables to a given threshold that discriminates between normal

and faulty operation.

Canaries: Another approach uses canaries for the prognosis of a failure [107]. In

the past, miners used these birds due to their increased sensitivity in the presence

of hazardous gases as a warning system in the mines. A canary is a similar device

to the one to be monitored, mounted at a nearby location. In this way, the canary

device is exposed at the same environmental conditions as the actual one. It is

engineered to fail faster, thus providing an early indication of the degradation of

the actual component. An acceleration factor, namely the ratio of canary failure

time to system failure time, is used to compute the Remaining Useful Life of the

component. Often several canaries with different accelerating factors are used to

determine the time of failure of the system [108]. An application of this technique

for the prognosis of Ball Grid Arrays can be found in [109].

2.2.2 Statistical Methods

In absence of a model for fault propagation, various statistical tools can be used

to estimate the remaining useful life from data. Given the time evolution of spe-

cific fault precursor variables, regression can be employed to forecast their future

evolution. Auto-Regressive Moving Average (ARMA) and Exponential Projection

methods [110] are amongst the most common techniques. The accuracy of the pre-

diction is limited, especially for distant prognostic horizons. Nevertheless, their

simplicity of computation make them attractive in certain occasions. [111] uses

an ARMA model for the prognosis of bearings in vehicles. To account for varying

operating conditions as well as unit-to-unit variance random processes have been

used for forecasting. Random Coefficient Regression, originally proposed by [112] a

stochastic degradation model that consists of the actual, yet unobserved, degrada-

26

Chapter 2: Relevant Work

tion level together with a zero mean constant standard deviation additive term. In

this frame of thought, further prognosis techniques use other stochastic processes

(Wiener Process, Gamma Process) for forecasting. Gebraeel et al [113] developed a

random coefficient regression method based on the Wiener Process (Standard Brow-

nian Motion) where the coefficients are updated in real time in a Bayesian manner.

Another class of prognostic methods is the covariate-based hazard. The model re-

lates the failure of the component to certain monitored variables (covariates). The

most common representative of this class is the Proportional Hazard Model [114]. In

this model the hazard rate of the system is factorised into two terms. The first term

is the baseline function and models the average life time of the component(often the

Weibull distribution is used as a baseline). The second term accounts for the unit-to-

unit manufacturing variance, varying operating conditions and any other parameter

than can influence the degradation process. One advantage of the Proportional Haz-

ard Model is that different covariates can be easily combined with a certain baseline

function. In this way, one could analyse the influence of different covariates on the

total hazard rate. Some example applications, specifically on prognostics can be

found in [115]. One very common approach is to use Hidden Markov Models [116].

This model consists of a markovian sequence of hidden states. The states take val-

ues most often from a discrete set, representing the component’s health status. The

model also captures the probabilities of transitions between states. The state is hid-

den in the sense that it cannot be directly observed. The state can be inferred based

on the observation sequence. Fault precursor variables are used for the observation

sequence. The prognosis given an HMM model takes place as follows. Firstly, the

current hidden state is estimated based on the observations hitherto. Given the

estimation of the current state, the transition probabilities are used to estimate at

which point in time the system will enter a faulty state with a certain probability.

Approaches based on HMMs are reported in [3] [117]. One limitation of the HMMs

is that the probability of staying in a certain state follows a geometrical distribu-

tion. This assumption is often too crude for practical applications. To remedy this,

Hidden Semi-Markov Models [118] have been developed. In a Hidden Semi-Markov

27

Chapter 2: Relevant Work

Model the state duration is also treated as random variable; it is drawn from a

probability distribution. The parameters of such distribution are included in the

model parameter set and are learned during the training phase. HSMM have been

proven to deliver better prognostic accuracy [119]. Another extension of Hidden

Markov Models uses Mixtures of Gaussians for the representation of the emission

probabilities of the observation sequence in the case of continuous variables. [120]

presents a prognostic algorithm based on this concept.

Dynamic Bayesian Networks [121] can be used in the case where the state needs

to include more than one variable. The same thing can be done with HMMs by

assuming that the state is a tuple and the state space consists of all its possible

values. This results, however, in a very complex transition probability matrix. Dy-

namic Bayesian Networks have the same expressive power, albeit they need fewer

parameters to be defined [122]. For prognostics, the state can be augmented to

take into consideration the operational and the environmental conditions [123]. In

Muller et al. [124], the effect of the maintenance actions is also integrated in the

computation of the remaining useful life. Another tool, which has been used in

data-driven failure prognostics, is the Kalman filter. The filter is used to forecast

the mean value of fault precursor variables based on a transition model of predefined

order whose parameters are learned from training data. The order of the transition

model plays a significant role in the accuracy of the results. The state vector of the

filter can be augmented with the model parameters thus allowing for time-varying

processes to be modelled [125]. For forecasting, the state transition model is applied

recursively using the latest estimation of the state as initial conditions. In [126], the

Kalman filter is used to track the time evolution of a crack in a tensioned steel band.

Kalman filter makes a linearity (local linearity for the case of the Extended Kalman

Filter) assumption for the transition model, i.e. the dynamics of the process. A

generalization of the Kalman filter, namely the Particle Filter, has been used to ap-

proximate a probability density function for the remaining useful life. The particle

filter also relaxes the Gaussian assumption of the Kalman filter. In the case of parti-

cle filters the target distribution is approximated by a minimal set of particles [127].

28

Chapter 2: Relevant Work

In general, prognostic approaches based on stochastic filtering(e.g. Kalman filter

variations and Particle filters) are advantageous because they compute a probability

distribution for the remaining useful life, rather than just a point estimate. This

information provides a better insight to the decision making subsystem on its risk

assessment. This information comes at the expense of computational efficiency.

2.3 Applications in Underwater Navigation

Underwater missions require information about the AUV’s position and orientation

(i.e., pose). Navigation systems are assigned with this task; namely, to estimate

the robot’s pose with respect to a fixed frame of reference. The main difficulty in

underwater navigation arises from the absence of GPS. Water molecules absorb the

energy of radio waves very efficiently. In this way, the penetration ability of the

radio waves decreases; thus, making GPS reception impossible after a certain depth.

For this reason, navigation systems rely on alternative technologies.

Inertial Measurement Units (IMUs) measure the vehicle’s linear and angular ve-

locity. To this end, IMUs employ an ensemble of linear accelerometers combined with

three gyroscopes. Doppler Velocity Logs (DVLs) use the time-of-flight of acoustic

waves to compute the linear velocity of the vehicle. Often, DVLs measure cur-

rents, too. Magnetic compasses provide information about the vehicle’s orientation.

Pressure sensors measure the vehicle’s depth. Inertial Navigation Systems (INS) in-

tegrate the output of several sensor modalities (e.g. accelerometers and gyroscopes)

to yield a complete navigation unit; which accounts for the estimation of the full

pose of the robot.

Kinsey et al. [128] provide a thorough overview of hardware development for

navigation. Sensor failures plague navigation systems to a vast degree. One standard

solution to sensor failures is sensor redundancy ; i.e., to equip a system with multiple

sensors that measure the same quantity. [129] describes a setup of multiple sensors

and the appropriate algorithmic framework for dealing with various types of failures.

In robotics, however, redundancy is not always possible; power and space limitations

may prevent the placement of extra sensors on the robot.

29

Chapter 2: Relevant Work

Advances in navigation instrumentation have led to a large variety of naviga-

tion sensors. The latter provide information for different dimensions of the vehicle’s

state (i.e. orientation, depth, velocity). Consequently, algorithms that can combine

such heterogeneous information are required [130]. Moreover, several precise models

have been presented in the literature [131]. Measurements and model predictions

are combined to yield an improved state estimation. The Kalman Filter (KF) is

frequently used for such a task. Notably, the Extended Kalman Filter (EKF) con-

stitutes the common framework for numerous navigation algorithms [132, 133, 134].

Recently, more sophisticated algorithms have been used for navigation [135]. [136]

addresses the problem of multi-rate sensor fusion using a bank of Kalman Filters;

each operating for different combinations of sensors. [137] use factor graphs for asyn-

chronous sensor fusion. A detailed review of multi-sensor fusion techniques can be

found in [138].

To compensate for the absence of GPS, acoustic navigation techniques have

emerged. Acoustic navigation employs a number of beacons, anchored at known

positions [139]. The vehicle interacts with the beacons using acoustic signals. The

response time of the beacons is used to compute the vehicle’s position. Specifi-

cally, Long-Baseline Localisation (LBL; [140, 141]) utilise several beacons that are

anchored on the sea floor. Short-Baseline Localisation (SBL; [142]) employ multi-

ple surface mounted transceivers. The deployment of multiple beacons offers sen-

sor redundancy to the positioning system. Finally, Ultra Short-Baseline Localisa-

tion (USBL) uses a single transponder mounted on a surface vessel [143]. USBL

offers the advantage of low system complexity. Acoustic Navigation suffers from the

presence of outliers due to multi-path propagation errors. [144] and [145] augment

SBL navigation with a Kalman Filter to enhance the robustness of the system. [146]

provide a good overview of acoustic navigation systems.

Acoustic Navigation offers the most accurate solution to the navigation prob-

lem hitherto. In some situations, however, the vehicle is used for exploration. In

such cases, the vehicle’s workspace is not defined a priori. Therefore, encompassing

the region of operation with acoustic beacons is not always feasible. Mounting the

30

Chapter 2: Relevant Work

beacons on autonomous surface vehicles [147, 148, 149] can alleviate this problem.

Nevertheless, the system gets more complex and requires additional software for sta-

tion keeping and localisation of the surface vehicles. To spare the extra complexity,

often the surface vehicle is manned (i.e. not autonomous). However, certain envi-

ronments do not facilitate the presence of surface vehicles (e.g. exploration under

ice, underwater cavity exploration). Adopting the navigation framework presented

in this thesis does not exclude the use of acoustic navigation; to the contrary, the

presented algorithms can encompass acoustic navigation as another measurement

stream for the vehicle’s state.

The Kalman filter and its derivatives combine a mathematical model with sen-

sory information to yield an estimation of the robot’s pose. To this end, KF requires

information about the accuracy of both the model (process) and the measurements;

the accuracy of each is reflected on the respective covariance. Within the standard

KF formulation, the above covariances need to be selected by the user. Several

attempts have been made to estimate the model and measurement covariances on-

line. [150] employ Neural Networks to tune the process covariance in an online

fashion. Similarly, [151] adapts the process covariance in real time within an Un-

scented Kalman Filter (UKF) formulation. [1] provide a filter that automatically

adjusts the measurement covariance. In this way, the filter excludes outliers from

the final state estimation. ORKF [152] generalises Ting’s work to cases where the

measurement noise is correlated.

Statistical tests assess whether a data sample comes from a particular distribu-

tion under a given confidence interval. Such a test, often referred to as a compatibility

test, could be performed on the distribution of the residual (innovation); namely, the

difference between the model and the measurement. Whenever a residual fails the

test, the respective measurement is rejected as an outlier. This approach implicitly

assumes that the model is correct, and the residual is due to a false measurement.

Conversely, the navigation algorithm presented as part of this thesis asserts both

the model and the measurement accuracy. Hence, when the model is not accurate

enough, the algorithm may consider a measurement that generates a high residual;

31

Chapter 2: Relevant Work

since on this occasion, the residual is due to errors in the model prediction. At

this instance, a compatibility based approach would falsely reject the measurement.

Moreover, innovation gates [153] employ thresholding for accepting/rejecting mea-

surements; inferring as such the health state of the sensor. Since gating introduces

additional parameters to tune, namely the accept/reject threshold, it has not been

considered as an alternative.

Often, machine learning has been utilised to improve the model’s accuracy within

a Kalman Filter. Most commonly, Neural Networks have been used to compensate

for un-modelled non-linearities in the system’s dynamics. In specific, [154] report

such an algorithm for GPS navigation. In a similar fashion, [69] use Neural Networks

to model the non-linear dynamics of a jet engine. Additionally, Gaussian Processes

(GPs) have been employed by [155] to compute a corrective term for the dynamic

model of a blimp. Similarly, the authors have used LWPR to compute a corrective

term [156]. In this work, LWPR was used to model the full dynamics of the system.

Using a non-parametric algorithm simplifies model training; i.e. no identification of

the core hydrodynamic model is required.

Apart from sensors, thrusters for underwater vehicles are also susceptible to fail-

ure. For this reason, thruster failure detection constitutes a broad field of research

[157]; ranging from localised inspection mission to long-running scientific expeditions

[158]. To identify a degraded thruster, model-based diagnostic approaches are com-

monly used. The model is used to compare the runtime and the expected behaviour

of the monitored components. As outlined in [159], modelling the behaviour of ma-

rine thrusters is a difficult task; mainly due to unmodelled non-linear phenomena as

well as because of gradual deviation from the ideal behaviour over the component’s

lifetime. Other methods [160, 161] model the actual component using closed formu-

lations, based on device’s external and internal coefficients. In this thesis, modelling

has been undertaken by a data-driven approach.

An utter thruster failure may lead to locomotion degradation; i.e., the vehicle

may lose a degree of freedom if no redundancy is available in the thruster configura-

tion. As a remedy, [162] compute the optimal vehicle trajectory for compensating an

32

Chapter 2: Relevant Work

actuator’s loss; i.e., treating the vehicle as a nonholonomic system. Following failure

detection, failure mitigation adapts the required subsystems to preserve platform’s

functionality to the new operational conditions. A well-known approach [163, 164]

to overcome the effect of a degraded actuator is to modify the thrust allocation

policy. The presented algorithm is based on [165]. [165] has been extended to

incorporate a hidden state; i.e., the unobserved state of the vehicle. This extension

can be viewed as a generalisation of the switch Kalman filter [166]. The difference

in the Bayesian formulation lies on the rigorous representation, which eliminates the

need of assumptions for computing the final state; to avoid combinatoric explosion

during state computation.

On the modelling side, there is a distinctive shift in underwater navigation. Ever

more researchers employ machine learning techniques. Indicatively, [154] used a

neural network to compensate for unmodelled non-linearities in GPS navigation. [69]

used neural networks to compute a corrective term for the dynamic model of an

aircraft engine. [155] used a Gaussian Process to approximate a non-linear corrective

term for the dynamics of a blimp. Similarly, [156] used Locally Weighted Projection

Regression to compute an accurate model for underwater navigation.

33

Chapter 3

Dynamic Modelling

3.1 Introduction

Autonomous agents are expected to interact with a highly dynamic world. Interac-

tion pertains perceiving, as well as acting ; i.e., to deliberately modify the environ-

ment in which the agent operates. To decide how to act, the agent needs to reason

about the world’s state. The latter is often hard to be observed directly; hence, so-

phisticated inference mechanisms are employed to estimate the state as a function

of measureable quantities. Based on the inferred state, the most beneficial action

towards the completion of the agent’s mission is selected. Inference about such an

uncertain system, as is the world around us, may be daunting; albeit necessary for

correct decision making.

To reason about the world, an autonomous system requires a suitable world rep-

resentation (model). To detect hardware degradation, specifically, a model of the

interaction between the autonomous agent and the environment is necessary. Devia-

tion of the observed state, as measured by the sensors, from the model predictions is

indicative of possible hardware failure. In what follows, a general approach towards

modelling the dynamics of an autonomous system is presented. Finally, the method

is applied to model the dynamics of an Autonomous Underwater Vehicle (AUV).

34

Chapter 3: Dynamic Modelling

3.2 State-space Formulation

Every system can be described by a minimal set of time-varying parameters. This

set of parameters, namely the state of the system, is sufficient to infer any other

property of interest. Quite often in the literature, the state parameters are combined

in a state vector: x ∈ Rn s.t. x = [x1, x2, ..., xn]T . The dimension n of the state

vector x is equal to the order of the differential equation of the modelled physical

phenomenon.

The differential equation mentioned above constitutes the dynamic model of

the system; i.e., a mathematical representation of the physics of the system. The

most commonly used representation for such models is the state-space formulation.

Generally the state-space formulation comprises the state, as defined above, together

with a set of input and output variables. The output variables, namely y ∈ Rm,

are also known as observations ; observations are often a linear combination of the

state variables. On the other hand, the input variables u ∈ Rd are used to drive

the system (i.e., to take the system from one state to a desired, final state). All the

vector forms of the variables described above are related by a first-order differential

equation:

ẋ = f(x,u, t) (3.1)

y = h(x,u, t) (3.2)

where t ∈ R+ denotes the time, f : Rn × Rd × R+ 7→ Rn is a vectored valued

differential equation that controls the evolution of the state over time (dynamic

model), and g : Rn × Rd × R+ 7→ Rm is the measurement (observation) model.

Depending on the form of the functions f and g, two special cases of the above

model arise : time-invariant systems ; functions f and g do not depend on time t,

and linear systems ; functions f and g are linear with respect to the state x and the

input u. Many systems can be modelled by time-invariant dynamics; i.e., systems

that comply with the definition of an autonomous system. Most natural phenomena,

35

Chapter 3: Dynamic Modelling

however, are governed by non-linear dynamics. Nevertheless, due to the simplicity of

the theory underpinning linear systems, oftentimes non linear systems are modelled

using linear approximations. Specifically, the dynamics of a non linear system are

linearised locally using a first-order Taylor approximation of functions f and g (see

Equation 3.3). This yields a model that is linear in a region of the state-input space;

around a specific point (x0,u0):

F (x,u) = f(x,u)|(x0,u0) +
∂f

∂x

∣∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣∣
(x0,u0)

(u− u0) (3.3)

where x0 = x(t = t0) and u0 = u(t = t0). By repeatedly linearising the dynamics

along the state-input trajectory (x(t),u(t)), one gets a linear time-variant system

of equations that approximate the original non linear system along the designated

trajectory (x(t),u(t)). The quantity ∂f
∂x

∣∣
(x0,u0)

denotes the Jacobian with respect to

x evaluated at (x0,u0).

In this thesis, the full non-linear dynamics are utilised. The measurement func-

tion, however, is linear. Moreover, by definition the dynamics of an autonomous

system to not depend explicitly on time; hence, functions f and g are independent

of t. Discretisation of the dynamics equation using a first-order approximation of

the state derivative (see Equation 3.6) in the left-hand side yields:

xk+1 = f ′(xk,uk) (3.4)

yk+1 = Cxk (3.5)

where f ′(xk,uk) = f(xk,uk) ·∆t+xk, C ∈ Rm×n is a matrix realisation of the linear

measurement model, and k ∈ N denotes the discrete time instants; each of constant

length ∆t (seconds). In this representation (3.4), a first-order Markov assumption

has been made implicitly; namely, that the state at time k+1 solely depends on the

input and the state at time k. The first-order Markov assumption stems from the

numerical approximation -also of first order- for the time derivative ẋ:

36

Chapter 3: Dynamic Modelling

ẋ =
dx

dt
=
x(t+ ∆t)− x(t)

∆t
=
xk+1 − xk

∆t
(3.6)

The above numerical approximation for the derivative yields an error of O(∆t)1.

Using higher-order approximation schemes for the time derivative ẋ can lead to errors

lower in magnitude (e.g., O(∆t2), O(∆t4)). The higher-order schemes, however,

break the first-order Markov assumption; i.e., the prediction of the model at time

k + 1 will depend on all xk−k′ , where (k′ + 1), with k′ ∈ N, is the number of past

states2 required by the model; the number of past states depends on the order of

the derivative approximation.

3.3 Model Specifications

In the previous section, the semantics of the state-space formulation have been

defined. The assumptions that accompany non-linear autonomous systems, with

discretized dynamics and linear measurement (observation) models have been thor-

oughly explained; leading to the general form of a dynamic system, as described in

Equations (3.4), (3.5). The focal point of this section is to provide further details

about the requirements of the dynamic model; subsequently, also of function f (see

Equation (3.4). Moreover, the problem of modelling the dynamics will be cast to

a non-linear regression problem, on which powerful tools from the machine learn-

ing literature can be employed; yielding an easy-to-tune, yet accurate mathematical

model of the dynamics.

An approach to defining f is by using the physical laws that govern the phe-

nomenon under consideration. By using physics, a dynamic model can be con-

structed, as a set of equations that relate the state of the system (possibly the

derivatives of the state) with the input variables. This set of equations oftentimes

comprises several parameters (e.g., mass, moment of inertia) that are required for

a complete model to be defined. Therefore, such models are known as paramet-

1∆t << 1 in most systems of interest
2In this thesis it is assumed that the natural numbers N also include zero

37

Chapter 3: Dynamic Modelling

ric dynamic models. The parameters of such models are estimated by performing

identification experiments.

During identification experiments the system, which we want to model, is driven

along random trajectories of the state-input space. The identification trajectories

must be appropriately designed to excite all subtle non-linear phenomena that may

be present; hence, revealing the complexity of the system’s dynamics. While the

system is driven along the identification trajectory, the values of the state and the

input are recorded. The recorded state-input pairs will be subsequently utilised to

elicit the parameters of the model.

As mentioned earlier, the physical laws specify the structure of the model; con-

straining as such the model to be a member of a specific class of functions (e.g.

polynomials of n degree). By identifying the parameters that better match the

data from the identification experiments, the complete model is specified; namely,

a specific member of the aforementioned class of candidate models is chosen. In

many cases, the physical laws governing the system are highly complex. As a result,

the derivation of the dynamic model with this method may be cumbersome. For

this reason, the dynamic model is often extracted by employing simplified versions

of the physical principles of the phenomenon. In this way, the derivation becomes

easier algebraically; albeit the accuracy of the model is compromised. Moreover,

parametric models are quite restrictive: no matter how carefully the parameters are

chosen, the model will always belong to a predefined class of functions. Had the

initial choice of structure been wrong, the model will never achieve high accuracy,

independently of the identification effort.

Another important consideration is the adaptation capabilities of the dynamic

model. Although, the dynamics of autonomous systems do not depend on time,

adaptivity is a desired feature for a dynamic model. This is due to the variability in

operational conditions. For example, an AUV may behave differently as a function

of water salinity, temperature, changes in the hardware configuration. An adap-

tive model affords the fast recalibration of the existing model. Standard parameter

estimation techniques would require the repetition of the full identification experi-

38

Chapter 3: Dynamic Modelling

ments. Moreover, an adaptive dynamic model will be able to accommodate changes

in dynamics due to hardware degradation; either due to ageing or an abrupt defect.

There exist autonomous agents with high dimensional state spaces. The state

space dimensionality often imposes additional requirements for the performance of

the dynamic model. The high state dimensionality may render the model slow for

real-time usage. As part of a motion controller of a robot that is intended for

manipulation, for example, the model may need to be queried for state estimations

several times per second. Therefore, the dynamic model must compute the state

estimation really effectively.

There is a trade-off between model complexity and model accuracy. Parametric

models require decision on the structure of the model. This may aggravate the peak

accuracy of the model. Moreover, adaptivity is a desirable trait for the model; as well

as, decent scaling to high dimensional state spaces. Advances in machine learning

present an elaborate alternative to parametric dynamic models, which respects all

the outlined requirements.

Specifically, equation (3.4) can be considered as a non-linear regression problem

with xreg = (xk,uk) as the independent variable and yreg = xk+1 as the dependent

variable (see Appendix A). There exist powerfull non-parametric algorithms for non-

linear regression. By using such methods, the engineer does not need to specify in

detail the structure of the model; conversely, the space of candidate models com-

prises all possible classes of functions. Moreover, some regression algorithms can be

trained incrementally. Hence, the model is trained constantly as more data becomes

available; endowing in this way the dynamic model with adaptivity. Furthermore,

by exploiting dimensionality reduction concepts (e.g., Principal Components Anal-

ysis), machine learning algorithms can handle systems with high dimensional state

spaces.

A non-parametric algorithm that complies with all the above specifications,

namely Locally Weighted Projection Regression (LWPR), will be used throughout

this thesis whenever a dynamic model is required. LWPR is easy to train, accurate,

adaptive and can handle high dimensional state-input spaces with constant com-

39

Chapter 3: Dynamic Modelling

putational complexity for each query. The algorithm is presented in full detail in

Appendix A.

3.3.1 LWPR hyperparameters

The training process of LWPR is regulated by a set of hyperparameters. The value

of the hyperparameters needs to be decided prior to training the algorithm. The

purpose of this section is to provide insight into the role of the most important hyper-

parameters. Following that, a systematic optimisation procedure will be presented;

eliminating, in this way, the need to tune the hyperparameters manually.

As described in Appendix A, the domain of a target function is partitioned in

small neighbourhoods (receptive fields) where the function is approximated locally

by a linear model. A receptive field is parametrised using a kernel that is centred

at a specific point. The width of the kernel defines the activation region of the local

model. When a new point requires a new local model (i.e., it does not activate

any existing local model), a new neighbourhood is created, as explained in the

preceding section. The initial width of the kernel is defined by the parameter init D.

Specifically, the kernel’s width is inversely proportional to init D. The width of the

kernel will be adjusted online as more data become available. A stochastic gradient

descent is used to adjust the width of the kernel (see Equation (A.7)). The step of

the stochastic gradient descent, namely init alpha, can also be tuned by the user.

Additionally, the online adaptation of a receptive field’s width, performed by the

stochastic gradient descent, can be switched off by setting update D = 0. In this

case, all kernels have equal width; as indicated by the parameter init D.

The kernel’s width is of uttermost importance to the performance of the method.

Small values for init D yield wide receptive fields. Depending on the level of non-

linearity of the target function, wide receptive fields may not be appropriate; a larger

value of init D may be required. Conversely, large values of init D result in very

small receptive fields. In this way, more local models are needed to cover the target

function’s domain. For a sufficiently large value for init D, one local model may

be fitted for each training point. Obviously, this situation must be avoided. For

40

Chapter 3: Dynamic Modelling

this reason, a regularisation term is introduced. This regularisation term, namely

penalty, penalised infinitely small receptive fields.

A few other parameters are also important to achieve the desired behaviour. Such

parameters include w gen, init lambda, final lambda and tau lambda. Firstly,

w gen is an activation threshold. When a new point becomes available, a new

receptive field is created if the maximum weight of the activated models is below

w gen. The rest of the preceding parameters pertain to the adaptive behaviour of

the algorithm. As mentioned earlier, a forgetting factor defines the influence of a

new point in the internal parameters of the activated models. In the beginning, the

forgetting factor is equal to init lambda. The forgetting factor changes gradually to

final lambda using simulated annealing with tau lambda as the annealing constant.

Lastly, norm in scales the input to similar ranges, to improve the learning process of

the algorithm. Table 3.1 summarizes the most important parameters of the LWPR

algorithm:

Table 3.1: Tunable LWPR Parameters

Parameter Explanation
init D initial width of a RF
init alpha step of the stochastic gradient decent
update D on-line adaptation of width on/off
w gen RF generation threshold
init lambda starting value for the forgetting factor
final lambda final value for the forgetting factor
tau lambda annealing constant for the forgetting factor

3.3.2 LWPR Training

In this section, a disciplined way for choosing the training hyperparameters is sug-

gested. The procedure is based on standard machine learning practices, used to train

several algorithms in a supervised manner. After the training hyperparameters have

been chosen, the stochastic gradient descent can be executed incrementally. In this

fashion, LWPR will be able to continuously incorporate new training samples. Even

for incremental algorithms, however, it is habitual to first train a model using a

41

Chapter 3: Dynamic Modelling

large set of training data (batch training mode). After batch training, the resulting

model can be refined by continuous adaptation.

To train LWPR, one needs to gather several data samples as input-output pairs;

namely, (xtrain,ytrain). The whole of these data samples constitutes the initial avail-

able dataset. This dataset is then split into three smaller datasets:

• training dataset; holding the 80% of the original dataset. This data set will

be utilized to train all the candidate models, as well as the final one (after the

optimization of the model’s hyperparameters)

• cross-validation dataset; this is used to optimise the LWPR hyperparameters)

• test dataset; this is used to evaluate the performance of the final model on

unforeseen data.

Both the cross-validation and the test data sets hold 10% of the original data.

The training occurs as follows: for each of several combinations for the hyper-

parameters θ, a model is trained on the training dataset. The performance of each

of the resulting models is evaluated on the cross-validation dataset. The hyperpa-

rameters of the model with the highest performance on the cross-validation dataset

are chosen as optimal. The performance of the optimal model is then evaluated on

the test dataset. The performance on the test dataset indicates the generalisation

capability of the model; i.e., how well the model computes the target function for

input data that have not been part of the training dataset (unforeseen data). The

process of tuning the hyperparameters is often mentioned as model selection. Model

selection can be easily cast as an optimisation problem:

θ∗ = arg min
θ∈Θ

J(D,M) (3.7)

where θ∗ holds the optimal hyperparameters, Θ is the hyperparameter space, J is a

performance metric that quantifies the prediction accuracy of modelM on the data

set D = (xtrain,ytrain). The performance metric used in this case was the normalized

Root Mean Square Error (nRMSE), as defined in Equation 3.9.

42

Chapter 3: Dynamic Modelling

0 0.2 0.4 0.6 0.8 1 1.2
−4

−2

0

2

4

6

x

J
(x
)

Local

Minimum

Global

Minimum

Figure 3.1: The problem of local minima in optimisation

RMSE =

√√√√ n∑
i=1

(x
(i)
1 − x

(i)
2)2

n
(3.8)

nRMSE =
MSE

xmax − xmin
(3.9)

A general approach towards optimisation of a cost function J(x) follows the

gradient (or the negative gradient depending whether it is a minimisation or a

maximisation problem) of the cost starting from an initial choice for the independent

variable x. This paradigm is only valid in cases where the cost function is convex 3;

hence, it only has one global extremum (either minimum or maximum). This does

not apply for non-convex functions; i.e., several local extrema can be found (see

Figure 3.1). To this end, a more sophisticated optimisation approach is needed for

non-convex cost functions.

The convexity properties of the cost function that is used for choosing the hy-

perparameters are not known precisely. Nevertheless, it is safe to assume that it

is highly complex and most probably non-convex. Therefore, special attention is

required to ensure that the potential solver does not get stuck in local minima. To

3convex for minimisation problems and concave for maximisation problems; for simplicity both
are referred to as convex optimization.

43

Chapter 3: Dynamic Modelling

avoid that, the cost is optimised by employing a multi-start search algorithm. A

multi-start algorithm utilizes a local convex optimization algorithm to solve the same

problem several times in parallel, with different starting points. The multi-start al-

gorithm return the smallest of the local minima, as computed by each local convex

solver, as the global minimum. Choosing a sufficient number of solvers reduces the

the probability of convergence to local minima significantly.

Model selection for LWPR has been automated using the above formulation;

i.e., treating the choice of hyperparameters as an optimization problem. The model

selection software depends on Matlab’s Global Optimisation Toolbox (part of which

is the multi-start solver). Following the instructions in the LWPR tutorial [167],

the parameter init D is tuned first with the online adaptation of the kernel’s width

switched off. Next, the online adaptation is switched back on and the procedure is

repeated to tune the rest of the parameters (init alpha, penalty).

3.4 Experimental Evaluation

In this section, the previously outlined theory is applied to model the dynamics

of an actual autonomous system. For this purpose, an Autonomous Underwater

Vehicle (AUV) has been used. Specifically, Nessie (Figure 3.2) is a torpedo-shaped

vehicle, developed within the Ocean Systems Lab. Nessie possesses three pairs of

thrusters (see Figure 3.3). One pair of thrusters handles acceleration along the surge

dimension. The lateral pair of thrusters controls the sway acceleration, and the last

pair is responsible for adjusting the depth (heave) of the vehicle. The same pairs are

capable of generating moments along the respective axes (i.e., roll, pitch, yaw), by

applying forces in opposite directions4; thereby controlling the angular acceleration

of the vehicle. This particular thruster configuration does not allow control of the roll

of the vehicle; i.e., rotation along the longitudinal axis of the vehicle. Apart from the

thrusters, Nessie holds several navigational sensors: a Doppler Velocity Log (DVL)

uses the time-of-flight of a modulated array of acoustic signals to compute the linear

velocity of the vehicle. A Fibre Optic Gyrometer (FOG) measures the angular

4moments are also exerted to the vehicle by unequal parallel forces within a pair

44

Chapter 3: Dynamic Modelling

Figure 3.2: Nessie is the main research platform of the Oceans System Lab. It is
a hover capable torpedo shaped AUV with a variety of sensors that are used for
navigation (DVL,Gyro,Compass) as well as a Blueview forward looking sonar for
perception.

sway

su
rg
e

surge

h
e
a
ve

Figure 3.3: illustration of Nessie’s thrusters

acceleration along the yaw dimension. A magnetic compass provides the orientation

of the vehicle with respect to a fixed inertial frame, and finally a pressure sensor

indicates the depth of the vehicle. Table 3.2 summarises the navigation sensors that

are available on Nessie.

To gather data from the navigation sensors, Nessie was driven manually on a

closed-loop trajectory. The experiments took place in a wave tank within Heriot-

Watt University. Measurements from the FOG, the DVL and the pressure sensor,

as well as the thrusters, were recorded using the Robot Operating System (ROS).

Different trajectories were recorded for the training and the validation of the algo-

45

Chapter 3: Dynamic Modelling

surge

sway

heave

yaw

pitch
roll

Figure 3.4: illustration of Nessie’s dofs

Table 3.2: Nessie’s navigation sensors

DVL Teledyne Explorer PA
FOG KVH DSP-3000

Compass TCM 6
Depth Sensor Keller Series 33X

rithm.

The input to LWPR is the current state xk and the input to the six thrusters

uk, whereas the output is the state of the vehicle at the next time instant (xk+1).

Specifically, the state in this experiment consists of the surge, sway, heave velocities

and the yaw rate. Roll and pitch were not controlled during the experiments. Acci-

dental excitation of roll and pitch has been avoided by executing relatively smooth

trajectories.

3.4.1 Order of the dynamic model

In the beginning of the chapter, the general form of a discrete dynamic model has

been described (see Equation (3.4)). As already mentioned, this form implicitly

assumed that system dynamics are first-order Markovian; i.e., the state at a future

instant k + 1 depends only on the state and the input at time k. In what follows,

the validity of such an assumption is tested experimentally.

To this end, the performance of several dynamic models has been compared. The

46

Chapter 3: Dynamic Modelling

input to each dynamic model comprises the commands to the vehicle’s thrusters, as

well as the n previous states of the vehicle. The number of past states may influence

the performance of the model. The goal of this section is to test the hypothesis that

the dynamics of Nessie are first-order Markov.

Equation 3.4 is a discrete realisation of a continuous differential equation of the

form: ẋ = f(x, u). As mentioned earlier, the order of the derivative approximation

influences the number of past states n that appear in the discretised version of

the dynamics. In order to choose a value for the parameter n, various models were

evaluated on a cross-validation set. For each value of n, ten models were trained. The

performance of the latter was averaged to yield an expectation for the normalised

RMSE (Equation 3.9) for each value of n. The resulting learning curve is illustrated

in Figure 3.5. The models with n = 4 perform best.

Further insight for the choice of n may be gained by exploiting the notion of

partial autocorrelation from the Time Series Analysis literature. Figure 3.6 depicts

the partial auto-correlation of the surge velocity in one of the training trajectories.

Partial auto-correlation α(n) is the correlation between the samples Xk and Xk−n

of a stationary time series X [168]. In this case, the assumption of stationarity is

not valid. Nevertheless, the auto-correlation has been used as empirical evidence to

underpin the choice of n. As shown in Figure 3.6, the influence of the past states on

the current state is negligible for n > 4. This constraint is quite conservative, since

it doesn’t consider the information in the input time series.

In practice, the performance gain from choosing n = 4 rather than n = 1 is

negligible compared to the increased computational cost. Moreover, the increased

performance for slightly larger n may be due to some kind of filtering that occurs

implicitly by using previous states. Consequently, for the sake of simplicity and

performance n = 1 was the final choice for the dynamic model.

3.4.2 Model Perfomance

After having decided on the order of the model (see section 3.4.1), the LWPR model

has been trained as described in section 3.3.2. Firstly, the hyperparameters have

47

Chapter 3: Dynamic Modelling

0 5 10 15
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of lags

M
e

a
n

 N
o

rm
a

liz
e

d
 R

M
S

E

Figure 3.5: Normalized Mean Square Error (nRMSE) as a function of n; the number
of previous states that are used as input to the model. For each value of n, ten models
were trained on random permutations of the training set. Next, the nRMSE was
computed for all the models using the cross-validation set. The geometric mean of
each group of models was plotted against n. The resulting learning curve indicates
the number n = 4 as the optimal choice.

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Number of lags

S
a
m
p
le
 P
a
rt
ia
l
A
u
to
c
o
rr
e
la
ti
o
n
s

Figure 3.6: Partial auto-correlation for the surge dimension. In time series analysis,
the partial auto-correlation α(n) is the correlation between the samples Xk and
Xk−n of a time series X. The partial auto-correlation is used to define the order of
auto-regression in an ARMA model; namely, the number of past samples used to
forecast the value of a process. For n > 4 the influence of the n-th sample becomes
negligible.

48

Chapter 3: Dynamic Modelling

been chosen, using the cross-validation datasets. The resulting hyperparameters are

summarised in Table 3.3:

Table 3.3: LWPR Hyperparameters after optimisation

DoF init D init alpha penalty
surge 190 6 0.0001
sway 130 11 0.0001
yaw 32 22 0.0001

A reasonable estimation of the generalisation capability of the model is obtained

by computing the performance of the resultant model on the test dataset. The

test dataset consists of data samples that have been used neither for training nor

for optimisation of the hyperparameters. Therefore, the test dataset is presumably

indicative of the queries that the model will need to answer in practice.

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

test sample id

s
u
rg
e
 [
m
/s
e
c
]

model prediction

ground truth

Figure 3.7: Comparison between the actual surge velocity and the predictions from
the hydrodynamics and from our method.

Figures 3.7, 3.8, 3.9, 3.10 illustrate the predicted velocity along the surge, sway,

heave and yaw respectively. The performance, in terms of the normalised Mean

Square Error, can be found in Table 3.4

Table 3.4: Cross Validation Statistics

Dimension surge sway heave yaw rate
nRMSE (%) 1.21 2.01 1.32 1.30

49

Chapter 3: Dynamic Modelling

0 50 100 150 200 250 300 350
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

test sample id

s
w
a
y
 [
m
/s
e
c
]

model prediction

ground truth

Figure 3.8: Comparison between the actual sway velocity and the predictions from
the hydrodynamics and from our method.

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

test sample id

h
e
a
v
e
 [
m
/s
e
c
]

model prediction

ground truth

Figure 3.9: Comparison between the actual sway velocity and the predictions from
the hydrodynamics and from our method.

0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

test sample id

y
a
w
 r
a
te
 [
ra
d
/s
e
c
]

model prediction

ground truth

Figure 3.10: Comparison between the actual yaw acceleration and the predictions
from the hydrodynamics and from our method.

50

Chapter 4

Robustness to Sensor Failures

All autonomous agents are equipped with various sensors that measure physical

quantities of interest. The information from the sensors is used to yield an esti-

mation of the state of the world; specifically, the part of the world that is relevant

to a prescribed task (mission). Based on this estimation, the autonomous agent

deliberates how to proceed towards mission completion. Next, the result of this

deliberative process, namely the ”plan”, is executed.

In most applications the environment is dynamic; i.e., the operational conditions

are subject to change. In this case, the agent needs to adapt the original plan to

account for the new condition. The agent’s reaction time to changes in the environ-

ment may vary significantly. Regardless of the reaction time, long-term autonomy

entails sophisticated inference mechanisms to cope with the dynamic traits of a

real-world environment. It is of profound importance to ensure that inference, as

described above, is based on sound information.

A sensor failure constitutes an inadvertent condition at which the sensor provides

wrong measurements; i.e., the measured value differs from the actual value of the

quantity of interest, due to an unforeseen technical implication. If based on such

sensors, inference will not reflect the correct state of the environment; hence, the

computed course of action will either lead to failure or suboptimal performance.

Common types of sensor failures include:

• the sensor is stuck at a constant value

51

Chapter 4: Robustness to Sensor Failures

• the sensor measurement is corrupted by random high-variance noise (outliers)

• the sensor goes offline; i.e., the sensor does not send any measurement updates

The goal of this chapter is to develop an algorithm that estimates the state of an

autonomous agent in the presence of sensor failures. The integrity of each sensor is

assessed at runtime. When the sensor integrity is compromised, i.e., in the case of a

defective sensor, the algorithm detects the failure and disregards future information

originating from that particular sensor. To this end, an accurate model of the agent’s

dynamics is utilised within a Bayesian Filter.

Generally, Bayesian Filters comprise two distinct steps: a prediction step and an

update step. The prediction step uses a dynamic model (transition model) to predict

the state. The update step leverages measurements from a set of sensors to correct

the state estimation of the prediction step. Both model estimation and measurement

update output probability distributions. Often, Gaussian distributions are used for

that matter. Using Gaussian distributions is merely for convenience, and not a

limitation of the Bayesian Filtering framework. Gaussian distributions are defined

uniquely by the mean and the covariance (assuming a multivariate distribution -

variance for the one-dimensional case). Consequently, a Bayesian Filter updates, in

fact, the mean and the variance of the state probability distribution.

Variance (covariance in the multivariate case) quantifies how concentrated a ran-

dom variable is around its mean. The more concentrated around the mean, the more

reliable the estimation of that value. A Bayesian Filter combines model predictions

with measurements, as mentioned earlier, by taking into account the respective co-

variances. Covariances are used to compute weighting coefficients for each state

prediction, reflecting the corresponding accuracy. Finally, all predictions are com-

bined in a weighted sum, to yield the final state estimation of the filter. In this way,

the final estimation is biased towards the most reliable source of information.

Figure 4.1 depicts an example, at which information from two disparate ”sensors”

needs to be combined. The two distributions are parametrised as Gaussians with

parameters (µ1, σ
2
1) and (µ2, σ

2
2) . The final estimation in this toy example is a

weighted average of the means of the distributions, weighted as a function of the

52

Chapter 4: Robustness to Sensor Failures

respective precision (i.e., inverse covariance):

µfinal =
σ2

1µ2 + σ2
2µ1

σ2
2 + σ2

1

(4.1)

The higher the variance of a measurement the less its influence on the final result.

Taking the limit of Equation 4.1 with σ1 → ∞ yields the following expression for

µfinal:

µfinal = lim
σ1→∞

σ2
1µ2 + σ2

2µ1

σ2
2 + σ2

1

= lim
σ1→∞

µ2 +
σ2
2

σ2
1
µ1

σ2
2

σ2
1

+ 1
= µ2 (4.2)

Conversely, when σ1 → 0, µfinal = µ1. Moreover, for σ1 = σ2, µfinal is simply the

arithmetic mean (average) of the two values.

−2 −1 0 1 2 3 4

μ
1

μ
2

μ
 nal

Figure 4.1: Example of mixtures of Gaussians

This simple mathematical analysis showed how the variances control the way that

the information is combined. Therefore, the relative magnitude of the variances of

the two filtering steps is crucial; it regulates which source is considered more trust-

worthy during the state computation. For robustness to sensor failures, an algorithm

53

Chapter 4: Robustness to Sensor Failures

adjusts the respective magnitudes of the variances, in a way that the model takes

over in the case of a sensor failure. To this end, the algorithm treats the covariance

of the measurement as a hidden variable; i.e., a variable that cannot be directly

observed (measured). Instead, the measurement variance is sampled appropriately

from a probability distribution. The model covariance is either kept constant or

changes as well; estimated by applying the confidence interval computation as de-

scribed in Section A.3.2. In this way, the relative importance of the measurement

is not constant, but it changes dynamically based on the observed changes in the

world. In what follows, a general method for devising such a Bayesian Filter is de-

scribed. The showcase for testing the algorithm is underwater navigation; namely,

the estimation of the position and orientation (pose) of an autonomous underwater

vehicle with respect to a known frame of reference.

4.1 Bayesian Filtering

In Bayesian filtering, the objective is to estimate the conditional probability distri-

bution of the hidden variables x (i.e., the state) given the observed variables y (i.e.,

measurements); namely, compute the conditional probability distribution P (x|y).

By definition, P (x|y) can be written as:

P (x|y) =
P (x, y)

P (y)
=

P (x, y)∫ +∞
−∞ P (x, y)dx

(4.3)

where P (x|y) has been rewritten as a function of P (x, y), i.e., the joint probability

distribution of the variables x, y. Given P (x, y), at least theoretically speaking, the

conditional probability distribution P (x|y) is computed. A powerful framework for

modelling the joint probability distribution of a set of random variables is that of

Probabilistic Graphical Models. Specifically, Bayesian Networks provide an elegant

way of capturing conditional dependencies between random variables. A random

variable is denoted as a circular node in the network. An arrow (edge) connecting

two nodes, indicates a conditionally dependency between the two random variables.

54

Chapter 4: Robustness to Sensor Failures

Shaded nodes are random variables that are observed (measured), whereas standard

circular nodes are considered to be hidden. With the above definitions, the semantics

of Bayesian Networks have been provided.

X Y

W

Z

Figure 4.2: Sample Bayesian Network

For example, Figure 4.2 shows a simple Bayesian Network. The network is a

graphical representation of the joint probability distribution P (X, Y, Z,W). The

Bayesian Network is utilised as a set of assumptions, which facilitate to break down

the joint probability distribution to simpler expressions. To this end, the chain rule

for Bayesian Networks is required: A random variable is conditionally independent

of all its non-descendants nodes in the graph given the value of all its parents [169].

Mathematically, the chain rule is formulated as follows:

P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi|parents(Xi)) (4.4)

By applying the chain rule on the network in Figure 4.2, the joint probability dis-

tribution can be decomposed as a product of factors (factorisation):

P (X, Y, Z,W) = P (W |X, Y)P (X|Z)P (Z)P (Y) (4.5)

After the individual factors, namely P (W |X, Y), P (X|Z), P (Z), P (Y), are defined

the probability of any combination of the values of the random variables can be

computed.

55

Chapter 4: Robustness to Sensor Failures

X
t-1

Y
t-1

Y
t-1

X
t

Y
t

Figure 4.3: A Hidden Markov Model (HMM) depicted as 2-slice Dynamic Bayesian
Network

A special case of Bayesian Networks is that of Dynamic Bayesian Net-

works (DBN). DBNs relate random variables at different instances in time. Fig-

ure 4.3 shows a common DBN, known as Hidden Markov Model (HMM). The ran-

dom variable Xt is the hidden state, which evolves over time following some dy-

namics. The random variable Yt is the observation at time t; i.e., a measurable

quantity that provides implicit information about the state. The graph relates the

random variables between time instances t − 1 and t. Assuming that X = {xi}ki=1

and Y = {yi}ki=1, the joint probability of all states and observations across time is

written as follows:

P (X,Y) =
k∏
i=1

update︷ ︸︸ ︷
P (yi|xi)

k∏
i=1

P (xi|xi−1)︸ ︷︷ ︸
predict

P (x0) (4.6)

The terms in Equation 4.6 directly correspond to the two distinctive steps of

a Bayesian Filter: the prediction step and the update step. Assuming Gaussian

distributions for the factors in Equation 4.6 with linear relationships between the

random variables, the standard Kalman Filter (KF) is derived.

To compute the probability of the hidden state given the observation, as in

Equation 4.3, one step is still missing: to compute the integral in the denomina-

tor (compute the marginal probability P (y)). The computation of the integral is

often intractable, even for simple cases. Therefore, methods that approximate the

probability P (x|y) (approximate inference methods) have been developed.

56

Chapter 4: Robustness to Sensor Failures

Approximate methods output a probability distribution Q(x) that most accu-

rately resembles the original P (x|y). To this end, a measure of similarity between

probability distributions is required. Information theory provides such a measure,

commonly known as Kullback-Leibler divergence (KL) [170]:

KL(Q||P) =

∫ +∞

−∞
Q(x)ln

Q(x)

P (x)
dx (4.7)

KL is not a proper distance metric, as it is not symmetrical; namely, KL(Q||P) 6=

KL(P ||Q). However, it can be used as a quasi-metric; since it is non-negative and

is zero only when P and Q coincide. Therefore, a reasonable approximation Q(x) of

P (x|y) could be obtained by minimising the KL-divergence between the distributions

P and Q:

Q∗(x) = arg min
Q∈Q

KL(Q(x)||P (x|y)) (4.8)

where Q∗ denotes the optimal approximate distribution and Q is the space of all

candidate approximate distributions. Solving for Q∗(x) yields the recursive formulae

for a Bayesian Filter.

The optimisation problem, as described in Equation 4.8, can be solved using

Variational Bayes Approximation. This approximate inference method is charac-

terised as variational due to the similarity to the Calculus of Variations. In Calculus

of Variations, the goal is to find a function f(x) that minimises a specific functional

F [f(x)]; which maps a function to a real number. Similarly, KL-divergence is a func-

tional of probability distributions; that, in turn, are functions. Hence, Variational

Bayes Approximation attempts to find the probability distribution Q(x) (function

of the hidden variable x), so as to minimise the functional KL(Q||P). To this

end, the complete data log-likelihood, defined as 〈logp(x1:k, y1:k)〉, is required; where

the brackets indicate expected values and log is the natural logarithm1. The joint

probability distribution logp(x1:k, y1:k) can be factorised using a graphical model, as

described previously.

1Any base can be used for the logarithm; the important thing is to remain consistent throughout
the filter derivation

57

Chapter 4: Robustness to Sensor Failures

The steps for devising an arbitrary Bayesian filter are the following:

1. Choose the random variables of the system to be modelled

2. Define the conditional dependencies between the random variables using a

Dynamic Bayesian Network

3. Using the DBN, decompose the joint probability of all the random variables

to a product of factors

4. Define a probability distribution for each of the factors

5. Apply Variational Bayes Approach to derive the filtering equations.

Variational Bayes Approximation provides straightforward solutions to the op-

timization problem depicted in 4.8. Nevertheless, a detailed description of the the-

oretical framework is beyond the scope of this chapter. A simple, albeit rigorous,

outline of the theory can be found in Appendix C.

A bayesian filter that is robust to sensor outliers requires that the measurement

covariance is treated as hidden variable as well; i.e., it is computed based on incoming

information. A graphical model that captures this requirement is illustrated in

Figure 4.4.

X
k-1

Y
k-1

X
k

Y
k

R
k

R
k-1

Figure 4.4: Kalman Filter with variable measurement noise model used for outlier
robust filtering

In the remaining of the chapter, two bayesian filters are presented in increasing

order of complexity. Specifically, steps 1-3 are identical for both filters. However,

the probability distributions that model each of the factors (i.e., step 4) are different;

mainly, in the way the covariance of the measurement model is defined.

58

Chapter 4: Robustness to Sensor Failures

4.2 A Simple Outlier Robust Filter

In this section, the outlined theory is employed to develop a non-linear filter that

is robust to sensor degradation. Complying with the standard Bayesian Filter

formulation, the algorithm requires a transition and a measurement model. The

transition model, namely P (xk+1|xk), provides the probability distribution of the

state x ∈ Rd1 at time k + 1, given the state at k. In turn, the measurement

model P (yk|xk)represents the probability distribution of the sensor output yk ∈ Rd2

given the state. This filter is an extension the work presented in Ting et al. [1], where

the authors present an outlier robust filter for zero-mean stationary processes. In

this section, Ting’s work is extended for arbitrarily complex non-linear processes.

As previously mentioned, an outlier robust filter affords a varying measurement co-

variance. Ting et al. make the following assumption for the measurement covariance

Rk at time instant t:

Rk = 1/wkRinit (4.9)

where wk ∈ R and Rinit ∈ Rd2×d2 is an initial estimation of the measurement co-

variance. The value of wk is a hidden variable; i.e., the value of wk is computed

in real-time based on incoming information. Specifically, in the presence of outliers

wk converges to small values. Low values of wk increase the resulting measure-

ment covariance; thus, indicating reliance more on the model rather than the sensor

measurement. The weight wk is sampled from a Gamma distribution with shape

parameters αwk
, βwk

. In Bayesian inference, such a distribution is known as the

prior distribution and is used to incorporate expert knowledge about the sampled

hidden variable. Gamma distribution is defined on (0,∞); thereby, wk 6= 0 for any

combination of the parameters αwk
, βwk

.

59

Chapter 4: Robustness to Sensor Failures

4.2.1 Filter Derivation

The filter that employs the measurement covariance as described by Equation (4.9) is

illustrated in Figure 4.5; where, the hidden measurement covariance Rk, as appears

in the general filter representation, has been substituted by wk. This is due to the

fact that Rinit is constant.

X
k-1

Y
k-1

X
k

Y
k

w
k

w
k-1

Figure 4.5: Kalman Filter with varying measurement covariance; the resulting co-
variance is equal to the initial, scaled by a weight. The weight is computed at
runtime [1]

Based on the Bayesian Network of Figure 4.5, the joint probability distribution

of all the variables at all times factorises as follows:

P (x1:k,y1:k, w1:k) =
k∏
i=1

P (yi|xi)
k∏
i=1

P (xi|xi−1)P (x0) (4.10)

Taking the natural logarithm of the above expression, the complete data log-likelihood

lnp(x1:k,y1:k, w1:k) is computed:

lnp(x1:k,y1:k, w1:k) =
k∑
i=1

lnp(yi|xi, wi) (4.11)

+
k∑
i=1

lnp(xi|xi−1) +
k∑
i=1

lnp(wi) + p(x0)

Having factorised the joint probability distribution according to the Bayesian

Network at hand, next all the yielded factors need to be described:

60

Chapter 4: Robustness to Sensor Failures

P (xk+1|xk) ∼ N (f(xk,uk),Q) (4.12)

P (yk|xk, wk) ∼ N (Cxk, w
−1
k Rinit) (4.13)

P (wk) ∼ Gamma(αwk
, βwk

) (4.14)

where Q ∈ Rd1×d1 is the covariance of the transision model (dynamic model),

Rinit ∈ Rd2×d2 the covariance of the measurement model, and C ∈ Rd2×d1 the

output measurement matrix; assuming a linear measurement model as in the stan-

dard Kalman filter. Ting et al. [1] focus on first-order autoregressive stationary (or

slowly drifting) processes. Here, the algorithm is extended to a more general class of

systems; specifically, nonlinear systems with external inputs. To this end, the tran-

sition model is modified to include a nonlinear map f(xk,uk) : Rd1 × Rd3 7→ Rd1 ,

which models the dynamics of the system as a function of the previous state xk and

the control input uk ∈ Rd3 . Conversely, the measurement model remains as appears

in [1].

Substituting (4.12), (4.32), (4.14) into (4.11) yields:

lnp(x1:k,y1:k, w1:k) =
d2 − 2

2

k∑
i=1

lnwi −
k

2
ln|R|

− 1

2

k∑
i=1

wi(yi −Cxi)
TR−1(yi −Cxi)−

k

2
ln|Q|

− 1

2

k∑
i=1

(xi − f(xi−1,ui−1))TQ−1(xi − f(xi−1,ui−1))

+
k∑
i=1

awi
lnwi −

k∑
i=1

bwi
wi

+
k∑
i=1

(awi
lnbwi

− lnΓ(awi
)) + constant (4.15)

It is worth noting that the leading terms in equation (4.15) are independent of

xk and wk; hence, they could be absorbed within the constant term. However, they

depend on the parameters α and β of the Gamma distribution. To this end, they

are essential for deriving an analytical expression for the parameters of the Gamma

61

Chapter 4: Robustness to Sensor Failures

distribution.

Similarly to [1], applying the following mean-field approximation (see Equa-

tion (4.16)) and using the result of equation (C.5),the optimal approximate dis-

tribution P̃ ∗(w, x)of the hidden variables are derived.

P̃ (x1:k, w1:k) =
k∏
i=1

P̃ (wi)
k∏
i=1

P̃ (xi|xi−1)P̃ (x0) (4.16)

Specifically, the optimal approximate distribution of the state P̃ ∗(xk|xk−1) is

normally distributed with mean 〈xk〉 and variance Σk. On the other hand, wk

follows a Gamma distribution with parameters αopt = d2
2

+ αwk
and βopt =

βwk
+ 1

2
〈(yk −Cxk)

TR−1(yk − Cxk)〉. P̃ (x0) is the prior distribution of the state,

which is constant; hence, it does not influence the derivation of the filter equations.

The analytical expressions for 〈xk〉 and variance Σk are given by Equations (4.18)

and (4.17) respectively. Moreover, given the parameters αopt and βopt the expected

value of the hidden variable wk can be computed as αopt

βopt
(see Equation (4.19)).

Σk = (〈wk〉CTR−1C + Q−1)−1 (4.17)

〈xk〉 = Σ(Q−1〈f(xk−1,uk−1)〉+ 〈wk〉CTR−1yk) (4.18)

〈wk〉 =
d2
2

+ αw,k

βw,k + 1
2
〈(yk −Cxk)

TR−1(yk −Cxk))〉
(4.19)

The only term that needs further manipulation is that of 〈f(xk−1,uk−1)〉, namely

the expected value of the nonlinear dynamic function. To compute 〈f(xk−1,uk−1)〉,

a Taylor expansion of the function f(xk,uk) around the previous state-input point

(xk−1, uk−1) has been utilised. By discarding the second order terms and taking the

expectation upon the partial series expansion, we end up with the following recursive

formula for the indicated expected value:

〈f(xk,uk)〉 = 〈f(xk−1,uk−1)〉+ Jx[〈xk〉 − 〈xk−1〉] (4.20)

+ Ju[uk − uk−1], k > 1

where Jx and Ju are the Jacobians of f(xk,uk) with respect to x and u, evaluated

62

Chapter 4: Robustness to Sensor Failures

at (xk−1,uk−1). To initialise the recursive relation described in Equation (4.20), it

was assumed that 〈f(x0,u0)〉 ≈ f(x0,u0).

After deriving an analytical expression for the approximate distribution P̃ , a way

to tune the parameters of the Gamma distribution is required. Setting the partial

derivatives of lnp(x1:k,y1:k, w1:k) with respect to α and β equal to zero, yields the

respective update equations:

lnαwk
− lnw + lnw − ψ(αwk

) = 0 (4.21)

βwk
=
αwk

w
(4.22)

where w indicates the arithmetic mean of w, and ψ(a) is the digamma function [171].

4.3 A synthetic example

In this section, the proposed algorithm is evaluated in simulation. A non-linear

process (Equation (4.23)) is simulated to generate the state sequence. The measure-

ments consist of the state sequence after injecting some white noise. The goal of

this section is to monitor the behaviour of the filter, as the measurement is either

corrupted by outliers or frozen at a constant value.

x(t) = e−0.01tcos(2π0.003t) (4.23)

By taking the derivative with respect to time t and then discretising, the dy-

namics can be written in the form: xk+1 = f(xk, uk). Next, the nonlinear mapping

is learnt using LWPR. LWPR was tuned using the standard procedure, as described

in Section 3.3.2. As long as the Jacobians Jx and Ju can be computed, the choice of

modelling method for the dynamics does not influence the performance of the filter.

LWPR’s interface provides direct access to both the indicated Jacobians.

Figure 4.6 depicts the performance of the proposed algorithm, compared to the

63

Chapter 4: Robustness to Sensor Failures

0 50 100 150 200 250 300
−2

−1

0

1

2

y

time[sec]

Comparison between standard Kalman and Weighted Kalman on Synthetic Data

0 50 100 150 200 250 300
0

1

2

3

time[sec]

w
e
ig
h
t

kalman

robust

ground truth

Figure 4.6: The top figure compares the performance of the algorithm with the
standard Kalman filter for the simulated system, as described in equation (4.23). In
this experiment, the measurements were corrupted with outliers. The bottom figure
shows the sampled weight in each iteration of the algorithm

standard kaman filter (top). In this simulation, the measurement sequence was

corrupted with outliers. The probability of an outlier generation was set to 0.4. It

is obvious that the presented filter outperforms the standard kaman filter. Also, the

weight wk approaches zero in the presence of an outlier. As a result the measurement

covariance tends to infinity (in practice to a large value); shifting the responsibility

of the state estimation to the model.

Figure 4.7 shows the output of the filter compared to the ground truth when the

sensor got stuck to a fixed value. Also, in this case, the filter reconstructs the state

of the system quite accurately. Apparently, modelling errors accumulate over time;

leading to a slow drift of the model estimation far from the real value. However, the

prediction remains accurate sufficiently long (several seconds in this case) to enable

appropriate action from the decision-making mechanisms of the agent. Figure 4.8

illustrates the prior probability distribution of wk. The indicated distribution was

plotted using the parameters αwk
, βwk

as computed by Equation (4.21). The result-

ing distribution assigns almost infinite probability to wk → 0. This is due to the

constant misalignment between the sensor value and the model prediction.

64

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

time[sec]

s
e

n
s

o
r

u
n

c
e

rt
a

in
ty

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1

time[sec]

y

Weighted Kalman on Synthetic Data − Sensor Stuck

ground truth robust measurement

Figure 4.7: The top figure illustrates the output of the algorithm for the simulated
system, as described in equation (4.23). In this experiment, the measurement was
stuck to a constant value of 0.15. The bottom graph shows the effective measurement
uncertainty (i.e., R/wk) throughout the simulation.

4.3.1 Experimental Results

In this section, the proposed algorithm is tested on real-world data. The following

sensor failures have been considered: 1) the sensor is stuck at a fixed value and 2)

the sensor measurement is corrupted by outliers. The first failure mode is fairly easy

to simulate. For the second case, a random number p is sampled from a standard

uniform distribution. If p ≤ ε then an offset is added to the measurement. The offset

itself is sampled from a normal distribution with zero mean and variance λ� σsensor.

In this way, each measurement is corrupted with outliers with probability ε.

In the following experiments, the case of a defective DVL has been considered.

The DVL measures the linear velocity of the vehicle. We want to show that in

the event of a simulated DVL failure, the algorithm utilises the dynamic model

to estimate the velocity of the vehicle correctly. To this end, the original DVL

measurement for the vehicle’s surge velocity is considered as ground truth. Following

that, the surge measurement is either corrupted with outliers or frozen to a constant

value. The resulting measurement sequence (i.e., with the corrupted data) is given

to the algorithm. The latter estimates the surge velocity of the vehicle given the

corrupted measurements.

Figure 4.9 compares the velocity profiles, as computed by the standard Kalman

65

Chapter 4: Robustness to Sensor Failures

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

weight

p
ro

b
a

b
il
it

y

Probability Distribution for w
k

Figure 4.8: Probability distribution P (wk) ∼ Gamma(a, b). The computed shape
and scale parameters for the distribution are such that the probability of small values
for wk tends infinity. Intuitively, the algorithm does not rely on the sensor reading
and favours the model prediction. This is a result of the constant mismatch between
the sensor and the model, which followed the simulated sensor failure.

Filter and the proposed filtering algorithm. In this experiment, the original measure-

ment from the DVL was corrupted with outliers. The outliers were generated with

probability ε = 0.25 (λ = 1). The filter was initialised with Q = R = 0.001I3×3,C =

I3×3, where I3×3 is the 3 × 3 identity matrix. The corrupted measurement is illus-

trated in the bottom subfigure. Evidently, the performance of the algorithm is not

influenced by the presence of outliers. Likewise, Figure 4.10 compares the estimated

velocity of the vehicles when the DVL output froze at a specific value. Again the

suggested algorithm was able to compensate for the failed sensor and computed the

velocity accurately.

The filter described in this section performs as required. Nevertheless, wk pe-

nalises all the measurement dimensions equally. In certain occasions, this may prove

to be problematic. When applied to the robot, this issue was resolved by using three

filters in parallel; i.e., one for each dimension: surge, sway, and yaw rate. This is

an acceptable remedy for lower dimensional problems; albeit a more general filter

would be desirable. For this reason, a more general filter is derived, by relaxing

the assumptions, concerning the measurement covariance, which were made in this

section.

66

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120

−2

0

2

4

surge measurement

Time[sec]

M
e
a
s
u

re
d

 V
e
lo

c
it

y
[m

/s
e
c
]

ground truth

measurement

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3

surge velocity comparison − measurement corrupted with outliers

Time[sec]

V
e
lo

c
it

y
[m

/s
e
c
]

ground truth

kalman

orkf

Figure 4.9: The figure on the top compares the estimated surge velocity, as computed
by the standard Kalman filter and the suggested algorithm. At the bottom, the
outlier corrupted measurement which is considered by both filters is shown. The
time instant at which the failure occurred is marked with a black diamond.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

surge measurement

Time[sec]

M
e
a
s
u

re
d

 V
e
lo

c
it

y
[m

/s
e
c
]

ground truth

measurement

0 20 40 60 80 100 120

0

0.2

0.4

0.6

surge velocity comparison − sensor stuck

Time[sec]

V
e
lo

c
it

y
[m

/s
e
c
]

ground truth

kalman

orkf

Figure 4.10: The figure on the top compares the surge velocities when the measure-
ment is stuck at a constant value equal to 0.01. At the bottom, the output of the
”stuck” sensor is plotted against the original measurement.

67

Chapter 4: Robustness to Sensor Failures

4.4 Self-Tuning Kalman Filter

The Self-Tuning Kalman Filter (STKF) is an extension of the of the Outlier Robust

Kalman Filter for non-stationary processes with non-linear systems. Similarly to the

previous algorithm, STKF is developed using the Variational Bayes Approximation;

the difference lies in the assumptions of the measurement noise model. Specifically,

STKF samples the measurement covariance from the general class of covariance

matrices [152]; whereas, the previous algorithm assumes diagonal covariances that

scale homogeneously in all dimensions.

The non-linear dynamics are modelled using LWPR. Moreover, STKF utilises

LWPR’s confidence interval prediction to update the process noise covariance ma-

trix. In this way, both the process and measurement covariance are updated online;

yielding a recursive estimation algorithm that can tune the required parameters

autonomously. STKF will be showcased on the problem of underwater navigation;

moreover, STKF’s robustness to sensor failures will be demonstrated.

The purpose of STKF is to estimate the vehicle’s instantaneous velocity with

respect to the body frame; i.e., a coordinate frame attached to the robot (see Fig-

ure 4.11). Next, the velocity is converted from the body frame to the global frame

using the robot’s kinematic equations. The velocities in the global frame are inte-

grated appropriately to yield the pose of the robot. The major advantage of the

indicated algorithm is the inherent robustness to sensor failures. The algorithm

discards measurements from defective sensors as outliers. Apart from training the

dynamic model, the navigation system requires no further tuning.

Two variants of the KF were combined to yield the filter discussed above. Specif-

ically, the prediction step is that of the Extended Kalman Filter (EKF). The pre-

diction step uses a dynamic model to compute the velocity of the vehicle, given the

input to the thrusters. Next, the measurement step of the Outlier Robust Kalman

Filter (ORKF) corrects the model prediction, using the information from the sensors.

In this section, both the prediction and the update step of the filter are discussed.

Furthermore, the theoretical background for the complete navigation framework is

provided.

68

Chapter 4: Robustness to Sensor Failures

X
local

Y
local

Z
local

LWPR

ORKF

Predict

Update

V
local

Figure 4.11: Schematic representation of the Self-Tuning Kalman Filter (STKF)
that estimates the instantaneous velocity of the vehicle in the body frame. During
the prediction step, the dynamic model, based on Locally Weighted Projection Re-
gression, estimates the robot’s state (i.e., the surge velocity, the sway velocity and
the yaw rate). The prediction step is executed synchronously at a frequency of 30
Hertz. The predicted state x̂pred and the respective confidence interval σmodel define
a probability distribution N (x̂pred, σ

2
model) for the state. Conversely, the update step

occurs asynchronously; whenever a new measurement zk arrives. During the update
step, the algorithm estimates the variance of the measurement σsensor, as in the
Outlier Robust Kalman Filter; yielding a probability distribution N (zk, σ

2
sensor) for

the measurement. The resulting probability distributions are combined as in the
standard Kalman Filter, to compute the instantaneous velocity of the vehicle in the
body frame

4.4.1 Prediction step

One of STKF’s differences is that it uses machine learning, and in particular ker-

nel regression [172], to model the vehicle’s dynamics. As a kernel-based algorithm,

LWPR is non-parametric; i.e., it abstractly models the relation between an indepen-

dent and a dependent (target) variable, by exploiting previously seen data. Similarly

to EKF, the prediction step is defined as follows:

xk+1|k = f(xk|k,uk) (4.24)

Pk+1|k = FkPk|kF
T
k + Qk (4.25)

where xk|k is the state estimation at time k. In this application, the state comprises

the surge and sway velocity, as well as the yaw rate. The input vector uk consists

of the throttle (i.e., percentage of available thrust), applied to each of the thrusters.

Qk is the process (model) covariance. The process covariance quantifies the model’s

69

Chapter 4: Robustness to Sensor Failures

prediction accuracy, whereas Pk is the covariance of the final state estimation. Fk

is the Jacobian of the dynamic model (see Equation (4.26)) computed at a specific

point in the state-input space.

Fk =
∂f(xk,uk)

∂xk

∣∣∣∣
(x0,u0)

(4.26)

The Jacobian is used to linearise the dynamic equation around (x0,u0). STKF

uses the confidence interval of LWPR predictions (section A.3.2) to update the pro-

cess covariance Qk during runtime. In this application of the filter, the dimensions

of the state are assumed to be mutually independent. Therefore, Qk is a diagonal

matrix. The algorithm adjusts Qk in the following manner:

Qk = diag{σ2,(1)
pred , ..., σ

2,(d)
pred } (4.27)

where σ
(i)
pred is the computed confidence interval for the i-th state dimension and

d is the dimension of the state. Given the dynamic model xk+1|k = f(xk|k,uk),

the process noise covariance Qk, and the Jacobian Fk, the prediction step is fully

defined.

4.4.2 The update step

Similarly to KF, the update step of STKF corrects the state prediction based on

new sensor information. The model and measurement accuracy is what defines the

contribution of each to the final estimation. This information is encoded in the

respective covariance matrix; i.e., Qk for the dynamic model and Rk for the sensors.

The distinguishing characteristic of STKF is the variable measurement covariance.

At every time instant, Rk is computed in a way that maximises the likelihood

of the filter innovation; i.e., the difference between the model prediction and the

measurement. Intuitively, STKF identifies the most probable explanation, in terms

of Rk, for the observed discrepancy between the model and the sensors. The update

70

Chapter 4: Robustness to Sensor Failures

step is formulated as follows:

ỹk = zk −Ck · xk+1|k (4.28)

Hk = Ck ·Pk+1|k ·CT
k + Rk (4.29)

where ỹk is the filter innovation (residual). The output matrix Ck selects the part

of the state that is relevant to each sensor. The estimated covariance of the filter

innovation Hk is used to compute the Kalman gain Kk; which acts as the weighting

factor between the model prediction and the measurements. The smaller the values

in Rk, the more trustworthy are the measurements regarded by the filter. In the

presence of a sensor failure, the erratic behaviour needs to be reflected onto the

sensor’s measurement covariance. In this case, Rk should increase; hence, pushing

all the computation responsibility to the model. To this end, the update step of the

Outlier Robust Kalman Filter [152] has been utilised.

ORKF samples the inverse of the measurement covariance (measurement preci-

sion) in each iteration from a Wishart distribution [173]. The Wishart distribution

extends the gamma distribution for non-integer degrees of freedom. Moreover, it is

the conjugate prior of a precision matrix S−1; i.e., the inverse covariance of a mul-

tivariate normally distributed variable x with known mean. Therefore, the Wishart

distribution is the proper choice for sampling the measurement precision matrix.

The Wishart distribution is parametrised as follows:

S−1 ∼ W(Λ, s) (4.30)

where Λ is the seed matrix and s is the degrees of freedom of the distribution. The

mean of the distribution is equal to m = sΛ. Hence, a reasonable choice for Λ

is R−1
init/s. Rinit is an initial covariance matrix and is defined using the respective

accuracy properties of the sensors. The matrix S−1 is invertible with probability

one, as long as the seed matrix Λ is invertible. s controls how concentrated the

71

Chapter 4: Robustness to Sensor Failures

distribution is around its mean. For high values of s, the probability density function

of a Wishart distribution converges to that of a normal distribution. Lower values

of s yield distributions with thicker tails. In this way, measurements far from the

mean are assigned a non-negligible probability. The inverse covariance is sampled

until the log-likelihood of the innovation is maximum (see Equation (4.31)). After

convergence, the resulting measurement covariance Rk is given by Equation (4.32):

L(ỹk) = −1

2
log|Hk| −

1

2
ỹTk H−1

k ỹk + constant (4.31)

Rk =
skRinit + Sk

sk + 1
(4.32)

where:

Sk = 〈ỹkỹTk 〉+ Pk|k (4.33)

The notation 〈x〉 indicates the expected value of x. From equation (4.32), it is

implied that for sk →∞ the resulting measurement covariance coincides with Rinit.

In this case, the filter behaves exactly like the standard Kalman Filter. Conversely,

small values of sk give more weight to the sampled measurement covariance Sk. The

degrees of freedom s are computed by equation (4.34). This equation has a unique

solution, and is found in each iteration numerically.

72

Chapter 4: Robustness to Sensor Failures

1

n

k∑
t=1

log|Rt|−1 − log

∣∣∣∣∣1k
k∑
t=1

R−1
t

∣∣∣∣∣ (4.34)

+
d∑
i=1

s

2
− ψ

(
s+ 1− i

2

)

−
d∑
i=1

1

k

k∑
t=1

νt
2
− ψ

(
νt + 1− i

2

)
= 0

where νt = st + 1, and ψ is the digamma function [171]. As seen from Equa-

tion (4.34) the computation involves the history of the measurement covariance Rk.

In this way, the degrees of freedom takes into account previous experience as a bias.

Specifically, in an experiment with many outliers, terms that involve sums of Rk

will gradually increase. This is due to the fact that the algorithm will use higher

variances to compensate for the outliers. The larger the indicated sums, the smaller

the yielded degree of freedom s. In other words, previous experience indicates that

the measurements are not to be trusted.

Given Equations (4.32), (4.33), and (4.34) the measurement covariance Rk is

fully defined. It is worth noting that the indicated equations are coupled ; i.e., to

compute Rk, the value for sk is required and vice versa. A typical solution to this

problem is provided by Expectation-Maximization (EM) algorithm [174]. Starting

from an initial value for both Rk and sk, Equations (4.32), (4.33), and (4.34) are

utilised to cyclically update the respective values until convergence. The values

from the previous iteration constitute a very good initial point for the iterative

procedure. For the very first iteration, it is advised by the authors of ORKF to

use s = d − 1 where d is the dimension of the state; and Rinit, as indicated by the

sensor accuracy specifications. In practice, EM requires no more than five iterations

to converge. Following convergence, the remaining steps of the standard Kalman

73

Chapter 4: Robustness to Sensor Failures

Filter are executed as follows:

Kk = Pk+1|kC
T
kH−1

k (4.35)

xk+1|k+1 = xk+1|k + Kkỹk (4.36)

Pk+1|k+1 = (I−KkCk)Pk+1|k (4.37)

4.4.3 STKF summary

STKF adjusts all the required parameters automatically. The model covariance

Qk is computed as described in Section A.3.2. Following that, the measurement

covariance Rk is chosen at runtime (see Section 4.4.2). Thus, the filter tunes both

the process and measurement covariance during execution. Since properly adjusting

the covariances is often very cumbersome, the self-tuning feature is an important

advantage of the algorithm. Algorithm 1 summarises STKF.

Algorithm 1 Self-Tuning Kalman Filter

1: xk,Pk, zk,Rinit

2: procedure prediction step
3: xk+1|k, σ

2
pred,Fk ← LWPR(xk,uk)

4: Qk ← diag{σ2
pred}

5: Pk+1|k ← FkPkF
T
k + Qk

6: end procedure
7: procedure update step
8: ỹk ← zk −Ck · xk+1|k
9: for until L(ỹk) convergence do

10: Sk = 〈ỹkỹTk 〉+ Pk

11: s← compute dofs()
12: Rk ← (sRinit + Sk)(s+ 1)−1

13: Hk ← Ck ·Pk+1|k ·CT
k + Rk

14: Kk ← Pk+1|kC
T
kH−1

k

15: xk+1 ← xk+1|k + Kkỹk
16: Pk+1 ← (I−KkCk)Pk+1|k
17: end for
18: end procedure
19:

20: function compute dofs()
21: Numerical Solver for Equation (4.34)
22: end function

The need for model training may seem like a drawback at first. However, training

in that case is the equivalent of an identification experiment that is needed to choose

74

Chapter 4: Robustness to Sensor Failures

the parameters of a parametric (e.g., state space) model. Training the dynamic

model using the LWPR framework is straightforward (see Section 3.3.2). Besides,

LWPR’s adaptivity affords the fast recalibration of an existing core model. In this

way, variations in the vehicle’s configuration and operating conditions are treated

effectively.

4.4.4 Velocities in the world coordinate frame

The discussed filter estimates the vehicle’s instantaneous velocity in the body frame.

However, the goals of a mission are generally given in the world coordinate frame.

To convert the robot’s velocity between the two coordinate frames, the velocity

Jacobian is utilized. A detailed derivation of the Jacobian is beyond the scope

of this thesis. It is important to note that the velocity Jacobian depends on the

representation for the orientation. Specifically, for the case of Roll-Pitch-Yaw angles

(φ, θ, ψ) the Jacobian is as follows [139]:

J =

 RB
I 03×3

03×3 Jo

 (4.38)

Where:

RB
I =

cψcθ sψcθ −sθ

−sψcφ + cψsθsφ cψcφ + sψsθsφ sφcθ

sψsφ + cψsθcφ −cψsφ + sψsθcφ cφcθ

Jo =

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

Assuming small values for roll (φ) and pitch (θ), the aforementioned matrices

are simplified to:

75

Chapter 4: Robustness to Sensor Failures

RB
I =

cψ sψ 0

−sψ cψ 0

0 0 1

 ,Jo =

1 0 0

0 1 0

0 0 1

During the experiments, the roll and the pitch remained constant to zero. The

current infrastructure does not control the indicated degrees of freedom. Further-

more, the robot was driven around smoothly, to avoid an accidental excitation of

the roll and pitch. Since roll and pitch are practically equal to zero, the simplified

Jacobian is adequate for this study. The choice of Jacobian, however, does not im-

pose any limitations on the scalability of the navigation algorithm to the full 6-dof

problem.

4.4.5 State Integration

Global velocities are integrated to yield the path that was followed by the robot.

The integration of linear velocities is straightforward and can be performed using a

standard numerical scheme. Integrating the angular velocity, however, requires some

special attention. This problem originates from the topology of the set of rotations.

The set of rotations forms an algebraic group, namely the special orthogonal group.

The special orthogonal group (SO(3)) is closed under a composition operation (e.g.

for the case of rotation matrices the group operation is the matrix multiplication).

For this reason, numerical schemes involving addition cannot be applied directly;

addition is not an admissible operation within the group. To remedy that, the

integration problem is transformed to another space. The indicated space is the

tangent space of the SO(3), namely the Lie Algebra so(3). The Lie algebra is a

vector space; hence, any standard integration scheme can be applied. The outcome

of the integration is transformed back to the SO(3) using the exponential map.

Integration within so(3) respects the topology of SO(3). Therefore, the result of the

integration is guaranteed to be a valid rotation. A detailed treatise on the subject

can be found in [175].

76

Chapter 4: Robustness to Sensor Failures

4.5 Experiments

The focal point of this section is to evaluate the performance of STKF in the pres-

ence of sensor failures. To this end, all three sensor failures, as mentioned previously,

have been simulated: 1) the sensor ceases to send any measurements (i.e., the sen-

sor is offline), 2) the sensor constantly outputs the same value, and 3) the sensor

measurement is corrupted by random high-variance noise (outliers) with probability

p. The AUV can sustain mission execution when the proposed algorithm estimates

the instantaneous velocity of the vehicle, as if all sensors were functioning properly.

The evaluation of the algorithm merely focuses on the gyro and the DVL. During

the experiments, the magnetic compass was solely used to get the initial heading

of the vehicle. Pressure sensor failures were not considered during the experiments;

mainly due to the limited motion of the vehicle along this dimension. Nevertheless,

the STKF can be used to account for failures of the pressure sensor as well.

4.5.1 Wave tank experiments

Similarly to the training procedure (see Section 3.3.2), the data for the experimen-

tal evaluation were gathered by manually driving Nessie around a wave tank in

Heriot-Watt. The information from the navigation sensors was recorded into a ROS

bag. Two types of trajectories have been recorded: an eight-shaped trajectory and

a circular trajectory. In what follows, the output of the proposed filter is compared

against the ground truth (the vehicle’s state computed with a standard KF and un-

corrupted measurements from the sensors). Moreover, the corrupted measurements

from the simulated faulty sensor are used within the standard Kalman Filter; the

output of the latter is also provided for comparison.

Specifically, Figure 4.12 shows the instantaneous local velocity of the vehicle

along the surge and Figure 4.13 along the sway dimensions respectively. At a cer-

tain point in time, the DVL stopped sending measurements to the navigation system.

In this case, the dynamic model takes over the computation of the vehicle’s velocity.

The navigation algorithm is able to approximate accurately the corresponding ve-

locity profiles. Figures 4.14, 4.15 depict the same information for the vehicle’s local

77

Chapter 4: Robustness to Sensor Failures

velocity when the measurement is corrupted with outliers. The outliers were gener-

ated as described previously with probability p = 0.4. Likewise, in Figures 4.16, 4.17

the DVL is stuck at a specific value. In this experiment the indicated value is equal

to 1 for both the surge and the sway dimensions. Once again the algorithm esti-

mates correctly the instantaneous local velocities of the vehicle. Similar analysis was

applied for simulated gyro failures. Figures 4.19, 4.18 depict the angular velocity

as estimated by the standard Kalman Filter and the proposed navigation algorithm

for the stuck sensor case, as well as when the gyro is affected by outliers. The gyro

was stuck at a constant value of 1 rad/sec. Obviously, the STKF outperforms the

standard Kalman Filter in the estimation of the vehicle’s velocity in all the failure

scenarios discussed above.

In the last experiment, two sensors failed simultaneously; namely, the DVL mea-

surement was corrupted with outliers, whereas the gyro is stuck to a constant value.

The model has been used appropriately to compensate for the broken sensors. As

shown in Figures 4.20, 4.21, 4.22 the navigation system was able to compute the

respective velocities for all three dimensions (surge, sway, yaw rate).

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth stkf Failure

Figure 4.12: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. The bottom graph illustrates the stream of measurements
that was available navigation algorithm. The RMSE of the algorithm’s estimation
for this experiment is equal to 0.041 m/sec

Figure 4.23 summarises STKF’s performance for all the experiments that were

undertaken in the wave tank.

78

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120
−0.5

0

0.5
sway measurement

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−0.5

0

0.5

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth stkf Failure

Figure 4.13: The top graph compares the estimated sway velocity with the respective
DVL measurement. The bottom graph illustrates the stream of measurements that
was available navigation algorithm. The RMSE of the algorithm’s estimation for
this experiment is equal to 0.024 m/sec

0 20 40 60 80 100 120
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−2

0

2

4

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.14: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.048 m/sec

4.5.2 CMRE experiments

Further to the wave tank experiments, the algorithm was also tested on data gath-

ered in the arena of the Student Autonomous Underwater Competition - Europe

(SAUC-E). The competition took place in the Centre of Marine Research (CMRE)

in La Spezia, Italy. The data from the competition arena constitute a much harder

test for the navigation algorithm; for the competition arena is a less controlled en-

79

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−5

0

5

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.15: The top graph compares the estimated sway velocity with the respective
DVL measurement. Moreover, the output of the standard Kalman Filter is also given
for comparison. The bottom graph illustrates the stream of measurements that was
available both to our navigation algorithm and the Kalman Filter. The RMSE for
this experiment is equal to 0.0248 m/sec

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−1

0

1

2

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.16: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.055 m/sec

vironment than the wave tank. Moreover, the dynamic model of the vehicle has not

been retrained for this test. The reason for that was that the recorded data from

the competition were limited; hence, they were used merely for testing and not for

calibrating the model. Furthermore, the sensitivity of the navigation algorithm to

the model accuracy can be tested in this manner.

Two different experiments have been conducted on the CMRE data. Firstly,

80

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−1

0

1

2

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.17: The top graph compares the estimated sway velocity with the respective
DVL measurement. Moreover, the output of the standard Kalman Filter is also given
for comparison. The bottom graph illustrates the stream of measurements that was
available both to our navigation algorithm and the Kalman Filter. The RMSE for
this experiment is equal to 0.025 m/sec

0 20 40 60 80 100 120
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[r
a
d
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−5

0

5

Time[sec]

Y
a
w
 R
a
te
[r
a
d
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.18: In this experiment the gyro measurement was corrupted with outliers.
The outlier generation probability was equal to 0.4. The fault occurred at a certain
time instant denoted by a black diamond. The top graph compares the estimated
yaw rate with the actual gyro measurement. Moreover, the output of the standard
Kalman Filter is also given for comparison. At the bottom the actual measurement
and the measurement after simulating the failure are provided. This experiment
took place in the wave tank in Heriot-Watt. The RMSE for this experiment is equal
to 0.19 rad/sec

the DVL was stuck at a constant zero value both along the surge and the sway

dimension. As shown in Figure 4.24, the algorithm estimates the velocities less

accurately, albeit still quite closely. The accuracy loss, compared to the equivalent

wave tank experiments, arises from the uncalibrated dynamic model. Nevertheless,

81

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120
−0.5

0

0.5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[r
a
d
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−0.5

0

0.5

Time[sec]

Y
a
w
 R
a
te
 [
ra
d
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.19: In this experiment the gyro measurement was stuck at a constant value
of 0.4 rad/sec. The fault occurred at a certain time instant denoted by a black
diamond. The top graph compares the estimated yaw rate with the actual gyro
measurement. Moreover, the output of the standard Kalman Filter is also given
for comparison. At the bottom the actual measurement and the measurement after
simulating the failure are provided. This experiment took place in the wave tank in
Heriot-Watt. The RMSE for this experiment is equal to 0.178 rad/sec

0 20 40 60 80 100 120
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−5

0

5

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.20: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.073 m/sec

the navigation algorithm still outperforms the standard Kalman Filter. In the second

experiment, the gyro measurement was corrupted with outliers (Figure 4.26). The

estimation of the vehicle’s angular velocity is not influenced by the presence of

outliers.

82

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−5

0

5

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.21: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.05 m/sec

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

M
e
a
s
u
re
m
e
n
t
[r
a
d
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120
−0.5

0

0.5

1

Time[sec]

Y
a
w
 R
a
te
 [
ra
d
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.22: The top graph compares the estimated yaw rate with the actual gyro
measurement. Moreover, the output of the standard Kalman Filter is also given
for comparison. The bottom graph illustrates the stream of measurements that was
available both to our navigation algorithm and the Kalman Filter. The RMSE for
this experiment is equal to 0.165 rad/sec

4.5.3 Trajectory computation

Following the velocity estimation, the navigation algorithm converts the local ve-

locities to the global coordinate frame. Furthermore, the velocities are integrated

appropriately (see Section 4.4.5) to yield the path of the robot. During integra-

tion, small errors in the velocity estimation accumulate and result to paths that

differ from the ground truth. Given the absence of absolute position measurements,

83

Chapter 4: Robustness to Sensor Failures

DVL offlineDVL outliers DVL stuck Gyro outliersGyro stuck Compound

0

0.1

0.2

R
M

S
E

Surge Sway Yaw Rate

Figure 4.23: Wave tank experiment summary. The surge and sway RMSE is in
[m/sec], whereas for the yaw rate in [rad/sec]. The compound fault in the last
experiment was simulated by introducing outliers to the DVL, while in parallel the
gyro’s output got stuck at a constant value.

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

1

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

1

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.24: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.17 m/sec

which could be used to correct the drift, this artifact cannot be avoided. In the

remaining of this section, four different experiments and the respective trajectories

are discussed.

In Figure 4.27, the DVL stops to send measurements to the navigation algorithm.

However, the algorithm compensates by using the dynamic model of the vehicle.

The navigation output approximates the actual robot path accurately, as computed

when the DVL operated correctly (ground truth). Figure 4.28 illustrates the same

trajectory comparison when the DVL measurements are corrupted with outliers.

84

Chapter 4: Robustness to Sensor Failures

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[m
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

Time[sec]

V
e
lo
c
it
y
 [
m
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.25: The top graph compares the estimated surge velocity with the respec-
tive DVL measurement. Moreover, the output of the standard Kalman Filter is also
given for comparison. The bottom graph illustrates the stream of measurements
that was available both to our navigation algorithm and the Kalman Filter. The
RMSE for this experiment is equal to 0.05 m/sec

0 20 40 60 80 100 120 140 160 180
−5

0

5

Time[sec]

M
e
a
s
u
re
m
e
n
t
[r
a
d
/s
e
c
]

ground truth measurement Failure

0 20 40 60 80 100 120 140 160 180
−5

0

5

Time[sec]

Y
a
w
 R
a
te
 [
ra
d
/s
e
c
]

ground truth kalman stkf Failure

Figure 4.26: In this experiment the gyro measurement was corrupted with outliers.
The outlier generation probability was equal to 0.2. The fault occurred at a certain
time instant denoted by a black diamond. The top graph compares the estimated
yaw rate with the actual gyro measurement. Moreover, the output of the standard
Kalman Filter is also given for comparison. At the bottom the actual measurement
and the measurement after simulating the failure are provided. This experiment took
place in the SAUC-E competition arena at CMRE. The RMSE for this experiment
is equal to 0.16 rad/sec

Also in this case the trajectory is computed accurately. The third experiment, shown

in Figure 4.29, compares the estimated trajectory with the ground truth when the

DVL is stuck to a constant value. In this experiment, a different trajectory has been

used. The indicated trajectory was recorded in the same wave tank, approximately

85

Chapter 4: Robustness to Sensor Failures

one year after the previous experiment. The dynamic model was re-calibrated to

account for any possible changes in the robot’s dynamics. This experiment involved

a more complex and longer trajectory. Therefore, the accumulated drift is more

noticeable in the final result. Finally, Figure 4.30 depicts the estimated trajectory

in the case of outliers, using the data gathered at CMRE’s competition arena. The

model was not re-calibrated, hence the stronger presence of drift in the final path

estimation.

−10 −8 −6 −4 −2 0 2
−4

−3

−2

−1

0

1

2

3

4

North[m]

E
a

s
t[
m

]

ground truth
stkf
sensor failure
finish

Figure 4.27: Comparison of the robot’s estimated path, as computed by integrat-
ing the output of the proposed navigation algorithm, with the path computed by
integrating appropriately the actual DVL measurements (ground truth). In this
experiment the DVL went suddenly offline (black diamond). The experiment took
place in the wave tank in Heriot-Watt

4.6 Sensor Diagnostics

Further to the estimation of the velocity and position of the robot, a basic reasoning

system has been developed to aid fault diagnostics. The diagnostic system is trig-

gered whenever an outlier is rejected by the filter. For the detection of an outlier,

a statistical test has been used. In detail, the diagonal elements of the resulting

measurement covariance Rk are compared to the nominal values Rinit, as found in

86

Chapter 4: Robustness to Sensor Failures

−10 −8 −6 −4 −2 0 2
−4

−3

−2

−1

0

1

2

3

4

North[m]

E
a

s
t[
m

]

ground truth
stkf
sensor failure
finish

Figure 4.28: Comparison of the robot’s estimated path, as computed by integrating
the output of the proposed navigation algorithm, with the path computed by inte-
grating appropriately the actual DVL measurements (ground truth). In this exper-
iment the DVL measurement was corrupted with outliers with probability p = 0.4.
The experiment took place in the wave tank in Heriot-Watt

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

North[m]

E
a
s
t[
m
]

ground truth
stkf
sensor failure
finish

Figure 4.29: Comparison of the robot’s estimated path, as computed by integrat-
ing the output of the proposed navigation algorithm, with the path computed by
integrating appropriately the actual DVL measurements (ground truth). In this
experiment the DVL measurement was stuck to a constant value of zero. The ex-
periment took place in the wave tank in Heriot-Watt

the sensor specifications. Outlier detection is formulated as an F-test:

H0 : σ2
spec = σ2

est (4.39)

H1 : σ2
spec < σ2

est

F =
σ2
spec

σ2
est

α : 0.99
87

Chapter 4: Robustness to Sensor Failures

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

North[m]

E
a

s
t[
m

]

ground truth
stkf
sensor failure
finish

Figure 4.30: Comparison of the robot’s estimated path, as computed by integrating
the output of the proposed navigation algorithm, with the path computed by inte-
grating appropriately the actual DVL measurements (ground truth). In this exper-
iment the DVL measurement was corrupted with outliers with probability p = 0.2.
The experiment took place in the SAUCE-E competition arena in CMRE.

The null hypothesis of the test, namely H0, is that the variances of the original (σspec)

and the computed measurement models (σest) are not statistically different. A con-

fidence level of α = 0.99 has been chosen. The null hypothesis is rejected whenever

F < F1−α, where F1−α is the 1%-percentile of the F distribution. When H0 is

rejected, an outlier has been detected.

Following the outlier detection, the diagnostic system performs inference to dis-

tinguish between the failure modes. Specifically, the system observes the outlier

detection events and estimates the probability of each failure mode. Diagnostic in-

ference does not include the case when the sensor has gone offline; it is fairly easy

to distinguish it from the other failure modes using the timestamps of the measure-

ments. Consequently, the considered health states are healthy, outlier-corrupted and

sensor-stuck. A Hidden Markov Model (HMM, [116]) is used to model the prob-

ability distribution of the state, conditioned on the observation sequence. In this

example, the observation sequence consists of outlier detection events (erroneous

measurements). An HMM is defined by the initial probabilities of the state, the

transition probabilities and the emission probabilities. The estimation of the HMM

properties is described in Section 4.6.1.

88

Chapter 4: Robustness to Sensor Failures

4.6.1 HMM training

A Hidden Markov Model is parametrised by the initial probability distribution of

the state π, the transition model T , and the observation model O (emission model).

The transition model T is an n×n matrix, where n is the cardinality of the HMM’s

state. The ij-th entry of the transition model holds the probability of transition

from state i to state j. The emission model is an n × m matrix, where m is the

cardinality of the observation set. The ij-th entry of the emission model is the

probability that the j-th value of the observation variable will be observed when in

state i.

The diagnostic HMM was trained on synthetic data using the Baum-Welch algo-

rithm. This particular training method requires initial guesses for the transition and

the observation models, as well as a training observation sequence. The observation

sequence was generated by the following rules:

• A healthy system generates outliers with probability p→ 0

• A stuck sensor generates outliers with probability p→ 1

• A system that suffers from random outliers will generate corrupted measure-

ments with probability p ∼ U(0, 1).

The system tends to preserve the state, i.e., the non-diagonal entries of the

transition model are very small, albeit non-zero. Consequently, the diagonal entries

of the transition model are close to one. The transition and the emission matrices

as computed after training the HMM are:

T =

0.9986 0.0013 0.0001

0.002 0.998 0.000

0.002 0.000 0.998

 ,O =

0.99 0.01

0.672 0.327

0.01 0.99

 (4.40)

The resulting HMM was evaluated on a separate set of observation sequences.

The model is able to estimate the failure mode correctly in the vast majority of the

test sequences. Table 4.1 depicts the confusion matrix of the HMM-based diagnostic

system:

89

Chapter 4: Robustness to Sensor Failures

Table 4.1: Confusion Matrix of the Diagnostics System

Predicted Class
Healthy Outlier Stuck

A
ct

u
al

C
la

ss Healthy 98 2 0
Outlier 5 73 22
Stuck 0 0 100

As described above, the algorithm performs a statistical test on the diagonal ele-

ments of the sampled measurement covariance Rk with respect to the corresponding

values of Rinit. Rejection of the null hypothesis H0 indicates the detection of an out-

lier. The detection is logged in the event channel, accompanied by a timestamp and

the name of the sensor that triggered the event. The log is then given as input to the

HMM (Section 4.6.1) to infer the failure mode. The event channel is used as the ob-

servation sequence of the HMM. Table 4.2 summarizes the probability distributions

of the failure modes for the four experiments discussed in Section 4.5.3.

Table 4.2: Failure Mode Probabilities

Experiment healthy outliers stuck
Loop # 1 0.987 0.013 0
Loop # 2 0.143 0.651 0.206
8-shaped 0 0.01 0.99

cmre 0 0.317 0.683

As mentioned earlier, isolating the offline failure mode is trivial. Furthermore,

the experiments have shown that the HMM isolates the stuck-sensor failure mode

successfully. Confusion arises in the case of random outliers. The probability at

which the outliers are generated influences the performance of the diagnostic sys-

tem. Specifically, the diagnostic system may misclassify the sensor as healthy, when

the outlier probability is too low, or stuck when the outlier probability is too high.

For a certain range of p (e.g. 0.15− 0.70) the diagnostics are correct. The described

behavior is quite intuitive; a human operator would possibly encounter a similar

problem. Nevertheless, a significant improvement is expected by adding more com-

plex features.

90

Chapter 4: Robustness to Sensor Failures

4.7 Remarks

This chapter presented two algorithms for outlier rejection for non-linear non-

stationary processes. The first filter is based on [1]. The filter has been derived

from scratch; i.e., by formulating the problem in terms of a Bayesian Network, and

solving for the hidden variables. The yielded algorithm is similar to the EKF; in

the sense that the non-linear dynamics are linearised using the Jacobian. However,

the state covariance is updated slightly differently than standard EKF. Moreover, a

set of recursive equations has been provided, to tune the required parameters of the

filter.

The second filter, namely STKF, is a direct combination of EKF and ORKF [152].

The resulted is more robust than the first presented algorithm. This is mostly be-

cause, no structure is imposed on the sampled measurement covariance; any positive

semi-definite matrix is possible. All dimensions are handled separately, based on the

quality of the incoming sensory information.

A large contribution to both algorithms’ performance is attributed to LWPR.

The powerful dynamic modelling, as described in Chapter 3, is the keynote for the

algorithms’ success. It has been shown on real-world data that outlier rejection, as

shown by [152], and [1] for stationary processes, can be extended to highly complex

systems, like an autonomous underwater vehicle.

Finally, a simple sensor diagnostic approach enables to discriminate between

sensor failures. Specifically, the diagnostic system detects whether the sensor is

stuck or if the measurement sequence is corrupted by outliers. Naturally, there is

some ambiguity in the switching boundaries between failure modes. To remedy that,

the system could leverage higher level information from other monitoring subsystems

or to provide more representative training data to the system.

91

Chapter 5

Robustness to Changes in the

Process Dynamics

5.1 Introduction

Over the course of time, autonomous systems change dynamic behaviour. Changes

occur either gradually or abruptly. Asset ageing (i.e. wear) causes gradual changes;

whereas, abrupt changes occur after hardware failure (e.g., after a thruster failure

in the case of AUVs). In this chapter, an algorithm is presented that can detect

shifts in the dynamics of an autonomous system.

Similarly to sensor failures, a Bayesian filter is utilised to detect deviations from

normal operation (i.e., faults). Next, deviations are included in a new dynamic

model; namely, a model that captures the system dynamics after failure. In this

way, the algorithm considers the fault in future state estimation. The algorithm

can be applied in the presence of multiple unknown faults; albeit, the rest of this

chapter considers the case of a single fault.

The proposed algorithm uses two models: a nominal and an adaptive model.

The nominal model represents normal operation; whereas, the adaptive model cap-

tures the system’s dynamics after a fault has occurred. Initially, the adaptive model

is identical to the nominal. During operation, however, the adaptive model incor-

porates incoming sensory information continuously. When the system drifts from

normal operation, predictions by the two models get different. It is important to

92

Chapter 5: Robustness to Changes in the Process Dynamics

mention that the adaptive model considers only seminal changes in the dynam-

ics. The Bayesian formulation filters out noise and outliers in the measurements

sequence. What remains is used as input to the adaptive model.

Given a new measurement, the algorithm infers which of the two models explains

the observations better. This is realised using a discrete-valued switch variable

s ∈ Rk, where k is the number of different dynamic models. When the k-th model

is active, the respective entry in the switch variable becomes one; all The algorithm

computes the joint probability of the vehicle’s state (e.g., velocity and acceleration)

and the switch variable y using a variational approximation.

During normal operation, both the nominal and the adaptive model will out-

put similar state estimations; hence, in this case, both models are equiproba-

ble (p(s1 = 1) = p(s2 = 1) = 0.5). When something modifies the vehicle’s dynamics

substantially, however, the adaptive model will yield the most plausible explanation;

hence in this case p(s2 = 1) gets larger. In such cases, the adaptive model will reflect

the actual dynamics of the system after the fault. Next, the expected value of the

vehicle’s state is computed as the weighted sum of the output of the two models;

using as weights the probability distribution of s. Assuming Gaussian distributions

for the individual model predictions, the state expectation is, in fact, a Mixture of

Gaussians.

This chapter provides a mathematically rigorous framework for fault detection

and online model adaptation. The Bayesian representation naturally precludes the

problem of uncertainty. No explicit parameters (e.g. thresholds) need to be defined

to indicate faulty behaviour or to perform outlier detection. Expert knowledge is

provided through prior distributions. The latter are intuitive to choose and com-

monly shared across all model dimensions. Moreover, the prior parameters can be

learned from data using a Maximum Likelihood approach; albeit this has not been

undertaken in this brief.

A key contribution of the suggested algorithm is that the adaptive model cap-

tures arbitrary deviations from the dynamics without the need to predefine the fault

dynamics. At each time, an up-to-date model that can be used for control and plan-

93

Chapter 5: Robustness to Changes in the Process Dynamics

ning is provided. Moreover, the presented algorithm encompasses previous model

detection methods; for it can detect faults with unknown dynamics. Nevertheless,

any model of a previously known fault can be simply added to the model ensem-

ble (i.e., the set of models that define the mixture of Gaussians). In a way, the

algorithm presented here extends standard model-based fault detection from a set

of predefined faults to the full space of possible faults.

5.2 Fault Detection and Dynamic Adaptation Al-

gorithm

The algorithm is an extension of the standard Kalman filter to include multiple pos-

sible models. Not all models are known a priori; conversely, they are the outcome of

continuous model adaptation. In the graphical representation, Xt is the generalised

state; i.e., the state as computed by weighing together all model predictions at time

t, Yt holds the sensor data at the same time instant. Λt is the prior for the sensor

precision (i.e., the inverse of sensor covariance; sensor noise model of the Kalman

equivalent) and, lastly, St is the switch variable. To simplify the Bayesian Network,

no prior for the prediction covariance has been utilised. Since merely the relative

magnitude of the model and measurement covariance is important, random variable

Λt is sufficient. Whenever index t is omitted, the variable holds the trajectory across

time of the corresponding time indexed variable.

X
t-1

Y
t-1
Y
t-1

X
t

Y
t

Λ
t

Λ
t-1

S
t

S
t-1

Figure 5.1: Representation of the fault detection algorithm as two-slice Dynamic
Bayesian Network.

Using the Chain Rule for Bayesian Networks [169], the joint probability depicted

94

Chapter 5: Robustness to Changes in the Process Dynamics

in Figure 5.1 factorises as follows:

P (Y,X,Λ, s) = P (Y|X,Λ, s)P (s|π)P (Λ)P (X) (5.1)

P (Y|X,Λ, s) =
N∏
n=1

M∏
i=1

N (yn|Cx(i)
n ,Λ

(i)
n)s

(i)
n (5.2)

P (s|π) =
N∏
n=1

M∏
i=1

πs
(i)
n
i (5.3)

P (Λ) =
N∏
n=1

M∏
i=1

W(Λ(i)
n |ν(i),V(i)) (5.4)

P (X) =
N∏
n=1

M∏
i=1

P (x(i)
n |xn−1)P (x0) (5.5)

In Equations (5.1)-(5.5), t indexes variables over time, whereas i runs over the

set of candidate models (only two in this case; the nominal and the adaptive model).

C is the matrix representation of a linear measurement model, as in the standard

Kalman Filter. Moreover, π is the initial mixing coefficients; i.e., the initial ac-

tivation values of each of the models in the ensemble. W(.|ν,V) is the Wishart

distribution with ν degrees of freedom and seed matrix V [173]. Applying the Vari-

ational Bayes Approximation the final filtering equations are yielded:

95

Chapter 5: Robustness to Changes in the Process Dynamics

〈s(i)
n 〉 =

p̃
(i)
n

M∑
i=1

p̃
(i)
n

(5.6)

p̃(i)
n = exp{〈ln|Λ(i)

n |〉/2 + lnπi −
1

2
tr{〈Λ(i)

n 〉〈α(i)
n 〉}} (5.7)

〈α(i)
n 〉 = yny

T
n − 〈x(i)

n 〉yTn − yn〈x(i),T
n 〉+ 〈x(i)

n x(i),T
n 〉 (5.8)

〈x(i)
n 〉 = Λ(i)

xn

[
〈s(i)
n 〉〈Λ(i)

n 〉yn + β〈f (i)(x
(i)
n−1,un−1)〉

]
(5.9)

Λ(i)
xn = 〈s(i)

n 〉〈Λ(i)
n 〉+ βI (5.10)

〈Λ(i)
n 〉 = ν

(i)
Λn

V
(i)−1

Λn
(5.11)

ν
(i)
Λn

= ν(i) + 〈s(i)
n 〉 (5.12)

V
(i)−1

Λn
= V(i)−1

+ 〈s(i)
n 〉〈α(i)

n 〉 (5.13)

where β is a small scalar (e.g., 0.001) that controls the initial relative confidence

between model predictions and measurements. Similarly, ν(i) and V(i) are the initial

Wishart parameters for the measurement model. These parameters capture any

expert knowledge about the system The notation 〈.〉 indicates the expected value of

the included random variable. Lastly f (i)(x
(i)
n−1,un−1) is a functional representation

of the i-th model; in this thesis f is always approximated using LWPR.

The filtering equations are coupled. To remedy that an iterative update of the

parameters is required. It is worth noting, that the filtering equations realise merely

the Expectation step of the E-M. This is done to keep the algorithm simple and more

computationally efficient. Regardless, even the expectation step is mathematically

guaranteed to improve the solution in each iteration [172]

5.2.1 Model Adaptation

As mentioned before, the algorithm utilises a nominal and an adapted model to infer

fault detection. This section focuses on adaptation; namely, on the derivation of the

adapted model from the nominal. LWPR adapts incrementally by updating the local

regression parameters. In light of new data, the algorithm detects which models are

activated; this process is identical to the beginning of the prediction computation.

96

Chapter 5: Robustness to Changes in the Process Dynamics

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Samples

W
e

ig
h

t
[0

,
1

]

Figure 5.2: Importance weighing of previous training data samples for a forgetting
factor λ = 0.995

The activated models are then updated to incorporate the new information. To allow

incremental adaptation of the regression parameters, sufficient statistics are used to

summarise the information from the previous training data. To control adaptation

speed, a forgetting factor λ ∈ [0, 1] multiplies the sufficient statistics, regulating the

memory behaviour of the system. With λ = 0, the algorithm disregards the previous

training data and updates the parameters solely using the current training sample.

A unity forgetting factor locks the regression parameters; yielding a model that

ceases to adapt. Choosing the forgetting factor requires attention because extreme

values may lead to overfitting or instability. Figure 5.2 shows the relative influence

of the previous training samples on the computation of the regression parameters

for λ = 0.995. A detailed description of the regression parameter adaptation can be

found in [176].

Fault detection performance depends on robust model adaptation. Robust model

adaptation requires that outliers are filtered out, such that detected changes are due

to a dynamical shift and not because of noise or sensor defects. To this end, the

algorithm adapts the forgetting factor of the underlying LWPR model online, using

the current value of the switch variable. Specifically, the probability of (s2 = 1) is

passed into a sigmoid function defined as follows:

λ =
1

1 + e−α(x−c) (5.14)

97

Chapter 5: Robustness to Changes in the Process Dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3: Sigmoid function with α = 10 and c = 0.5.This function regulates the
forgetting factor for the model adaptation given the probability p(s2 = 1)

where α is regulates the smoothness of the sigmoid and c the centre. Figure 5.3

depicts the sigmoid used in this application of the algorithm.

5.3 Experimental results

In this section, the presented algorithm is tested on data gathered from the robot.

Firstly, the algorithm was applied to data coming from Nessie operating normally.

The purpose of this experiment is to check for erroneous fault detections; i.e., cases

when the algorithm detects a seminal shift in the autonomous system’s dynamics,

albeit everything works fine.

Another experiment has been undertaken to test the algorithm’s behaviour in the

presence of thruster failures. In this experiment, the output of one of Nessie’s surge

thrusters is limited to a predefined percentage of their nominal thrust capability. The

algorithm is supposed to identify the fault through the switch variable s. Specifically,

fault detection is performed using a histogram the switch variable throughout the

experiments. In this way, fault detection takes into consideration all values of s;

endowing the algorithm with robustness against random switches due to noise or

model imperfections.

Figure 5.4 illustrates the histogram for the activation value of the faulty

model (i.e., the second coordinate of the switch variable). Obviously, the mean

of the approximated distribution lies closely to 0.5. The resulting histogram is con-

98

Chapter 5: Robustness to Changes in the Process Dynamics

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

s
2

C
o
u
n
ts

Figure 5.4: Approximation of the probability distribution p(s2) as a histogram for
the activation value of the adaptive model for the healthy case

gruent with the original design; for in the healthy case, observations can be explained

equally well by both the healthy and the defective model. Conversely, Figure 5.5

provides the same information in the case of the defective thruster (in this exper-

iment thruster output was limited to 0%; utter thruster failure). In this case, the

activation value of the defective model is closer to unity; i.e., the algorithm has

detected that the healthy model, no longer explains the observations. Other experi-

ments pertain to limiting the thruster to a non-zero value; i.e., the thruster provides

some traction, although not the as much as during healthy operation. Specifically,

Figure 5.8 depicts the histogram for s2 when the thruster output is limited to 68%;

similarly, Figure 5.10 for a thruster limit of 51%.

As mentioned previously, the algorithm learns the defective model online. To

demonstrate this trait, the internal model predictions (both the healthy and defec-

tive) are compared against the measurements in the case of a defective thruster.

As seen in Figure 5.6, the adaptive model matches the sensor data closely; i.e., it

has learned a new dynamic model to compensate for the thruster failure. The new

model can be used to improve either control of planning. Figures 5.7, 5.9 show the

respective model predictions for the remaining experiments. Table 5.1 summarises

the described experiments in terms of prediction accuracy between the two models.

Moreover, the expected value the switch variable is provided for each model:

99

Chapter 5: Robustness to Changes in the Process Dynamics

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

500

1000

1500

s
2

C
o

u
n

ts

Activation Value of Adaptive Model

Figure 5.5: Approximation of the probability distribution as a histogram for the
activation value of the adaptive model for the defective case (complete thruster
failure).

0 500 1000 1500 2000 2500 3000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Samples (10Hz)

S
u
rg
e
 V
e
lo
c
it
y
 (
m
/s
e
c
)

adaptive model sensor nominal model

Figure 5.6: Comparison between the nominal and adaptive model prediction. Sensor
measurements are utilised to indicate the validity of each model prediction (complete
thruster failure).

100

Chapter 5: Robustness to Changes in the Process Dynamics

0 200 400 600 800 1000 1200 1400 1600
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time Samples (10Hz)

S
u
rg

e
 V

e
lo

c
it
y
 (

m
/s

e
c
)

adaptive model sensor nominal model

Figure 5.7: Comparison between the nominal and adaptive model prediction. Sensor
measurements are utilised to indicate the validity of each model prediction (thruster
output limited at 68% of maximum thrust).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

s
2

C
o

u
n

ts

Figure 5.8: Approximation of the probability distribution as a histogram for the
activation value of the adaptive model for the defective case (thruster output limited
at 68% of maximum thrust).

0 200 400 600 800 1000 1200 1400 1600
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time Samples (10Hz)

S
u
rg

e
 V

e
lo

c
it
y
 (

m
/s

e
c
)

adaptive model sensor nominal model

Figure 5.9: Comparison between the nominal and adaptive model prediction. Sensor
measurements are utilised to indicate the validity of each model prediction (thruster
output limited at 51% of maximum thrust).

101

Chapter 5: Robustness to Changes in the Process Dynamics

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

s
2

C
o
u

n
ts

Activation Value of Adaptive Model

Figure 5.10: Approximation of the probability distribution as a histogram for the
activation value of the adaptive model for the defective case (thruster output limited
at 51% of maximum thrust)

Table 5.1: Prediction Accuracy and Model Activation

Experiment Nominal Adaptive s1 s2

healthy 0.3493 0.4386 0.5592 0.4408
68% 1.4776 0.5561 0.3971 0.6029
51% 1.5008 1.0532 0.2884 0.7116
0% 3.0815 0.9987 0.0819 0.9181

Lastly, the algorithm is tested against sensor failures. The desired behaviour is

to detect thruster failures -or any other shift in the autonomous system’s dynamics-

while preserving the sensor failure robustness. To this end, another experiment has

been made by leaving the thruster output unaffected; the sensor measurement has

been corrupted with outliers instead. As seen in Figure 5.12 the filtered output is

smooth; hence the algorithm’s state computation is not influenced by the presence

of outliers. In this particular experiment the probability of outlier generation was

equal to poutlier = 0.1. Also the fault detection remained correct despite the outliers.

Figure 5.11 depicts the histogram for s2; obviously, the mean value of the distribution

lies very close to 0.5. This means that the algorithm didn’t attribute the corrupted

measurement to a subtle changes in the dynamics.

102

Chapter 5: Robustness to Changes in the Process Dynamics

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

s
2

C
o
u

n
ts

Activation Value of Adaptive Model

Figure 5.11: Approximation of the probability distribution as a histogram for the
activation value of the adaptive model. In this experiment the sensor output was
corrupted with randomly generated outliers. The probability of outlier generation
is poutlier = 0.1.

0 500 1000 1500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time Samples (10Hz)

S
u
rg

e
 V

e
lo

c
it
y
 (

m
/s

e
c
)

sensor filtered output

Figure 5.12: Comparison between the sensor provided to the algorithm and the
yielded state. Obviously the system is able to reject outliers without considering
that particular situation as a possible dynamic shift.

103

Chapter 5: Robustness to Changes in the Process Dynamics

5.4 Remarks

The presented algorithm is able to detect faults in real-time without any prior knowl-

edge of the fault dynamics. Moreover, the dynamic representation of the autonomous

system is adapted, providing useful information for either control or planning. The

experimental evaluation supports the validity of the algorithm. Furthermore, the

robustness to sensor outliers has been preserved. The presented framework is ver-

satile, for it can be applied to any autonomous system. Knowledge about possible

faults or the faults frequency can be incorporated by either adding a new dynamic

model to the Mixture of Gaussians or by adjusting the prior probability respectively.

Being able to distinguish sensor outliers from dynamic alterations increases sig-

nificantly the robustness of the system. Moreover, the algorithm learns the new

condition (fault or dynamic alteration more generally). The new model can then

be incorporated to any standard control scheme (jacobian inverse, jacobian trans-

pose) to achieve the desired behaviour, despite the dynamic abnormality. Using a

maximum-likelihood approach, the algorithm fine-tunes the required parameters in

real-time from incoming data from the sensors; however, an initial guess needs to be

provided by the user. The initial guess for the parameters is provided in the form

of prior distribution.

104

Chapter 6

Prognostics

6.1 Introduction

Apart from dealing with sensor failures and dynamic alteration, it is often important

to predict the Remaining Useful Life (RUL) of a system (asset). RUL is defined as

the time interval during which the asset’s performance satisfies certain qualitative

criteria. Predicting the RUL of an autonomous system is the subject of Prognostics.

Prognostics can be seen as an extrapolation of fault detection schemes into the

future (see Figure 6.1). The prognostic horizon defines how far into the future

a prognostic system can produce meaningful predictions. By understanding the

factors that are relevant to the RUL, the operation and maintenance of the asset can

be optimised. Furthermore, the insight provided by the prognostic models informs

Design for Reliability (DFR) for next generation assets.

Modern autonomous systems are equipped with a variety of sensors; each mon-

itoring part of the system’s state. As a result, historical operational data from

real-world systems are abundant. Moreover, machine learning has evolved suffi-

ciently to provide a plethora of analytical tools. The latter deal effectively with

high dimensional data; abstracting the important information, helping as such the

user to extract the meaningful part of the data. Naturally, prognostics have also

pursued the trend of data-driven algorithms.

There are two important issues, however, that need to be addressed to enable

successful prognoses; i.e., correct prediction of the Remaining Useful Life. Firstly,

105

Chapter 6: Prognostics

Diagnostics Prognostics

- Health assessment

- Severity detection

- Degradation detection

- Failure mode

 detection

- Fault location

 detection

- Isolation

- RUL estimation

- Degradation

 prediction

- Trending

Figure 6.1: Schematic representation of diagnostics and prognostics overlap

the available data are not always suitable for training machine learning algorithms.

System operation is often terminated long before complete failure. Consequently,

the available data are censored; the full state trajectory is not recorded until failure.

Even in the case of uncensored data, however, the majority of the data samples

belong to the healthy region of operation. As a result, healthy and faulty data

samples are not equally represented in the dataset; leading to a skewed dataset.

Skewness in the data hinders algorithm training. Figure 6.2 depicts the case of a

skewed dataset. Specifically, in this dataset the red and blue classes are equally rep-

resented by 300 data samples; whereas, the green class contributes only 10 samples

to the dataset. Traditional classification algorithms prefer the samples of the major-

ity class; since, the latter carry higher misclassification penalties. To remedy that,

different weights can be used for each class when calculating the misclassification

error. A more powerful solution combines the strength of bagging and boosting (see

Appendix B for a brief explanation of the two terms) into a robust classifier for the

case of imbalanced set. The indicated classifier is described later in the chapter (see

Section 6.3). Another common problem pertains to the system’s dynamic variance.

Different operating conditions, as well as manufacturing uncertainty are two possi-

ble causes of such a variance. The need for a “smart” model, which is robust to

dynamic versatility, is profound for prognostics.

In this chapter, a novel prognostic algorithm is presented, which addresses both

106

Chapter 6: Prognostics

−4 −2 0 2 4 6
−2

0

2

4

6

8

10

Figure 6.2: Synthetic example of a skewed dataset within a classification problem

the problems of data skewness and dynamic variance. The suggested algorithm em-

ploys a state-of-the-art classifier, together with an adaptive autoregressive predictive

model. Random Undersampling Boosting (RUSBoost) [177], is used to classify the

state of the system as healthy or faulty; hence acting as a fault detector. RUSBoost

addresses the skewness of the dataset using random undersampling of the over-

represented class. Moreover, RUSBoost can be applied without loss of performance

on multi-class problems. This is particularly useful in the presence of multiple types

of faults. Similarly to the previous chapters, the required dynamic model is based

on Locally Weighted Projection Regression (LWPR) [176], a regression algorithm

for non-linear functions with high dimensional input. The dynamic model is utilised

to forecast the evolution of the system’s state. The predicted state trajectory, as

computed by the dynamic model, is fed to the classifier. The classifier, in turn, infers

the health state of the asset. The first time instant at which the state is classified

as faulty is returned by the algorithm as the remaining useful life of the asset.

The presented prognostic algorithm requires labelled data recorded at the time

of failure. Unfortunately, such data were not available for the case of underwater

navigation. For this reason, the algorithm was tested on two datasets, as provided

from NASA’s Ames Research Centre [178, 179]. The data from NASA are simulated;

107

Chapter 6: Prognostics

however, complex models have been employed to make the yielded data realistic.

The dataset comprises historical data from a fleet of one hundred simulated turbofan

engines.

6.2 Adaptive Autoregression

The prognostic accuracy depends on the reliable prediction of the system’s state.

Moreover, the system’s model needs to be adaptive, to account for variance in dy-

namic parameters, as well as for diverse operating conditions. To accomplish that,

LWPR [176] has been used. In the rest of this section, the adaptive autoregression

part of the prognostic approach is described.

The prognostic algorithm uses LWPR to predict the asset’s future state, given

part of the state history (depending on the order of the model) and the current

input (see Equation 6.1).

yn = f(yn−k:n−1, un−m:n−1) (6.1)

Equation 6.1 describes the general case of an Auto-Regressive model with Ex-

ogenous inputs (ARX). In typical ARX models f(., .) is a polynomial of the inputs

and the previous states of the system: A(B)y(t) = C(B)u(t − 1), where A and C

are polynomials of the back shift operator B. LWPR extends the representational

power of the ARX, to include arbitrarily complex functions of the inputs. However,

using LWPR doesn’t yield theoretical guarantees about the ARX model’s stability.

The authors intend to investigate further this matter.

The autoregressive model, based on LWPR, was trained as described in sec-

tion 3.3.2. The optimal initial width for the model’s receptive field was chosen to be

40 (unit’s vary with input dimension - hence they are omitted), the initial learning

rate for the gradient descent was set to be equal to 20, whereas the penalty for

infinitely small receptive fields (regularisation term) was fixed to 0.001.

Figures 6.3, 6.4 show the generalisation capacity of the resulting model. The

performance of the model is tested on a dataset, which was not used for training. In

108

Chapter 6: Prognostics

0 20 40 60 80 100 120 140
641.5

642

642.5

643

643.5

644

SAMPLES

s
ta

te
 1

Cross−Validation Test

Prediction

Ground Truth

Figure 6.3: This graph shows the one step prediction from the model on a cross-
validation set compared with the original value. The size of the cross-validation
set consists of approximately 20% of the full data. The mean square error for the
one-step prediction was 1.1 · 10−4.

Figure 6.3, the model was utilised to perform one-step predictions on random state

samples. In Figure 6.4, the estimated trajectory of the state is compared with the

ground truth.

6.3 Robust Classification

State-of-the-art classification algorithms combine undersampling or oversampling

with boosting. In boosting, multiple weak classifiers are trained sequentially, to

compensate for the misclassified samples. The most popular algorithm of this class

is AdaBoost [180]. AdaBoost begins with the training of a single weak classifier (e.g.,

SVM). The misclassified samples of the training dataset are given higher weights.

Then another weak classifier is trained on the dataset, with focus on the data with

higher weights. This process is repeated until the desired performance has been

achieved. Below, two algorithms, which utilise sampling together with boosting, are

described.

Synthetic Minority Oversampling TEechnique Boosting (SMOTEBoost) [181]

iteratively trains classifiers on datasets with oversampled instances of the under-

109

Chapter 6: Prognostics

0 50 100 150 200
642.6

642.8

643

643.2

643.4

643.6

SAMPLES

S
ta

te
 1

Comparison between Predicted and Actual Trajectory

Prediction

Ground Truth

Figure 6.4: This graph shows the reconstructed trajectory of the first state of the
engine as computed by our model. The auto-regressive model uses 8 lags for both
the input and the output. To create this graph the actual input of the engine was
used. We can see that the estimated trajectory accurately follows the original state
trajectory of the engine.

represented class [182]. In this way, the importance of the misclassification for the

minority class is increased. The overfitting problem persists, albeit the misclassifi-

cation error is decreased.

Random Under-Sampling Boosting (RUSBoost) [177] balances the training set

by removing instances of the over-represented class. One weak classifier is trained

on the resulting dataset. Then the classifiers performance is checked against the

original dataset. The weights are adjusted as in the AdaBoost algorithm to give

higher importance to the misclassified instances. A new dataset is created and the

process is repeated. In this way, RUSBoost avoids the drawbacks of discarding useful

information, while it preserves the class balance within each dataset.

RUSBoost was applied on the training dataset, provided by NASA Ames Cen-

ter. Decision Trees were the weak classifier of choice. Figure 6.5 shows the miss-

classification rate as a function of the number of weak classifiers used. The confusion

matrix of the RUSBoost classifier and of an AdaBoost classifier are shown in Table

6.1 for comparison. It is obvious how RUSBoost outperforms AdaBoost, especially

in the number of false positives.

110

Chapter 6: Prognostics

0 200 400 600 800 1000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Weak Learners

T
e

s
t

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

Classification Error vs Number of Weak Learners

Figure 6.5: This figure shows the miss-classification rate for the RUSBoost classifier
versus the number of weak learners used. The performance of the algorithm was
evaluated on a cross-validation set. The classification error converges asymptotically
to its minimum after 700 weak learners.

Table 6.1: Confusion matrices for AdaBoost (above) and RUSBoost (below)

Predicted

A
ct

u
al Class Healthy Faulty

Healthy 100 0
Faulty 100 0

Predicted

A
ct

u
al Class Healthy Faulty

Healthy 98.8073 1.1927
Faulty 0 100

111

Chapter 6: Prognostics

6.4 Remaining Useful Life Computation

The remaining useful life is computed by combining the autoregressive model with

the classifier. Firstly, the LWPR is trained on a subset of the full dataset. After

the training is over, the algorithm is equipped with an ensemble of n ×m models,

where n is the number of engines in the training dataset and m is the dimension of

the engine’s state space. The RUSBoost classifier is trained on the same dataset.

Following that, for each engine in the test dataset a set of 1×m models is selected

from the ensemble, which most accurately capture its dynamics. To this end, the

response of all the models in the ensemble is simulated, using the input of the engine

of interest. Then for each estimated trajectory the coefficient of determination (see

Equation 6.2) is computed. The model with a coefficient nearest to unity is selected.

R2 = 1− SSres
SStot

SSres =
∑
i

(yi − fi)2 (6.2)

SStot =
∑
i

(yi − ȳ)2

After each engine has been associated with a model, the respective states are

simulated and fed into the classifier. The time instant at which the state is classified

as faulty is the remaining useful life of the engine. A major issue is that the future

input of the engine is not known a priori. A simple solution would be to use a

constant input, equal to the mean of the input hitherto. Alternatively, the input

could be kept constant to the value of the Root Mean Square (RMS) or to its last

known value. A more sophisticated way to deal with this problem would be to use

a separate AR model to forecast the input. This model is trained using the input

history. During the experiments, all the aforementioned input forecasting techniques

were tested. The results are discussed in detail in section 6.5.

112

Chapter 6: Prognostics

6.5 Experiments

The dataset that was used to test the prognostic algorithm comprises information

from one hundred turbofan engines. For each engine, data samples from twenty-

one sensors, together with three input variables (operating conditions) have been

recorded. Different initial wear and variation in the engine’s dynamics have been

assumed. The engine develops a fault at a random time instant. The state trajecto-

ries, however, are recorded from the beginning of the engine’s operation, to the point

of failure. Only one fault is present in this dataset. We used 80% of the engines

for training and 20% for validation. The classifier and the adaptive autoregressive

models were trained as described above.

For each engine in the validation set, a model was selected, as discussed in

Section 6.4. Next, the model was simulated starting from a user-defined time (e.g.

50 time samples before the end of the trajectory) to the future. The starting time

of the simulation may influence the prognostic accuracy, depending on which input

forecasting method is used. In Figure 6.6 the total life of the test engines is shown.

In this experiment, the future input is assumed to be known a priori. The algorithm

predicts the Remaining Useful Life with a mean square error of six cycles. Next, in

an effort to relax the assumption with respect to the input, three more experiments

have been conducted. In the first experiment, the input was kept constant, to its

latest value (see Figure 6.7). In the next experiment, the input was kept constant to

the mean of the input history (see Figure 6.8). Finally, Figure 6.9 shows the total life

prediction, when the input was forecasted by a fourth-order auto-regressive model.

One last experiment was performed, to test the robustness of the RUSBoost

algorithm, in the case of multiple faults. To this end, the prognostic algorithm was

applied on a dataset with two types of faults. The results are illustrated in Figure

6.10. The performance of the classifier was not influenced by the presence of different

fault types.

113

Chapter 6: Prognostics

80 85 90 95 100
0

50

100

150

200

250

300

350

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
a

l
c
y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

Figure 6.6: This graph shows the total engine life, as given by the dataset, compared
to the total life, computed by our prognostic algorithm. The total life is computed by
adding the time when the forecast started with the remaining useful life prediction
of the engine. The input used in this experiment was assumed to be known (the
input history from the dataset has been used)

80 85 90 95 100
0

100

200

300

400

500

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
 c

y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

Figure 6.7: In this experiment, the computation was repeated as described in Figure
6.6 with different assumptions over the input. Here we didn’t use the true values
of the future input. A constant value equal to the last known input was used for
the future predictions of the model. We can see that the accuracy of the estimation
dropped significantly.

114

Chapter 6: Prognostics

80 85 90 95 100
0

100

200

300

400

500

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
a

l
c
y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

Figure 6.8: In this experiment, the input was assumed to be equal to the mean value
of the previous input trajectories. Again, the performance becomes worse for the
majority of the test engines.

80 85 90 95 100
0

50

100

150

200

250

300

350

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
a

l
c
y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

Figure 6.9: In this experiment, the input was forecasted by an Auto-Regressive
model (AR). The AR model was of order 4 and its parameters were identified using
the past input history. In this figure, we can see that the algorithm still predicts
the total life of the engine quite accurately.

115

Chapter 6: Prognostics

80 85 90 95 100
0

100

200

300

400

500

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
a

l
c
y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

80 85 90 95 100
0

100

200

300

400

500

Engine ID

E
n

g
in

e
 L

if
e

 [
o

p
e

ra
ti
o

n
a

l
c
y
c
le

s
]

Comparison of RUL estimation with ground truth

ground truth

estimated rul

Figure 6.10: We repeated the experiment described in Figure 6.6 on another dataset
provided by Ames Centre. The difference in that one is that it comprises engines
with two types of fault. The purpose of this experiment was to check the robustness
of the RUSBoost classifier in the case of multiple faults. The figure above shows
the results when the original input is used. The figure below was created using an
autoregressive model to forecast the input.

116

Chapter 6: Prognostics

6.6 Remarks

In this chapter, a novel approach for the computation of the Remaining Useful Life

was presented. Combining a state of the art regression method for state estimation,

together with a robust classifier yielded accurate prognostic predictions. In the case

of unknown future inputs, an Auto-Regressive model has been used. Forecasting the

input using AR doesn’t seem to influence the accuracy of the predictions. Moreover,

the variation of the engine’s dynamics has been addressed. Given a representative

training dataset, it was shown that the algorithm is robust to manufacturing uncer-

tainty. Additionally, the algorithm performed equally well on the dataset where two

distinctive faults occurred.

Further investigation concerning the theoretical stability of the autoregressive

model is required. Moreover, the model selection process can be improved. Initial

wear may be introduced as a latent variable (i.e., inferred by the observed data at

runtime) within the predictive model. In this manner, the model selection will be

more rigorous and computationally efficient.

117

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The purpose of this thesis was to increase the robustness of autonomous systems,

by bridging the gap between machine learning and systems engineering. Specif-

ically, the main focus revolved around hardware reliability; providing algorithms

that can predict, identify and mitigate hardware failure. State-of-the-art regression,

classification and reasoning frameworks have been combined to achieve this goal.

Nessie, an Autonomous Underwater Vehicle, was used to test most algorithm

presented in this thesis. Hardware malfunctioning is common in AUVs; offering

an opportunity for benchmarking hardware mitigation algorithms. Artificial sensor

and actuator failures were straightforward to introduce. Practical considerations

prevented a test of the prognostic algorithm on real-world data. The prognostic al-

gorithm requires large historical datasets that contain information about the system

at the moment of hardware failure. Such datasets were not available for the AUV

at hand. Data sharing and privacy considerations prevented a real-world test on an

industrial asset.

In real applications, the environment of operation changes continuously. Dy-

namic models, which are used to predict how the world evolves, need to adjust

accordingly. Moreover, uncertainty of all sorts aggravates predicting the world’s

state. To achieve autonomous behaviour, both the environment’s volatility and un-

certainty need to be addressed. Persistent autonomy entails adaptivity to changes

118

Chapter 7: Conclusion and Future Work

in the environment, combined with sophisticated inference mechanisms to alleviate

uncertainty.

In this thesis, the world model was solely based on Locally Weighted Projection

Regression. LWPR is powerful in representing complex relations. As an incremental

algorithm, LWPR endows the model with adaptive traits. To the best of our knowl-

edge, we were the first to apply LWPR at the underwater domain [156]; highlighting

the algorithm’s potential and studying the requirements tailored to the needs of

underwater navigation. By combining local linear models, LWPR affords straight-

forward Jacobian computation, which is quintessential for robotic applications and

autonomous systems in general.

Sensor fault mitigation was a central topic of this thesis. Defective sensors cause

data blackouts, outlier contamination of the measurement stream and frozen out-

put values. Bayesian Reasoning has been employed to detect and, in turn, reject

corrupted measurements off the sensor stream. The previous work of [1] has been

extended to consider systems with nonlinear dynamics. Sensor outlier rejection was

studied extensively on real-world data; the data were recorded using the in-house

AUV Nessie [183]. Experimental validation highlights the algorithm’s potential for

navigation. Sophisticated dynamic modelling enabled robustness in frozen sensor

identification [184]; compared to just occasional random outlier detection presented

in previous work. The generality of the approach permits seamless integration with

existing techniques, to yield a reliable navigation algorithm. Prediction of model

confidence together with Bayesian treatment of sensor updating yields a self-tuning

navigation algorithm.

Next, failures that change the system’s dynamics have been investigated. Specifi-

cally, the use case was a defective thruster in Nessie’s actuation system. The previous

Bayesian representation was extended to consider simultaneously multiple explana-

tions [185]. Each explanation is a probability distribution across the robot’s state; an

LWPR model predicts the mean of each distribution. A Mixture of Gaussians con-

stitutes the substrate for combining multiple distributions. The resulting algorithm

detects hardware faults during operation. Moreover, it learns a new representation

119

Chapter 7: Conclusion and Future Work

for the system’s dynamics, accounting for the hardware failure. Disambiguating

between a sensor defect and a model shift is hard. The transition between normal

operation and failure, both sensor and actuator, provides the required information.

When a sensor fails, its output value changes instantly; whereas, the effects of dy-

namic shifts are slower due to inertial phenomena. Prior distributions modulate

the algorithm’s response to such differences. Similar to sensor fault detection, it

is possible to choose prior distribution parameters autonomously. However, time

constraints prevented implementation of this feature in this project.

Further to fault detection and mitigation, a prognostic algorithm has been pre-

sented. The suggested algorithm [186] combines adaptive autoregression with RUS-

Boost to compensate for imbalanced data; i.e., for the underrepresentation of sam-

ples from when the fault occurs, compared to healthy ones. Lack of data hindered

experimental evaluation; hence, this algorithm has been tested only in simulation.

Using LWPR and Robust Classification, the algorithm effectively addresses the high

dimensionality of prognostic data and dynamic variability, while in parallel solves

the problem of data skewness.

7.2 Future Work

In this thesis, the dynamic model has been used merely for state estimation. In

the AUV experiments, this corresponds to navigation. An accurate dynamic model,

however, can be further utilised. Controllers leverage information about the sys-

tem to predict the command that brings the system to a particular state. Most

commonly, this is accomplished using the model as a feedforward term. Other

Jacobian-based control schemes are also applicable in this case.

Bayesian reasoning proved effective in dealing with outliers. This particular al-

gorithm is readily applicable to a broad range of autonomous systems. Nevertheless,

the counter play between similar sensors have not been studied; albeit most probably

sensor redundancy will make the problem even easier. Sensor redundancy will be

very useful to distinguish between sensor failures and changes in the systems dynam-

ics. Low-level fault detection, as presented in this thesis, may be also combined with

120

Chapter 7: Conclusion and Future Work

high-level diagnostic mechanisms. Instead of attempting to infer hardware integrity

by merely monitoring the state, information from hardware specific diagnostic mod-

ules may be also included in the inference.

The prognostics algorithm presented here exploits large amounts of data and

addresses both dynamic variability and data skewness. Nevertheless, more in-depth

testing is required on a real platform. Model selection and adaptation can benefit

from a Bayesian perspective. High-level decision integration would be of particular

interest as well.

An AUV was the system of choice, to demonstrate most of the algorithms within

this thesis. However, such algorithms can improve the performance of a broad range

of autonomous systems. Navigation is fundamental in robotics; hence, the presented

algorithm may prove of particular use in areas such as aerial and field robotics.

Even more generally, adaptive dynamic modelling and sensor fault detection may

be applied to any system as is; except that the model will need to be trained again to

capture the dynamics of the system. It would be interesting to stress the presented

framework in different environments, testing as such the robustness and revealing

potential limitations.

Adaptive modelling has provided a robust representation of the system dynamics.

Combined with Bayesian reasoning, detection of both sensor and hardware faults

became feasible. Moreover, the adaptive traits of the dynamic system provide further

possibilities; enabling the online learning of a dynamic model that considers the

hardware defect. This adapted model can be exploited to react to hardware failure.

Specifically, the new dynamic model can be used within a control framework to

attempt mission completion under the new circumstances. The straightforward

computation of the model’s Jacobian allows the application of standard control

schemes from the literature. The Jacobian of the adapted model will compensate

for the change due to the hardware failure. In this manner, the autonomous system

will be endowed with a fast reaction mechanism; one that mitigates, if possible, the

hardware failure.

In the case of significant changes, simple jacobian-based control schemes may

121

Chapter 7: Conclusion and Future Work

not suffice. Careful consideration of the original task requirements may be neces-

sary. For example, a thruster failure in an AUV’s actuation system may impair

locomotion. Again, the system’s Jacobian can be used to remedy this situation. By

computation of the manipulability ellipsoid, the decision maker can figure out along

which dimensions it is easier for the AUV to move. A motion planning algorithm

can then be used to search for an alternative plan; favouring the directions indi-

cated by the manipulability ellipsoid. When the vehicle loses a degree of freedom,

non-holonomic planners may be utilised.

122

Bibliography

[1] J.-A. Ting, E. Theodorou, and S. Schaal, “A kalman filter for robust outlier

detection,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ

International Conference on, pp. 1514–1519, IEEE, 2007.

[2] K. Posse, A. Crouch, J. Rearick, B. Eklow, M. Laisne, B. Bennetts, J. Doege,

M. Ricchetti, and J. Cote, “Ieee p1687: toward standardized access of embed-

ded instrumentation,” in Test Conference, 2006. ITC’06. IEEE International,

pp. 1–8, IEEE, 2006.

[3] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnos-

tics and prognostics implementing condition-based maintenance,” Mechanical

Systems and Signal Processing, vol. 20, pp. 1483–1510, Oct. 2006.

[4] G. Dalpiaz, A. Rivola, and R. Rubini, “Effectiveness and sensitivity of vi-

bration processing techniques for local fault detection in gears,” Mechanical

Systems and Signal Processing, vol. 14, no. 3, pp. 387–412, 2000.

[5] A. J. Miller, A New Wavelet Basis For The Decompostion Of Gear Motion

Error Signals And Its Application To Gearbox Diagnostics. PhD thesis, The

Pennsylvania State University, 1999.

[6] S. Pöyhönen, P. Jover, and H. Hyötyniemi, “Signal processing of vibrations

for condition monitoring of an induction motor,” in Control, Communications

and Signal Processing, 2004. First International Symposium on, pp. 499–502,

IEEE, 2004.

[7] D. Baillie and J. Mathew, “A comparison of autoregressive modeling tech-

140

BIBLIOGRAPHY

niques for fault diagnosis of rolling element bearings,” Mechanical Systems

and Signal Processing, vol. 10, no. 1, pp. 1–17, 1996.

[8] A. Garga, B. Elverson, and D. Lang, “Ar modeling with dimension reduc-

tion for machinery fault classification,” Critical Link: Diagnosis to Prognosis,

Haymarket, pp. 299–308, 1997.

[9] Y. Zhan, V. Makis, and A. Jardine, “Adaptive model for vibration monitoring

of rotating machinery subject to random deterioration,” Journal of Quality in

Maintenance Engineering, vol. 9, no. 4, pp. 351–375, 2003.

[10] J. R. Stack, R. G. Harley, and T. G. Habetler, “An amplitude modulation

detector for fault diagnosis in rolling element bearings,” Industrial Electronics,

IEEE Transactions on, vol. 51, no. 5, pp. 1097–1102, 2004.

[11] G. W. Blankenship and R. Singh, “Analytical solution for modulation side-

bands associated with a class of mechanical oscillators,” Journal of Sound and

Vibration, vol. 179, no. 1, pp. 13–36, 1995.

[12] D. Ho and R. Randall, “Optimisation of bearing diagnostic techniques using

simulated and actual bearing fault signals,” Mechanical systems and signal

processing, vol. 14, no. 5, pp. 763–788, 2000.

[13] M. A. Minnicino II and H. J. Sommer III, “Detecting and quantifying fric-

tion nonlinearity using the hilbert transform,” in NDE for Health Monitoring

and Diagnostics, pp. 419–427, International Society for Optics and Photonics,

2004.

[14] N. Van der Merwe and A. Hoffman, “A modified cepstrum analysis applied to

vibrational signals,” in Digital Signal Processing, 2002. DSP 2002. 2002 14th

International Conference on, vol. 2, pp. 873–876, IEEE, 2002.

[15] C.-C. Wang and G.-P. J. Too, “Rotating machine fault detection based on hos

and artificial neural networks,” Journal of intelligent manufacturing, vol. 13,

no. 4, pp. 283–293, 2002.

141

BIBLIOGRAPHY

[16] X. Liangcai, S. Tielin, Y. Shuzi, and R. B. Rao, “A novel application of

wavelet-based bispectrum analysis to diagnose faults in gears,” International

Journal of COMADEM, vol. 5, iss. No. 3, p. 31-38, vol. 5, pp. 31–38, 2002.

[17] D.-M. Yang, A. Stronach, P. MacConnell, and J. Penman, “Third-order spec-

tral techniques for the diagnosis of motor bearing condition using artificial

neural networks,” Mechanical systems and signal processing, vol. 16, no. 2,

pp. 391–411, 2002.

[18] B. E. Parker, H. A. Ware, D. P. Wipf, W. R. Tompkins, B. R. Clark, E. C.

Larson, and H. V. Poor, “Fault diagnostics using statistical change detection

in the bispectral domain,” Mechanical systems and signal processing, vol. 14,

no. 4, pp. 561–570, 2000.

[19] T. Chow and G. Fei, “Three phase induction machines asymmetrical faults

identification using bispectrum,” Energy Conversion, IEEE Transactions on,

vol. 10, no. 4, pp. 688–693, 1995.

[20] N. Arthur and J. Penman, “Inverter fed induction machine condition moni-

toring using the bispectrum,” in Higher-Order Statistics, 1997., Proceedings

of the IEEE Signal Processing Workshop on, pp. 67–71, IEEE, 1997.

[21] A. McCormick and A. K. Nandi, “Bispectral and trispectral features for

machine condition diagnosis,” in Vision, Image and Signal Processing, IEE

Proceedings-, vol. 146, pp. 229–234, IET, 1999.

[22] L. Qu, X. Liu, G. Peyronne, and Y. Chen, “The holospectrum: a new method

for rotor surveillance and diagnosis,” Mechanical Systems and Signal Process-

ing, vol. 3, no. 3, pp. 255–267, 1989.

[23] Q. L. S. Dongfeng, “Holospectrum during the past decade: Review & prospect

[j],” Journal of Vibration, Measurement & Diagnosis, vol. 4, p. 000, 1998.

[24] W. Wang and P. McFadden, “Early detection of gear failure by vibration

analysis i. calculation of the time-frequency distribution,” Mechanical Systems

and Signal Processing, vol. 7, no. 3, pp. 193–203, 1993.

142

BIBLIOGRAPHY

[25] W. Staszewski and G. Tomlinson, “Application of the wavelet transform to

fault detection in a spur gear,” Mechanical Systems and Signal Processing,

vol. 8, no. 3, pp. 289–307, 1994.

[26] R. Rubini and U. Meneghetti, “Application of the envelope and wavelet trans-

form analyses for the diagnosis of incipient faults in ball bearings,” Mechanical

systems and signal processing, vol. 15, no. 2, pp. 287–302, 2001.

[27] N. Aretakis and K. Mathioudakis, “Wavelet analysis for gas turbine fault

diagnostics,” Journal of engineering for gas turbines and power, vol. 119, no. 4,

pp. 870–876, 1997.

[28] G. Dalpiaz and A. Rivola, “Condition monitoring and diagnostics in automatic

machines: comparison of vibration analysis techniques,” Mechanical Systems

and Signal Processing, vol. 11, no. 1, pp. 53–73, 1997.

[29] P. Addison, J. Watson, and T. FENG, “Low-oscillation complex wavelets,”

Journal of Sound and Vibration, vol. 254, no. 4, pp. 733–762, 2002.

[30] X. Yin-ge and Y. Yu-ling, “Research on haar spectrum in fault diagnosis of ro-

tating machinery,” Applied Mathematics and Mechanics, vol. 12, no. 1, pp. 61–

66, 1991.

[31] C. Wang and R. X. Gao, “Wavelet transform with spectral post-processing for

enhanced feature extraction [machine condition monitoring],” Instrumentation

and Measurement, IEEE Transactions on, vol. 52, no. 4, pp. 1296–1301, 2003.

[32] G. G. Yen and K.-C. Lin, “Wavelet packet feature extraction for vibration

monitoring,” Industrial Electronics, IEEE Transactions on, vol. 47, no. 3,

pp. 650–667, 2000.

[33] H. Yang, J. Mathew, and L. Ma, “Fault diagnosis of rolling element bearings

using basis pursuit,” Mechanical Systems and Signal Processing, vol. 19, no. 2,

pp. 341–356, 2005.

143

BIBLIOGRAPHY

[34] Z. Peng and F. Chu, “Application of the wavelet transform in machine condi-

tion monitoring and fault diagnostics: a review with bibliography,” Mechanical

systems and signal processing, vol. 18, no. 2, pp. 199–221, 2004.

[35] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, iso-

lation, and reconfiguration methods,” IEEE Transactions on Control Systems

Technology, vol. 18, pp. 636–653, May 2010.

[36] M. O. Cordier, P. Dague, F. Levy, J. Montmain, M. Staroswiecki, and L. Trave-

Massuyes, “Conflicts versus analytical redundancy relations,” The special is-

sues of the IEEE SMC Transactions-Part B on Diagnosis of Complex Systems:

Bridging the methodologies of the FDI and DX Communities, 2003.

[37] J. Gertler, “Fault detection and isolation using parity relations,” Control en-

gineering practice, vol. 5, no. 5, pp. 653–661, 1997.

[38] R. Patton and J. Chen, “Robust fault detection using eigenstructure assign-

ment: a tutorial consideration and some new results,” in Decision and Control,

1991., Proceedings of the 30th IEEE Conference on, pp. 2242–2247, IEEE,

1991.

[39] R. Patton and J. Chen, “A review of parity space approaches to fault diagno-

sis,” in IFAC Safeprocess Conference, pp. 65–81, 1991.

[40] B. O. Bouamama, A. Samantaray, M. Staroswiecki, and G. Dauphin-Tanguy,

“Derivation of constraint relations from bond graph models for fault detection

and isolation,” SIMULATION SERIES, vol. 35, no. 2, pp. 104–109, 2003.

[41] J. Thoma, Introduction to bond graphs and their applications. Pergamon inter-

national library of science, technology, engineering, and social studies, 1975.,

1975.

[42] P. J. Mosterman and G. Biswas, “A theory of discontinuities in physical system

models,” Journal of Franklin Institute, vol. 335, no. B, pp. 401–439, 1998.

144

BIBLIOGRAPHY

[43] C. B. Low, D. Wang, S. Arogeti, and J. B. Zhang, “Causality assignment and

model approximation for quantitative hybrid bond graph-based fault diagno-

sis,” in The 17th IFAC world congress, pp. 10522–10527, 2008.

[44] J. Gertler, “Fault detection and isolation using parity relations,” Control En-

gineering Practice, vol. 5, no. 5, pp. 653–661, 1997.

[45] K. Watanabe and D. M. Himmelblau, “Instrument fault detection in systems

with uncertainties,” International Journal of Systems Science, vol. 13, no. 2,

pp. 137–158, 1982.

[46] J. Wünnenberg and P. Frank, “Sensor fault detection via robust observers,”

in System Fault Diagnostics, Reliability and Related Knowledge-Based Ap-

proaches (S. Tzafestas, M. Singh, and G. Schmidt, eds.), pp. 147–160, Springer

Netherlands, 1987.

[47] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review

of process fault detection and diagnosis: Part i: Quantitative model-based

methods,” Computers & Chemical Engineering, vol. 27, pp. 293–311, Mar.

2003. Cited by 1145.

[48] J. Park and G. Rizzoni, “A new interpretation of the fault detection filter part

1: Closed-form algorithm,” International Journal of Control, vol. 60, no. 5,

pp. 767–787, 1994.

[49] D. M. Wilbers and J. L. Speyer, “Detection filters for aircraft sensor and

actuator faults,” in Control and Applications, 1989. Proceedings. ICCON’89.

IEEE International Conference on, pp. 81–86, IEEE, 1989.

[50] R. K. Douglas and J. L. Speyer, “Robust fault detection filter design,” Journal

of guidance, control, and dynamics, vol. 19, no. 1, pp. 214–218, 1996.

[51] R. K. Douglas and J. L. Speyer, “H bounded fault detection filter,” Journal

of guidance, control, and dynamics, vol. 22, no. 1, pp. 129–138, 1999.

145

BIBLIOGRAPHY

[52] W. H. Chung and J. L. Speyer, “A game theoretic fault detection filter,”

Automatic Control, IEEE Transactions on, vol. 43, no. 2, pp. 143–161, 1998.

[53] J. Stoustrup and H. H Niemann, “Fault estimationa standard problem ap-

proach,” International Journal of Robust and Nonlinear Control, vol. 12, no. 8,

pp. 649–673, 2002.

[54] T. Song and E. G. Collins, “Robust h estimation with application to robust

fault detection,” Journal of guidance, control, and dynamics, vol. 23, no. 6,

pp. 1067–1071, 2000.

[55] E. G. Collins Jr, W. M. Haddad, V.-S. Chellaboina, and T. Song, “Robustness

analysis in the delta-domain using fixed-structure multipliers,” in Decision and

Control, 1997., Proceedings of the 36th IEEE Conference on, vol. 4, pp. 3286–

3291, IEEE, 1997.

[56] A. A Stoorvogel, H. H Niemann, A. Saberi, and P. Sannuti, “Optimal fault

signal estimation,” International Journal of Robust and Nonlinear Control,

vol. 12, no. 8, pp. 697–727, 2002.

[57] J. S. Shamma and K.-Y. Tu, “Set-valued observers and optimal disturbance

rejection,” Automatic Control, IEEE Transactions on, vol. 44, no. 2, pp. 253–

264, 1999.

[58] P. Rosa, C. Silvestre, J. S. Shamma, and M. Athans, “Fault detection and

isolation of an aircraft using set-valued observers,” in Proceedings of the 18th

IFAC Symposium on Automatic control in aerospace, Nara, Japan, pp. 6–10,

2010.

[59] P. Rosa, C. Silvestre, J. S. Shamma, and M. Athans, “Multiple-model adaptive

control with set-valued observers,” in Decision and Control, 2009 held jointly

with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings

of the 48th IEEE Conference on, pp. 2441–2447, 2009.

146

BIBLIOGRAPHY

[60] X. Zhang, M. M. Polycarpou, and T. Parisini, “A robust detection and isola-

tion scheme for abrupt and incipient faults in nonlinear systems,” Automatic

Control, IEEE Transactions on, vol. 47, no. 4, pp. 576–593, 2002.

[61] R. K. Mehra and J. Peschon, “An innovations approach to fault detection and

diagnosis in dynamic systems,” Automatica, vol. 7, no. 5, pp. 637–640, 1971.

[62] D. T. Magill, “Optimal adaptive estimation of sampled stochastic processes,”

Automatic Control, IEEE Transactions on, vol. 10, no. 4, pp. 434–439, 1965.

[63] N. A. White, MMAE Detection of Interference/Jamming and Spoofing in a

DGPS-Aided INS. PhD thesis, MS thesis, AFIT/GE/ENG/96D-21, School of

Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,

1996.

[64] T. E. Menke and P. S. Maybeck, “Multiple model adaptive estimation applied

to the vista f-16 flight control system with actuator and sensor failures,” in

Aerospace and Electronics Conference, 1992. NAECON 1992., Proceedings of

the IEEE 1992 National, pp. 441–448, IEEE, 1992.

[65] P. D. Hanlon and P. S. Maybeck, “Characterization of kalman filter residuals

in the presence of mismodeling,” Aerospace and Electronic Systems, IEEE

Transactions on, vol. 36, no. 1, pp. 114–131, 2000.

[66] P. Hajek, “Fuzzy logic,” in The Stanford Encyclopedia of Philosophy (E. N.

Zalta, ed.), fall 2010 ed., 2010.

[67] H.-J. Zimmermann, L. A. Zadeh, and B. R. Gaines, Fuzzy sets and decision

analysis, vol. 20. North Holland, 1984.

[68] R. Schneider and P. M. Frank, “Fuzzy logic based threshold adaption for fault

detection in robots,” in Control Applications, 1994., Proceedings of the Third

IEEE Conference on, pp. 1127–1132, 1994.

[69] X. Zhang, L. Tang, and J. Decastro, “Robust fault diagnosis of aircraft en-

147

BIBLIOGRAPHY

gines: A nonlinear adaptive estimation-based approach,” IEEE Transactions

on Control Systems Technology, 2012.

[70] J. Ma and J. C. Li, “Detection of localised defects in rolling element bearings

via composite hypothesis test,” Mechanical Systems and Signal Processing,

vol. 9, no. 1, pp. 63–75, 1995.

[71] M. L. Fugate, H. Sohn, and C. R. Farrar, “Vibration-based damage detection

using statistical process control,” Mechanical Systems and Signal Processing,

vol. 15, no. 4, pp. 707–721, 2001.

[72] D. P. Malladi and J. L. Speyer, “A generalized shiryayev sequential probabil-

ity ratio test for change detection and isolation,” Automatic Control, IEEE

Transactions on, vol. 44, no. 8, pp. 1522–1534, 1999.

[73] E. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2,

pp. 100–115, 1954.

[74] W. A. Shewhart, Statistical method: From the viewpoint of quality control.

DoverPublications. com, 1939.

[75] J. MacGregor and T. Kourti, “Statistical process control of multivariate pro-

cesses,” Control Engineering Practice, vol. 3, no. 3, pp. 403–414, 1995.

[76] K. Pearson, “On lines and planes of closest fit to systems of points in space,”

Philosophical Magazine, vol. 2, no. 6, pp. 559–572, 1901.

[77] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation

by dynamic principal component analysis,” Chemometrics and Intelligent Lab-

oratory Systems, vol. 30, pp. 179–196, Nov. 1995.

[78] J. Mina and C. Verde, “Fault detection using dynamic principal component

analysis by average estimation,” in Electrical and Electronics Engineering,

2005 2nd International Conference on, pp. 374–377, 2005.

148

BIBLIOGRAPHY

[79] S. Wold, J. Trygg, A. Berglund, and H. Antti, “Some recent developments

in pls modeling,” Chemometrics and Intelligent Laboratory Systems, vol. 58,

no. 2, pp. 131 – 150, 2001. ¡ce:title¿PLS Methods¡/ce:title¿.

[80] S. Yoon and J. F. MacGregor, “Statistical and causal model-based approaches

to fault detection and isolation,” AIChE Journal, vol. 46, no. 9, pp. 1813–1824,

2000.

[81] S. Verron, J. Li, and T. Tiplica, “Fault detection and isolation of faults in

a multivariate process with bayesian network,” Journal of Process Control,

vol. 20, pp. 902–911, Sept. 2010.

[82] V. Skormin, L. Popyack, V. Gorodetski, M. Araiza, and J. Michel, “Applica-

tions of cluster analysis in diagnostics-related problems,” in Aerospace Con-

ference, 1999. Proceedings. 1999 IEEE, vol. 3, pp. 161–168, IEEE, 1999.

[83] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[84] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass

kernel-based vector machines,” The Journal of Machine Learning Research,

vol. 2, pp. 265–292, 2002.

[85] D. Hong, G. Xiuwen, and Y. Shuzi, “An approach to state recognition and

knowledge-based diagnosis for engines,” Mechanical Systems and Signal Pro-

cessing, vol. 5, no. 4, pp. 257–266, 1991.

[86] X. Lou and K. A. Loparo, “Bearing fault diagnosis based on wavelet transform

and fuzzy inference,” Mechanical systems and signal processing, vol. 18, no. 5,

pp. 1077–1095, 2004.

[87] C. Bunks, D. McCarthy, and T. Al-Ani, “Condition-based maintenance of

machines using hidden markov models,” Mechanical Systems and Signal Pro-

cessing, vol. 14, no. 4, pp. 597–612, 2000.

149

BIBLIOGRAPHY

[88] J. Ying, T. Kirubarajan, K. R. Pattipati, and A. Patterson-Hine, “A hidden

markov model-based algorithm for fault diagnosis with partial and imperfect

tests,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 30, no. 4, pp. 463–473, 2000.

[89] A. Viterbi, “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm,” Information Theory, IEEE Transactions on,

vol. 13, no. 2, pp. 260–269, 1967.

[90] M. J. Roemer, C.-a. Hong, and S. H. Hesler, “Machine health monitoring

and life management using finite-element-based neural networks,” Journal of

engineering for gas turbines and power, vol. 118, no. 4, pp. 830–835, 1996.

[91] Y. Fan and C. J. Li, “Diagnostic rule extraction from trained feedforward

neural networks,” Mechanical Systems and Signal Processing, vol. 16, no. 6,

pp. 1073–1081, 2002.

[92] K. Watanabe, S. Hirota, L. Hou, and D. Himmelblau, “Diagnosis of multiple

simultaneous fault via hierarchical artificial neural networks,” AIChE Journal,

vol. 40, no. 5, pp. 839–848, 1994.

[93] J. C. Giarratano and G. Riley, Expert systems. PWS Publishing Co., 1998.

[94] M. F. Baig and N. Sayeed, “Model-based reasoning for fault diagnosis of twin-

spool turbofans,” Proceedings of the Institution of Mechanical Engineers, Part

G: Journal of Aerospace Engineering, vol. 212, no. 2, pp. 109–116, 1998.

[95] Z. Wen, J. Crossman, J. Cardillo, and Y. Murphey, “Case-base reasoning

in vehicle fault diagnostics,” in Neural Networks, 2003. Proceedings of the

International Joint Conference on, vol. 4, pp. 2679–2684, IEEE, 2003.

[96] R. Silva, R. Reuben, K. Baker, and S. Wilcox, “Tool wear monitoring of

turning operations by neural network and expert system classification of a

feature set generated from multiple sensors,” Mechanical Systems and Signal

Processing, vol. 12, no. 2, pp. 319–332, 1998.

150

BIBLIOGRAPHY

[97] H. R. DePold and F. D. Gass, “The application of expert systems and

neural networks to gas turbine prognostics and diagnostics,” in ASME

1998 International Gas Turbine and Aeroengine Congress and Exhibition,

pp. V005T15A009–V005T15A009, American Society of Mechanical Engineers,

1998.

[98] R. David and H. Alla, “Petri nets for modeling of dynamic systems: A survey,”

Automatica, vol. 30, no. 2, pp. 175–202, 1994.

[99] N. C. Propes and G. Vachtsevanos, “A fuzzy petri-net-based mode identifi-

cation algorithm for fault diagnosis of complex systems,” in AeroSense 2003,

pp. 44–53, International Society for Optics and Photonics, 2003.

[100] S. Yang, “A condition-based failure-prediction and processing-scheme for pre-

ventive maintenance,” Reliability, IEEE Transactions on, vol. 52, no. 3,

pp. 373–383, 2003.

[101] B.-S. Yang, S. K. Jeong, Y.-M. Oh, and A. C. C. Tan, “Case-based reasoning

system with petri nets for induction motor fault diagnosis,” Expert Systems

with Applications, vol. 27, no. 2, pp. 301–311, 2004.

[102] H. Sohn, C. Farrar, F. M. Hemez, G. Park, A. N. Robertson, and T. O.

Williams, “A coupled approach to developing damage prognosis solutions,”

Key Engineering Materials, vol. 245, pp. 289–306, 2003.

[103] G. H. Ebel, “Physics of failure in commercialand,” in Physics of Failure in

Electronics, 1964. Third Annual Symposium on the, pp. 173–190, IEEE, 1964.

[104] S. Mathew, D. Das, R. Rossenberger, and M. Pecht, “Failure mechanisms

based prognostics,” in Prognostics and Health Management, 2008. PHM 2008.

International Conference on, pp. 1–6, IEEE, 2008.

[105] J. R. Celaya, N. Patil, S. Saha, P. Wysocki, and K. Goebel, “Towards acceler-

ated aging methodologies and health management of power mosfets (technical

brief),” in Annual Conference of the Prognostics and Health Management So-

ciety, 2009.

151

BIBLIOGRAPHY

[106] M. Pecht and J. Gu, “Physics-of-failure-based prognostics for electronic prod-

ucts,” Transactions of the Institute of Measurement and Control, vol. 31,

pp. 309–322, June 2009.

[107] M. Pecht, Prognostics and health management of electronics. Wiley Online

Library, 2008.

[108] S. Mishra, M. Pecht, and D. L. Goodman, “In-situ sensors for product reliabil-

ity monitoring,” in Symposium on Design, Test, Integration, and Packaging of

MEMS/MOEMS 2002, pp. 10–19, International Society for Optics and Pho-

tonics, 2002.

[109] S. Mathew, M. Osterman, and M. Pecht, “A canary device based approach for

prognosis of ball grid array packages,” in Prognostics and Health Management

(PHM), 2012 IEEE Conference on, pp. 1–5, IEEE, 2012.

[110] N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran, “Residual life predic-

tions from vibration-based degradation signals: a neural network approach,”

Industrial Electronics, IEEE Transactions on, vol. 51, no. 3, pp. 694–700,

2004.

[111] K. Kazmierczak, “Application of autoregressive prognostic techniques in di-

agnostics,” in Proceedings of the Vehicle Diagnostics Conference, Tuczno,

Poland, 1983.

[112] C. J. Lu and W. O. Meeker, “Using degradation measures to estimate a time-

to-failure distribution,” Technometrics, vol. 35, pp. 161–174, May 1993.

[113] N. Z. Gebraeel, M. A. Lawley, R. Li, and J. K. Ryan, “Residual-life dis-

tributions from component degradation signals: a bayesian approach,” IIE

Transactions, vol. 37, no. 6, pp. 543–557, 2005.

[114] D. Kumar and B. Klefsjö, “Proportional hazards model: a review,” Reliability

Engineering & System Safety, vol. 44, no. 2, pp. 177–188, 1994.

152

BIBLIOGRAPHY

[115] N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun, “A review on

degradation models in reliability analysis,” in Engineering Asset Lifecycle

Management, pp. 369–384, Springer, 2010.

[116] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of

finite state markov chains,” The annals of mathematical statistics, pp. 1554–

1563, 1966.

[117] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estima-

tion a review on the statistical data driven approaches,” European Journal of

Operational Research, vol. 213, pp. 1–14, Aug. 2011.

[118] O. Geramifard, J. X. Xu, J. H. Zhou, and X. Li, “Continuous health condition

monitoring: A single hidden semi-markov model approach,” in Prognostics

and Health Management (PHM), 2011 IEEE Conference on, pp. 1–10, 2011.

[119] D. A. Tobon-Mejia, K. Medjaher, N. Zerhouni, and G. Tripot, “Hidden markov

models for failure diagnostic and prognostic,” in Prognostics and System

Health Management Conference (PHM-Shenzhen), 2011, pp. 1–8, 2011.

[120] D. Tobon-Mejia, K. Medjaher, N. Zerhouni, and G. Tripot, “A mixture of

gaussians hidden markov model for failure diagnostic and prognostic.,” in 6th

Annual IEEE Conference on Automation Science and Engineering, CASE’10.,

pp. 338–343, 2010.

[121] K. P. Murphy, Dynamic bayesian networks: representation, inference and

learning. PhD thesis, University of California, 2002.

[122] S. Russell, “Artificial intelligence: A modern approach author: Stuart russell,

peter norvig, publisher: Prentice hall pa,” 2009.

[123] K. W. Przytula and A. Choi, “An implementation of prognosis with dynamic

bayesian networks,” in Aerospace Conference, 2008 IEEE, pp. 1–8, IEEE,

2008.

153

BIBLIOGRAPHY

[124] A. Muller, M.-C. Suhner, and B. Iung, “Formalisation of a new prognosis

model for supporting proactive maintenance implementation on industrial sys-

tem,” Reliability Engineering & System Safety, vol. 93, no. 2, pp. 234–253,

2008.

[125] D. Y. Kim, S.-G. Lee, and M. Jeon, “Outlier rejection methods for robust

kalman filtering,” in Future Information Technology (J. J. Park, L. T. Yang,

and C. Lee, eds.), no. 184 in Communications in Computer and Information

Science, pp. 316–322, Springer Berlin Heidelberg, Jan. 2011.

[126] D. C. Swanson, J. Michael Spencer, and S. H. Arzoumanian, “Prognostic

modelling of crack growth in a tensioned steel band,” Mechanical systems and

signal processing, vol. 14, no. 5, pp. 789–803, 2000.

[127] M. E. Orchard and G. J. Vachtsevanos, “A particle-filtering approach for on-

line fault diagnosis and failure prognosis,” Transactions of the Institute of

Measurement and Control, vol. 31, no. 3-4, pp. 221–246, 2009.

[128] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater

vehicle navigation: Recent advances and new challenges,” in IFAC Conference

of Manoeuvering and Control of Marine Craft, 2006.

[129] J. M. Hereford, “Fault-tolerant sensor systems using evolvable hardware,”

Transactions on Instrumentation and Measurement, vol. 55, no. 3, pp. 846–

853, 2006.

[130] P. A. Miller, J. A. Farrell, Y. Zhao, and V. Djapic, “Autonomous underwater

vehicle navigation,” Oceanic Engineering, IEEE Journal of, vol. 35, no. 3,

pp. 663–678, 2010.

[131] S. C. Martin and L. L. Whitcomb, “Preliminary experiments in comparative

experimental identification of six degree-of-freedom coupled dynamic plant

models for underwater robot vehicles,” in Proceedings of the International

Conference on Robotics and Automation (ICRA), pp. 2962–2969, IEEE, 2013.

154

BIBLIOGRAPHY

[132] M. Blain, S. Lemieux, and R. Houde, “Implementation of a rov navigation sys-

tem using acoustic/doppler sensors and kalman filtering,” in OCEANS 2003.

Proceedings, vol. 3, pp. 1255–1260, IEEE, 2003.

[133] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state

filters,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the

2005 IEEE International Conference on, pp. 2417–2424, IEEE, 2005.

[134] C. N. Roman, Self consistent bathymetric mapping from robotic vehicles in the

deep ocean. PhD thesis, Massachusetts Institute of Technology, 2005.

[135] R. Van Der Merwe, Sigma-point Kalman filters for probabilistic inference in

dynamic state-space models. PhD thesis, University of Stellenbosch, 2004.

[136] L. Drolet, F. Michaud, and J. Côté, “Adaptable sensor fusion using multiple

kalman filters.,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1434–1439, IEEE, 2000.

[137] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Factor graph based

incremental smoothing in inertial navigation systems,” in Information Fu-

sion (FUSION), 2012 15th International Conference on, pp. 2154–2161, IEEE,

2012.

[138] H. B. Mitchell, Multi-sensor data fusion. Springer, 2007.

[139] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2008.

[140] M. M. Hunt, W. M. Marquet, D. A. Moller, K. R. Peal, and W. K. Smith,

“An acoustic navigation system.,” tech. rep., DTIC Document, 1974.

[141] P. H. Milne, Underwater acoustic positioning systems. Spon Press, 1983.

[142] F. P. Parthiot and J.-F. Denis, “A better way to navigate on deep sea floors,”

in OCEANS’93. Engineering in Harmony with Ocean. Proceedings, pp. II494–

II498, IEEE, 1993.

155

BIBLIOGRAPHY

[143] K. Vickery, “Acoustic positioning systems. a practical overview of current sys-

tems,” in Proceedings of the Autonomous Underwater Vehicles (AUV), pp. 5–

17, IEEE, 1998.

[144] G. Qiao, Z. Li, Z. Sun, D. Nie, and H. Cui, “Kalman filter restraining out-

liers for short baseline system,” in Proceedings of the 10th World Congress on

Intelligent Control and Automation (WCICA), pp. 322–325, IEEE, 2012.

[145] J. Vaganay, J. J. Leonard, and J. G. Bellingham, “Outlier rejection for au-

tonomous acoustic navigation,” in IEEE Proceedings of the International Con-

ference on Robotics and Automation (ICRA), vol. 3, pp. 217–2181, IEEE, 1996.

[146] J. J. Leonard, A. A. Bennett, C. M. Smith, and H. J. S. Feder, “Autonomous

underwater vehicle navigation,” in IEEE ICRA Workshop on Navigation of

Outdoor Autonomous Vehicles, Leuven, Belgium, May, Citeseer, 1998.

[147] E. Wolbrecht, M. Anderson, J. Canning, D. Edwards, J. Frenzel, D. Odell,

T. Bean, J. Stringfield, J. Feusi, B. Armstrong, A. Folk, and B. Crosbie,

“Field testing of moving short-baseline navigation for autonomous underwater

vehicles using synchronized acoustic messaging,” Journal of Field Robotics,

vol. 30, no. 4, pp. 519–535, 2013.

[148] A. Folk, B. Armstrong, E. Wolbrecht, H. F. Grip, M. Anderson, and D. Ed-

wards, “Autonomous underwater vehicle navigation using moving baseline on

a target ship,” in Proceedings of OCEANS, pp. 1–7, IEEE, 2010.

[149] J. Vaganay, J. J. Leonard, J. A. Curcio, and J. S. Willcox, “Experimental

validation of the moving long base-line navigation concept,” in IEEE/OES

Autonomous Underwater Vehicles, pp. 59–65, IEEE, 2004.

[150] J. J. Wang, W. Ding, and J. Wang, “Improving adaptive kalman filter in

GPS\SDINS integration with neural network,” Proceedings of ION GNSS

2007, 2007.

[151] Q. Song, “An adaptive ukf algorithm for the state parameter estimations of a

mobile robot,” Acta Automatica Sinica, vol. 34, May 2008.

156

BIBLIOGRAPHY

[152] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “An outlier-robust kalman

filter,” in Robotics and Automation (ICRA), 2011 IEEE International Con-

ference on, pp. 1551–1558, IEEE, 2011.

[153] Z. Berman, “Outliers rejection in kalman filteringsome new observations,”

in Position, Location and Navigation Symposium (PLANS), pp. 1008–1013,

IEEE, 2014.

[154] D.-J. Jwo, C.-S. Chang, and C.-H. Lin, “Neural network aided adaptive kalman

filtering for GPS applications,” in International Conference on Systems, Man

and Cybernetics, vol. 4, pp. 3686–3691, 2004.

[155] J. Ko, D. J. Klein, D. Fox, and D. Haehnel, “Gaussian processes and reinforce-

ment learning for identification and control of an autonomous blimp,” in IEEE

International Conference on Robotics and Automation (ICRA), pp. 742–747,

Apr. 2007.

[156] G. Fagogenis, D. Flynn, and D. M. Lane, “Improving underwater vehicle navi-

gation state estimation using locally weighted projection regression,” in Inter-

national Conference on Robotics and Automation, 2014. ICRA 2014., IEEE,

2014.

[157] G. Antonelli, Underwater robots motion and force control of vehicle-

manipulator systems. Berlin New York: Springer, 2006.

[158] M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, and G. Verug-

gio, “Experiences on actuator fault detection, diagnosis and accomodation

for rovs,” International Symposiyum of Unmanned Untethered Sub-mersible

Technol, 2001.

[159] A. Hanai, S. Choi, G. Marani, and K. Rosa, “Experimental validation of

model-based thruster fault detection for underwater vehicles,” in Robotics and

Automation, 2009. ICRA ’09. IEEE International Conference on, pp. 194–

199, May 2009.

157

BIBLIOGRAPHY

[160] A. Healey, S. Rock, S. Cody, D. Miles, and J. P. Brown, “Toward an improved

understanding of thruster dynamics for underwater vehicles,” in Autonomous

Underwater Vehicle Technology, 1994. AUV ’94., Proceedings of the 1994 Sym-

posium on, pp. 340–352, Jul 1994.

[161] J. Kim, J. Han, W. K. Chung, J. Yuh, and P.-M. Lee, “Accurate and practi-

cal thruster modeling for underwater vehicles,” in Robotics and Automation,

2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,

pp. 175–180, April 2005.

[162] S. R. Ahmadzadeh, A. Carrera, M. Leonetti, P. Kormushev, and D. G. Cald-

well, “Online discovery of auv control policies to overcome thruster failures,”

in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA 2014), (Hong

Kong, China), June 2014.

[163] K. Yang, J. Yuh, and S. Choi, “Experimental study of fault-tolerant system

design for underwater robots,” in Robotics and Automation, 1998. Proceedings.

1998 IEEE International Conference on, vol. 2, pp. 1051–1056 vol.2, May 1998.

[164] N. Sarkar, T. Podder, and G. Antonelli, “Fault-accommodating thruster force

allocation of an auv considering thruster redundancy and saturation,” Robotics

and Automation, IEEE Transactions on, vol. 18, pp. 223–233, Apr 2002.

[165] A. Corduneanu and C. M. Bishop, “Variational bayesian model selection

for mixture distributions,” in Artificial intelligence and Statistics, vol. 2001,

pp. 27–34, Morgan Kaufmann Waltham, MA, 2001.

[166] K. P. Murphy, “Switching kalman filters,” tech. rep., Citeseer, 1998.

[167] S. Vijayakumar, “LWPR software tutorial (online),” 2014.

http://wcms.inf.ed.ac.uk/ipab/slmc/research/

software-lwpr [accessed 15-August-2014].

[168] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting

and control. John Wiley & Sons, 2013.

158

BIBLIOGRAPHY

[169] D. Koller and N. Friedman, Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

[170] S. Kullback, Information theory and statistics. Courier Corporation, 1997.

[171] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with

formulas, graphs, and mathematical tables. No. 55, Courier Corporation, 1964.

[172] C. M. Bishop et al., Pattern recognition and machine learning, vol. 4. springer

New York, 2006.

[173] J. Wishart, “The generalised product moment distribution in samples from a

normal multivariate population,” Biometrika, pp. 32–52, 1928.

[174] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the royal statistical society.

Series B (methodological), pp. 1–38, 1977.

[175] A. Iserles, “Lie groups and the computation of invariants,” University of Cam-

bridge, Department of Applied Mathematics and Theoretical Physics, 1998.

[176] S. Vijayakumar, A. D’Souza, and S. Schaal, “Lwpr: A scalable method for

incremental online learning in high dimensions,” 2005.

[177] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUSBoost:

improving classification performance when training data is skewed,” in Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1–4.

00014.

[178] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation mod-

eling for aircraft engine run-to-failure simulation,” in Prognostics and Health

Management, 2008. PHM 2008. International Conference on, pp. 1–9, IEEE,

2008.

[179] A. Saxena and K. G. (2008), “C-MAPSS Data Set”, NASA Ames

Prognostics Data Repository.” http://ti.arc.nasa.gov/project/

prognostic-data-repository.

159

http://ti.arc.nasa.gov/project/prognostic-data-repository
http://ti.arc.nasa.gov/project/prognostic-data-repository

BIBLIOGRAPHY

[180] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line

learning and an application to boosting,” in Computational learning theory,

pp. 23–37, Springer, 1995.

[181] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost: Im-

proving prediction of the minority class in boosting,” in Knowledge Discovery

in Databases: PKDD 2003, pp. 107–119, Springer, 2003.

[182] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:

synthetic minority over-sampling technique,” arXiv preprint arXiv:1106.1813,

2011. 01846.

[183] N. Valeyrie, F. Maurelli, P Patron, J. Cartwright, B. Davis, Y. Petillot, “Nessie

V Turbo: a new hover and power slide capable torpedo shaped AUV for survey,

inspection and intervention,” in AUVSI North America 2010 Conference, 2010.

[184] G. Fagogenis and D. Lane, “A variational bayes approach for reliable under-

water navigation,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pp. 2252–2257, IEEE, 2015.

[185] G. Fagogenis and D. M. Lane, “Online fault detection and model adapta-

tion for underwater vehicles in the case of thruster failures,” in International

Conference on Robotics and Automation, 2016. ICRA 2016., IEEE, 2016.

[186] G. Fagogenis, D. Flynn, and D. Lane, “Novel RUL prediction of assets based on

the integration of auto-regressive models and an rusboost classifier,” in Prog-

nostics and Health Management (PHM), 2014 IEEE Conference on, pp. 1–6,

IEEE, 2014.

[187] H. Wold, “Partial least squares,” Encyclopedia of statistical sciences, 1985.

[188] S. Schaal and C. G. Atkeson, “Assessing the quality of learned local models,”

Advances in neural information processing systems, pp. 160–160, 1994.

160

	Introduction
	Problem Statement
	Approach
	Contribution
	Structure

	Relevant Work
	Diagnostics
	Model-based approaches
	Statistical approaches
	Artificial Intelligence approaches

	Prognostics
	Model-Based Approaches
	Statistical Methods

	Applications in Underwater Navigation

	Dynamic Modelling
	Introduction
	State-space Formulation
	Model Specifications
	LWPR hyperparameters
	LWPR Training

	Experimental Evaluation
	Order of the dynamic model
	Model Perfomance

	Robustness to Sensor Failures
	Bayesian Filtering
	A Simple Outlier Robust Filter
	Filter Derivation

	A synthetic example
	Experimental Results

	Self-Tuning Kalman Filter
	Prediction step
	The update step
	STKF summary
	Velocities in the world coordinate frame
	State Integration

	Experiments
	Wave tank experiments
	CMRE experiments
	Trajectory computation

	Sensor Diagnostics
	HMM training

	Remarks

	Robustness to Changes in the Process Dynamics
	Introduction
	Fault Detection and Dynamic Adaptation Algorithm
	Model Adaptation

	Experimental results
	Remarks

	Prognostics
	Introduction
	Adaptive Autoregression
	Robust Classification
	Remaining Useful Life Computation
	Experiments
	Remarks

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

