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ABSTRACT

In this paper, the problem of robust order detection for

the damped sinusoids in impulsive noise environments is ad-

dressed. First of all, a series of candidate models are as-

sumed. It is a challenging issue to extract the potential signal

subspaces for these candidate models in a computationally

efficient way. To alleviate this difficulty, the successive ro-

bust low-rank decomposition (SRLRD) procedure is devised.

Correspondingly, the values of the subspace-based automatic

model order selection (SAMOS) criterion are calculated. As

a result, the signal order estimate is determined by the can-

didate model with the minimum criterion value. The consis-

tency and superiority of the proposed estimator is validated

by the simulation results in comparison with the other exist-

ing schemes.

Index Terms— Robust order detection, damped sinu-

soids, successive robust low-rank decomposition, subspace-

based automatic model order selection, impulsive noise.

1. INTRODUCTION

Spectral analysis of sinusoidal signals [1] has been a classi-

cal but ever active topic in the signal processing community,

finding its applications in a wide range of areas. For example,

in music and voiced speech signal processing, the measured

signals from the microphone array can be modeled as a two-

dimensional (2-D) harmonic signal [2], which is character-

ized by the temporal fundamental frequencies and directions-

of-arrival (DoAs). The accurate acquisition of these param-

eters is crucial to the signal enhancement and source local-

ization. In the biomedical engineering, the free induction de-

cay (FID) signal, which is measured using the spectroscopic

methods such as the nuclear magnetic resonance (NMR) and

nuclear quadrupole resonance (NQR), may be modeled as a

sum of exponentially damped sinusoids well [3]. With the

exact quantification of these damped sinusoids, it is advanta-

geous to extract the useful biomedical information for diag-

nosis. Before estimating the sinusoidal parameters in a para-

metric way, it is essential to detect the signal order, that is the

number of the signal’s sinusoids [4].

The work of spectral analysis includes two aspects: 1) the

detection of the signal order, and 2) the estimation of the fre-

quencies and/or damping factors. In this paper, we focus on

the order detection for the damped sinusoidal signals. During

the past decades, there has been published numerous literature

on this problem. In [5], the various information theoretic cri-

teria are proposed for the determination of the number of the

undamped sinusoids embedded in the white-Gaussian noise,

such as the minimum description length (MDL) criterion,

direct Kullback-Leibler (KL) approach, cross-validatory KL

approach based on the Akaike information criterion (AIC),

generalized cross-validatory KL approach based on the gen-

eralized information criterion (GIC) and Bayesian approach

based on the Bayesian information criterion (BIC). For the

damped sinusoids, there have been proposed several methods

based on the rank determination of the data matrix, including

the order estimators of MUltiple SIgnal Classification (MU-

SIC) [6], ESTimation ERror (ESTER) [7], Subspace-based

Automatic Model Order Selection (SAMOS) [8], etc. In most

of the above work, the background noise is assumed as white

Gaussian.

In the practical applications, the impulsive noise is an

important class of observation noise [9]. It follows a non-

Gaussian and heavy-tailed distribution, and occurs randomly

with a value several times larger than the standard deviation of

the background noise. Therefore, the conventional order de-

tection methods, which are designed for the white-Gaussian

noise, are not directly applicable to the impulsive noise.

Recently, there have been proposed several approaches to

the signal order detection in impulsive noise environments,

including [10–12], etc. Since the information theoretic crite-

ria, such as the BIC [10], AIC, and MDL [11], are derived

under the assumption of large data length, they are not ap-

plicable to the damped sinusoids [8, 13]. In [12], the mini-

mum covariance determinant (MCD) and MM estimators are



employed in combination with the bootstrap technique, re-

spectively, in order to detect the source number in impulsive

noise environments. However, their asymptotic consistency

with respect to the signal-to-noise ratio (SNR) is not guaran-

teed [12]. Thus, it is meaningful to devise a robust approach

to the order detection for the damped sinusoids, which is re-

sistant to impulsive noise.

In this work, we try to address this issue by estimating

the rank of the signal subspace. In detail, a series of candi-

date models are assumed firstly, which are differentiated in

terms of the signal order. Then, the potential signal subspace

is extracted for each candidate model, and the detection crite-

rion value is calculated. Finally, the signal order, which cor-

responds to the minimum value of the detection criterion, is

selected. In the conventional order detection [6–8], the signal

subspace is extracted just by the singular value decomposition

(SVD), which is not resistant to impulsive noise.

To overcome this difficulty, the successive robust low-

rank decomposition (SRLRD) procedure is devised. For each

candidate model, the potential signal subspace can be ex-

tracted from the impulsive noise environment by the robust

low-rank decomposition (RLRD), that is by minimizing the

�p-norm (1 ≤ p < 2) of the projection error. Nevertheless, it

is computationally heavy to conduct the RLRD, especially for

all the candidate models. To keep the computational burden

into a reasonable extent, the SRLRD is proposed as a relaxed

scheme, where the potential signal subspaces are extracted

column by column. For the correct model, this is equivalent

to recovering the signal subspace in a greedy way, and is

expected to be accurate when the SNR is sufficiently high.

Therefore, it is feasible to find the order estimate by imposing

the rank-determination criterion on the output of the SRLRD.

Here, the SAMOS is adopted as the rank-determination crite-

rion due to its performance gain over the other schemes.

The rest of this paper is organized as follows. The signal

model and problem formulation are introduced in Section 2.

Then, our robust signal order detection approach is designed

in Section 3. The explanation of its asymptotic consistency

is also provided. The simulation results are presented in Sec-

tion 4 to evaluate the performance of the proposed detection

approach. Finally, the conclusion is drawn in Section 5.

2. PROBLEM FORMULATION

Consider the damped sinusoids, which are corrupted by im-

pulsive noise, as follows:

x(n) = s(n) + v(n) =

M∑
m=1

ρmznm + v(n), (1)

for n = 1, · · · , N , where zm = e−αm+jωm represents the

mth sinusoidal pole, with ωm ∈ [0, 2π), αm > 0 and ρm ∈
C being the frequency, damping factor and complex-valued

amplitude of zm, respectively; and M represents the signal

order, that is the number of the sinusoidal poles. Here, v(n)
is the additive impulsive noise, which is assumed as indepen-

dent and identically distributed (i.i.d.).

The purpose of this paper is to detect the order of the

damped sinusoids s(n) from the observation x(n), that is M ,

in impulsive noise environments. How to overcome the out-

liers is the critical issue in the order detection.

3. ALGORITHM DEVELOPMENT

Suppose that there exist L candidate models, which are in-

dexed as l = 1, 2, · · · , L, respectively, and correspond to the

different signal orders. In the lth candidate model, there ex-

ist l sinusoidal poles. In this work, it is aimed to select the

correct model from these candidate models in the impulsive

noise environment.

In our order detection procedure, the data matrix is con-

structed firstly. With the use of the SRLRD, the potential sig-

nal subspaces are then extracted for the candidate models in-

dexed by l = 1, 2, · · · , L. Correspondingly, the values of

the SAMOS criterion are calculated. As a result, the candi-

date model with the minimum criterion value is selected as

the correct model. The detail is illustrated as follows.

3.1. Extraction of the Signal Subspace with the SRLRD

First of all, we construct the data matrix for the observation

x(n) as follows:

X = S+Q, (2)

where X ∈ C
P×P ′

(P ′ � N − P + 1) is the Hankel ma-

trix with the (i, j)th element [X]i,j = x(i + j − 1), i =
1, · · · , P, j = 1, · · · , P ′, and the row number P satisfying

M < P < N + 1 − M . The matrices S and Q are the

noise-free part and disturbance of X, respectively.

Now let us focus on the correct model, with l = M . On

one hand, with the Vandermonde decomposition, S of (2) is

expressed as [14]:

S = AMΓMHT
M , (3)

where

ΓM = diag
( [

ρ1 ρ2 · · · ρM
]T )

,

AM =
[
a(z1) a(z2) · · · a(zM )

]
,

HM =
[
h(z1) h(z2) · · · h(zM )

]
,

with diag(ρ) denoting the diagonal matrix with the elements

of ρ on the main diagonal, and a(zm) =
[
zm · · · zPm

]T
,

h(zm) =
[
1 zm · · · zN−P

m

]T
, m = 1, · · · ,M . On the

other hand, S is decomposed using SVD as:

S = UΛVH

=
[
Us Un

] [ Λs 0
0 Λn

] [
Vs Vn

]H
= UsΛsV

H
s , (4)



where Us ∈ C
P×M , Vs ∈ C

P ′×M , Λs is an M ×M diag-

onal matrix, and Un ∈ C
P×(P−M), Vn ∈ C

P ′×(P ′−M), Λn

is the (P −M)× (P ′ −M) zero matrix.

By comparing (3) and (4), it is seen that the columns of

AM span the same space as those of Us. Therefore, we de-

note the signal subspace by Us = span(AM ). Obviously,

the rank of Us, denoted by rank(Us), is equal to M . Since

the target of the SAMOS criterion is to determine the signal

order from the rank of Us, it is essential to extract the signal

subspace accurately in impulsive noise environments.

In this work, it is proposed to find the signal subspace

with the use of the SRLRD. Since rank(Us) = M , S can be

decomposed as the product of two low-rank matrices:

S = A′
MB′T

M , (5)

where A′
M ∈ C

P×M and B′
M ∈ C

P ′×M are of the full col-

umn rank. By comparing (3) and (5), it is seen that AM and

A′
M span the same space, i.e.,

Us = span(AM ) = span(A′
M ). (6)

Therefore, we can extract the signal subspace Us from X by

estimating (A′
M ,B′

M ) as follows:

(Â′
M , B̂′

M ) = arg min
(A′

M ,B′
M )

∥∥X−A′
MB′T

M

∥∥p
p
, (7)

where Â′
M and B̂′

M stand for the estimates of A′
M and B′

M ,

respectively. Here, ‖·‖p denotes the �p-norm (1 ≤ p < 2) of

one matrix, which is more resistant to outliers than the con-

ventional �2-norm.

Since the optimization of (7) is nonconvex, it is compu-

tationally prohibitive to search for the globally optimal solu-

tion. Instead, we utilize the alternating optimization method

(AOM) [15] as a relaxed scheme. In detail, (7) is solved in an

iterative way. At the kth iteration, Â′
M and B̂′

M are updated

by solving the following two subproblems:

A
′(k)
M = argmin

A′
M

∥∥∥X−A′
MB

′(k−1)T
M

∥∥∥p
p
, (8)

B
′(k)
M = argmin

B′
M

∥∥∥X−A
′(k)
M B′T

M

∥∥∥p
p
. (9)

Since (8) and (9) are both convex, the globally optimal solu-

tions to them can be obtained by various gradient-based algo-

rithms [16], respectively.

It should be addressed that, the two convex subproblems

(8) and (9) are of the dimensions PM and P ′M , respectively.

If we follow the procedure of the SAMOS in [8], and extract

the potential signal subspace according to (7) for each candi-

date model l = 1, · · · , L, the computational cost will still be

huge. To alleviate this issue, the SRLRD procedure is devised

as a relaxed scheme, where the potential signal subspaces are

extracted column by column. For the correct model, that is

l = M , (7) is rewritten as:

(Â′
M , B̂′

M ) = arg min
(A′

M ,B′
M )

∥∥∥∥∥X−
M∑

m=1

a′mb′T
m

∥∥∥∥∥
p

p

, (10)

where {a′m}Mm=1 and {b′
m}Mm=1 stand for the M columns of

A′
M and B′

M , respectively. In the SRLRD procedure, the

columns
{
(a′m,b′

m)
}M

m=1
are estimated in a successive way:

(â′m, b̂′
m) = arg min

(a′
m,b′

m)

∥∥∥∥∥X−
m−1∑
i=1

â′ib̂
′T
i − a′mb′T

m

∥∥∥∥∥
p

p

,

(11)

for m = 1, 2, · · · ,M . When handling each pair of (a′m,b′
m),

m = 1, · · · ,M , we fix the values of the previous columns

as the estimated: (a′i,b
′
i) = (â′i, b̂

′
i), i = 1, · · · ,m − 1.

In essence, the similar idea is also found in the greedy algo-

rithm [17], which is extensively applied in the sparse signal

reconstruction, with the reliability evidenced by the numerous

computational results.

3.2. Order Detection with the SAMOS Criterion

Based on the extraction of the signal subspace, it is possible

to detect the signal order with the SAMOS criterion. With

the use of the SVD, we take the first M left singular vectors

of A′
M , which is denoted by U

(M)
s =

[
u
(M)
1 · · · u

(M)
M

]
.

Since U
(M)
s spans the same space as AM , it bears the shift-

invariance property of [8]:

U
(M)
s↑ = U

(M)
s↓

(
ΦDΦ−1

)
, (12)

where D = diag([z1, · · · , zM ]T ), Φ is a unitary matrix; and

the subscripts ↑ and ↓ denote the first and last row-deleting

operators, respectively. Consequently, the matrix U
(M)
tb �[

U
(M)
s↑ U

(M)
s↓

]
has the rank of M .

For the candidate models with l < M , the SRLRD pro-

cedure will halt just when the estimation of {a′m}lm=1 is fin-

ished. According to (6), a′m ∈ span(AM ), m = 1, · · · , l.
For the candidate models with l > M , the SRLRD will con-

tinue until {a′m}lm=1 are all estimated. Thus, the estimation

of {a′m}lm=M+1 is subjected to the projection error between

X and Â′
M . In these two cases, the matrix U

(l)
s , which con-

sists of the first l left singular vectors of A′
l =

[
a′1 · · · a′l

]
,

no longer bears the shift-invariance property as (12), and the

rank of U
(l)
tb becomes larger than l.

Note that the noiseless data matrix S of (2) is not available

in practice. Thus, we estimate the matrix U
(l)
tb with the ob-

served data matrix X of (2), which is denoted by Û
(l)
tb . Based

on the principle of the SAMOS criterion, it is proposed to

determine the number of the sinusoidal poles by

M̂ = arg min
l∈{1,··· ,L}

d(l), (13)



where L is confined to an integer number less than min{(P −
1)/2, N − P + 1}, and

d(l) =
1

l

2l∑
i=l+1

γ̂i, (14)

with γ̂i being the ith largest singular value of Û
(l)
tb . Here, the

sinusoidal order detection criterion of (13) is termed as the

robust SAMOS (R-SAMOS).

3.3. Consistency of the R-SAMOS Detection Criterion

When SNR → ∞, the data matrix X of (2) converges to S.

Accordingly, the signal subspace, which is estimated by the

observation X, should bear the shift-invariance property of

(12). Furthermore, the matrix Û
(M)
tb has the rank of M , and

the detection metric value, d(M) of (14), is equal to zero. For

the candidate models with l 	= M , the shift-invariance prop-

erty normally vanishes from the potential signal subspaces.

As a result, d(l) > 0 for l 	= M [8]. Therefore, by means of

the R-SAMOS detector, the correct signal order can be found

with the probability of one when the SNR is sufficiently high.

It should be addressed that, there exists the threshold

behavior of the signal order detection at certain SNR. This

means that, the probability of correct detection (PCD) is

equal to one above this threshold SNR; and the PCD falls

down quickly below the threshold SNR. This originates from

the phenomenon of the subspace swapping in the low SNR

regime [18].

4. SIMULATION RESULTS

In this section, we show the performance of the proposed or-

der detection approach with respect to SNR. Here, the SNR

is explicitly defined as the average signal power divided by

the noise variance. The performance is evaluated in terms of

PCD = S0/S, with S0 and S being the number of correct de-

tection trials and the total number of trials, respectively. All

the results provided are the averages of 500 independent runs,

which are conducted on a PC with an Intel(R) Core(TM) i7-

8750H CPU @ 2.20 GHz, with 16.0 GB of installed memory.

In this study, we consider the two-tone damped sinusoidal

signal: s(n) = A1e
(−α1+jω1)n+jφ1 + A2e

(−α2+jω2)n+jφ2 ,

where ω1 = 0.3, α1 = 0.01, A1 = 1, φ1 = 1, and ω2 =
0.7, α2 = 0.02, A2 = 1, φ2 = 2. As for the noise part,

we consider two common impulsive noise models, that is the

Gaussian mixture model (GMM) and generalized Gaussian

distribution (GGD):

GMM: The PDF of the circular GMM noise, v, is:

pv(v) =
2∑

i=1

ρi
πσ2

i

exp

(
−|v|2

σ2
i

)
, (15)

which consists of two terms of Gaussian distributions with the

different variances σ2
i , i = 1, 2. Here, it is set that c1 = 0.1,

c2 = 0.9, and σ2
1 = 100σ2

2 , which means that the outliers

come present with the probability of 10% and with the vari-

ance 100 times that of the background noise. Correspond-

ingly, the total variance of v is σ2
v = 10.9σ2

2 .

GGD: The PDF of the circular GGD noise, v, is:

pv(v) =
βΓ(4/β)

2πσ2
vΓ

2(2/β)
exp

(
−|v|β
cσβ

v

)
, (16)

where σ2
v is the variance of the GGD, Γ(·) is the Gamma func-

tion, c = β
√

Γ(2/β)/Γ(4/β), and β > 0 is the shape param-

eter of the GGD. Here, it is set that β = 0.5.

It is shown in [19] that the best shift-invariance property

of the signal subspace is attained when the data matrix is as

square as possible. Therefore, in the construction of the data

matrix X, the row number P is set as 
N/2�, with 
u� denot-

ing the largest integer smaller than u. In the extraction of the

signal subspace, the p of the �p-norm in (7) is set as p = 1.1.

The setting of the row number and p value is found empir-

ically to result in good performance. For comparison, we

combine the detection criteria of MUSIC [6] and ESTER [7]

with the SRLRD, which are named as the robust MUSIC (R-

MUSIC) and ESTER (R-ESTER), respectively. To show the

robustness of the devised SRLRD, we also provide the results

of the SAMOS [8] and ESTER [7] criteria, where the poten-

tial signal subspaces are extracted just by the conventional

SVD. Without loss of generality, the maximum possible sig-

nal order is set as L = 5.

Fig. 1 shows the PCDs of the R-SAMOS criterion in

the GMM noise environment, as well as those of the R-

MUSIC, R-ESTER, SAMOS, and ESTER criteria. Accord-

ing to Fig. 1(a), for the data length N = 50, the R-SAMOS

criterion attains the almost perfect detection (APD), that is

PCD ≥ 95%, when SNR ≥ −4 dB; while the PCDs of the

R-MUSIC and R-ESTER criteria become higher than 95%
when SNR ≥ 3 dB and SNR ≥ −1 dB, respectively. This

means that the R-SAMOS criterion bears the threshold SNR

advantage over the R-MUSIC and R-ESTER by at least 3 dB,

which corresponds to the power saving of 50%. In particular,

the R-SAMOS criterion attains the perfect detection (PD),

that is PCD = 100%, when SNR ≥ −1 dB. Whereas,

the PCD of the R-MUSIC fluctuates slightly below 1 in this

SNR range, and the R-ESTER criterion achieves the PD

when SNR ≥ 2 dB. For N = 100, the R-SAMOS criterion

achieves the APD when SNR ≥ 0 dB. Compared with the

R-MUSIC and R-ESTER criteria, the R-SAMOS criterion

bears the threshold SNR advantage by at least 2 dB, which

corresponds to the power saving of 37%.

Fig. 2 shows the PCDs in the GGD noise environment.

For N = 50, the R-SAMOS, R-MUSIC, and R-ESTER cri-

teria attain the APD when SNR ≥ 0 dB, SNR ≥ 2 dB, and

SNR ≥ 2 dB, respectively. This means that the R-SAMOS

criterion bears the threshold SNR advantage by 2 dB, or

equivalently, provides the power saving of 37%. Similar to

the case in Fig. 1(a), the R-SAMOS criterion achieves the PD



when SNR ≥ 6 dB. Whereas, the PCD of the R-MUSIC cri-

terion fluctuates slightly in this SNR range, and the R-ESTER

criterion achieves the PD when SNR ≥ 8 dB. For N = 100,

the R-SAMOS, R-MUSIC, and R-ESTER criteria attain the

APD when SNR ≥ 3 dB, SNR ≥ 3 dB, and SNR ≥ 8 dB,

respectively. It is also noted that the R-SAMOS criterion

achieves the PD when SNR ≥ 12 dB, whereas the PCD of

the R-MUSIC criterion fluctuates slightly in this SNR range.

According to Figs. 1 and 2, the threshold SNRs of the

SAMOS and ESTER criteria are normally larger than those

of the R-SAMOS criterion by 4 − 11 dB and 3 − 11 dB,

for N = 50 and N = 100, respectively. Therefore, it is

concluded that the proposed SRLRD brings the robustness to

the signal subspace extraction in comparison with the SVD.
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Fig. 1: PCDs for the two-tone damped sinusoidal signals in

the GMM noise environment, with: (a) N = 50 and (b) N =
100.
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Fig. 2: PCDs for the two-tone damped sinusoidal signals in

the GGD noise environment, with: (a) N = 50 and (b) N =
100.

5. CONCLUSION

In this work, the R-SAMOS criterion is developed for the

order detection of the damped sinusoids in impulsive noise

environments. To keep the computational complexity into a

reasonable extent, the SRLRD procedure is devised to extract

the potential signal subspaces for a series of candidate mod-

els. Further on, the values of the SAMOS detection criterion

are calculated for these candidate models. As a result, the

candidate model with the minimum criterion value is selected

as the correct model. The simulation results demonstrate the

consistency of the R-SAMOS criterion when the SNR is suf-

ficiently large, and its performance advantage over the other

signal order detection schemes.

Future works include the extension of the R-SAMOS cri-



terion to the more general scenarios such as the multi-channel

and multi-dimensional sinusoidal signals, and its application

in source localization [2], biomedical signal analysis [3],

wireless communication [20], and so on.
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