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ABSTRACT

Automated driving systems are in an intensive research and development stage,

and the companies developing these systems are targeting to deploy them on public

roads in a very near future. Guaranteeing safe operation of these systems is crucial

as they are planned to carry passengers and share the road with other vehicles and

pedestrians. Yet, there is no agreed-upon approach on how and in what detail those

systems should be tested. Different organizations have different testing approaches,

and one common approach is to combine simulation-based testing with real-world

driving.

One of the expectations from fully-automated vehicles is never to cause an accident.

However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions

caused by other road occupants. Hence, it is important for the system designers to

understand the boundary case scenarios where an autonomous vehicle can no longer

avoid a collision. Besides safety, there are other expectations from automated vehicles

such as comfortable driving and minimal fuel consumption. All safety and functional

expectations from an automated driving system should be captured with a set of

system requirements. It is challenging to create requirements that are unambiguous

and usable for the design, testing, and evaluation of automated driving systems.

Another challenge is to define useful metrics for assessing the testing quality because

in general, it is impossible to test every possible scenario.

The goal of this dissertation is to formalize the theory for testing automated

vehicles. Various methods for automatic test generation for automated-driving sys-

tems in simulation environments are presented and compared. The contributions

presented in this dissertation include (i) new metrics that can be used to discover

the boundary cases between safe and unsafe driving conditions, (ii) a new approach

i



that combines combinatorial testing and optimization-guided test generation methods,

(iii) approaches that utilize global optimization methods and random exploration

to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a

publicly-available simulation-based automated vehicle testing framework that enables

application of the existing testing approaches in the literature, including the new

approaches presented in this dissertation.
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Chapter 1

INTRODUCTION

1.1 Automated Driving Systems

Driver assistance systems such as lane keeping, adaptive cruise control, pedestri-

an/obstacle collision avoidance, automatic lane change, emergency braking systems

and many more are being used in high-end modern automotive systems.

Fully automated driving systems are in a stage of rapid research and development

spanning a broad range of maturity from simulations to on-road testing and deployment.

Prototype autonomous vehicles (self-driving cars) have already driven millions of miles

on public roads [179, 70]. Automated Driving Systems (ADS) are expected to have a

significant impact on the vehicle market and the broader economy and society in the

future. The expected primary impacts of ADS include a significant reduction in the

number of fatalities and injuries caused by the traffic accidents, increased mobility for

disabled and/or elderly people, reduction in transportation costs, and increased road

capacity [59, 119].

1.1.1 Levels of Automation

The level of automation in ADS can vary from only creating warnings to fully

automated driving. Definitions for the levels of automation by SAE International are

given in Table 1 which is taken from SAE International’s report J3016 [153]. I use the

term autonomous vehicles for the fully-automated driving systems, i.e., the systems
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that are SAE level 4 and 5, for which the system is responsible for all aspects of the

driving task in its operating domain.

1.1.2 Automated Driving Systems Architecture

Figure 1 illustrates a (possible) high-level view of a typical ADS architecture.

Currently, there is no unique correct approach to the development of ADS. Hence,

the architecture we discuss here would probably differ between implementations.

Although every organization has its own approach to the development of ADS, e.g.,

using artificial intelligence vs. logic-based reasoning or differences in the selection

of sensor setup, a generally accepted approach partitions the problem of automated

driving into the subproblems of perception, planning, and control [179, 70, 133].

Map Data

V2X

Object detection and identification

Signal Processing

LIDAR Radar Camera Sonar

Sensor Fusion

Overall Situational Awareness
(Current and future pose of self and other traffic agents, weather & road conditions) 

GPS IMU Odometry

Signal Processing

Sensor Fusion

Other 
sensors

Mission
planner

High-level 
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planner
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High-level 
control

Low-level 
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ControlHuman-
Machine 
Interface

Steering

Acceleration

Actuators
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Other
(signaling etc.)
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Figure 1. A high-level architecture of an automated driving system.

For the perception of the environment and other road occupants, i.e., agents,
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L
ev
el

Name & Definition Control
Monitoring
of driving

environment

Fallback
Performance
of Dynamic
Driving
Task

System
Capabil-

ity
(Driving
Modes)

Human driver monitors the driving environment (Levels 0-2)
0 No automation

The full-time performance by the
human driver of all aspects of the
dynamic driving task, even when

enhanced by warning or
intervention systems

Human
driver

Human
driver

Human
driver

N/A

1 Driver Assistance
The driving mode-specific

execution by a driver assistance
system of either steering or

acceleration/deceleration using
information about the driving
environment and with the

expectation that the human driver
perform all remaining aspects of

the dynamic driving task

Human
driver
&

System

Human
driver

Human
driver

Some
driving
modes

2 Partial Automation
The driving mode-specific
execution by one or more driver
assistance systems of both steering
and acceleration/deceleration
using information about the
driving environment and with the
expectation that the human driver
perform all remaining aspects of
the dynamic driving task

System Human
driver

Human
driver

Some
driving
modes

Automated driving system (“system”) monitors the driving environment (Levels 3-5)
3 Conditional Automation

The driving mode-specific
performance by an automated
driving system of all aspects of the
dynamic driving task with the
expectation that the human driver
will respond appropriately to a
request to intervene

System System Human
driver

Some
driving
modes

4 High Automation
The driving mode-specific
performance by an automated
driving system of all aspects of the
dynamic driving task, even if a
human driver does not respond
appropriately to a request to
intervene

System System System Some
driving
modes

5 Full Automation
The full-time performance by an
automated driving system of all
aspects of the dynamic driving
task under all roadway and
environmental conditions that can
be managed by a human driver

System System System All
driving
modes

Table 1. SAE International’s definitions [153] for levels of automation in automated
driving systems.
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LIDAR, radar, camera, and sonar sensors are commonly used. Each of these sensors

has its own strengths and weaknesses. For instance, while an object detection and

classification algorithm on camera images can give good results under good lighting

conditions, a LIDAR may be more reliable for dark environments. On the other hand,

while a LIDAR normally gives more accurate readings than a radar, under rainy

conditions a radar can be more reliable than a LIDAR. The typical refresh rates for

the sensors also vary. In order to make the best use of several sensor data and the

estimations based on the previous detections, sensor fusion algorithms are commonly

used. A sensor fusion algorithm may involve logic-based rules as well as estimation

algorithms like Kalman filters and particle filters together with expected motion

models of the agents [165, 77]. Development of a good sensor fusion algorithm is a

challenging job. The perception of the environment may also rely on vehicle-to-vehicle

and vehicle-to-infrastructure communication systems where available.

For the estimation of the vehicle’s self-pose, commonly used sensors are GPS,

Inertial Measurement Unit (IMU), and wheel odometry sensors. Sensor data is

generally noisy, and typically, the measurements from different sensors are combined

with previous estimations at a sensor fusion level to generate better estimations

[165, 175].

Once a general picture of the self-pose and the environment is generated, this

information is generally used at the planning level to generate a target path and

velocity. In the planning level, if available, map information and user inputs, e.g.,

target location, are used to generate a mission which can be at a very high-level such

as “go to the location x by using the minimum amount of fuel”. Combining the mission

with the current situation, a high-level plan, e.g., a target path, is generated. Because

driving environments are generally highly dynamic, the plan should be frequently
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updated with the constraints of the current environment, i.e., the other vehicles

or unexpected road conditions. A low-level planner is responsible for creating a

shorter-term local plan with regard to these constraints [27].

In the control level, the plan is executed and signals to actuators are generated. In

the high-level control, optimal control algorithms like Model Predictive Control (MPC)

may be used. However, because optimal control is generally slower to compute and

update, a low-level controller, e.g., a Proportional-Integral-Derivative (PID) controller,

is typically used to update the actuator signals with high frequency [114, 65].

Considering all the hardware, software and the vehicle dynamics, an ADS is

a complex Cyber-Physical System (CPS), i.e., a system in which the dynamics of

physical components and software components continuously interact with each other.

1.2 Approaches and Challenges in Testing and Verification of Automated Driving

Systems

An ADS that is operating in a traffic environment and/or carrying passengers is a

safety-critical system. This means that some types of failures in such a system may

cause harm to humans. Hence, guaranteeing safe operation of these systems is crucial.

Both governmental and non-governmental organizations are grappling with the unique

requirements of these new, highly complex systems, as they have to operate safely

and reliably in diverse driving environments. Government and industry-sponsored

partnerships have produced a number of guiding documents and clarifications, such

as NHTSA [129], SAE [152], CAMP [33], NCAP [164], PEGASUS [137].

Testing of ADS is an area of active research and the research community has

been contributing to the development of methodologies for testing ADS. As addressed
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by Bengler et al. [24], testing autonomous vehicles is a challenging problem which

cannot be efficiently handled with conventional approaches. According to Maurer and

Winner [120], considering the pace of functional growth in DAS, lack of efficient testing

can affect time-to-market for more advanced systems like fully-automated vehicles.

Stellet et al. [160] surveyed existing approaches to testing such as simulation-only,

X-in-the-loop and augmented reality approaches, as well as test criteria and metrics

(see also [190]). The publications [106], [28], and [176] provide in-depth discussions

on the challenges of safety validation for autonomous vehicles, arguing that virtual

testing should be the main target for both methodological and economic reasons.

The expected properties and functionality for a system are specified by a set of

system requirements. However, specifying complete and unambiguous requirements

for a system is a difficult task, especially if the system consists of multiple complex

subsystems. Formal requirements, such as temporal logic specifications, can be used

to remove ambiguity from the requirements, and to enable the mathematical analysis

the system behaviors with respect to its requirements. A set of formal requirements

can also be mathematically analyzed for vacuity or conflicts between requirements [42].

The use of formal requirements for a system allows the applicability of formal methods,

which are mathematical approaches, to prove or disprove that the system satisfies

its requirements [15]. The task of using formal methods to provide mathematical

guarantees of the correctness of a system is called formal verification [163]. I use the

terms verification and formal verification interchangeably when referring to formal

verification.

Besides itself being a complex CPS, an ADS is also in continuous interaction

with the road surface, other road users, e.g., pedestrians, and other vehicles, and is

also affected by the weather and lighting conditions. At any moment in a typical
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traffic environment, the future behaviors of other vehicles and pedestrians contain

uncertainties. Hence, if we want to model an ADS in its environment, the overall

environment would be a large highly nonlinear system with uncertainties. Furthermore,

the evolution of this large system is not bounded with time, i.e., the operation is

not limited within a certain time range. Formal verification of such a system, i.e., a

system which is a combination of multiple hybrid subsystems with nonlinear dynamics

and uncertainties, for unbounded time using reachability analysis is an undecidable

problem [82, 83, 15]. This means, there cannot be a computer program that can

always give the correct answer to the question of whether such a system is correct or

not. Despite the undecidability results, there is some work in the literature which aim

verification of some components of ADS with some assumptions and simplifications. In

the following, I present applications of several different approaches to the verification

problem of ADS and the challenges in verifying ADS using these approaches.

Reachability analysis computes the set of all reachable states of a system and

checks whether the set of reachable states intersects with the set of incorrect states

[20, 21]. Althoff et al. use reachability analysis techniques for safety verification

of autonomous vehicles [11, 12, 13, 148]. In [14], reachability analysis is used to

generate critical simulations with the aim of minimizing the drivable area for the

vehicle under test. Reachability analysis for nonlinear systems involve linearization,

over-approximations and it can only be applied for a bounded time. Possibilities

in real-world driving environments should be captured in the verification of ADS.

Hundreds of pedestrians may be crossing at intersections or walking on the sidewalks.

Tens of vehicles with different shapes and drivers with different driving characteristics

may be in the surroundings of the ADS under test. The road and weather conditions

can vary dramatically. All this openness of the operating environment of an ADS
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makes it very difficult to account for all possible behaviors with reachability analysis

tools without being too conservative or too optimistic in the assumptions. In a

real-world driving environment, drivers make some optimistic assumptions on the

behavior of other traffic occupants, and they take action when they realize that their

assumptions do not hold. Mathematically capturing these assumptions and real-world

driving behaviors correctly is challenging. Overly optimistic assumptions may result in

verifying a system that may not actually be safe when these assumptions do not hold.

On the other hand, pessimistic assumptions would result in very conservative results.

Hence, the biggest challenge for bounded time verification of ADS using reachability

analysis techniques is scalability and conservativeness of the results.

Automated theorem proving, which is another approach that is used for formal

verification, utilizes mathematical descriptions of system logic and dynamics together

with formal requirements to compose mathematical proofs of correctness of the

system [141]. Loos et al. propose and verify safety properties of an adaptive cruise

control system by using a semi-automated theorem prover [142]. They consider only

the longitudinal motion of the Ego vehicle under the assumptions that all the vehicles

on the road are automated, the system dynamics and limits on acceleration and

deceleration values are well known, sensor and communication network is accurate

and updates within a time limit and any instance a vehicle first appears in front

of the Ego vehicle is safe [116]. A problem with theorem provers is the need for a

high level of user interaction even for a simple example [19]. Considering all the

subsystems of an ADS the openness of the driving environment, the overall system

becomes very complex which makes the applicability of automated theorem proving

questionable. For verification of ADS as an overall system, sensors on the vehicle and

their performance under various conditions must be considered. For instance, there is
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an enormous number of ways that a LIDAR point cloud can be affected by different

materials and shapes of the objects in the environment as well as the pose of the

ego vehicle. Another challenge in applying verification techniques such as automated

theorem proving or reachability analysis is in providing mathematical descriptions of

such details to discover potential problems originating from the sensor systems.

Temporal logic model checking is a verification approach that relies on the exhaustive

search of the state space of a finite state system with the target of answering the

question whether the system is correct with respect to its temporal logic requirements

[35, 146, 37]. However, the state space of a system grows exponentially with the

number of states in the system, which is a phenomenon called the state explosion

problem. Because of the state explosion problem, model checking is unusable for most

industrial-size systems [36]. There are several heuristics aiming to overcome the state

explosion problem. A Monte Carlo algorithm for model checking that performs a

random walk on the system state transition graph is proposed in [75]. An approach

that combines motion planning and model checking for the temporal logic falsification

of hybrid systems is proposed in [139].

Automated driving systems generally use machine learning components such as

deep neural networks (DNNs) for evaluating sensor outputs such as camera images or

LIDAR point clouds for object detection and classification as well as for estimating

future behaviors of other road occupants. Verification of such machine learning

components is still an open problem [157]. Although some assumptions can be made

on the performance of these components with the target of verification of the overall

system without verifying machine learning components in isolation, the validity of such

assumptions would also be questionable. For instance, one can assume that a DNN

may fail to detect an object for some time and aim to verify the system under this
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assumption. But, what if the DNN detects the object at a different location, instead

of failing to detect the object, and misguides the trajectory estimation algorithms?

Capturing all such possibilities with the state of the art verification approaches is

impractical, if not impossible.

Despite their limitations, the aforementioned verification approaches are very

powerful techniques and such techniques are needed for guaranteeing safe operation of

ADS. Ideally, both automated theorem proving and reachability analysis techniques

should be used whenever possible to provide guarantees for some subsystems or the

overall system under some assumptions and limitations in the driving environment.

To overcome the limitation of verification techniques, they can be complemented with

testing-based approaches.

Simulation-based falsification is an automated test generation approach that aims

to find falsifications of formal system requirements using simulations of the system.

A falsification of a formal requirement, i.e., a falsifying trace, is a system simulation

trace that does not satisfy the corresponding requirement. Hence, a falsifying trace

is a counterexample to the correct system behavior. A system is said to be falsified

if a falsifying trace is discovered for at least one of the formal system requirements.

Falsification techniques are considered as semi-formal methods. They are formal

in the sense that they rely on mathematical analysis of the systems with respect

to formal requirements and they can provide counterexamples (falsifications) that

disprove that a system satisfies its requirements. They are best effort approaches

toward verification, and generally, they cannot prove, i.e., they cannot verify, the

correctness of a system. However, it may be possible to provide statistical guarantees

of correctness for stochastic cyber-physical systems [5].

Although falsification approaches cannot verify system properties, they are more
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scalable than formal verification techniques and generally are easier to utilize, and they

give valuable information on the safety properties of the system under test. Another

advantage of falsification approaches is that as long as the system can be simulated, we

don’t need to know all the details of the system under test. By utilizing optimization

techniques for falsification, we can guide automatic test generation toward incorrect

system behaviors and we can have increased confidence in the correctness of the system

and identify risky, i.e., safe but close to unsafe, operating conditions. More detail on

the falsification techniques is provided in Section 2.

The problem of verification of ADS is an open problem. As discussed above, formal

verification methods have shortcomings in verifying a complex ADS within an open

driving environment that contains many uncertainties. On the other hand, falsification

methods cannot provide mathematical guarantees for the correctness of the system

even when they cannot falsify the system.

Both verification and falsification approaches have their own advantages and

disadvantages as described above, and they are both valuable in the process of

checking whether an ADS design and implementation is correct with respect to its

requirements. Hence, they can be used complementary to each other. While some

components or subsystems can formally be verified, the overall system that potentially

consists of formally verified, non-verified and even black-box components can be tested

systematically using falsification techniques. The approaches that are presented in

this dissertation are on the falsification of ADS.
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1.2.1 Summary of Contributions

The typical operating domain of automated driving systems is an open traffic

environment with many other road occupants for which the behavioral models are

not available. Besides other road occupants, road specific parameters such as friction,

slope, surface type, other environmental conditions such as lighting amount and angle,

the existence of fog and the corresponding visibility, types of buildings or trees can

all vary significantly from time to time and from location to location. Automatically

identifying unintuitive configurations and behaviors that lead to challenging situations

for the vehicle under test (Ego vehicle) is a difficult task in such an open environment.

One of the main contributions presented in this dissertation is the proposed concepts

for the formulation of adversarial configurations and behaviors in the simulation

environment aiming to automatically identify critical cases for the Ego vehicle. For

this purpose, several approaches to formulate the problem as an optimization problem

are proposed. Furthermore, new heuristic methods are proposed that are empirically

shown to improve the test generation performance. While identifying the collision cases

is important, because of the nature of the driving environment, an automated vehicle

cannot avoid all collisions. For instance, a collision with a vehicle that loses control

and drives into the automated vehicle may not be avoidable. Figure 2 illustrates

an unavoidable collision example. However, identifying the boundaries between the

collisions that are barely avoided or the collisions that could have been avoided with

minor changes in the control or environment would be valuable for the engineering

teams to improve the safety-related capabilities of the system.

Another contribution of this dissertation is the proposed cost functions that aim

to identify such boundaries (between safe and unsafe situations) by guiding the test
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Figure 2. An unavoidable collision example. Red car suddenly moves into the Ego
vehicle’s lane at a very short distance.

generation process toward those boundaries. Yet another contribution is the provided

formal requirements for ADS that define the correct operation at the system level,

subsystem (perception system) level and acceptable impacts of subsystem-level failures

to the overall system operation.

Finally, a publicly available, open-source simulation-based framework is developed

that can be used to experiment with different test generation approaches in a 3D

modeled environment, in which physical models for several sensor types and vehicles

are available. Webots [39, 123], which is an open-source robotics simulator, is utilized

for simulating the sensor and vehicle models in a 3D modeled environment.

I summarize my contributions and publications on my published work in the

following.

1.2.1.1 Optimization-guided Automatic Test Generation for Automated Driving

Systems

• Cumhur Erkan Tuncali, Theodore P. Pavlic, and Georgios Fainekos, Uti-

lizing S-TaLiRo as an Automatic Test Generation Framework for

Autonomous Vehicles, in IEEE Intelligent Transportation Systems Confer-

ence (ITSC), 2016 [173].

In this paper, I developed a simulation-based testing framework in MATLAB
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which uses S-TaLiRo to automatically generate test cases for testing motion

controllers of ADS. The goal of the framework in this work is to search over

agent vehicle trajectories to find boundary-case collisions or near-miss situations,

i.e., the situations that are on the boundary between safe and unsafe operations.

I proposed a robustness metric that is used as the cost function in a global

optimization setting to guide the generation of vehicle trajectories for test cases

towards the boundary between safe and unsafe operations. I conducted a case

study using Matlab simulations.

• Cumhur Erkan Tuncali, Shakiba Yaghoubi, Theodore P. Pavlic, and Georgios

Fainekos, Functional Gradient Descent Optimization for Automatic

Test Case Generation for Vehicle Controllers, IEEE International Con-

ference on Automation Science and Engineering (CASE), 2017 [174].

In this paper, I developed a hierarchical test generation framework that combines

analytical functional gradient computations with simulations. A system perfor-

mance function is used as the cost function that is to be minimized. Starting

from a random location, a descent direction is computed on a simplified model

of the system dynamics, on which the gradients can be analytically computed.

Then, a bisection technique is used to search for a minimal performance on the

simulations of a high-fidelity model of the system. The system performance

evaluations from the simulation outputs are used to guide the search by changing

the bisection step size. Once a minimal performance is found with the bisection

technique, the whole process is restarted at another random location which is

selected by low-discrepancy sampling. I implemented a full-range adaptive cruise
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control from literature and set up a case study to evaluate the results of this

work.

1.2.1.2 Requirements-driven Testing of Autonomous Vehicles with Machine Learning

Components

• Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapin-

ski, Sim-ATAV: Simulation-Based Adversarial Testing Framework for

Autonomous Vehicles, in Proceedings of the 21st International Conference

on Hybrid Systems: Computation and Control (HSCC), 2018 [168].

Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito and James Kapinski,

Simulation-based Adversarial Test Generation for Autonomous Vehi-

cles with Machine Learning Components, in IEEE Intelligent Vehicles

Symposium (IV), 2018 [169].

In this line of work, I developed a framework, Sim-ATAV, which utilizes a

robotics simulation platform, Webots [39], and S-TaLiRo [60] for falsification

of autonomous driving vehicles that have machine learning-based perception

systems. Sim-ATAV is publicly available as an open-source project [167]. I

proposed and studied a test generation approach that combines covering arrays

with optimization-guided falsification. The proposed approach, which uses

covering arrays with an aim to find better initial samples for optimization-guided

falsification, enabled a search over discrete and discretized continuous parameters

and increased the probability of finding interesting cases with a smaller number

of simulations compared to uniform random or only optimization guided testing.
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1.2.2 Other Contributions

My other contributions that are not directly related to the topics covered in this

dissertation.

• Cumhur Erkan Tuncali, Georgios Fainekos, and Yann-Hang Lee, Auto-

matic Parallelization of Simulink Models for Multi-core Architectures,

in IEEE 12th International Conference on Embedded Software and Systems

(ICESS), 2015 [170].

This paper addresses the problem of parallelizing existing single-rate Simulinkr

models for embedded control applications on multi-core architectures considering

communication cost between blocks on different CPU cores. I developed a Mixed

Integer Linear Programming (MILP) formulation for computing an optimal

mapping of Simulink model blocks on different CPU cores that aims to minimize

the overall Worst-Case Execution Time (WCET) while maintaining functional

equivalence to the original model. I proposed three heuristics to reduce MILP

solver time for complex models. The input to the MILP formulation is a

dependency graph of Simulink model blocks with WCET information for each

block given on the corresponding node and the inter-core communication time

between two dependent blocks given on the directed edge that connect those

blocks. The output of the optimization is a mapping of each Simulink model to

a specific CPU core. I developed a tool in Matlab for flattening a given Simulink

model, creating the aforementioned dependency graph and using MILP outputs

to create a new Simulink model for each target CPU core that contains all (and

only) the blocks that are assigned to that specific core. The tool I developed also
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introduces necessary inter-core communication and synchronization mechanisms

into the generated Simulink models, where necessary to guarantee functional

equivalence to the original model execution. I studied the scalability and

efficiency of the MILP formulation on synthetic directed acyclic graphs. I studied

the applicability of the tool on real-world problems on (1) “Fault-Tolerant Fuel

Control System” demo from Simulink and (2) a Diesel engine controller model

from Toyota [90].

• Cumhur Erkan Tuncali, Georgios Fainekos, and Yann-Hang Lee, Automatic

Parallelization of Multirate Block Diagrams of Control Systems on

Multicore Platforms, in ACM Transactions on Embedded Computing Systems

(TECS), 2016 [170].

This journal article extends the previous work to multi-rate Simulink models.

In this work, I extended the previous MILP formulation for single-rate Simulink

models to multi-rate Simulink models. I modified the Matlab tool from the

previous work to generate a separate dependency graph for each sampling rate

of the model and generate Simulink models for each core with multiple sampling

rates.

• Cumhur Erkan Tuncali, Bardh Hoxha, Guohui Ding, Georgios Fainekos, and

Sriram Sankaranarayanan, Experience Report: Application of Falsifica-

tion Methods on the UxAS System, NASA Formal Methods Symposium,

2018 [171].

In this paper, our experiences in applying falsification methods over the Un-

manned Systems Autonomy Services (UxAS) system is presented. UxAS is
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a collection of software modules that enables complex mission planning for

multiple vehicles. In this work, I developed new modules for UxAS that enable

monitoring of the unmanned air vehicle states. I developed a mechanism that

enables the user to define ranges of parameters for simulation configurations

of UxAS. I developed an interface between S-TaLiRo and UxAS that can

start simulations of UxAS with a sampled configuration and collect values of

monitored parameters as a simulation trace. I also developed example MTL

requirements for several UxAS scenarios. I conducted experiments with the

developed framework.

• Cumhur Erkan Tuncali, James Kapinski, Hisahiro Ito, and Jyotirmoy V

Deshmukh, Reasoning about safety of learning-enabled components in

autonomous cyber-physical systems, IEEE 56th Design Automation Con-

ference (DAC), 2018 [172].

In this paper, a simulation-based approach is presented for generating barrier

certificate functions for safety verification of cyber-physical systems (CPS)

that contain neural network-based controllers. Simulation outputs are used in

a linear programming setting to generate candidate safety barrier functions,

which are then evaluated with a Satisfiability Modulo Theories (SMT) solver

with respect to the analytical representation of the system. A level set of

the safety barrier function is computed that would separate safe and unsafe

system states and returned as a safety certificate for the system. In this work, I

created different sized Neural Networks (NNs) and used a Covariance Matrix

Adaptation-Evolution Strategy (CMA-ES) based policy search technique to train

these NNs as line following controllers for a Dubins car. I extended previous work
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in the literature to the systems with feed-forward neural network controllers. I

conducted experiments to evaluate the scalability of the proposed approach on

different sized NNs.

• Joseph Campbell, Cumhur Erkan Tuncali, Peng Liu, Theodore P Pavlic, Umit

Ozguner, and Georgios Fainekos, Modeling concurrency and reconfigura-

tion in vehicular systems: A π-calculus approach, in IEEE International

Conference on Automation Science and Engineering (CASE), 2016 [29].

In this paper, a modeling framework is proposed where communication and

system reconfiguration is modeled through π-calculus expressions while the

closed/loop control systems are modeled through hybrid automata. In this

work, I contributed to the modeling of control and physical systems as a hybrid

automaton, I implemented a Model Predictive Controller (MPC) from the

literature and I conducted a case study with different types of vehicles that are

controlled by the implemented MPC.
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Chapter 2

SYSTEMS AND REQUIREMENTS

2.1 Systems and Simulation

In this section, we describe the notation used in this dissertation to describe

models of systems and their simulations. We denote the model of a system as a tuple

M = (X,U, P, sim) where X is the set of system states, U is the set of system inputs,

P is the set of system parameters, and sim is the system simulation function.

The set of system variables, X = X(C)∪X(D), is the union of the set of continuous-

valued variables, X(C) = {x(C)
1 , · · · , x(C)

N }, and the set of discrete-valued variables,

X(D) = {x(D)
1 , · · · , x(D)

K }. We assume that each x
(C)
i ∈ X (C)

i ⊆ R, and each x
(D)
i ∈

X (D)
i , where X (D)

i is some finite domain. The state space of the system is denoted by

X = X (C) ×X (D), where X (C) = X (C)
1 × · · · × X (C)

N and X (D) = X (D)
1 × · · · × X (D)

K . A

state vector at time ti is denoted by xi ∈ X .

The set of system inputs is U = {u1, · · · , uM}, and the corresponding input space

is U = U1 × · · · × UM where M is the dimension of the input space. An input vector

at time ti is denoted by ui ∈ U .

The set of system parameters, P = P (C) ∪ P (D), is the union of the set of real-

valued parameters, P (C) = {p(C)
1 , · · · , p(C)

W }, and the set of discrete-valued parameters,

P (D) = {p(D)
1 , · · · , p(D)

V }. Each p(C)
i ∈ P (C)

i ⊆ R and each p(D)
i ∈ P(D)

i ,where P(D)
i is

some finite domain. The parameter space is denoted by P = P(C) × P(D), where

P(C) = P(C)
1 ×· · ·×P(C)

W and P(D) = P(D)
1 ×· · ·×P(D)

V . A parameter vector is denoted

by p ∈ P .
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Given x ∈ X , x̂ = sim(x,u,p, t) is the state reached starting from the system

state x after time t ∈ T under the input vector u ∈ U and the parameter vector p ∈ P .

Hence, the system simulation function is a mapping sim : X ×U ×P × T → X where

T is a discrete set of time samples t0, t1, . . . , tN , with ti < ti+1. We call a sequence

ω = (u0, t0)(u1, t1) · · · (uN , tN), where ti > ti−1, an input trace ofM. Given a model

M, an input trace ofM, ω, and a p ∈ P , a simulation trace ofM under input ω and

parameters p is a sequence

µ = (x0,u0,p, t0)(x1,u1,p, t1) · · · (xN ,uN ,p, tN),

where sim(xi−1,ui−1,p, ti−1) = xi for each 1 ≤ i ≤ N , and x0,u0 are the initial states

and initial inputs of the system. We denote the set of all simulation traces of M

by L(M). For a given simulation trace µ, we call ζ = (x0, t0)(x1, t1) · · · (xN , tN) the

state trace. For a set of equally distributed time samples, i.e., ti − ti−1 = ∆t,∀i, the

state trace can be simplified as ζ = x0,x1, · · · ,xN . Finally, we define the system

output equation as y = h(x,u, t) and the output trace corresponding to the µ as

y = y0, y1, · · · , yN , where the function h maps the system states, inputs and time to

the system outputs.

2.2 System Requirements

In order to design and test a system, a set of requirements that describe the

properties of the system is needed. Those requirements can be in the natural language

or in some mathematical form. Natural language requirements are generally easier to

write. However, they can easily contain ambiguities. This brings the risk that the

requirement developer, the engineer implementing the system and the tester can all

interpret the same requirement differently. It is also difficult to develop tools that
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can automatically analyze a system behavior with respect to its natural language

requirements. On the other hand, formal requirements have the advantage of being

unambiguous, and one can mathematically check system behaviors with respect to its

formal requirements or analyze requirements with respect to each other, e.g., checking

conflicts, vacuity etc. [42].

2.2.1 Temporal logic requirements and robustness

Temporal logic is an extension of Boolean logic with time-related operators which

add time constraints on Boolean expressions. Temporal logic formulas are one form

of describing formal requirements for systems. Three commonly used variations of

temporal logic are Linear Temporal Logic (LTL), Metric Temporal Logic (MTL), and

Signal Temporal Logic (STL). LTL works on sequences of atomic propositions. MTL

can describe real-time constraints on atomic propositions. STL can describe real-time

constraints on predicates over real-valued signals.

2.2.1.1 Linear Temporal Logic

Linear temporal logic is an extension of Boolean logic with time constraints on

sequences of atomic propositions [143]. LTL formulae can contain Boolean operators

conjunction (∧), disjunction (∨) and negation (¬) and temporal operators eventually

(3), always (�), next (©), and until (U). The temporal operators are evaluated at

each sample of the sequence with respect to the future values of the atomic propositions

in the sequence.

Let k ∈ N denote the position of samples in a given sequence, where (k + 1)th
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sample is the sample which immediately proceeds the kth sample. For a sequence of

the values of predicate πi, let πi[k] denote the value of the predicate at the kth sample,

which can be true (>) or false (⊥). Then, the temporal operators on predicates are

evaluated as follows at the kth sample of a sequence:

3 πi = > ⇐⇒ ∃j ≥ k s.t. πi[j] = >,

� πi = > ⇐⇒ πi[j] = > ∀j ≥ k

© πi = > ⇐⇒ πi[k + 1] = >

(π1 U π2) = > ⇐⇒ (∃l > k s.t. π2[l] = >) and (π1[j] = > ∀j s.t. k ≤ j < l).

2.2.1.2 Metric Temporal Logic / Signal Temporal Logic

Metric temporal logic works on the atomic propositions, i.e., Boolean predicates,

in real-time. For MTL, predicates are in the Boolean form, i.e., a predicate νi is given

as a signal of Boolean variables.

Signal Temporal Logic (STL) was introduced as an extension to MTL to reason

about real-time properties of signals (simulation traces) (for an overview see [23]).

Signal temporal logic works on predicates over real-valued signals. For STL, the

predicates π are expressions built using the following grammar:

π ::= f(x,u,p) ≥ c | ¬π1 | (π) | π1 ∨ π2 | π1 ∧ π2

where f is a function and c is a constant in R [117]. The difference between MTL and

STL can be considered as a difference in how predicates are represented. An STL

formula can be expressed as an MTL formula by appropriately defining a corresponding

atomic proposition νi for each πi of an STL formula where for some time t we have
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νi = > ⇐⇒ πi = >. Hence, in the following we will utilize MTL and STL formulas

interchangably based on the context and readability.

The temporal operators of MTL/STL include eventually (3I), always (�I) and

until (UI), where I is a time interval that encodes timing constraints.

Definition 1 (MTL/STL Syntax) Assume π is the set of predicates and I is any

non-empty interval of R+. The set of all well-formed MTL or STL formulas is

inductively defined as

ϕ ::= > | π | ¬ϕ | φ1 ∨ φ2 | φ1UIφ2,

where π is a predicate, > is true and UI is Until operator that is constrained to time

interval I.

A formula is evaluated at time t as follows:

π = > ⇐⇒

 π(t) = >, for MTL,

f(x1(t), ...xn(t)) > 0, for STL.

¬ϕ = > ⇐⇒ ϕ = ⊥ at time t

φ1 ∨ φ2 = > ⇐⇒ φ1 = > at time t or φ2 = > at time t

(φ1 U φ2) = > ⇐⇒ ∃t1 ≥ t s.t. φ2 = > at time t+ t1 and φ1 = > ∀t2 ∈ [t, t1].
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For the formulas ψ, φ, we define the following using syntactic manipulation:

ψ ∧ φ ≡ ¬(¬ψ ∨ ¬φ) (ψ AND φ),

⊥ ≡ ¬> (False),

ψ → φ ≡ ¬ψ ∨ φ (ψ Implies φ),

3Iψ ≡ >UIψ (Eventually ψ within time interval I),

�Iψ ≡ ¬3I¬ψ (Always ψ within time interval I),

ψRIφ ≡ ¬(¬ψUI¬φ) (ψ Releases φ within time interval I)

When we work in discrete-time, we use the discrete-time semantics of MTL/STL

by applying the above definitions in the discrete time domain. For the discrete-

time, we can also define the “next” operator (©) for MTL or STL formulas in a

similar fashion as it is defined for LTL, i.e., ©π1 = > at time t ⇐⇒ π1 =

> at the sample proceeding the time t.

2.2.1.3 Robustness for MTL / STL

Each predicate π of an STL formula represents a subset in the space X × U × P .

In the following, we represent that set that corresponds to the predicate π using the

notation O(π).

In [63], Fainekos and Pappas proposed robust semantics for STL formulas. Robust

semantics (or robustness metrics) provide a real-valued measure of satisfaction of a

formula by a trace in contrast to the Boolean semantics that just provides a true or

false valuation. In more detail, given a trace µ of the system, its robustness w.r.t. a

temporal property ϕ, denoted [[ϕ]]d(µ) yields a positive value if µ satisfies ϕ and a

negative value otherwise. Moreover, if the trace µ satisfies the specification ϕ, then
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the robust semantics evaluate to the radius of a neighborhood such that any other

trace that remains within that neighborhood also satisfies the same specification. The

same holds for traces that do not satisfy ϕ.

Definition 2 (MTL / STL Robust Semantics) Given a metric d, trace µ of

length N , where µi corresponds the value of the trace at time ti, i.e., µi =

(xi,ui,pi),∀i ∈ [0, N ], and O : π → 2X×U×P , the robust semantics of any MTL

formula ϕ w.r.t µi is defined as follows:

[[>]]d(µi) := +∞

[[π]]d(µi) :=

 − inf{d((xi,ui,pi),y) | y ∈ O(π)}, if (xi,ui,pi) 6∈ O(π)

inf{d((xi,ui,pi),y) | y ∈ O(π)}, if (xi,ui,pi) ∈ O(π)

[[¬ϕ]]d(µi) :=− [[ϕ]]d(µi)

[[φ1 ∨ φ2]]d(µi) := max
(
[[φ1]]d(µi), [[φ2]]d(µi)

)
[[©ϕ]]d(µi) :=

 [[ϕ]]d(µi+1), if i+ 1 ≤ N

−∞, otherwise

[[φ1UIφ2]]d(µi) := max
j s.t. (tj−ti)∈I

(
min

(
[[φ2]]d(µj), min

i≤k<j
[[φ1]]d(µk)

))

Later, in [46] a relaxed notion of robustness was introduced for STL. Namely, over

1D signals, the two notions of robustness coincide. However, in multi-dimensional

spaces, the robustness definition is replaced by simply f(x)− α for a given predicate

f(x) > α. For instance, for a predicate 2x < 1, when the value of x is 1, STL

robustness will result in 2 − 1 = 1 which is the perturbation needed on the signal

value for violation of the requirement, while the robustness value for MTL will be 0.5,

which is the perturbation needed on the variable x for the violation.
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A trace µ satisfies φ (denoted by µ |= φ), if [[φ]]d(µ0) > 0. On the other hand, a

trace µ′ falsifies φ (denoted by µ′ 6|= φ), if [[φ]]d(µ′0) < 0. Algorithms to compute [[ϕ]]d

have been presented in [63, 60, 46].

2.3 Testing and Falsification methods

Testing is to execute a system (or a simulation of the system) with some (test)

parameters and to compare the system outputs with the desired behavior (system

behaviors) to decide whether the system conforms to its requirements or not for

the executed test cases. Optimization-guided falsification methods use optimization

methods to automatically generate (and execute) test cases and seek a set of test

parameters that would cause the system to fail its requirements.

There are approaches that compute a measurement of how well a system satisfies or

how much does it violate its temporal logic specifications [63, 64, 149], which is defined

as robustness as described in subsection 2.2.1.3. The relaxed notion of robustness

in [46] is faster to compute in high-dimensional spaces, but it loses the semantic

interpretation of the robustness neighborhoods. For instance, using simulations

toward temporal logic verification through robust semantics for MTL formulas is

discussed in [62]. A Monte Carlo optimization approach that performs a random walk

on the input space and utilizes the robustness metric for increasing the efficiency of

the test generation process for falsification of hybrid systems is proposed in [132].

Besides Monte Carlo approaches, another approach is to utilize functional gradient

descent-based optimization with the target of minimizing the robustness value by

computing a descent direction that is guaranteed to reduce the distance between an

unsafe set of states and a specific location on a simulation trace [8]. A survey on
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the approaches and tools for using temporal logic specifications for checking system

behaviors is presented in [23].

Among the falsification approaches, single-shooting approaches are the ones that

work on complete simulation traces, each starting from an initial condition. Multiple-

shooting approaches work on multiple partial trajectories that start from different initial

conditions. A multiple-shooting, Counterexample-Guided Abstraction Refinement

(CEGAR)-based falsification approach is proposed in [191].

Two commonly known publicly available tools for falsification of cyber-physical sys-

tems that utilize the robustness values of simulation traces with respect to STL/MTL

specifications are S-TaLiRo [18] and Breach [45]. S-TaLiRo and Breach are MAT-

LABr toolboxes for systematic testing of hybrid systems, i.e., the systems that

exhibit continuous and discrete dynamics. Both of these tools are single shooting

approaches and they support various global optimization methods for minimizing

the robustness function and, thus, for seeking a falsifying system trajectory. While

S-TaLiRo utilizes robust semantics for MTL, Breach utilizes robust semantics for

STL. The optimization approaches that are supported by S-TaLiRo include simulated

annealing, cross-entropy, ant-colony optimization while Breach supports Nelder-Mead

technique. S-TaLiRo also supports coverage-based testing for discrete spaces [44]

and conformance testing [6].

One important notion in testing is coverage, which is generally used as a measure

of how exhaustive was a system tested. There are multiple ways to measure coverage,

including input-space coverage and system state-space coverage. Algorithms from

the motion planning domain such as Rapidly-exploring Random Trees (RRTs) are

utilized in the literature for test generation with the target of increased coverage

[58, 103, 26, 140, 49]. An approach for increased state-space coverage that utilizes
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graph search for systematic simulation-based testing is proposed in [98]. RRT coverage

measures are introduced and RRT-based algorithms for increasing state-space coverage

during test generation are proposed in [58]. A test generation framework which is

targeting increased initial-state coverage is presented in [95]. An approach that

combines RRT-based search and sensitivity analysis for better selection of inputs, i.e.,

selecting inputs that are guaranteed to increase the state-space coverage, is proposed

in [40]. Tree search and model checking is combined for checking LTL safety properties

in [139].
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Chapter 3

OPTIMIZATION-GUIDED AUTOMATIC TEST GENERATION FOR

AUTOMATED DRIVING SYSTEMS

3.1 Introduction

A common approach to testing ADS is using simulations and real-world driving.

Because tests involving ADS would comprise test cases which may lead to collisions

or near collisions, performing many tests with actual vehicles ending with collisions

would not be economically efficient and practical. Hence, testing ADS using computer

simulations is crucial. However, manually creating test scenarios with a large number

of different environmental settings and road conditions would be difficult and highly

time-consuming. Furthermore, in order to extract the limits of the systems under

design, engineering teams would like to discover the behaviors on the boundary between

safe and unsafe operations. Creating test cases manually for detecting the boundary

conditions which barely cause collisions like fender-benders may be a challenging job.

We believe that automatic test generation frameworks utilizing simulations are crucial

for the future of autonomous vehicle testing. Such frameworks would produce a large

number of tests generated in an intelligent way and help engineering teams to discover

unforeseen scenarios that could lead to failure.

Discovering potential problems by testing in the simulation environments would

be beneficial, but due to the inevitable differences in the simulation environments

and the real-world, some test cases that do not fail in simulations may fail in the

real-world or vice versa. So, instead of getting pass/fail results from the tests, using a
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metric that indicates how close each test result is to a failure case, similar to phase

and gain margins in control theory [78], would be more useful. With the availability of

such a metric, engineering teams can run a large number of tests in faster simulation

environments and after (automatic) analysis of the test results, they can repeat some

scenarios in the real world using the methods described in [181] or in much more

accurate simulators that require more computation power/execution time.

In this chapter, we address the problem of creating an automatic test generation

framework for automated driving systems. The framework automatically searches for

maneuvers for other vehicles in the driving environment that are used as the test cases.

We describe two approaches with a focus on collisions. Because of the dynamics and

possible physical limitations on the motion, an autonomous vehicle cannot be expected

to be collision-free in every possible situation. For instance, it may not be possible

to avoid a collision with a vehicle cutting in front at a very short distance or with a

vehicle approaching very fast from a side. Our main focus is to find the conditions on

the boundary between safe scenarios and collision scenarios. Our approach is based

on running simulations, computing a cost using the simulation results that shows how

close a system trajectory gets to an unsafe set of states and utilizing optimization

methods to seek smaller costs by changing initial states and inputs for the system

for the next test case. We describe another approach with a focus on driving comfort

that relies on applying gradient-based optimization on a simplified system dynamics

for seeking poor system performance on the more complex model.
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3.2 Problem Definition

We denote the set of autonomous Vehicles Under Test (VUT), also referred to as

the set of Ego vehicles, by E = {e1, . . . , ep}, a set of dummy actors, also referred to

as Agents, by A = {a1, . . . , aq}, and the surroundings by S = {s1, . . . , sr}. In more

detail, the vehicles in the set E are the vehicles which are to be tested either partially,

e.g., controller only, or as a system. The set A of agents, i.e., the mobile or immobile

objects in the driving environment, may contain agent vehicles, pedestrians, obstacles,

etc., optionally with controllers that can give them mobility. The agents physically

interact with the VUT and they are typically used to trick the VUT in various test

scenarios. The surroundings S is a set of environmental settings like road network,

the weather and road conditions, traffic rules and special zones. A driving scenario

T = E ∪ A ∪ S contains a set of Ego vehicles, agents and the surroundings. For

simulation and testing purposes, we consider the overall driving scenario as a single

system, and following the notation given in 2.1, we denote the model of the driving

scenario asMT = (XT ,UT , PT , simT ).

The initial state vector of the vehicle ei is denoted by x0,ei for all ei ∈ E . Similarly,

the initial state vectors for the agent aj ∈ A and the surrounding sk ∈ S are denoted

by x0,aj and x0,sk , respectively. The domains of the coresponding initial states are

denoted as X0,ei , X0,aj and X0,sk , respectively. The initial state vector for the overall

scenario is denoted by x0,T = (x0,e1 , · · · ,x0,ep ,x0,a1 , · · · ,x0,aq ,x0,s1 , · · · ,x0,sr) ∈ X0,T

where X0,T =
|E|∏
i=1

X0,ei ×
|A|∏
j=1

X0,ai ×
|S|∏
k=1

X0,sk , and the operators
∏

and × denote

Cartesian product.

Abbas et al. [4] parameterize input signals u(t) over a bounded time domain R,

by the parameter vectors λ = [λ1 . . . λm]T ∈ Λ, τ = [τ1 . . . τm]T ∈ Rm, where Λ is a
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compact set, τi < τj for i < j, such that for all t ∈ R, u(t) = U(λ, τ)(t) ∈ R. The

function U(λ, τ) returns a function which is parameterized by λ and τ . For instance,

U could represent the space of functions parameterized using splines [55]. We slightly

modify the notation used in [4] to allow inputs to be functions of the states of the

system, not only signals over time. Hence, we allow the set R in the above notation

to be the bounded domain of any variable which can be a state of the system or time.

We use the notation uei,j = (λei,j, τei,j,Uei,j) for referring to the jth input, and uei for

referring to the vector of all inputs of the Ego vehicle ei ∈ E . Similar notation applies

to the inputs of agents and surroundings (such as the weather or lighting conditions

changing over time) in the sets A and S, respectively. Concatenation of input vectors

for all simulation entities is denoted by uT , which is the overall input vector of the

driving scenario. Parameter vector and bounded-time domains of uT are denoted by

ΛT and RT .

Ignoring further parameterization of the modelMT , i.e., PT and following from

UT = ΛT ×RT , the simulation function for the driving scenario is simT : XT × ΛT ×

RT → XT .

The problem we target is to compute:

(x∗0,T ,u
∗
T ) = argminx0,T ∈X0,T ,λT ∈ΛT ,τT ∈RT

R
(
simT

(
x0,T ,uT (λT , τT )

))
(3.1)

where R : Rn×k 7→ R is defined as a cost function for a simulation of n time-steps

length and anMT with a k-dimensional state space. The vector uT (λT , τT ) contains

all input functions, and it is obtained by applying the interpolation function U(λ, τ)

for each input to the corresponding parameter vectors λ, τ from the selected vectors

λT , τT .

In other words, for a given simulation function, a set of vehicles under test (Ego

vehicles), a set of dummy actors (Agents), surroundings information and constraints
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on state space and input space, we are seeking the particular inputs and initial states

for the simulation that would minimize a cost function. To discover system operating

points that are of interest for testing purposes, one must carefully design a cost

function that will (quickly) guide the search toward the critical points.

In the following, we propose two alternative cost functions and two falsification

approaches for discovering the boundaries between safe and unsafe behaviors. We also

propose a functional gradient descent-based approach to find specific conditions, such

as minimum performance, of systems utilizing a simplification of system dynamics.

3.3 Falsification-based Approach to Test Generation

A simplified overview of our falsification-based approach is illustrated in Fig. 3.

The main components of the vehicular systems testing framework that we propose are

the optimization engine of S-TaLiRo, a simulation engine, a cost evaluation function,

and a simulation configuration.

First, a sample space is created from the user-defined input and/or initial state

configuration. Then, an initial states vector and an input functions vector are sampled

from the generated sample space. The simulation of the vehicular systems is executed

for a predefined amount of time with the selected initial states and inputs. As

illustrated in Fig. 3, the simulation engine returns the simulation output trajectory

which consists of states and/or outputs of the simulated system(s) for each time step

of the simulation. The output trajectory obtained from the simulation is supplied to

the cost evaluation function that returns a real-valued cost as an evaluation of how

close the simulation results are to an unsafe set of states. The obtained cost is used

by the optimization engine and the stochastic sampler in S-TaLiRo for generation of
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the inputs and initial states for the next simulation with an attempt to obtain smaller

cost values. This cycle of input generation, simulation, and cost evaluation continues

until either a negative cost value is achieved or the maximum number of simulations

is reached which we use as the termination conditions for the optimization problem

given in Eq. (3.1).

Simulation
engine

Simulation 
configuration Cost function

S-TaLiRo
optimization engine,  stochastic sampler, input generator 

Configuration

Configuration Output trace

Initial conditions 
& Inputs Cost

Figure 3. An Overview of the Framework Architecture.

3.3.1 S-TaLiRo

S-TaLiRo [18] is a MATLABr [118] toolbox for systematic testing of hybrid

systems, i.e., the systems that exhibit continuous and discrete dynamics. It uses a

robustness metric that represents how far a system trajectory is from falsifying formal

system requirements. In particular, negative robustness values mean a requirement

is falsified, i.e., conditions have been found under which the system does not satisfy

a requirement. S-TaLiRo uses one of the various global optimization methods for

minimizing the robustness function [18] and, thus, for seeking a falsifying system

trajectory. We utilize S-TaLiRo for solving the problem defined in Section 3.2,

basically for intelligently sampling initial states and input functions that will be

applied to the simulations. The robustness evaluation function, which is used in the
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optimization engine of S-TaLiRo, can either be supplied by the user or used from

robustness computation implementations with respect to temporal logic specifications

available in S-TaLiRo [64]. In our approach, instead of using the temporal logic

robustness, we provide a custom cost function to S-TaLiRo.

3.3.2 Simulation Configuration

Simulation configuration is used to parameterize a wide range of classes of systems

and scenarios. The automatic test generation proceeds by sampling points from

this parameterized space as explained above. A test scenario can be described in a

simulation configuration with a focus on a function with different types of systems

and environments.

Referring to the definitions given in Section 3.2, a simulation configuration is

basically a structure describing the driving scenario T = E ∪ A ∪ S with the domains

for initial states and inputs, i.e., X0,T and UT = ΛT ×RT .

A typical configuration contains environmental parameters, the number of vehicles

in the simulation and parameters for each vehicle. Some examples of the environmental

parameters could be wind, road incline, lane width, number of lanes, inputs, and states

of the environment. Vehicle-related parameters can be mass, tire-friction, ranges of

initial states and inputs, function handles that describe dynamics of these vehicles or

controllers for the vehicles. These are only some examples and the actual parameters

must be completely defined by the user in accordance with the user-supplied simulation

engine and the cost evaluation function.
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3.3.3 Simulation Engine

The simulation engine can be a MATLAB function, a Simulink [118] model or

any external simulator like Webots [124] or CarSim [121] that can be wrapped by

a MATLAB function. The simulation engine must be able to accept inputs described

in the configuration, and it must return the computed states and/or outputs for each

time step of the simulation. Because the simulation configuration is available to the

simulation engine, the user can freely parameterize the simulation engine in the desired

level of detail in accordance with the testing purposes.

Here, we recall the definition of a simulation function given in Section 3.2 as

simT : XT × ΛT ×RT → XT . In summary, the simulation engine first initializes the

models and/or controller functions of the VUT in the set E , surroundings S and the

agents A with given initial states. Then, it executes these models/controllers with

respect to the given inputs while considering the interactions of the entities in the

above sets with each other and generates an output trace y.

3.3.4 Cost Function to Detect Boundary-case Collisions

In a simulation setup, as the number of variable parameters increases, the space

created by these parameters can be very large. Testing every combination over such

a large space and finding falsifying behaviors is infeasible in most cases. Because

S-TaLiRo is based on optimization, the obtained cost values from different simulations

are expected to guide the search toward failure as opposed to a completely random

selection of test cases. It should be noted that the choice of the cost function plays an

important role for better guidance.

37



A cost function must return smaller values as we get closer to the most interesting

failing system behavior that we seek. If a negative cost value is obtained, S-TaLiRo

immediately stops and returns the related trajectory as a falsifying trajectory. Oth-

erwise, the search for a smaller cost value over trajectories continues until a given

maximum test count is reached.

In this chapter, we mainly focus on testing autonomous vehicles against collisions in

an environment where some vehicles may follow trajectories that can lead to dangerous

situations. Furthermore, we seek the conditions, i.e., initial states and input signals,

that lead to near collisions. Hence, we design a cost function so that the boundaries

between safe and unsafe behavior can be reached by minimizing the cost. Here, we

will propose a cost function that can be applicable to a wide range of setups for testing

autonomous vehicles with a purpose of detecting collisions and/or the situations where

vehicles exit a predefined drivable area.

For a collision instance between two vehicles with velocities ~v1 and ~v2 at the time

of the collision, we compute the severity of the collision as ‖~v1 − ~v2‖, where ‖ · ‖ is

the Euclidean norm. When a collision involving a VUT is detected in a simulation

output trace y, we compute vcoll,y as the collision severity at the moment of the first

collision experienced in y.

If there is no collision involving a VUT in a simulation output trajectory, we use a

safety measure called Time-To-Collision (TTC) [81]. The TTC is the time required

for two vehicles to collide when they are on a collision path. Being on a collision path

for two vehicles means that they will collide if they continue their current motion. In

particular, the TTC for two vehicles that are not on a collision path is infinite. We

use the looming points approach described by Ward et al. [178] for collision path
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and TTC computations. The minimum TTC experienced between any two vehicles

during a simulation trace y is denoted by ttcmin,y.

Note that we can use collision severity and TTC metrics for testing against a

vehicle exiting the drivable area. Considering the boundaries of drivable areas as

stationary objects, e.g., a wall, TTC or collision severity with these objects can be

computed in a similar manner by taking the velocity of the objects as a zero vector.

Because we search for the boundary between safe and unsafe operations, we can

consider a collision where vehicles barely touch each other with zero difference in

velocities as the boundary case that we seek. Hence, a collision with a high relative

velocity between the vehicles must have a larger cost compared to a collision with low

relative velocity. In addition, a simulation trace with no collision must have a larger

cost compared to a simulation result involving a collision. Our proposed cost function

R(y) for a simulation output trace y is given below:

R(y) =


vcoll,y − vε , collision detected in y

ttcmin,y + vcoll,max , otherwise.
(3.2)

where vcoll,max is the maximum possible relative collision velocity and vε is a user-

defined nonnegative real-valued number representing the minimum collision severity of

concern. Whenever the framework achieves a collision with a severity smaller than vε,

the cost value will be negative and the search will be terminated. In particular, setting

vε to zero means that we are seeking the collisions with the vehicles barely touching

each other. However, in this case, the search will continue until the maximum number

of simulations is reached and the test case leading to the minimum cost value will be

returned.

We assume that we know maximum possible velocity for all the objects in the
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simulation which is denoted by vmax. The maximum collision velocity in a simulation

can be experienced between two vehicles traveling at the maximum speed in opposite

directions. Hence, vcoll,max = 2vmax.

3.3.5 Case Study

As a case study, we use the simulation engine with the simulation configuration

described below and the cost function in (3.2). S-TaLiRo is configured to use the

simulated annealing method [3].

3.3.5.1 Simulation Configuration for the Case Study

Our case study consists of two VUT in the set E and an agent vehicle in the set A

on a straight two-lane road that is described in S. The inputs to the simulation are

the target speed functions for the VUT and target speed and lateral position functions

for the agent vehicles. Target speed functions are defined over time, and the target

lateral position function is defined over the longitudinal position state of the agent

vehicle.

One of the VUT is following the other on a straight target trajectory on the right

lane of a two-lane road. The agent vehicle has a trajectory which starts on the left

lane of the road and changes to the right lane after a distance chosen by the testing

algorithm. The target position of the agent vehicle inside a lane is varying over the

course of the simulation and the lane change position is also sampled from a predefined

longitudinal position range.

The shape and dimensions of the vehicles are described in the configuration as the
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critical points, e.g., corners, of the vehicles. These points are used to detect collisions

and also used in the looming points method [178] to check collision paths and to

compute the TTC values.

3.3.5.2 Simulation Engine for the Case Study

For the simulation of the VUT, we use a vehicle dynamics model from the literature

[187], [128]. To accurately represent the dynamics of the VUT, we use relatively

complex dynamical models that are costly to compute during simulation. However, it

is not computationally practical to use dynamical models of similar complexity for

the agent vehicles that are merely meant to generate reasonable test trajectories to

challenge the VUT. Furthermore, the actual controllers on the agent vehicles will be

out of the control of the tester, and so all that is necessary for the agent vehicles is to

capture the salient features of realistic vehicles in the simulation. Consequently, for

the agent vehicles, we use simpler kinematic models and controllers. The kinematic

model we use for the agent vehicle in our case study is described by Walsh [177]. We

have implemented our simulation engine for the case study as a MATLAB function.

3.3.5.3 Sensor Setup

We describe the sensors on the vehicles by their orientation, range, maximum

sensing angle and position with respect to the center of mass of the vehicle. In our

case study, we use a sensor setup for side collision avoidance. The vehicles under

test have one distance sensor in front with a range of 40m and 10° sensing angle and

one distance sensor on the left side with a range of 3m and 45° sensing angle. The
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sensor placement and orientation are illustrated in Fig. 4. The rectangle in the figure

represents the top view of the vehicle where the tip of the arrow on the rectangle

is towards the front of the vehicle. This sensor configuration is used to test the

framework’s ability to detect possible collisions resulting from the corresponding blind

spots.

Figure 4. Sensor Placement.

3.3.5.4 Vehicle Controller with Collision Avoidance

We have implemented a controller with basic forward and side collision avoidance

capabilities by merging two controllers from the literature. For steering control, we

used the Stanford’s Racing Team’s approach [86] for the DARPA Grand Challenge

2005. For the longitudinal control, we used the model predictive convoy controller

from Liu and Ozguner [115]. A reactive planner generates a target path based on

the input target speed and the forward and side distance sensor data. The generated

target path and the input target speed are supplied to the controller, which generates

force and steering inputs. We use this controller and the simulation setup only for

demonstrating our framework, and we do not claim any performance or accuracy

guarantees for the controller or the simulator.

We describe the target speed for the VUT as an input signal chosen by the testing

algorithm in a predetermined range [5, 15]m/s over the simulation time. The target
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lateral position for the VUT is the midpoint of the right lane. However, because the

VUT controller has collision avoidance capabilities, the target lateral positions for the

vehicles are updated during run-time based on the sensor data.

3.3.5.5 Motion Controller for the Agent Vehicle

The target trajectory for the agent vehicle is described by two input functions for

S-TaLiRo. One input function is the target speed for the vehicle. We define the

target speed as a signal with a predefined number of control points, i.e., the parameter

τ described in Section 3.2, equally distributed over the simulation time. We set the

lower and upper limits, i.e., the domain for the parameter λ described in Section 3.2,

for the target speed at each control point. Piecewise cubic Hermite interpolating

polynomial (pchip) interpolation [68] function that is available in MATLABr [118] is

used for interpolation between the control points, i.e., the U described in Section 3.2.

Thus, the target speed for the agent vehicle is a signal interpolated between the values

chosen by the test algorithm from a given range.

The other input function for the agent vehicle describes its target lateral position.

We describe this input with respect to the vehicle’s longitudinal position state instead

of the simulation time. We use 4 control points for this function where the first and

the last control points are located at positions 0m and 300m in the longitudinal axis.

The locations for second and third control points are chosen by the test algorithm

between these positions with a constraint for the distance between two consecutive

control points to be at least 5m. The value ranges for the control points are the limits

of the left lane for the first two control points and the limits of the right lane for the

remaining control points. This describes a trajectory that starts at the left lane and
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then changes to the right lane. The lateral position inside the lanes varies between

the selected values by the test algorithm.

For the agent vehicle, as opposed to the VUT, we have implemented a PID controller

for tracking the target speed instead of the costly model predictive controller. As

discussed in subsection 3.3.5.2, the controller for the agent vehicle is only used for

roughly following the trajectory proposed by the tester that will be used to challenge

the VUT.

3.3.5.6 Experimental Results

As stated in subsection 3.3.5.3, we intentionally created a blind spot in the sensor

setup for the VUT. During our experiments, the framework successfully detected

failure cases caused by this weakness. Figure 5 illustrates a near collision where the

VUT (at the bottom-right of the figure) avoids a side collision in the first place and

then collides with the agent vehicle when returning back to its lane. In this case,

the VUT first avoids the side collision by changing its lateral position and slowing

down. However, after avoiding the side collision it loses track of the agent vehicle

because of the blind spot. Hence, the VUT does not continue slowing down although

it should have. Furthermore, it starts making the maneuver to return to its lane. As

a consequence, it barely touches the agent vehicle at its rear-right corner. The final

parts of the vehicle trajectories are displayed as traces behind the vehicles in Fig. 5.

The second VUT, i.e., the one on bottom-left of the figure, is following the VUT that

had a collision. This VUT is far from the collision scene, and it is not affected by the

collision.

There are additional collisions detected by the framework, and all of them are
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Figure 5. History of the Vehicles Before a Collision Instance. The bottom-right
vehicle makes a failed attempt at evading a collision with the top-right vehicle due to
a sensor blindspot.

returned to the user for further analysis; however, this was the collision with the

minimum cost value returned by S-TaLiRo, which makes it an interesting case at a

boundary between safe and unsafe operation. The sampled input parameters and the

generated input function as the target lateral position of the agent vehicle leading to

the collision is given in Fig. 6. The τ parameters are defined over the longitudinal

position state of the agent vehicle, and the λ parameters are the target lateral positions

for the corresponding τ parameters. For this case study, the (τ, λ) samples that led to

the collision of concern are (0.0, 1.95), (121.2, 1.83), (148.2,−1.15), (300.0,−1.11).

Figure 6. The Input for Target Lateral Position of the Agent Vehicle.

We have run our experiments on a Windows® PC with an Intel® CoreTM i7-

4790 CPU and 16GB RAM. A simulation of 32 s of the described test setup takes

18 s physical time on our setup. The above failure condition was detected in 100
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simulations. Even though the convergence to the global minimum cost is guaranteed

with simulated annealing [3], our stochastic approach provides no guarantee on

the number of simulations required to achieve the global minimum. In general, the

execution time of one simulation in the proposed framework depends on the complexity

of the vehicle ODEs and controllers. The overall worst-case execution time for the

framework grows linearly with the maximum number of simulations chosen by the

user.

3.4 Rapidly-exploring Random Trees for Testing Automated Driving Systems

As an alternative to the falsification-based approach that is described in Section 3.3,

we propose an approach that utilizes Rapidly-exploring Random Trees (RRTs). In

this approach, we consider the test generation problem as a path planning problem

for agent actors with the aim of creating interesting collisions with Vehicles Under

Test (VUT), which are also called as Ego vehicles. As it is discussed in Section 3.1,

we focus on finding test cases that lead to behaviors at the proximity of the boundary

between collisions and near-collisions.

Rapidly-exploring Random Trees, first introduced by LaValle in [110], provide an

efficient method for exploring and covering high-dimensional spaces. Although RRTs

are mostly used for path planning, they find applications in various domains including

test case generation [58, 103, 26, 40, 140, 49] as we have discussed in Section 2.3.

Since their first introduction, many variants of RRTs have been proposed. In [93],

a method called Transition-based RRT (T-RRT) was introduced. Transition-based

RRT method extends the classical RRT by incorporating additional cost criteria to

the explored paths rather than only aiming to reach a target configuration. T-RRT
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borrows the notion of transitions tests from stochastic optimization approaches. Hence,

it can be considered as a method that is merging RRTs with stochastic optimization.

Furthermore, T-RRT controls exploration versus refinement using a method called

minimal expansion control which helps to promote the expansion of a tree to the

unexplored areas of the search space. Efficiency of T-RRT on continuous cost spaces

is studied in [93].

3.4.1 Overview of the Approach

In our approach, we utilize T-RRT with a custom cost function that we propose to

find boundary-case collisions. We implement our version of minimal expansion control

using the notion of sparseness from evolutionary algorithms that perform novelty

search [159, 112].

With this approach, we address the following limitations of our falsification-based

approach [173] that is described in Section 3.3:

1. In [173], we use a limited number of control points over the longitudinal position

axis as the specific points where the lateral axis of the vehicle trajectories are

sampled. As the number of control points decreases, possible variations in shapes

of the trajectories are limited. On the other hand, increasing the number of

control points also increases the dimension of the search space, which makes the

problem more challenging.

2. In [173], the duration of the simulations is fixed. With the RRT-based approach,

although there is an inherent limit on the maximum simulation duration that

is dictated by the maximum number of RRT nodes, there is flexibility in the
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duration of the simulations. So, non-promising simulations are stopped earlier

while more promising ones can be executed for longer times.

3. With the RRT-based approach, we can minimize the need for hand-designing a

test scenario in detail and allow more freedom in the exploration of the space

compared to the falsification-based approach.

4. RRT-based approach is promising to avoid local minima that can be challenging

to the falsification-based approach proposed in [173].

The flowchart of our RRT-based approach is shown in Fig. 7. In the rest of this

section, we will describe the key components of our approach.

3.4.1.1 Initializing the Search

We reuse the definitions and notation given in Section 3.2. A scenario, T , is

described by the sets of Ego vehicles, agent actors and environment as T = E ∪A∪S.

The model of the driving scenario is given as MT = (XT ,UT , PT , simT ). In this

approach, the set of inputs, UT , can simply be a set of target paths for the agent

actors, as well as inputs to the other entities in the simulation environment such as

models of road and weather conditions. After general outlines of the driving scenario

are described, the sampling space for the initial states, i.e., X0,T , is used to sample

initial configurations of the simulation entities, including Ego vehicles and agent

actors.
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Describe the Driving
Scenario (E ,A,S, X0)

Sample Initial States

Add current configuration
to the search tree T
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Find the best node in T

Simulate for tsearch starting from
the best previous configuration

Compute Cost

IsTransitionOK
?

Cost

IsNovel
?

Yes

No

No

Yes

Figure 7. Flowchart illustrating the RRT-based approach.
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3.4.1.2 Information Stored on RRT Tree Nodes

A tree grows while seeking to discover interesting behaviors. While growing the

tree, instead of executing simulation traces starting from the initial configuration,

only a partial simulation is executed starting from an existing node in the tree. For

that purpose, the state of the system, the state of the controllers, and the simulation

time are stored on the tree nodes. Table 2 provides more details on the data stored on

the tree nodes after each partial simulation. The history-related fields will be empty

for the root nodes of trees.

Data Description
State The state of the system at the end of the corresponding part

of the simulation is stored. It serves as the initial state for a
new partial simulation that is starting from the configuration
represented in the current node.

State History (optional) The state history over the corresponding part of the
simulation is used to (i) reproduce agent behaviors after the
search is over (ii) to simulate any sensor delays for the next
simulation step.

Input History (optional) The history of inputs to the system is used as the past
input data for the next simulation step, which may be useful for
the systems that need to remember past inputs. This data is
also valuable for analysis purposes when the search is over.

Controller State The final state of controllers, if available, are stored so that the
next step of the simulation can be started from the current node
without needing to run the whole simulation from the starting
node to the current node.

Simulation Time The time at the end of the corresponding part of the simulation
is stored.

Table 2. Data stored on the RRT nodes.
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3.4.1.3 Sampling a Target Path Segment

A sample target path segment is simply a set of waypoints which is used as

an immediate target for the corresponding vehicle. A waypoint is denoted as w =

(xw, yw, θw, vw) ∈ Pw where xw, yw, θw, vw are the x-coordinate, y-coordinate, target driving

direction and the target speed at the waypoint. The sampling space for the waypoints

is defined by a corresponding parameter space Pw = Pw,x × Pw,y × Pw,θ × Pw,v that

describe the limits on the x− y coordinates, driving direction, and target speed where

Pw ⊆ PT . An example waypoint sampled on a straight road is shown in Fig. 8. A

coordinate transformation can be applied for sampling from curved roads. Although

the example waypoint in Fig. 8 is sampled from a road, the sample space of the

waypoint doesn’t have to be the same as the area of a road in the simulation. It may

be defined to go beyond the road limits, it may be limited to only a part of a road, or

it may be completely irrelevant to a road in the simulation environment.

x

y

θw

xw

yw

Figure 8. Sampling a waypoint.

Once a waypoint is sampled, the next step in sampling a target path segment

is to add an endpoint at a predefined distance dleg from the waypoint, along the

direction of the waypoint. Figure 9 shows a target path segment formed using this
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approach. The sampled target path segment for this example can be denoted by

p = ((xw, yw, θw, vw), (xw2, yw2, θw, vw)).

x

y

θw

xw

yw
dleg

Figure 9. Sampling a target path segment.

If the endpoint of a target path segment is outside the sampling space of the

waypoint, we simply break the segment at the boundary of the sampling space and

add a second leg along the boundary in the direction closest to the waypoint direction.

Figure 10 shows an example target path section for a longer dleg = dleg1 + dleg2

compared to the one in Fig. 9. The sampled target path segment for this example can

be denoted by p = ((xw, yw, θw, vw), (xw2, yw2, θw2, vw), (xw3, yw3, θw2, vw)).

x

y

θw

xw

yw
dleg1

dleg2

xw,2 xw,3

yw,2

Figure 10. Sampling a target path segment with space constraints.
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After the shape of the target segment is decided, we also sample a target speed,

vw, for the target path segment.

This approach is applied to each agent vehicle for sampling their target path

segments. Note that the framework we propose allows using a different algorithm for

selecting a target path and/or any other type of input to the agent vehicles.

3.4.1.4 Selecting the Best Node from the Search Tree

Once target path segments for the agent vehicles are sampled, we pick one node

from the existing tree, as the initial configuration for the simulation that will be

executed with the sampled target path segments. There is no single correct approach

to decide which node of the tree would be the best choice.

In our study, the notion of selecting the optimal node is adopted from the RRT*

method [99]. In [99], when adding a new node to the tree, existing nodes in a

neighborhood of the new node are all checked and the one which minimizes the cost

is selected as the previous node. Our approach has similarities to the RRT* one. We

compute the sum of distances from each vehicle to the starting point of their target

path segment with the constraint that the configurations of all vehicles are behind

the start position of the initial target waypoint with respect to the driving direction

of that waypoint. Then, we execute partial simulations from the best n candidate

previous nodes (n = 5 for our case studies) and pick the one which gives the minimum

cost. We believe that this approach is promising to create relatively natural-looking

vehicle trajectories while still allowing enough randomness in the maneuvers.

In [99], after adding the new node to the tree, there is a rewiring step which

modifies the connections to the other existing nodes in the neighborhood of the
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new node. The rewiring step checks whether reaching to an existing node in that

neighborhood from the newly added node would result in a reduction in the cost

without violating any constraints such as obstacles. If so, it replaces the existing

edge incoming to that node with an edge originating from the newly added node.

Application of the rewiring step is straightforward for path planning problems on

Euclidean spaces where the tree nodes represent planned waypoints on a path instead

of the simulated vehicle configurations. In our approach, the tree nodes are the

resulting configurations reached by the simulated vehicles with a controller and an

input target path. Hence, the rewiring step requires execution of partial simulations

starting from the newly added node to the other nodes in the neighborhood of the

newly added node. Since the resulting configuration will most likely be different at the

end of such a partial simulation, the configurations on the target nodes will change.

This creates the necessity to execute simulations from the updated nodes to all of

the remaining tree nodes that can be reached from the modified node. Hence, the

rewiring step can be computationally costly in our approach, and so, we do not apply

the rewiring step and leave it as a future work for which the applicability should be

analyzed.

We would like to emphasize that the function used for selecting the best previous

node is user-configurable in our framework and depending on how much randomness

is plausible in the generated driving paths, a different algorithm, e.g., simply selecting

the closest node, can be utilized.
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3.4.1.5 Simulating the System

After obtaining a set of target path segments for agent vehicles and deciding

the initial configuration for the simulation, we create the simulation scene in the

simulation environment using the data stored in the selected node of the search tree.

That is, we set the initial states of the simulation entities and initialize the Ego vehicle

controllers with the previous inputs and the saved controller states. We also pass the

sampled target path segments to the agent vehicles as inputs. Finally, we simulate

the system for tsearch time and collect state and input histories at each time step of

the simulation. For our setup, we use MATLAB simulations, however, this is not

mandatory and another simulator can be used. Note that if the simulator and the

Ego vehicle controllers allow saving the state and continuing simulation from a saved

state, which is the case in our setup, the time spent in the simulations can be radically

reduced because it would be enough to simulate only the new part of the simulation.

Otherwise, the simulation should always start from the root node of the tree and run

until the current target time.

3.4.1.6 Cost Function

After a simulation is executed, a cost function is used to compute how close the

simulation trace is to an interesting behavior. The approach we describe here can be

utilized to discover other types of interesting/failing behavior; however, our target

in this work is to explore the behaviors that are on the boundary between safe and

unsafe operation. Hence, an interesting behavior for our purposes would be (i) a

collision between an Ego vehicle and an agent that could have been avoided with
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a minor change in the control applied or agent trajectories, (ii) an almost-collision

(near-collision) which could have ended with a collision with a minor change in the

control applied or agent trajectories.

The properties of a good cost function that would guide the search toward an

interesting behavior for our purposes can be listed as follows:

• Among two similar collisions between an Ego vehicle and an agent vehicle, the

one which has the smaller magnitude in the relative speed between the vehicles

should have a smaller cost, as a smaller change in the speed of the Ego vehicle

would be enough to avoid the collision.

• Among two similar collisions, the one which has the smaller impact area, i.e., the

area of the collision surface, should have a smaller cost, as a smaller change in

the steering maneuver of the Ego vehicle would be enough to avoid the collision.

• For vehicle paths without a collision, a smaller time-to-collision at any point

of the path, and a smaller corresponding collision speed and a smaller area for

that collision-to-be should lead to a smaller cost.

The cost function we have described in Eq. (3.2) satisfies some of the required

properties listed above. However, it always prioritizes collisions over near-collisions.

This may result in returning a high-speed collision case instead of a case where a

collision was avoided by centimeters. Although such a near-collision case can be

extracted from the framework outputs, (i) this is not ideal as it requires further

analysis of outputs, (ii) the global optimizer is less likely to explore the vicinity of a

case with a near-collision to find a boundary-case collision as it is guided to a different

point with a high-speed collision. Another problem in Eq. (3.2) is its discontinuous

nature.
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We propose the following cost function to address the weaknesses of Eq. (3.2):

R(y) = (1 + scoll,y)(v2
coll,y + ttc2

min,y) (3.3)

where scoll,y ∈ [0, 1] is the ratio of the collision surface to the overall surface on the

collision side of the vehicle, vcoll,y is the relative speed of the vehicles at the moment

of collision, and ttcmin,y is the mimimum time-to-collision encountered during the

simulation output trace y. For the simulations with a collision, ttcmin,y is 0. For

the simulations without a collision, scoll,y and vcoll,y are computed at the instance of

smallest time-to-collision with the assumption that the vehicles continue their motion

without changing their speeds and orientations. When the simulation output trace y

contains collision(s) with Ego vehicle, we only consider the first collision of an Ego

vehicle with any object for computing Eq. (3.3). Figure 11 shows the function with

respect to the minimum time-to-collision and collision speed variables for a fixed

collision surface. The effect of the collision surface to the cost is linear.

3.4.1.7 Transition Check Function

The function we use for accepting a new configuration based on the cost is similar

to the one proposed in [93]. Algorithm 1 repeats it for convenience. We denote the

newly simulated configuration as the candidate and the initial configuration selected

from the search tree as previous configuration. In the algorithm, K is a constant

parameter normalizing the change in the cost, T is the temperature parameter that is

governing the likelihood of acceptance. The temperature parameter T is adaptively

tuned by multiplying with or dividing by α with respect to the ratio of rejections to

acceptances.
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Figure 11. Cost function to guide the search toward the boundary between collisions
and near collisions.

3.4.1.8 Novelty Function

To get better coverage of the state space and to avoid local minima, we reward

novelty in our search. For an Ego vehicle ei ∈ E and an agent aj ∈ A, we define xei,aj [k]

as the vector of relative states and change in relative states at discrete simulation time

k ∈ [0, n], i.e., xei,aj [k] = (xei [k]− xaj [k], (xei [k]− xaj [k])− (xei [k − 1]− xaj [k − 1])).

We compute the novelty of xei,aj [k] as follows:

N =
m∑
l=0

dist(xei,aj [k], µl) (3.4)

where µl ∈ Xrel,k−1 is the lth nearest neighbor of xei,aj [k] in the set Xrel,k−1 which

contains xei,aj vectors for all ego-agent pairs for all times before k. The function dist

computes the Mahalanobis distance between xei,aj [k] and the elements of its m-nearest

neighbors set. We choose to use the Mahalanobis distance because of its ability to
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Algorithm 1 Algorithm used to check acceptance of a new configuration based on
the change in the cost.
1: function IsTransitionOK(cprev, ccand) . cprev and ccand are the costs

associated with the previous and candidate configurations, respectively. α and K
are constant parameters, and T is a persistent parameter.

2: if ccand < cprev then
3: return True
4: end if
5: if rand(0, 1) < e(cprev−ccand)/(K∗T ) then
6: T = T/α
7: numberOfFails = 0
8: return True
9: else
10: if numberOfFails > maxNumberOfFails then
11: T = T ∗ α
12: numberOfFails = 0
13: else
14: numberOfFails = numberOfFails + 1
15: end if
16: return False
17: end if
18: end function

provide a dissimilarity measure between two observations by utilizing the sample

covariance matrix [41].

As each new configuration has a corresponding partial simulation of length tsearch

starting from a previous configuration, we compute the novelty for the trace of that

partial simulation using Algorithm 2.

3.4.1.9 Termination Condition

Our algorithm checks a set of termination conditions to stop the search and

returns the configuration which has the minimum cost associated with it. One of

the termination conditions we use is a threshold for the minimum interesting cost.
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Algorithm 2 Algorithm used to check the novelty of a new configuration.
1: function IsNovel(ζ, E ,A, kstart, kend, cprev, ccand)
2: Nlast is persistent and keeps the last computed 10 novelty values.
3: numR is persistent and keeps the number of rejections.
4: maxReject is the maximum number of consecutive rejections.
5: Xrel,k is persistent and keeps the set of all past relative state computations.
6: cprev and ccand are the costs associated with the previous and candidate config-

urations, respectively.
7:
8: Initialize N as an empty set
9: for each ei ∈ E do
10: for each aj ∈ A do
11: for k = kstart to kend do
12: Compute xei,aj [k] from ζ
13: Compute m-nearest neighbors of xei,aj [k] in Xrel,k−1

14: Compute N (novelty) with Eq. (3.4)
15: Add N to N
16: Add xei,aj [k] to Xrel,k

17: end for
18: end for
19: end for
20: N = max(N)
21: Update Nlast to keep the last computed 10 novelty values
22: if ccand < 0.9cprev or numR > maxReject or |Nlast| < 10 or N > mean(Nlast)

then
23: numR = 0
24: return True
25: else
26: numR = numR + 1
27: return False
28: end if
29: end function
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Another termination condition is a preset maximum overall time spent. Alternative

termination conditions can be used, e.g., a maximum number of nodes in the search

tree.

3.4.2 Case Studies

Here, we present 2 case studies and compare our RRT-based approach with our

falsification-based approach described in Section 3.3.

3.4.2.1 Case Study 1

Scenario Setup

In this case study, we have 2 agent vehicles and 1 Ego vehicle on a 3-lane straight

road, i.e., A = {a1, a2} and E = {e}. Figure 12 gives an high-level overview of our

simulation setup. The initial position of agent vehicle 1 on the x axis is randomly

sampled between 0 m and 25 m, the initial x position of agent vehicle 2 is randomly

sampled between 10 m and 20 m, and the initial x position of Ego vehicle is randomly

sampled between 30 m and 50 m. The initial positions of agent vehicles on the y

axis are sampled between the centers of lane 1 and lane 3, i.e., between −3.5 m and

3.5 m, and the initial y position of Ego vehicle is randomly sampled between −1.75 m

and 1.75 m, that is the lane markings separating Lane 3 and Lane 1 from Lane 2,

respectively. The initial orientation of the Ego vehicle with respect to the x axis is

randomly sampled between −π/8 rad and π/8 rad. The initial speed of Ego vehicle is

sampled between 10 m/s and 15 m/s while the target speed is fixed to 15 m/s. The
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initial speeds of the agent vehicles are sampled between 0 m/s and 15 m/s, and their

target speeds at each waypoint are sampled between 0 m/s and 30 m/s.

Ego

Agent 1

0                  20   25   30       40        50 x

Lane 1

Lane 2

Lane 3Agent 2

0

3.5

-3.5

y

Figure 12. Initial states of the vehicles in the simulation setup for case study 1.

Ego vehicle has 5 sensors. Figure 13 visualizes the sensor placement and ranges

of the sensors. A long-range sensor with a 45° field of view and 60 m range is placed

at the front of the vehicle. Two 10 m-range sensors with 90° field-of-view are placed

on the sides, facing left and right. Two 10 m-range sensors with 90° field-of-view are

placed at the rear-left and rear-right corners with an angle to scan the area behind

the rear corners of the vehicle.

Agent vehicles are controlled by the move-to-pose controller described in [38]. Ego

vehicle controller has multiple modes based on the collision risk. When there is no

estimated collision risk, a proportional control is applied to track target driving speed.

If a collision is estimated in front, emergency brakes are applied and at the same time,

depending on the occupancy of rear-left and rear-right areas, left or right steering

is applied, respectively. If a collision is estimated in front-left (right), emergency

brakes are applied and if rear-right (left) area is empty, also steering is applied to

the right (left). If a collision is estimated in rear-left (right), if front and front-right

(left) areas are empty, vehicle is accelerated with a right (left) steering, if only front
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10
m

60m

Figure 13. Ego vehicle sensor setup for case study 1.

area is empty and the vehicle on the front-right (left) is not imposing a risk, vehicle

is accelerated without steering, otherwise emergency brakes are applied and right

(left) steering is applied if the rear-right (left) area is empty. If the area to which a

maneuver is being done gets occupied during the maneuver, emergency brakes are

applied. Control switches back to normal mode if there is no more collision risk and a

predefined time has passed since the last collision estimation. The collision avoidance

algorithm presented here is very simple and it is not comparable to a controller that

could be find in a real ADS. However, since our target in this work to study test

generation approaches, rather than proposing a controller, we argue that this naive

control approach is satisfactory for the purpose of this work. For the lateral control,

we use the Stanford Racing Team’s controller that was used in the DARPA Grand

challenge [86].
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Experiment Results

We have run 200 experiments with the falsification approach and with the RRT-

based approach. The minimum, mean and maximum costs achieved by the falsification

approach were 0.0001, 12.4794, and 100.6082, respectively. The minimum, mean and

maximum costs achieved by the RRT-based approach were 3.9124, 17.7190, and

88.9793, respectively. Figure 14 and Fig. 15 visualize the minimum-cost trajectories

returned by the RRT-based and falsification-based approach, respectively. Histories

of the vehicles are numbered to show their evolution over time. Figure 16 provides

box and whisker diagrams of the minimum costs achieved by the two approaches

among the 100 experiments we have carried. The black diamonds plotted on top of

the box plots show the mean values for the returned minimum costs. In this case

study, the falsification-based approach achieved smaller mean cost values, as well as

the smaller minimum cost compared to the RRT-based approach. One reason for

this is that, since the space between agent vehicles and Ego vehicle is open, there are

not many local minimums that would make the exploration capabilities to achieve

better than falsification-based approach. As it is easy to find a trajectory that is

in the neighborhood of an interesting case, falsification approach can focus on that

neighborhood and minimize the cost as much as possible while RRT-based approach

keeps looking for novel trajectories.
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Figure 14. The minimum cost result returned by the RRT-based approach in Case
Study 1.

Figure 15. The minimum cost result returned by the falsification-based approach in
Case Study 1.

3.4.2.2 Case Study 2

Scenario Setup

In this case study, we have 4 agent vehicles and 1 Ego vehicle on a multiple-lane

straight road, i.e., A = {a1, a2, a3, a4} and E = {e}. Figure 17 gives an high-level

overview of our simulation setup. The initial position of agent a1 on the y axis is

randomly sampled between 1.25 m and 6 m, the initial y positions of agent vehicles

a2, a3, a4 are randomly sampled between −2.25 m and −1.75 m. The initial speed

of a1 is randomly sampled between 5 m/s and 15 m/s, and its target speed at each

waypoint is sampled between 0 m/s and 30 m/s. The initial and target speeds of all

other vehicles are set to 15 m/s. All other initial states of the vehicles are fixed.
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Figure 16. Comparison of the minimum cost achieved by the falsification approach
and the RRT-based approach in Case Study 1.
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Figure 17. Initial states of the vehicles in the simulation setup for case study 2.
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Ego vehicle has 5 sensors. Figure 18 visualizes the sensor placement and ranges of

the sensors. A long-range sensor with a 22.5° field of view and 50 m range is placed

at the front of the vehicle. Two 5 m-range sensors with 90° field-of-view are placed

on the sides, facing left and right. Two 7 m-range sensors with 90° field-of-view are

placed at the rear-left and rear-right corners with an angle to scan the area behind

the rear corners of the vehicle.

5m

50m7m

Figure 18. Ego vehicle sensor setup for case study 2.

Agent vehicle a1 is controlled by the move-to-pose controller described in [38].

Agent vehicles a2, a3, and a4 are driven with a constant speed on a straight line. Ego

vehicle controller is the same as the one described in Case Study 1.

Experiment Results

For this case study, we only search for an optimal trajectory for a1 with the target

of minimizing the cost function described in Eq. (3.3). The existence of agent vehicles

a2, a3, and a4 between Ego vehicle e and agent vehicle a1 creates many local minima

for the selection of a1 trajectories.

In this case study, we have executed 100 experiments with both RRT-based
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approach and falsification-based approach in MATLAB. Each run of both approaches

had a time-out duration of 30 min. Out of 100 runs, only 5 of the minimum-cost

trajectories returned by the falsification-based approach was able to make a1 to move

into the lane of Ego vehicle, and only 2 trajectories were able to cause a collision

(1 high-speed collision and 1 boundary-case collision) and, other than the collision

cases, only 1 trajectory was able to challenge Ego vehicle by activating its collision

avoidance system. All other trajectories returned by the falsification approach were

stuck in local-minima where a1 tries to get closer to Ego vehicle and ends up colliding

with one of the other agent vehicles. On the other hand in 28 of the minimum-cost

trajectories returned by the RRT-based approach, agent a1 was able to get into the

lane of Ego vehicle and it was able to cause Ego vehicle to collide in 11 of those cases.

Figure 19 shows one of the interesting collision cases discovered by the RRT-based

approach. Agent a1 first forces Ego to move to the right to avoid a collision and then

to the left where it ends up colliding with Agent a3. Histories of a1 (red) and Ego

(yellow) vehicles are numbered to show their evolution over time. Figure 20 shows the

only small-speed collision case discovered by the falsification-based approach. Agent

a1 moves into the Ego vehicle’s lane, accelerates and rear-ends with Ego vehicle even

though Ego vehicle tries to avoid the collision by accelerating and steering away.

Figure 21 shows a typical trajectory that is stuck in a local minimum. Agent a1 tries

to move closer to Ego vehicle and reduces the time-to-collision but collides with one of

the other agents, which is a2 in this figure. Although both approaches can get stuck

in a local minimum, this case is significantly more common for the falsification-based

approach as discussed above.
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Figure 19. One of the collision cases discovered by the RRT-based approach.

Figure 20. The small-speed collision discovered by the falsification-based approach.

Figure 21. One of the cases where falsification-based approach was stuck in a local
minimum.

As a numerical comparison of the minimum costs discovered by the two approaches,

the minimum, mean and maximum costs achieved by the falsification approach were

0.0043, 13.7134, and 50.6017, respectively. The minimum, mean and maximum costs

achieved by the RRT-based approach were 4.8955, 10.2571, 15.0856. Figure 22 provides

box and whisker diagrams of the minimum costs achieved by the two approaches

among the 100 experiments we have carried. The black diamonds plotted on top of the

box plots show the mean values for the returned minimum costs. While 44 out of 100
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RRT-based approach experiments were able to avoid local minima occurring around

the cost 10, only 2 of the falsification approach experiments were able to achieve this.
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Figure 22. Comparison of the minimum cost achieved by the falsification approach
and the RRT-based approach in Case Study 2.

An observation we would like to share is that in the single case where the falsification

approach was able to cause a small speed collision, the achieved minimum cost was

significantly smaller than any of the 11 collision cases discovered by the RRT-based

approach. This observation supports our conclusion in Case Study 1, i.e., when the

falsification-based approach can get into the neighborhood of a local or global minimum,

it is more able to get closer to the minimum point than the RRT-based approach. The
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advantage of the RRT-based approach in avoiding local minima and the advantage of

the falsification-based in reaching minima suggests that an approach combining these

two has the potential to improve the overall test generation performance. In such an

approach, firstly, RRT-based approach would discover neighborhoods of minima and

then the falsification-based approach would guide the test toward the minima starting

from the results of the RRT-based approach.

3.5 Functional Gradient Descent-based Approach

In principle, the vehicle models and the model of the environment should be of

sufficiently high fidelity to exercise and detect model behaviors consistent with the real

system. However, as the input and state space become larger, such a computational

optimization approach would require an increased number of simulations and would

become impractical for computationally expensive high-fidelity models.

Recently, functional gradient descent methods have been proposed as an approach

to reduce the total number of simulations needed to converge to a local minimum of the

cost function that captures the system safety. Abbas et al. [8] utilize the functional

gradient descent method for minimizing cost metrics for Metric Temporal Logic (MTL)

specifications, and that work was extended by Yaghoubi and Fainekos [185] to ap-

proximate the descent direction using a set of carefully chosen system linearizations.

Here, we consider an alternative approach for the problems where the computation of

system linearizations on the high-fidelity model is not practical or desirable.

In this section, we explore whether applying functional gradient descent over a

simpler system model can assist in the test generation process for falsifying the original

more complex model. In particular, we propose using a simplified, alternative version
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of the system dynamics as much as possible in the process of generating test cases

that aim to find the worst-case performance of the system. We show that (1) the

proposed approach can improve upon human-generated test cases, which may rely on

intuition or prior knowledge, and that (2) it can generate interesting test cases from

scratch. Our approach relies on applying the gradient-based optimization technique

of Abbas et al. [8] on simplified system dynamics for quickly updating the inputs to

lead to worse system performance on the more complex model.

The primary contribution of our work is the enhancement of functional gradient

descent for falsification [8] with methods from multi-fidelity optimization so that these

automatic falsification techniques can be applied to a wider range of complex, realistic

models.

3.5.1 Definitions

Following the notation and definitions given in Section 3.2, we describe a driving

scenario T = E∪A∪S that contains a set of Ego vehicles, agents and the surroundings.

We consider the overall driving scenario as a single systemMT = (XT ,UT , PT , simT ).

The state vector for the overall system is x, and we denote the flow through the overall

system by ẋ = F(t,x,u) where u is the vector of inputs to the system. We denote a

finite-time state trace of the overall system with input signal u by ζu where ζu(t) is

the value of the system states at the time t ∈ [t0 ≤ t ≤ T ].

We denote the performance metric for the system by G, where G(ζu(t)) gives the

instantaneous performance of the system at the time t. The worst-case performance of

the system over the trajectory ζu starting from time t0 up to the time T is defined as:

R(ζu, [t0, T ]) = min
t0≤t≤T

G(ζu(t)) (3.5)
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This minimum type (non-additive) objective function is similar to the one considered

by Melikyan et al. [122]. For brevity, we will omit the [t0, T ] in the rest of this section

and simplify the notation to R(ζu).

The focal problem in this section is to find an input signal that will globally

or locally minimize the worst-case performance of the system over a trajectory of

length T over the feasible input space. For this problem, we define an input signal as

a sequence of n input points for a simulation of n time steps, i.e., T = n∆t where ∆t

is the simulation time step. Formally, this problem is to find the input signal u∗ such

that

u∗ = argminu∈UnR(ζu) (3.6)

where U , [umin, umax], and umin, umax are the minimum and the maximum values

for the input signals, respectively.

3.5.2 Solution

Our approach for this problem is based on the functional gradient descent method

described by Abbas et al. [8]. This method relies on using sensitivity analysis

and computing gradients of the system dynamics to search for a local minimizer of

Eq. (3.5). However, in many cases either the symbolic representation of the actual

system dynamics is not available or it is not possible to compute descent directions

for the actual system dynamics because F(t,x,u) may, in general, be nonlinear, high

dimensional, time-varying, and it may incorporate time delays. So we propose to

use an approximate low-fidelity model to guide the search for the minimizer on the

original high-fidelity model. The low-fidelity model should be selected such that the
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gradients of the system dynamics can be computed analytically. That is, it should

not contain time delays and discontinuities.

We denote the flow for the low-fidelity model by ˙̃x = F̃(t, x̃,u), and the system

trajectory under the input u by ζ̃u. We illustrate an overview of our approach in Fig. 23.

U F̃ F

Low-discrepancy
input sampling

u

Gradient Descent
u(d)

Simulate &
Compute Performance

R(ζu)

Figure 23. Solution Overview.

From a random input signal, we use the low-fidelity model of the system with

functional gradient descent computations for updating the input such that the new

input is guaranteed to lead to smaller R(ζ̃u) on the low-fidelity model. Then, we apply

the updated input signal on the high-fidelity model to get the resulting R(ζu). This

information is used to update the step size in functional gradient descent using the

bisection method until the stopping criteria are met. Finally, we do low-discrepancy

sampling [57] to get a new random input and repeat this process.

Our approach is given as a pseudo-code in Algorithm 3. We first initialize the

descent step size to a predefined value and the minimum performance to infinity.

Starting with an empty set of previous samples, we sample an input signal from the

set of possible inputs and add the new sample into the set of previous samples. We

use simplified system dynamics (F̃) to compute a descent direction, du(t), which
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is a vector such that G(ζ̃u(d)(t
∗)) < G(ζ̃u(t

∗)) when u(d)(t∗) = u(t) + h · du(t) for all

sufficiently small h. Because G is a function of x̃, we choose the descent direction

du(t) , −

(
∂ζ̃u(t)

∂u

)T
∂G(ζ̃u(t))

∂x̃
(3.7)

where ∂ζ̃u(t)
∂u

is the sensitivity of the system trajectory to the input, which is computed

according to
d

dt

∂ζ̃u(t)

∂u
=

∂

∂u
F̃(t, x̃,u) =

dF̃

dx̃

∂ζ̃u(t)

∂u
+
dF̃

du
(3.8)

from the initial condition ∂ζ̃u(0)
∂u

= 0 where dF̃
dx̃

and dF̃
du

are the Jacobian matrices of the

system flow along the trajectory. Because

dG(ζ̃u(t)) =
∂G(ζ̃u(t))

∂x̃

T
∂ζ̃u(t)

∂u
du(t) (3.9)

from the Eq. (3.7), we have that dG(ζ̃u(t)) ≤ 0. So our choice of du(t) will not

increase G as desired.

We then update the input signal in the computed descent direction. We used F̃

to compute the descent direction, but we use F to evaluate the performance of the

system under the updated input signal. If we achieve a decrease in the worst-case

performance, then we accept the descent direction, and we increase the descent vector

length by 50% for the next iteration to speed up the search for a local minimum.

On the other hand, if the updated input leads to a larger worst-case performance

on F, then we use the bisection method on the descent vector and search for a smaller

worst-case performance value with a maximum number of bisections.

For the functional gradient descent computation, we use the time at which the

value of G is smallest for the system under the input u as the critical time t∗. Hence,

R(ζ̃u) = G(ζ̃u(t
∗)). In order to represent the input signals in a digital computer and

to reduce the dimensionality of our search space, we parameterize the input signals
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using the approach described by Abbas et al. [4]. Fundamentally, we represent an

input signal with a finite, ordered set of parameters where each parameter corresponds

to a time and contains the value of the input at that time. The functional gradient

descent method converges to a local minimum. To search for smaller local minima,

we repeat the search from different initial input signals sampled randomly from a set

of input signals and selected to be farthest from previous samples [57].

3.5.3 Case Study

Mullakkal-Babu et al. [125] propose a Full Range Adaptive Cruise Control

(FRACC) design with rear-end collision avoidance capability which is referred to

as P-FRACC. They evaluate the performance of the proposed controller using Maxi-

mum Absolute Jerk (MAJ), which is used as an indication of driving comfort. They

have used a stop and go scenario for evaluating the MAJ performance of the controller

on an individual vehicle. This scenario consists of an external lead vehicle (leader)

and a vehicle controlled by P-FRACC, and it is aimed to capture crowded highway

driving conditions at small speeds. In the stop and go scenario, the leader starts with

an initial speed of 5.5 m/s and constantly decelerates to 0 m/s starting at time 5 s

with a deceleration of 0.39 m/s2. Then, starting at time 40 s, the leader constantly

accelerates to 15.6 m/s in 40 s. Finally, starting from the time 130 s, it decelerates

to 0 m/s with a constant deceleration of 0.39 m/s2.

Such a scenario designed by intuition and prior knowledge may capture the target

operating conditions that are challenging for the vehicle under test. However, it would

require very detailed system models and intensive analysis to understand whether

a human-designed test scenario is the most challenging one based on the utilized
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Algorithm 3 Functional Gradient Descent on Simplified Dynamics Method.
1: F, F̃ ← Actual and simplified dynamics of the system
2: Pmin,all ← ∞
3: for Maximum number of starts do
4: h ← hinit; Pmin, Pprev←∞; iter←0; U←∅ . U is the set of previous samples
5: u ← GetNewSample(U, [umin, umax]n) . Input, as an n-dimensional vector
6: U ← U ∪ {u}
7: while iter < Maximum number of iterations do
8: du ← ComputeDU(F̃, u, G)
9: u ← u+ du/||du||
10: bisectCallCount ← 0
11: while bisectCallCount < Max. # of bisections do
12: P ← R(ζu) . F performance under u
13: if P < Pprev then
14: h ← 1.5h; Pmin←P ; u(d)←u
15: break
16: else
17: h ← h/2; bisectCallCount←bisectCallCount + 1
18: end if
19: end while
20: if bisectCallCount == Maximum number of bisections then
21: break . Local minimum found
22: end if
23: end while
24: if Pmin < Pmin,all then
25: Pmin,all ← Pmin; u

(d)
best←u(d)

26: end if
27: end for
28: return Pmin,all, u

(d)
best

29: function ComputeDU(F, u, G)
30: ζ ← State trace of the system F under the input u
31: t∗ ← Critical time over ζ w.r.t performance metric G
32: Compute du using Eq. (3.7)
33: end function

34: function GetNewSample(U,U)
35: S ← Randomly sampled set from U
36: u ← The element of S with the maximum distance to the points in U
37: return u
38: end function
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performance metric. The safety or functional requirements of an adaptive cruise

control system would contain boundaries on the acceptable values of a performance

metric. Hence, it is important to find the test cases that push the system under test

towards and, possibly, beyond these boundaries.

3.5.3.1 Gradient Descent Computation

In our experimental setup, we use an agent vehicle as the lead vehicle, and we

refer to the vehicle controlled by P-FRACC as the vehicle under test. Hence, we

have E = {e} and A = {a}. Considering the acceleration of the agent vehicle as the

input, the state vector of the agent vehicle in the low-fidelity model is x̃a = [va, xa]
T

where va and xa are respectively the longitudinal velocity and position. The state

vector for the VUT in the low-fidelity model is x̃e = [ae, ve, xe]
T where ae, ve, and xe

are respectively the longitudinal acceleration, velocity, and position. Hence, the state

vector for the overall system in the low-fidelity model is x̃ = [va, xa, ae, ve, xe]
T, and

we apply functional gradient descent using piecewise-constant input signals with the

low-fidelity dynamics:

˙̃x = F̃(t, x̃, u) =

[
u, va,

ades − ae
τa

, ae, ve

]T
(3.10)

where τa is the actuation delay and desired acceleration ades is the output from the

P-FRACC controller from [125]. In particular,

ades ,


K1s∆ +K2(va − ve)R(s) if s ≤ rF ,

K1(vdes − ve)td otherwise
(3.11)

where K1 and K2 are the control gains, td is the desired time gap, vdes is the desired

velocity, s , xa − xe is the distance between the leader and the vehicle under test, rF
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is the front sensing range of the vehicle under test, s∆ is spacing error defined by

s∆ , min(s− s0 − vetd, (vdes − ve)td) (3.12)

with desired minimum vehicle spacing s0, and R(s) is a sigmoidal error-reponse

function defined by

R(s) ,
Q

Q+ e(s/P )
(3.13)

where Q and P are aggressiveness, and the perception range coefficient parameters,

respectively. For brevity, we omit “(t)” from state variables in the equations.

For the functional gradient descent, we only consider the case when the agent

vehicle is within the sensing range of the VUT (i.e., s ≤ rF ) which, by Eq. (3.11), is

the case when the behavior of the VUT depends on the agent vehicle. Furthermore,

because a more aggressive control is expected when the vehicles are closer to each

other, we take s∆ = s− s0 − vetd which is active in Eq. (3.12) when the spacing error

is more of a concern than the speed error. Under these assumptions, the simplified

control law we use for our descent computations is

ades = K1(s− s0 − vetd) +K2(va − ve)R(s). (3.14)

To find the input which will cause the worst performance, i.e., the largest MAJ,

we use the performance metric

G(ζ̃u(t)) = −(ȧe(t)(t))
2 = −

(
ades − ae(t)

τa

)2

(3.15)

which gives us

∂G

∂x̃
= −2

ades − ae
τa



K2R(s)

K1 +K2(va − ve)R′(s)

−1

−K1td −K2R(s)

−K1 −K2(va − ve)R′(s)


(3.16)
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where

R′(s) =
−
(
Q
P

)
e(s/P )(

Q+ e(s/P )
)2

. Then, by Eq. (3.8), the sensitivity for our case study is:

d

dt

∂ζ̃u(t)

∂u
=
dF̃

dx̃

∂ζ̃u(t)

∂u
+
dF̃

du
=



0 0 0 0 0

1 0 0 0 0

∂G
∂x̃

T

0 0 1 0 0

0 0 0 1 0


∂ζ̃u(t)

∂u
+



1

0

0

0

0


(3.17)

The descent direction is computed and applied to the input iteratively until the

stopping criteria are met as discussed in Section 3.5.2.

The complex, high-fidelity system dynamics that we use for evaluating the descent

vector incorporates sensor delay τs in the control law. In particular,

ades(t) ,


K1s∆(t− τs) +K2(va(t− τs)− ve(t− τs))R(s(t− τs)), s(t− τs) ≤ rF

K1(vdes − ve(t− τs))td, otherwise
(3.18)

where

s∆(t− τs) = min(s(t− τs)− s0 − ve(t− τs)td, (vdes − ve(t− τs))td).

Furthermore, in the high-fidelity model, the velocity for the vehicles saturate at

minimum and maximum velocities. Thus, applying functional gradient descent on

the complex system dynamics is difficult due to the delay differential equations, the

hybrid nature of the controller, and nonlinearities introduced for realism.
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3.5.3.2 Stop and Go Scenario

We aim to automatically create a scenario to find the worst-case performance

of P-FRACC and compare it to the original stop and go scenario from [125]. Our

experimental setup is similar to the original setup described above. For the sake of

staying inside the targeted operation region, we limit the minimum and maximum

acceleration of the agent vehicle with −0.39 m/s2 and 0.39 m/s2 because these were

the limit values in the original stop and go scenario. The accelerations of the vehicles

simulated with the high-fidelity model in this scenario are shown in Fig. 24.

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4
aa
a
e

a(m
/s

t (s )

)

Figure 24. Accelerations for original stop and go scenario.

3.5.3.3 Experiment Results

We have implemented our experiments in MATLABr [118]. We used the CVODES

ordinary differential equation solver from Sundials [84] to compute the performance

and the sensitivity for the simple system dynamics, and we used the dde23 solver [158]

in MATLAB for simulating the complex system dynamics that contain delay differen-

tial equations.
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For the experiments, we apply our approach with maximum of 1000 simulations. We

compare the results of our approach with the Simulated Annealing (SA) optimization

implementation in S-TaLiRo [3]. For SA, we use the same random initial input

signal that was used to start the functional gradient descent method, and we limit the

maximum number of simulations with 1000. We utilize only the complex dynamics of

the system in the SA optimization.

For comparison, we executed 190 experiments in total with our approach and with

SA. In 167 of 190, i.e., in 87.9% of the executed experiments, the proposed functional

gradient descent method achieved a smaller worst-case performance on the complex

dynamics of the system compared to the SA optimization. The average of the explored

minimum worst-case performance is −0.6532 with our approach and −0.6363 with

SA. When all experiment results are considered, although the difference is negligibly

small, the minimum worst-case performance found with our approach (−0.6551) was

also smaller than the one found by SA (−0.6550).

In Fig. 25, there is an entry (a blue star) for each experiment. Each entry represents

how much the achieved minimum worst-case performance value by the SA is larger

than the achieved minimum worst-case performance value by our approach for an

experiment. The positive values (i.e., the entries above the horizontal red line located

at 0) are from the experiments where our approach outperformed SA, and the distance

to 0 is a measure of how much it performed better than SA. Our approach outperforms

SA in most of the experiments. Furthermore, the average performance improvement

from our method is larger than the average performance improvement in the cases

when SA outperforms our method.

The initial random acceleration input, the resulting input after functional gradient

descent, and the corresponding performance through the simulation trajectory are
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Figure 25. Comparison of the gradient descent-based approach with Simulated
Annealing with differences in the achieved minimum worst-case performance values.

shown in Fig. 26. The figure is from the descent experiment which achieved the overall

minimum worst-case performance. Figure 27 shows the accelerations of the vehicles

for the input signal given in Fig. 26.

Comparing this test case with the original stop and go scenario, the maximum

absolute jerk 0.6551 m/s3 measured with this test case is larger than the maximum

absolute jerk 0.3232 m/s3 we have measured with the original stop and go scenario.

Because of possible differences in implementation details and in the differential equation

solvers, some numerical differences may exist between our results and those of [125].

The MAJ value 0.3232 m/s3 we have measured is approximately 10 times larger than
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Figure 26. Agent vehicle acceleration and resulting worst-case performance.
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Figure 27. Accelerations of vehicles under updated input.
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the results reported by Mullakkal-Babu et al. because they do not normalize their

consecutive acceleration values by the time step 0.1 s in the jerk computations.

3.6 Related Work

State of the art in testing advanced DAS is discussed by Stellet et al. [160].

They categorize the main principles for a testing framework as (i) the derivation of

test criteria and metrics, (ii) establishing a reference system as the ground truth

information and (iii) generation of test scenarios. The use of a cost function in our

approach falls into the category (i) per their taxonomy. Simulation environment itself

can be considered as the category (ii), and the optimization engine for S-TaLiRo

that is used to create test trajectories can be considered as the category (iii) based

on the discussions in that work. The cost functions we propose can be candidates to

quantitatively measure the safety of autonomous vehicles against collisions. S-TaLiRo

provides methods for automatic, high throughput testing of fully autonomous vehicles

inside simulations that can cover complex real-world traffic situations.

A vehicle in the loop (VIL) test setup is presented by Bock et al. [25]. They

discuss the advantages of using simulators for testing DAS. Their approach is based on

having a human driver in a simulator and using conventional methods for generation

of test cases.

Althoff et al. [13] propose an online formal verification approach for autonomous

vehicles. The approach proposed in that work is based on reachability analysis for the

ego vehicle, i.e., the vehicle under control, and other participants on the road. They

compute the reachable sets and occupancy of the ego vehicle for reference trajectories

and claim that the reference trajectory is safe if the occupancy of the ego vehicle does
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not exit drivable area nor intersect with the other participants on the road. They

assume that other participants obey the traffic rules. However, in [13], they are only

considering verification of planned trajectories and executing the trajectories that

are deduced to be safe. In contrast, the test results with our approach give an idea

on how the mistakes of other vehicles in the traffic are handled by the ego vehicle

which is a valid concern for traffic environments consisting of both autonomous and

non-autonomous vehicles.

Our approach is complementary to the VIL testing, online verification and testing

with real vehicles [181], as it suggests important and challenging test-cases for existing

methods. The work by Winn and Julius [180] is one of the first approaches to apply

functional gradient descent in order to improve the optimality of human-generated

trajectories. That work was later extended in by Abbas et al. [8] to the problem

of falsifying temporal logic requirements. In their extension, the most critical set

constraints in the requirement are identified, and an optimal control is computed in

order to get closer to these sets and falsify the requirement. In this problem, the

resulting objective functions are minimum (non-additive) functions which are similar

to the one considered by Melikyan et al. [122] for minimum-distance optimal control

problems.

Our approach to mixing low- and high-fidelity models to reduce the computa-

tional burden of simulation optimization is, in spirit, similar to other multi-fidelity

optimization techniques used in the engineering design optimization literature. For

example, Xu et al. [183] introduce an Ordinal Transformation (OT) method that

uses a low-fidelity model to rank regions of parameter space in order to prioritize the

search through a high-fidelity model on a computational budget. This OT method

has been combined with optimal sampling methods to further improve stochastic
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search in a computationally costly, high-fidelity model [184], and improvements to

these approaches continue to be developed [113]. The OT step of these approaches is

similar to our method of using a low-fidelity model to generate a gradient direction;

however, our approach is focused on the different problem of generation of optimal

trajectories over dynamical systems.

3.7 Review and Discussion on Optimization Methods

In this chapter, we presented three different approaches to the automatic test case

generation process for automated driving systems.

In Section 3.3, we presented our approach to the automatic generation of test

cases in an open traffic environment for which we cannot compute gradients for the

overall system that consists of multiple vehicles with complex controllers. In many

cases, a complete algebraic representation of the system dynamics is not available.

This creates the need for treating the system as blackbox and applying optimization

methods that do not require gradient information. In this approach, we utilize a

stochastic optimization method, Simulated Annealing (SA) [105] which has been

successfully applied to the falsification problem of cyber-physical systems many times

[132, 60, 4, 5, 23]. Simulated annealing comes with guarantees on the convergence to

the global optimum, given enough time [1, 3]. However, in practice, the time budget

on the testing is limited and we cannot provide guarantees on achieving the global

minimum. We have picked SA as the optimization method because of its track record

and availability in the falsification toolbox S-TaLiRo [60]. However, our approach

allows utilization of other optimization methods that do not require system gradients.

Different optimization methods perform better on different problems depending on
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the algorithm parameters and the (unknown) shape of the cost landscape. A survey

of optimization methods that do not require gradient information can be found in

[147]. Below is a non-exhaustive list of commonly used optimization methods that

can be utilized in our approach.

Cross-Entropy optimization is a method that targets problems with both com-

binatorial and continuous properties [150]. It has been successfully used for the

falsification of hybrid systems [154]. Another optimization method that has a proven

track of success in the falsification of CPS is the Nelder-Mead method which is a

direct search method that uses the concept of simplex for nonlinear optimization

problems [130, 45, 97]. Ant Colony Optimization (ACO) [47, 61] is a population-based

probabilistic approach which also has found applications in the falsification domain

[17]. Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolutionary

algorithm which samples populations with multivariate Gaussian distribution [79, 91].

Its applicability on the falsification domain is studied in [10]. Particle Swarm Opti-

mization (PSO) [100] is a population-based metaheuristic approach which has been

applied to the temporal logic specification mining problems [76].

Besides the optimization methods mentioned above, there are new optimization

methods that are promising but have not yet been applied to the falsification problem,

to the best of our knowledge. An example of these algorithms is Mesh Adaptive

Direct Search algorithm (MADS) which extends generalized pattern search by local

exploration [22]. It searches over a conceptual mesh that is defined using the set of

points for which the objective function had been evaluated. It can handle nonlinear

constraints with convergence guarantees to local minima [9]. These properties make

MADS a promising candidate for falsification problems. However, to the best of

our knowledge, there is no literature on the application of MADS to the falsification
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problem for CPS. Another optimization method that is promising, yet not studied

in the falsification context is NM-PSO, which merges the Nelder-Mead and Particle

Swarm Optimization methods [67, 100]. The power of NM-PSO comes from the fact

that it combines the global search capabilities of the particle swarm optimization with

the fast local convergence properties of the Nelder-Mead algorithm [147].

In Section 3.4, we utilized a random exploration method as an alternative to the

optimization-based method that we have presented in Section 3.3. RRTs have been first

developed for robot path/motion planning problems [110, 93, 99]. However, thanks to

their ability to efficiently search over high-dimensional spaces, RRT-based approaches

also deliver promising results in the test generation domain [58, 103, 26, 40, 140, 49]. In

our approach, we have adopted notions from transition-based RRT [93] and RRT* [99]

methods. Our RRT-based approach which is described in Section 3.4 delivered more

promising results compared to our stochastic optimization-based approach which is

described in Section 3.3 for the problems which contain many local minima that should

be avoided for reaching the global minimum. There are many studies in the literature

that aim to improve RRT and RRT*. Studying their applicability to our problem is

worthwhile as they have the potential to improve our approach. For instance, the

Hierarchical Rejection Sampling (HRS) approach that was proposed in [109] aims to

improve the computation time which may be suffering from the bottleneck created

by the sample rejection, especially in high-dimensional spaces. The HRS method

performs informed sampling, i.e., sampling from subsets of the search space that

can potentially improve the solution. Furthermore, it performs partial sampling and

hierarchically combines partial samples into larger samples so that only the partial

information need to be resampled when a partial sample is rejected. Experimental

89



results show that applying HRS on RRT* can improve the computation time required

to reach optimal solutions [109].

Finally, in Section 3.5, we presented our approach for utilizing a gradient-descent

based approach for systems that we can either compute the gradients or that we can

create a simpler but representative-enough version of the system which enables us to

estimate the gradients. We have utilized the steepest descent method, which has been

shown to helpful in reducing the necessary number of simulations needed for falsification

of systems for which we can compute or approximate the gradient information [180,

8, 185]. Although the steepest descent approach guarantees minimization of the cost

with the selection of correct parameters such as step size, depending on the shape

of the cost surface, correct selection of the parameters may become very challenging.

Furthermore, the steepest descent approach can waste a significant amount of time by

taking steps that are not in the direction toward a local minimum [162]. This issue is

briefly illustrated in Fig. 28 in which the black ellipsoids represent the level set of the

cost function y = 10x2
1 + x2

2, the blue star is the initial point, and the red dots are

the steps taken toward the optimal solution. A survey of gradient-based optimization

methods that are developed to address the issues in the steepest descent method can

be found in [151]. Here, we list some of those approaches that can potentially decrease

the computation time of our approach.

Momentum method aims to improve the convergence of gradient descent by damp-

ing the oscillations through the utilization of the previous descent vector multiplied

by an adaptive momentum term [145, 151]. Nesterov Accelerated Gradient (NAG)

method further improves the convergence by approximating the future positions and

by shortening the step size before reaching a hill with a slope up [131, 151]. Adagrad

[53] is another algorithm proposed for improving the convergence of gradient descent.
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Figure 28. An illustration of slow convergence of the steepest descent algorithm.

It adapts the learning rate to the parameters and, in practice, also eliminates the

need for manually setting a learning rate [151]. Adadelta [186] and an independently

developed identical approach RMSprop [85] extend Adagrad to address an issue, which

is the diminishing learning rate, by limiting the size of accumulated past gradients

which are used in the learning rate adaptation [151]. Adaptive Moment Estima-

tion (Adam), which adds bias correction and momentum to RMSprop, performs

marginally better than RMSprop [104, 151]. Nesterov-accelerated Adaptive Moment

Estimation (Nadam) modifies the momentum term of Adam and utilizes the approach

used in Nesterov accelerated gradient [48, 151].

The approaches discussed above, especially Adagrad, Adadelta, RMSprop, and

Adam are very similar approaches that may slightly outperform each other depending

on the specifics of the problem in hand [151]. Most of those approaches have the
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potential to significantly improve the execution time of our gradient-descent based

approach, and we plan to experiment with them in our future work.

3.8 Conclusions and Future Work

In this chapter, we presented three different approaches, a falsification-based

approach that utilizes global optimizers, an RRT-based approach that utilizes rapidly-

exploring random trees, and a functional gradient-descent approach that utilizes

simplified system dynamics, for generating maneuvers of other road occupants with

the target of minimizing cost functions that are defined on the safety or performance

of automated driving systems. Our experimental results suggest that each of these

approaches have different advantages over each other under different conditions and

that they can be used complementary to each other.

Falsification-based Approach

We proposed an approach for automatic simulation-based testing of autonomous

vehicle controllers that is guided by a cost function. We believe that using optimization

techniques for test guidance is a promising approach for testing cyber-physical systems

in general [96].

Future work is to extend the capabilities of our framework by extracting the

conditions leading to unsafe behavior from the simulations and use them for training

a model for estimating the probability of future collisions.

The trajectory generation for agents in our framework is based on the boundaries

described by the user. The generated trajectories are then tracked by the user-supplied
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controllers. Nagy et al. [126] propose a method for generating trajectories for mobile

robots that can be easily tracked by a real vehicle. Although the final trajectories

followed by the controllers are realistic in our framework, utilizing the approach

described in that work can allow using the trajectories directly without the need for a

controller to track them. Another future work is to incorporate such a method for

trajectory generation.

RRT-based Approach

We proposed an approach that explores maneuvers for road occupants using

rapidly-exploring random trees with the target of minimizing safety/performance cost

functions defined for the automated driving system under test. Our experimental

analysis suggests that the RRT-based approach can avoid local minima that can be

challenging for the falsification-based approach.

When formulating the agent trajectory generation problem as an optimization

problem, the trajectories are presented with a finite number of parameters, i.e.,

waypoint parameters for a fixed number of waypoints, which are provided by the test

designer. One of the advantages of utilizing the RRT-based exploration is the ability to

abandon the finite parameterization of the trajectories. This creates the opportunity

to more freely explore the space, and to minimize the need for manually designing

the general structure of the trajectory shapes. In an optimization-based approach,

choosing a small number of parameters would limit the flexibility in generating critical

trajectories, while choosing a large number would increase the dimensionality of the

search space. For instance, in our Case Study 2, the number of parameters that the

optimization method would need to create the minimum-cost trajectories that are
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discovered by the RRT-based approach varies from 8 to 68 based on the number of

parameters at each waypoint and the number of waypoints that are used to create

these tajectories.

Future work on our RRT-based approach will include:

• Exploring new methods for computing the novelty of a trajectory instead of a

single state

• Computing a cost on the shape of the trajectory instead of computing the

minimum of the instantaneous costs of the points on the trajectory. This may

especially be useful for rewarding some types of vehicle paths such as the ones

which are closer to real-world driving behaviors.

• Exploring new methods for using multi-objective optimization can be studied

for different objectives like time-to-collision, collision speed, collision impact

area etc.

• Combining RRT-based approach with the falsification-based approach such

that the exploration starts with RRT-based approach and falsification-based

approach further minimizes the cost starting from the best cases discovered by

the RRT-based approach.

Functional Gradient Descent Approach

For generating optimal test cases, we presented a functional gradient descent

approach that uses simplistic yet analytically tractable dynamics to efficiently search

more realistic dynamics of a complex system. As a case study, we implemented

a full-range adaptive cruise control from the literature and utilized our approach

for automatically generating test cases for exploring the worst-case performance of
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the controller within the boundaries of a target scenario. The results of our case

study show that simple, yet sufficiently realistic, dynamical equations for the system

under test can be used with a functional gradient descent method to search over

more realistic complex dynamics of the actual system. The results of our method

were better than those from Simulated Annealing, a proven metaheuristic for global

optimization. However, we are not claiming that our approach is superior to SA

optimization for every application. Rather, our case study shows that when simplified

dynamics of a system are available, satisfactory optimization results can be obtained

without the process of tuning SA parameters. Furthermore, our study shows that

automatic (search-based) test-case generation can create more challenging test cases

than the human-generated ones that are traditionally used in the literature, and these

test cases will provide better insights into the performance of controllers under test.

The work by Abbas et al. [6] defines a conformance metric for measuring the

closeness of systems and methods to approximate this conformance. A formal analysis

of closeness of the simple dynamics to the real system dynamics can be utilized to

develop an approach for a better-guided descent computation. However, in many

cases, we cannot have formal notions of distance between models as for example in a

model-order reduction [155] or approximate bisimulations [71].

Another promising research direction is to combine our optimal trajectory gen-

eration approach with multi-fidelity optimization methods like those from Xu et al.

[183, 184] and others [113, 31, 89]. In our method, the low-fidelity model is used to

prioritize descent directions in a functional gradient descent. An alternative approach,

for instance, is to mix high and low fidelity models to choose the best functional

gradient descent directions, and existing multi-fidelity optimization methods may be

well suited for this task.
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Chapter 4

REQUIREMENTS-DRIVEN TESTING OF AUTONOMOUS VEHICLES WITH

MACHINE LEARNING COMPONENTS

4.1 Introduction

Automated driving system designs often use Machine Learning (ML) components

such as Deep Neural Networks (DNNs) to classify objects within CCD images and to

determine their positions relative to the vehicle, a process known as object detection

and classification [69]. Other designs use Neural Networks (NNs) to perform end-to-

end control of the vehicle, meaning that the NN takes in the image data and outputs

actuator commands, without explicitly performing an intermediate object detection

step [144, 30, 32]. Some other approaches use end-to-end learning to do intermediate

decisions like risk assessment [161].

No universally agreed upon testing or verification methods have yet arisen for

automated driving systems. One reason for this is that the ML components and DNNs

are notoriously difficult to test and verify. We present a framework for Simulation-

based Adversarial Testing of Autonomous Vehicles (Sim-ATAV), which can be used

to check the closed-loop properties of automated driving systems that include ML

components. We describe a testing methodology, based on a test case generation

method, called covering arrays, and requirement falsification methods to automatically

identify problematic test scenarios. The resulting framework can be used to increase

the reliability of automated driving systems.

ML system components are problematic from an analysis perspective, as it is
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difficult or impossible to characterize all of the behaviors of these components under

all circumstances. One reason is that the complexity of these systems can be very high

in terms of the number of parameters. For example, AlexNet [107], a pre-trained DNN

that is used for classification of CCD images, has 60 million parameters. Another

reason for the difficulty in characterizing behaviors of ML components is that the

parameters are learned based on training data. In other words, characterizing ML

behaviors is, in some ways, as difficult as the task of characterizing the training

data. Again using the AlexNet example, the number of training images used was 1.2

million. While a strength of DNNs is their ability to generalize from training data;

the challenge for analysis is that we do not understand well how they generalize for

all possible cases.

There has been significant interest recently on verification and testing for ML

components (see Section 4.6). For example, adversarial testing approaches seek to

identify perturbations in image data that result in misclassifications. By contrast, our

work focuses on methods to determine perturbations in the configuration of a testing

scenario, meaning that we seek to find scenarios that lead to unexpected behaviors,

such as misclassifications and ultimately vehicle collisions. The framework that we

present allows this type of testing in a virtual environment. By utilizing advanced

3D models and image rendering tools, such as the ones used in game engines or film

studios, the gap between testing in a virtual environment and the real world can be

minimized.

Most of the previous work to test and verify systems with ML components focuses

only on the ML components themselves, without consideration of the closed-loop

behavior of the system. For autonomous driving applications, we remark that the
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ultimate goal is to evaluate the closed-loop system performance, and hence, any testing

methods used to evaluate such systems should support this goal.

The closed-loop nature of a typical automated driving system can be described as

follows. A perception system processes data gathered from various sensing devices,

such as cameras, LIDAR, and radar. The output of the perception system is an

estimation of the principal (ego) vehicle’s position with respect to external obstacles

(e.g., other vehicles, called agent vehicles, and pedestrians). A path planning algorithm

uses the output of the perception system to produce a short-term plan for how the ego

vehicle should behave. A tracking controller then takes the output of the path planner

and produces actuation outputs, such as accelerator, braking, and steering commands.

The actuation commands affect the vehicle’s interaction with the environment. The

iterative process of sensing, processing, and actuating is what we refer to as closed-loop

behavior.

The contributions of the work presented in this chapter can be summarized as

follows.

• We provide an open-source autonomous vehicle testing framework [167].

• We provide a new algorithm to perform falsification of formal requirements

for an autonomous vehicle in a closed-loop with the perception system, which

includes an efficient means of searching over discrete and continuous parameter

spaces.

• The method represents a new way to do adversarial testing in scenario config-

uration space, as opposed to the usual method, which considers adversaries in

image space. Additionally, we demonstrated a new way to characterize problems

with perception systems in configuration space.
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• We extend the software testing theory of covering arrays to closed-loop Cyber-

Physical System (CPS) applications that have embedded ML algorithms.

• We add models of LIDAR and radar sensors and include sensor fusion algorithms,

and we demonstrate how the requirements-based testing framework we propose

can be used to automate the search for specific types of fault cases involving

sensor interactions.

• We provide requirements for both component-level and system-level behaviors,

and we show how to automate the identification of behaviors where component-

level failures lead to system-level failures. An example of the kind of analysis this

allows is automatically finding cases where a sensor failure leads to a collision

case.

• We include a model of agent visibility to various sensors and include this notion

in the requirements that we consider. This provides a way to reason about

how the system should behave, based on whether agents are or are not visible,

including the ability to reason about the temporal aspects of agent visibility. For

example, we can use this feature to test the requirement that within 1 second

after an agent becomes visible to the LIDAR sensor, the perception system

should correctly classify the agent. This allows us to automate the search for

behaviors related to temporal aspects of sensor behaviors in the context of a

realistic driving scenario.

• We demonstrate the ability to falsify properties by adversarially searching over

agent trajectories. This permits the use of our requirements-driven search-based

approach over a broad class of agent behaviors, which allows us to automatically

identify corner cases that are difficult to find using traditional simulation-based

techniques.
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4.2 Preliminaries

This section presents the setting used to describe the testing procedures performed

with our framework. The purpose of our framework is to provide a mechanism to

test, evaluate, and improve on an automated driving system design. To do this, we

use a simulation environment that incorporates models of a vehicle (called the ego

vehicle), a perception system, which is used to estimate the state of the vehicle with

respect to other objects in its environment, a controller, which makes decisions about

how the vehicle will behave, and the environment in which the ego vehicle is deployed.

The environment model contains representations of a wide variety of objects that

can interact with the ego vehicle, including roads, buildings, pedestrians, and other

vehicles (called agent vehicles). The behaviors of the system are determined by the

evolution of the model states over time, which we compute using a simulator. Formally,

the framework implements a system modelM which is defined in Section 2.1.

4.2.1 Robustness-Guided Model Checking (RGMC)

The goal of a model checking algorithm is to ensure that all traces satisfy the

requirement. The robustness metric can be viewed as a fitness function that indicates

the degree to which individual executions of the system satisfy the requirement ϕ,

with positive values indicating that the execution satisfies ϕ. Therefore, for a given

modelM of a system and a given requirement ϕ, the model checking problem is to

ensure that for all µ ∈ L(M), [[ϕ]]d(µ) > 0.

Let ϕ be a given STL property that the system is expected to satisfy. The

robustness metric [[ϕ]]d maps each simulation trace µ to a real number r. Ideally, for
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the STL verification problem, we would like to prove that infµ∈L(M)[[ϕ]]d(µ) > ε > 0

where ε is a desired robustness threshold.

4.2.2 Falsification and Critical System Behaviors

In this chapter, we focus on the task of identifying critical system behaviors,

including falsifying traces. To identify falsifying system behaviors, we leverage existing

work on falsification, which is the process of identifying system traces µ that do

not satisfy ϕ. For the STL falsification problem, falsification attempts to solve the

problem: Find µ ∈ L(M) s.t. [[ϕ]]d(µ) < 0. This is done using best effort solutions to

the following optimization problem:

µ? = arg min
µ∈L(M)

[[ϕ]]d(µ). (4.1)

If [[ϕ]]d(µ?) < 0, then a counterexample (adversarial sample) has been identified, which

can be used for debugging or for training. In order to solve this non-linear non-convex

optimization problem, a number of stochastic search optimization methods can be

applied (e.g., [4] – for an overview see [87, 97]). We leverage existing falsification

methods to identify falsifying traces of the automated driving system.

4.2.3 Covering Arrays

In software systems, there can often be a large number of discrete input parameters

that affect the execution path of a program and its outputs. The possible combinations

of input values can grow exponentially with the number of parameters. Hence,

exhaustive testing on the input space becomes impractical for fairly large systems. A

fault in such a system with k parameters may be caused by a specific combination of
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t parameters, where 1 ≤ t ≤ k. One best-effort approach to testing is to make sure

that all combinations of any t-sized subset (i.e., all t-way combinations) of the inputs

are tested.

A covering array is a minimal number of test cases such that any t-way combi-

nation of test parameters exist in the list [80]. Covering arrays are generated using

optimization-based algorithms with the goal of minimizing the number of test cases.

We denote a t-way covering array on k parameters by CA(t, k, (v1, ..., vk)), where vi is

the number of possible values for the ith parameter. The size of the covering array

increases with increasing t, and it becomes an exhaustive list of all combinations when

t = k. Here, t is considered as the strength of the covering array. In practice, t can be

chosen such that the generated tests fit into the testing budget. Empirical studies on

real-world examples show that more than 90 percent of the software failures can be

found by testing 2 to 4-way combinations of inputs [108].

Despite the t-way combinatorial coverage guaranteed by covering arrays, a fault in

the system possibly may arise as a result of a combination of a number of parameters

larger than t. Hence, covering arrays are typically used to supplement additional

testing techniques, like uniform random testing. We consider that because of the

nature of the training data or the network structure, NN-based object detection

algorithms may be sensitive to a certain combination of properties of the objects in

the scene. Figure 29 shows outputs of a DNN-based object detection and classification

algorithm for 4 different combinations of vehicle type, vehicle color, and pedestrian

pants color while all other parameters like position and orientation of the objects are

the same. In a comparison between configurations (a) and (b), the vehicle type does

not change but the colors of the vehicle and pedestrian pants change from blue to

white. While both the car and the pedestrian are detected in configuration (a), the
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pedestrian is detected but the car is not detected in configuration (b); however, in a

comparison between configurations (b) and (d), if we fix the colors of the vehicle and

pedestrian pants to be white but change the vehicle type, then the car is detected but

the pedestrian is not detected. We can also see that the size of the detection box is

different between configurations (c) and (d), for which the vehicle type is the same

but the colors of the vehicle and pedestrian pants are different. Our observation is

that the characterization of the errors is generally not as simple as saying that all

white colored cars are not detected. Instead, the errors arise from some combination

of subsets of discrete parameters. Because of this combinatorial aspect of the problem,

covering arrays may be a good fit to test DNN-based object detection and classification

algorithms. In Section 4.4, we describe how Sim-ATAV combines covering arrays to

explore discrete and discretized parameters with falsification on continuous parameters.

4.3 Requirements

In this section, we provide five STL requirements intended for the automated

driving system. Each requirement is used to target specific aspects of safety and

performance. Also, we describe how analysis results related to each of the requirements

can be used to enhance either the controller design or testing phases of the development

process.

4.3.1 STL Requirements

The following describes each of the requirements that we use in the sequel to

evaluate the automated driving system design with our virtual framework. We provide
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Color Combinations
Blue car, blue pants White car, white pants

Vehicle
Type

A

(a) (b)

B

(c) (d)

Figure 29. Specific configurations impacting DNN performance.

these requirements to illustrate how STL can be used to describe four different types of

behavior expectations for an automated driving system: system-level safety, subsystem-

level performance, subsystem-to-system safety, and system-level performance (driving

comfort) requirements.
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Requirement ϕ1: Vehicle should not collide with an object.

This requirement is an example of a system-level safety requirement. It is used

to ensure that the ego vehicle does not collide with any object in the environment.

Behaviors that do not satisfy this requirement correspond to an unsafe performance

from the autonomous vehicle. These cases are valuable to identify in simulation, as

they can be communicated back to the control designers so that the control algorithms

can be improved.

The following provides the STL requirement.

ϕ1i = �(¬πi,coll)

where

πi,coll = dist(i, ego) < εdist

In the above specification, i corresponds to an object in the environment, such as

an agent vehicle or a pedestrian. dist(i, ego) gives the minimum Euclidean distance

between the boundaries of the Ego vehicle and the boundaries of object i. The

specification basically indicates that the Ego vehicle should not collide with object i.

In practice, we consider a unique requirement for each object in the environment.

When the object we are considering is clear from the context, we drop the index i and

refer to the requirement ϕ1.

Requirement ϕ2: Sensor should detect visible obstacles.

This requirement is an example of a subsystem-level requirement ; this particular

example can be considered as a requirement on the sensor or perception subsystems.
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The requirement indicates that the perception system or a specific sensor should not

fail to detect an object for an excessive amount of time.

The requirement is as follows.

ϕ2i,s = �
(
(W (i, s) ∧ ¬D(i, s)) =⇒ 3[0,t1](D(i, s) ∨ ¬W (i, s))

)
Here, we use W (i, s) to mean that object i is physically visible to sensor s. For

our framework, s ∈ {CCD,LIDAR, radar, combined}, where combined represents

the total perception system, which is a fusion of available sensors. Function D(i, s)

evaluates to true when sensor s detects object i.

A description of this requirement in natural language could be “it is always true

that for any time when object i is visible and not detected by sensor s, there exists

an instant, within 0 to t1 seconds, that object i is either detected or invisible to the

sensor”.

When the object i and sensor s are clear from the context, we drop the indices

and refer to the requirement ϕ2.

Requirement ϕ3: Localization error should not be too high for too long.

This requirement is another sensor-level requirement and specifies that the lo-

calization of an object that is based on a particular sensor should provide sufficient

accuracy, within an adequate time after the object becomes visible to the sensor.

The following is the requirement.

ϕ3i,s =�
(
(W (i, s) ∧ (¬D(i, s) ∨ E(i, s) > εerr))

=⇒ 3[0,t1](¬W (i, s) ∨ (D(i, s) ∧ E(i, s) < εerr))
)
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In the requirement, E(i, s) is the difference between object i’s location and its location

as estimated using information from sensor s. Constant εerr is a threshold on the

acceptable amount of error between the actual position of i and its estimated position.

To understand the requirement, consider the situation where either an object is

not detected (i.e., ¬D(i, s)) or there is a large error in the localization of the object

(i.e., E(i, s) > εerr), and call this a case of “poor detection” of the object. Then we can

read the requirement as follows: “it is always true that whenever object i is visible

to sensor s and is poorly detected by sensor s, there exists an instant, within a time

period of 0 to t1 seconds, that either object i is invisible to sensor s or the object

is detected and the localization error is small, as computed using information from

sensor s”.

This requirement basically limits the amount of time the sensor error can be greater

than a given threshold. When the object i and sensor s are clear from the context, we

drop the indices and refer to the requirement ϕ3.

Requirement ϕ4: A sensor-related fault should not lead to a system-level fault.

This is an example of a subsystem-to-system requirement. This requirement relates

sensor-level behaviors to system-level behaviors. The purpose is to isolate behaviors

where a sensor fault results in a collision. The expectation is that the system as a

whole should be robust to the failure of a single sensor.

The requirement follows.

ϕ4i,s = �¬
(
�[0,t1]

(
¬πi,coll ∧W (i, s) ∧ (¬D(i, s) ∨ E(i, s) > εerr)

)
∧3(t1,t2]πi,coll

)
The above requirement designates that there should not be a period of t1 seconds

where a visible object is not accurately detected and no collision occurs, followed
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immediately by a period of length t2− t1 seconds that contains a collision. In other

words, the requirement indicates that a system level fault (collision) should not occur

within a short time after a sensor fault. A behavior that violates this requirement does

not necessarily indicate that the sensor fault caused the system fault, but it suggests

a correlation, as it points to a behavior wherein the system fault occurs a short time

after the sensor fault. Providing behavior examples that violate this requirement can

help to pinpoint the cause of system-level faults.

When the object i and sensor s are clear from the context, we drop the indices

and refer to the requirement ϕ4.

Requirement ϕ5: The vehicle should not do excessive braking unnecessarily or too

often.

This is a system-level performance (driving comfort) requirement, in that it requires

that the system not brake unnecessarily or too often, thereby causing discomfort for

the passengers.

The requirement follows.

ϕ5 = �
(
¬�[0,t1](B ∧ ¬C) ∧ ¬

(
edge ∧3(0,t2](edge ∧3(0,t2]edge)

))
,

where

edge = B ∧©¬B.

Here, C is a variable that is true when the Ego vehicle is estimated to collide with

another object in the environment, based on a simplified model of future behaviors.

The simplified model that we use for future trajectory estimation is the Constant Turn

Rate and Velocity (CTRV) model [156]. B represents that the amount of braking
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force applied by the controller exceeds half of the available braking force. The variable

edge represents the event of a true value of B followed by a false value in the next

time step.

To understand the meaning of requirement ϕ5, consider the following part of the

requirement:

�
(
¬�[0,t1]

(
B ∧ ¬C

))
,

which requires that the system not apply excessive braking for more than a specific

amount of time (t1) while there is no collision predicted. This essentially stipulates

that the system should not unnecessarily brake for a prolonged amount of time. Next,

consider the second part of requirement ϕ5:

�
(
¬
(
edge ∧3(0,t2](edge ∧3(0,t2]edge)

))
,

which indicates that there should not be an “on-off" behavior, followed by another

“on-off” behavior, followed by a third “on-off” behavior, with less than t2 seconds

between each other. This essentially requires that the brakes not be applied and

released too often. Thus, this is a riding comfort requirement.

4.3.2 Development Process Support

We describe how requirements ϕ1 through ϕ5 can be used to support both the

controller design and testing phases of the development process.

For all of the requirements, any detected violation (falsification) should be linked

back to the conditions that caused the violation.

Consider the first scenario’s requirement, ϕ1, “Vehicle should not collide with

an object”: if the vehicle does collide with an object, then we would go back and

see what conditions caused such an event, for example, whether the vehicle speed
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trace exhibited an anomaly or whether the vehicle was moving erratically. Testing for

collision avoidance is well established in the field of ADAS. Often inflatable and other

destructible targets are employed for convenience; for example, see [111] and Fig. 30.

Figure 30. Robotic pedestrian surrogate target with a Toyota autonomous vehicle.

In the requirement “Sensor should detect visible obstacles” we focus on the detection

of an obstacle as operational imperative. If the sensor fails to detect within a

time interval, then the requirement will be violated. This is essentially the sensor-

level requirement (visible but not detected), and test engineers can set a real-world

experiment to verify it relatively easily because it is decoupled from others (one-term

inequality, sensor by sensor).

The requirement “Localization error should not be too high for too long” is

important to verify (falsify) for both ego-location and identification of positions of

other agents in the environment. Placing an ego-vehicle in the correct pose on the

road is usually not achieved by simply relying on GPS signal processing, due to the

GPS tendency to “jump” unpredictably, but instead by estimating and dynamically

refining the pose through landmark observations, such as road edges, vertical elements

such as light poles, and signs. Assuming that the ego-vehicle localization is done

with sufficient accuracy, the remaining task of localizing is to make sure that the
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location of other agents, especially those in the planned path of the ego vehicle, are

estimated with sufficient accuracy. Often a grid-based representation centered on

the ego-vehicle is employed (e.g., [138]). Estimating E(i, s) in ϕ3 is not trivial, but

practical approaches exist that can be used by test engineers (e.g., [73]).

The requirement “A sensor-related fault should not lead to a system-level fault” is

a form of robustness requirement. This is similar to a requirement that the system

should have no “single point of failure”, which enforces that the failure of any single

component will not cause the system to fail (for example, see [92]). We make an

important clarification that is practical but limiting in scope: that no failure should

occur within the specified (short) time after the fault. Test engineers could readily

use examples of behavior provided in the course of falsifying this requirement.

Lastly, the requirement “The vehicle should not apply brakes too often” is an

example of a possible set of requirements designed to establish how comfortable the

ride in the vehicle is. It is known that autonomous vehicles could induce motion

sickness in passengers if the vehicle control system does not comply with human

physiology [56], [74]. A better requirement may well be developed using fuzzy set

theory and further refined for a specific target group of passengers (e.g., elderly people).

An alternative requirement could be defined by counting the number of occurrences

of an event within a total time period, instead of relating one occurrence to another.

Such a requirement can be defined as a Timed Propositional Temporal Logic (TPTL)

specification. TPTL is a variant of temporal logic and it is also supported in our

framework [43].
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4.4 Framework

We describe Sim-ATAV, an open-source framework for performing testing and

analysis of automated driving systems in a virtual environment. The simulation envi-

ronment used in Sim-ATAV includes a vehicle perception system, a vehicle controller,

and a model of the physical environment. The perception system processes data from

three sensor systems: CCD camera images, LIDAR, and radar. The framework uses

freely available and low-cost tools and can be run on a standard desktop PC. Later, we

demonstrate how Sim-ATAV can be used to implement traditional testing approaches,

as well as advanced automatic test generation approaches that were not previously

possible using existing frameworks.

Figure 31 shows an overview of the simulation environment. The environment

consists of a Simulator and a Vehicle Control system. The Simulator contains models

of the ego vehicle, agents, and other objects in the environment (e.g., roads, buildings).

The Simulator outputs sensor data to the Vehicle Control system. The sensor data

includes representations of CCD camera, LIDAR, and radar data. Simple models of

the sensors are used to produce the sensor data. For example, synthetic CCD camera

images are rendered by the Simulation system, as if they came from a camera mounted

on the front of the ego vehicle. The Vehicle Control system contains models of the

Perception System, which performs sensor data processing and sensor fusion. The

Controller uses the output of the Perception System to make decisions about how

to actuate the AV system. Actuation commands are sent from the Controller to the

Simulator.

Simulations proceed iteratively. At each instant, sensor data is processed by the

Vehicle Control, which then makes an actuation decision. The actuation decision is
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Figure 31. Overview of the simulation environment.

then transmitted back to the Simulator, which uses the actuation commands to update

the physics for the next time instant. This process is repeated until a designated time

limit has been reached.

The Vehicle Control system is implemented in Python. We use simplified algorithms

to implement the subsystems of the vehicle control, which is sufficient in this case,

as the purpose of this investigation is to evaluate new testing methodologies and not

to evaluate a real AV control design; however, we note that it is straightforward to

replace our algorithms with production versions to test real control designs.

To process CCD image data, we use a lightweight DNN, SqueezeDet, which

performs object detection and classification [182]. SqueezeDet is implemented in

TensorFlow™[2], and it outputs a list of object detection boxes with corresponding

class probabilities. This network was originally trained on real image data from the

KITTI dataset [69] to achieve accuracy comparable to the popular AlexNet classifier
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[107]. We further train this network on the virtual images generated in our framework.

Figure 32 shows an example output from SqueezeDet, based on a synthetic image

produced by our simulator. The image shows two vehicles correctly detected and

classified, along with a portion of a shadow that is incorrectly classified as a vehicle.

Figure 32. Outputs from the SqueezeDet DNN, based on a synthesized camera image.

To process LIDAR point cloud data, we cluster the received points based on their

positions and estimate existence and types of the objects based on the dimensions of

the clusters. We implement a simple sensor fusion algorithm that relates and merges

the object detections from a camera, a LIDAR, and a radar. It also utilizes the

expected current positions of previously detected objects. The object states estimated
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by the sensor fusion algorithm are used to estimate the future trajectories of the

objects using the CTRV model [156].

Figure 33. Sensor fusion outputs.

Figure 33 illustrates outputs from the sensor fusion system. In the figure, the solid

yellow box in the middle represents the Ego vehicle. Yellow circles in front of the

ego vehicle represent the estimated future trajectory of the Ego vehicle. Small white

dots represent LIDAR point cloud data. The colored dots and rectangles represent
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detected objects, with their estimated orientation indicated with a white line in front

of them. Expected future positions of agent vehicles with respect to the ego vehicle

are represented by red circles.

Our simple planner takes the high-level target path and target speed and the

outputs of sensor fusion and trajectory estimation algorithms. It assigns collision risk

levels to the target objects with a simple logic and outputs the risk assessments and a

target speed, which depends on the target speed of the mission or other factors, such

as the distance to a sharp turn ahead.

Our control algorithm implements simple path and speed tracking and collision

avoidance features. The controller receives the outputs of the planner. When there is

no collision risk, the controller drives the car with the target speed and on the target

path. When a future collision with an object is predicted, it applies the brakes at a

level commensurate with the risk assigned to the object.

The environment modeling framework is implemented in Webots [123], a robotic

simulation framework that models the physical behavior of robotic components, such

as manipulators and wheeled robots, and can be configured to model autonomous

driving scenarios. In addition to modeling the physics, a graphics engine is used to

produce images of the scenarios. In Sim-ATAV, the images rendered by Webots are

configured to correspond to the image data captured from a virtual camera that is

attached to the front of a vehicle.

The process used by Sim-ATAV for test generation and execution for discrete and

discretized continuous parameters is illustrated by the flowchart shown in Fig. 34. Sim-

ATAV first generates test cases that correspond to scenarios defined in the simulation

environment using covering arrays as a combinatorial test generation approach. The

scenario setup is communicated to the simulation interface using TCP/IP sockets.
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After a simulation is executed, the corresponding simulation trace is received via

socket communication and evaluated using a cost function. Among all discrete test

cases, the most promising one is used as the initial test case for the falsification process

shown in Fig. 35. For falsification, the result obtained from the cost function is used

in an optimization setting to generate the next scenario to be simulated. For this

purpose, we used S-TaLiRo [60], which is a MATLAB toolbox for falsification of

CPSs. Similar tools, such as Breach [46], can also be used in our framework for the

same purpose.
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Figure 34. Flowchart illustrating the combinatorial testing.
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Figure 35. Flowchart illustrating the falsification.

4.5 Testing Application

In this section, we present an evaluation of the Sim-ATAV framework using three

separate driving scenarios. The scenarios are selected both to be challenging for

the automated driving system and also analogous to plausible driving scenarios

experienced in real-world situations. In general, the system designers will need to

identify crucial driving scenarios, based on intuition about challenging situations, from

the perspective of the autonomous vehicle control system. A thorough simulation-

based testing approach will include a wide array of scenarios that exemplify critical

driving situations.

For each of the following scenarios, we consider a subset of the requirements

presented in Section 4.3 and describe how to use the results to enhance the development

process. We conclude the section with a summary of the results.
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Scenario 1

The first scene that we consider is a straightaway section of a two-lane road, as

illustrated in Fig. 36. Several cars are parked on the right-hand side of the road,

and a pedestrian is jay-walking in front of one of the cars, passing in front of the

Ego car from right to left. We call this driving scenario model M1. The scenario

simulates a similar setup to the Euro NCAP Vulnerable Road User (VRU) protection

test protocols [164].

Several aspects of the driving scenario are parameterized, meaning that their values

are fixed for any given simulation by appropriately selecting the model parameters.

The parameters we use for this scenario are as follows:

• Initial speed and lateral position of the Ego vehicle inside its lane;

• Walking speed of the pedestrian;

• The model of Agent car 1, which is next to the pedestrian;

• R, G, B values for the colors of Agent car 1;

• R, G, B values for the pedestrian’s shirt and pants.

We choose the parameters such that their specific combinations could be challenging

to a DNN-based pedestrian detection system that relies on CCD camera images. We

also choose the ranges of some of the parameters so that the scenario is physically

challenging for the brake performance.

We evaluate ModelM1 against three of the requirements from Section 4.3: ϕ1,

ϕ2, and ϕ4. These include the system-level requirement, the sensor-level requirements,

and the sensor-to-system-level requirement. We use this collection of requirements for

ModelM1 to demonstrate how we can automatically identify each type of behavior

using our framework.
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Figure 36. Overview of the scenario 1.

Scenario 2

The next scenario involves a left turn maneuver by the ego vehicle in a controlled

intersection, as illustrated in Fig. 37. An agent vehicle (Agent 1) in the opposing lane

unexpectedly passes through the intersection, against a red light, potentially causing

a collision with the Ego vehicle. There is also another agent car (Agent 2), which is

making a legal left turn from the opposing lane. It is incumbent on the Ego vehicle

to take action to avoid colliding with the agent vehicles. We call the model of this

scenarioM2.

For this experiment, we choose parameters such that the position of Agent 2, or

trajectory followed by Agent 1, in combination with the behavior of the Ego, may

result in poor performance from the sensor processing or trajectory estimation systems.

The following variables are parameterized for this model:

• Ego vehicle initial speed and initial distance to the intersection;

• Agent 1 initial distance to the intersection, initial target speed, target speed

when approaching the intersection, target speed inside the intersection, initial
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lateral position w.r.t its lane center, target lateral position w.r.t its lane center

when approaching the intersection, and target lateral position w.r.t its lane

center inside the intersection;

• Agent 2 initial lateral position w.r.t its lane center, speed, and initial distance

to the intersection.

We evaluate Model M2 against requirement ϕ4. The idea in using the sensor-to-

system-level requirement is that it is relatively easy, in general, to find behaviors that

result in a collision for ModelM2, but many collision cases are not interesting for the

designers. This could be because, for example, the agent car is moving too quickly

for the ego vehicle to avoid. This would be a behavior that is not necessarily caused

by any specific incorrect behavior on the part of the ego vehicle. Instead, we use

ϕ4 to identify behaviors where there is a collision that is directly correlated to an

unacceptable performance from the sensor processing system; in a sense, these are

cases where the sensor data processing or future trajectory estimation system is at

fault for the collision. These are more valuable cases, in that they can more easily be

used to debug specific aspects of the ego vehicle control algorithms.

Scenario 3

In this last scenario, the ego vehicle is making a left turn through an intersection,

while an agent vehicle in the opposing lane is also making a left turn. This scene is

similar to the Scenario 2, as depicted in Fig. 37, except that Agent 1 is not present in

this scenario, only Agent 2, which we refer to as the agent vehicle for this scenario.
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Figure 37. Overview of the scenario 2.
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If both ego and agent vehicles are not accurately regulating their trajectories during

this maneuver, a collision may occur. We call the model of this scenarioM3.

In this scenario, we search over target trajectories of the ego and agent vehicles.

Below are the parameters that we use:

• Ego vehicle initial speed, target lateral position w.r.t its lane center when entering

the intersection, distance traveled inside the intersection before starting its left

turn, target lateral position w.r.t its lane center when exiting the intersection,

and distance traveled inside the intersection after finishing its left turn;

• Agent vehicle speed, target lateral position w.r.t its lane center when entering

the intersection, distance traveled inside the intersection before starting its left

turn, target lateral position w.r.t its lane center when exiting the intersection,

and distance traveled inside the intersection after finishing its left turn.

We evaluate Model M3 against requirement ϕ5. The purpose of considering the

performance requirement ϕ5, in this case, is that scenarioM3 is difficult to falsify.

That is, due to the specific parameter ranges selected for the scenario, it is unlikely

that the ego vehicle will collide with the agent vehicle. Instead, in this case, we are

interested to identify situations where the emergency braking system unnecessarily

decelerates the ego vehicle, causing unacceptable performance, from a ride-quality

perspective. The scenario can easily lead to unnecessary braking, as the ego and agent

vehicles momentarily move toward each other during their left turn maneuvers, which

can cause the emergency braking algorithm to decide, incorrectly, that a collision is

imminent. This type of case can be useful as feedback to designers, as it can highlight

controller behaviors that are too conservative, at the expense of ride quality.
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Summary of Test Results

We present results from experiments demonstrating the application of our frame-

work to the scenarios and requirements described above. Table 3 summarizes the

results. Indicated in the table for each case study are the requirements used to test

each model, the testing approach used, the set of active sensors used, and a summary

of the results. We describe the results in detail below.

Covering array and falsification on ModelM1

In our previous work [169], we proposed and studied the effectiveness of a testing

approach that first uses covering arrays to discover critical regions, based on a set

of discrete parameters, then uses those results as the initial points for robustness

guided falsification. In [169], we have empirically shown that our approach that

utilizes covering arrays followed by falsification can achieve results that are closer

to the global minimum compared to the uniform random testing or combination of

uniform random testing with the falsification approach. Here, we apply that approach

(covering arrays followed by falsification) on modelM1 for 3 different requirements,

ϕ1, ϕ2 and ϕ4. In modelM1, we focus on the camera sensor and DNN-based object

detection and classification algorithm. Because of this, most of our parameters are

colors of pedestrian clothing and the agent vehicle, as described in Section 4.3. We

first execute 195 covering array tests and collect simulation trajectories. Then, we

compute the robustness values for those trajectories, with respect to the requirements

ϕ1, ϕ2 and ϕ4. Finally, for each requirement, starting from the case with the smallest

positive robustness value, we try to find as many additional falsifications as possible,

124



M
od

el
M

1
M
od

el
M

2
M
od

el
M

3

R
eq
u
ir
em

en
t

ϕ
1

ϕ
2

ϕ
4

ϕ
4

ϕ
5

T
es
ti
n
g

M
od

al
it
y

C
A
+

Fa
ls
ifi
ca
ti
on

C
A
+

Fa
ls
ifi
ca
ti
on

C
A
+

Fa
ls
ifi
ca
ti
on

Fa
ls
ifi
ca
ti
on

Fa
ls
ifi
ca
ti
on

A
ct
iv
e

S
en

so
rs

C
C
D

C
C
D

C
C
D

C
C
D
,R

ad
ar
,

LI
D
A
R

C
C
D
,

LI
D
A
R

C
om

p
u
ta
ti
on

T
im

e
C
A
:2

h,
10

m
in
.

2h
,3

m
in
.

9h
,4

0m
in
.

Fa
ls
.:3

h,
33

m
in
.

’3
h,

35
m
in
.

3h
34

m
in
.

N
u
m
b
er

of
S
im

u
la
ti
on

s
C
A
:1

95
58

23
2

Fa
ls
.:3

00
30

0
30

0

Fa
ls
ifi
ca
ti
on

O
b
ta
in
ed

67
by

C
A

+
65

by
C
A

+
67

by
C
A

+
X

X
5
by

fa
ls
ifi
ca
ti
on

8
by

fa
ls
ifi
ca
ti
on

12
by

fa
ls
ifi
ca
ti
on

A
p
p
li
ca
ti
on

of
R
es
u
lt
s

Lo
w
es
t
ro
bu

st
ne
ss

ca
se
s
us
ed

to
cr
ea
te

cr
it
ic
al

te
st
s.

Fa
ls
ify

in
g
ca
se
s

re
la
te

to
pr
oc
es
si
ng

of
sp
ec
ifi
c
se
ns
or
;

ai
ds

in
co
nt
ro
lle
r

de
si
gn

im
pr
ov
em

en
t.

P
oo

r
pe

rf
or
m
an

ce
ca
se
s
us
ed

to
im

pr
ov
e
co
nt
ro
lle
r

de
si
gn

in
m
od

el
in
g
ph

as
e.

Ta
bl
e
3.

R
es
ul
ts

fr
om

au
to
no

m
ou

s
dr
iv
in
g
te
st
s
us
in
g
vi
rt
ua

lf
ra
m
ew

or
k.

125



within a maximum of 300 extra simulations, by using a falsification approach that

uses simulated annealing to perform the optimization.

For requirement ϕ1, 67 cases were falsified from the covering array tests (i.e., 67

of the 195 cases did not satisfy ϕ1). Starting from 7 of the remaining (non-falsifying)

cases from the covering array tests, 5 additional falsifying cases were discovered using

falsification. For requirement ϕ2, 65 cases were falsified from the covering array cases,

with an additional 8 cases discovered during the falsification step. For requirement ϕ4,

67 cases were falsified during the covering array step, with 12 more cases discovered

during the falsification step.

These results demonstrate that we can automatically identify test cases that violate

specific sensor-level, system-level, and sensor-to-system level requirements. These test

cases can be fed back to the designers to improve the perception or control design or

can be used as guidance to identify challenging scenarios to be used during the testing

phase.

Analysis of robustness values on the falsification of ModelM2

The robustness value, which is described in Section 4.2, for a trajectory with

respect to the requirement is automatically computed in Sim-ATAV. This computation

is performed by the S-TaLiRo tool [63] and is used to guide the test cases towards a

falsification.

We use the results of falsification on Model M2 to show, in Fig. 38, how the

robustness value changes over time and finally becomes negative, which indicates

falsification of the requirement. In this case, Sim-ATAV was able to find a falsifying

example in 58 simulations. Because the cost function gradients are not computable,
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we use a stochastic global optimization technique, Simulated Annealing (SA). The

blue line shows the robustness value for each simulation. We can observe that the

robustness value per simulation run is not monotonic. This is due to the stochastic

nature of the optimizer; however, the achieved minimum robustness up to the current

simulation is a non-increasing function, which shows the best robustness achieved after

each simulation. As soon as the framework finds a test case that causes a negative

robustness value, it stops the search and reports the falsifying example.

Figure 38. Robustness guided falsification utilizes global optimization techniques to
guide the test cases toward falsification.

Figure 39 shows images from the simulation execution of a falsifying example for

modelM2 with respect to the requirement ϕ2. Between the time corresponding to

Fig. 39-(a) to Fig. 39-(b), the red car approaching from the opposite side is driving

on a path such that there will be a future collision with the Ego vehicle; however, due

to incorrect localization of the agent vehicle, the Ego vehicle is not able to correctly
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predict the future trajectory of the agent vehicle, and so it does not predict a collision.

Hence it continues without taking action to avoid the collision. Starting from the

moment shown on Fig. 39-(c), the Ego vehicle predicts the collision and starts applying

emergency braking; however, because it takes action too late, the Ego vehicle cannot

avoid a collision with the agent vehicle, as shown in Fig. 39-(d).

(a) Perception error (b) Perception error

(c) Emergency braking (d) Collision

Figure 39. Time-ordered images from the falsifying example on model M2.

We note that, even for cases that are non-falsifying, the robustness values are

useful for the system designer’s analysis, as behaviors with low robustness value are

“close to” violating the requirement and therefore correspond to cases that may require

closer attention.
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A visual analysis of a falsifying simulation trajectory from Model M3

As presented in Table 3, Sim-ATAV was able to find a falsifying example for model

M3 with respect to the STL requirement ϕ5 in 232 simulations. We present a visual

analysis of the falsifying test result. Note that this analysis is done automatically

in the framework, and corresponding satisfaction/falsification of the requirement is

returned to the user, along with the robustness value that shows the signed distance

to the boundary of satisfaction or falsification. The type of visual analysis we present

here may be useful for the system designers to understand the reason behind the

falsification (or satisfaction) of a requirement, which can be helpful for debugging or

improving the design. For this analysis, we use the definitions and notation introduced

in Section 4.3.

Figure 40 shows a part of the simulation trajectory of ModelM3 for a time window

around the falsification instance, together with the corresponding logic evaluations

of the predicates related to the sub-formulas in Requirement ϕ5. In the top plot in

Fig. 40, the red solid line is the estimated future minimum distance between the ego

vehicle and Agent vehicle 1, with respect to the simulation time. This estimation is

based on the ground truth information collected from the simulation and utilizes the

CTRV model at each time step of the simulation to compute the expected estimation

that is described in ϕ5. For this example, we define the variable C that is used in ϕ5

as (df,min < 0.5), where df,min represents the expected minimum future distance; the

dashed horizontal red line in Fig. 40 located at 0.5m is the threshold minimum future

distance for a collision estimation. The values of t1 and t2 are respectively defined

as 0.6 and 0.5 in this example. Since df,min is never less than 0.5 in this case, the
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collision estimation variable C, which is represented by the black solid line in the top

plot, is always false.

The middle plot presents a similar evaluation for computing the variable B used

in ϕ5, which represents excessive braking. This evaluation uses the collected actual

normalized brake power data, say br, from the simulation and computes the logical

variable B = (br > 0.5). The solid and dashed red lines represent br and the threshold

value 0.5, respectively. The solid black line shows the value of B with respect to time.

The bottom plot in Fig. 40 shows the value of the variable edge that is defined for

the requirement ϕ5 with respect to the simulation time.

The first part of the requirement ϕ5, which was defined as �
(
¬�[0,t1](B ∧ ¬C)

)
in Section 4.3, would evaluate to false if and only if there would exists a time window

of t1 seconds such that B is always true and C is always false. Focusing on the values

of C and B from the top two plots in Fig. 40, we can see that although C is always

false, because there is no time window of t1 = 0.6s in which B is always true, the first

part of the requirement evaluates to true. This means this execution of modelM3

satisfies the first part of the requirement ϕ5.

The second part of the requirement ϕ5, which is defined as�
(
¬
(
edge∧3(0,t2](edge∧

3(0,t2]edge)
))

evaluates to false if and only if there exists a series of three falling

edges of B (edge), such that one occurrence of edge follows another within a time

window of t2 seconds. As we see in the bottom plot of Fig. 40, at time 5.6s it is true

that there exists an edge and it is also true that there exists another edge within

the time window of 0 to 0.5s following this moment (occurring at 5.85s). Hence

the inner (edge ∧3(0,t2]edge) inside the above formula evaluates to true at time 5.6s.

If we call this event e1, the overall formula will evaluate to false if there exists an

edge that is followed by event e1 in a time window between 0 and t2 = 0.5s. This

130



happens at time 5.46s, which is the moment that there exists an edge followed by

event e1 at 0.14 ∈ (0, 0.5] seconds, where the event e1 is defined as an edge followed

by another edge within t ∈ (0, 0.5] seconds. Hence, the second part of the requirement

ϕ5 evaluates to false, and as a result, ϕ5 evaluates to false at time 5.46s, since it is a

conjunction of parts 1 and 2. In other words, the system falsifies (does not satisfy)

the requirement ϕ5.

Figure 40. Analysis of falsification for Model M3.
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4.6 Related work

Testing and evaluation methods for Autonomous1 Vehicles (AVs) could be cate-

gorized into three major classes: (1) model based, (2) data-driven, and (3) scenario

based. Scenario-based approaches utilize accident reports and driving conditions that

are easily identifiable as challenging, producing specific test scenarios to be executed

either in the real world or in a simulation environment. For example, Euro NCAP

[164] and DOT [127] provide such scenarios. Data-driven approaches, on the other

hand, typically utilize driving data [188] to generate probabilistic models of human

drivers. Such models are then used for risk assessment and rare event sampling for

AV algorithms under specific driving scenarios [189].

The aforementioned testing methods are important and necessary before AV

deployment, but they cannot help with design exploration and automated fault

detection at early development stages. Such problems are addressed by model-based

verification [116, 12], model based test generation [173, 14, 174, 135, 102, 101], or a

combination thereof [66, 134]. It is important to also highlight that these methods

typically ignore or use simple models to abstract away proximity sensors and, especially,

the vision systems. However, ignoring sensors or using simplified sensing models may

be a dangerously simplifying assumption since it ignores the complex interactions

between the dynamics of the vehicle and the sensors. For example, the effective

sensing range of a sensor platform mounted on the roof of a vehicle is affected when

the vehicle makes hard turns.

In addition, vision-based perception systems have become an integral component

1We utilize the more general term “autonomous” as opposed to a more restricted “automated”
since our methods could potentially apply to all levels of autonomy.
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of the sensor platform of AVs, and in many cases, they constitute the only perception

system. Currently, the winning algorithmic technology for image processing systems is

utilizing Deep Neural Networks (DNN). For instance, by 2011, the DNN architecture

proposed in [34] was already capable of classifying pre-segmented images of traffic

signs with better accuracy than humans (99.46% vs 99.22%). Since then, there has

been substantial progress with DNNs performing both segmentation and classification

[94, 16]. Yet, in spite of the multiple impressive results using DNN, it is still also easy

to devise methods that can produce (so-called adversarial) images that will fool them

[166, 136, 72].

The latter (negative) result raises two important questions: (1) can we still generate

adversarial inputs for DNN when we manipulate the physical properties and trajectories

of the objects in the environment of the AV, and (2) how does the DNN accuracy

affect the system level properties of an AV, that is, its functional safety? Exhaustive

verification methods for NN in the loop are still in their infancy [54], and they cannot

handle AV with DNN components in the loop. To address the two questions above,

several model-based test generation methods have been proposed [51, 50, 52, 7, 169].

The procedure described in [51, 50, 52] analyzes the performance of the perception

system using static images to identify candidate counterexamples, which are then

checked using simulations of the closed-loop system to determine whether the AV

exhibits unsafe behaviors. On the other hand, [7, 169] develop methods that directly

search for unsafe behaviors of the closed-loop system by defining a cost function on

the closed-loop behaviors. The differences between [7] and [169] are primarily on the

search methods, the simulation environments, and the AVs, with [169] providing a

more efficient method for combinatorial search.

In our framework, we perform adversarial test generation at the system level. We
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demonstrate that our framework used for test generation for AV with multi-sensor

systems as opposed to vision-only perception systems. Moreover, we demonstrate

the importance and effectiveness of test generation methods guided by system-level

requirements as well as perception-level requirements.

Figure 41. LIDAR reflection points versus distance to various pedestrian and
pedestrian-like targets. Lines of expected number of points E(h,w) are also shown.

Using our framework, we can formalize and test against requirements on the sensor

performance, in the context of a driving scenario. For example, the LIDAR’s point

cloud density drops significantly with the distance to the target object, for example, a

pedestrian; Fig. 41 illustrates this point with experimental results showing LIDAR

data point density as a function of object distance. Similar to this aspect of LIDAR

behavior, the pixel count of a CCD camera would also decrease dramatically with the

distance if it were to be used for pedestrian detection since the area of an observed

object decreases as the square of the distance to the object. This may complicate

134



testing for long-range observation conditions. Our framework supports testing these

aspects of sensor performance.

4.7 Conclusions

We demonstrated Sim-ATAV, a simulation-based adversarial test generation frame-

work for automated driving systems. The framework works in a closed-loop fashion,

where the system evolves in time with the feedback cycles from the autonomous

vehicle’s controller. The framework includes models of LIDAR and radar sensor

behaviors, as well as a model of the CCD camera sensor inputs. CCD camera images

are rendered synthetically by our framework and processed using a pre-trained deep

neural network (DNN). Using our framework, we demonstrated a new effective way of

finding critical vehicle behaviors by using 1) covering arrays to test combinations of

discrete parameters and 2) simulated annealing to find corner-cases.

Our framework allows the automatic identification of high-level descriptions of

test scenarios in open environments. For instance, in Scenario 2 which is presented

in Section 4.5, the initial lane numbers of the vehicles, the direction they enter

the intersection (including possible wrong-way driving behavior), and whether they

are driving straight, making a left turn or a right turn in the intersection can be

parameterized by utilizing covering arrays. Our framework allows such flexibility in

the automated generation of the test scenarios.

Future work will also include using identified counterexamples to retrain and

improve the DNN-based perception system. Additionally, the scene rendering will

be made more realistic by using other scene rendering tools, such as those based on

state-of-the-art game engines.
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Also, we note that the formal requirements that we considered were provided as an

example of the type used when employing a requirements-driven development approach

based on a temporal logic language, which is a formalism that may be unfamiliar to

many test engineers. Future research will include investigating ways to automatically

produce formal requirements based on requirements given in more traditional forms

or in a visual language for expressing requirements such as ViSpec [88].
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Chapter 5

A TUTORIAL ON SIM-ATAV

5.1 An Overview of Sim-ATAV

Sim-ATAV is a tool developed for experimenting with different test generation

techniques [169] for research purposes as described in Chapter 4. It is mainly developed

in Python and it uses the open-source robotics toolbox Webots for 3D scene generation,

vehicle and sensor modeling and simulation [167, 39]. Sim-ATAV can be interfaced

with covering array generation tools like ACTS [108] and with falsification tools like

S-TaLiRo [60], which is a MATLAB toolbox.

Figure 42 provides a high-level overview of the framework. The main functionality

of Sim-ATAV is provided by Simulation configurator and Simulation Supervisor blocks.

Simulation configurator block represents the Sim-ATAV API for the user script to

create a simulation and to receive the results. Simulation Supervisor block represents

the part of the framework that executes inside the robotics simulation toolbox Webots.

It uses the Webots API to (1) modify the simulation environment, e.g., add/configure

vehicles, roads, pedestrians, provide vehicle controllers, (2) execute the simulation,

and (3) collect information, e.g., the evolution of vehicle states over the simulation

time. Simulation Supervisor receives the requested simulation configuration from the

Simulation configurator over socket communication. When the simulation environment

is set up, Simulation Supervisor requests Webots to start the simulation. User-provided

controllers control the motion of the vehicles and pedestrians. At the end of the
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simulation, Simulation Supervisor sends the collected simulation trace to Simulation

configurator.

External tools like ACTS can be used to generate combinatorial tests with covering

arrays. Sim-ATAV provides functions to read covering array test scenarios from csv

files. For falsification, S-TaLiRo is used to iteratively sample new configurations until a

failure case is detected. Optionally, initial samples for the configurations can be read by

S-TaLiRo from the covering array csv files. The sampled configurations in S-TaLiRo

are passed as parameters to test generation functions using the Python interface

provided in MATLAB, i.e., by calling Python functions directly inside MATLAB.

The test generation functions return the simulation trace back to MATLAB (and

to S-TaLiRo) as return values. More detail on falsification methods is available in

[169, 60]. A running example of test generation is provided in the upcoming sections.

ACTS

Simulation 
Supervisor

Sim. Objects 
(vehicles, roads 

pedestrians)Test 
Generation 

Script

Simulation 
configurator

S-TaLiRo

Covering Array 
Configuration

Sampled 
Configuration

Simulation 
Results

TCP/IP Webots
API(optional)

Vehicle 
Controller

WEBOTS

Figure 42. An Overview of Sim-ATAV.

Although they are not essential for the test generation purposes, Sim-ATAV also

comes with some vehicle controller implementations as well as some basic perception

system, sensor fusion, path planning and control algorithms that can be utilized by

the user for Ego or Agent vehicle control.
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5.2 Installation Instructions

Sim-ATAV requires Python 3.7 and Webots for basic functionality. For some

controllers and test generation approaches, there are other requirements like MAT-

LABr, S-TaLiRo, TensorFlow, SqueezeDet etc. The framework has been tested in

Windows® 10 with specific versions of the required packages.

Firstly, Sim-ATAV should be either downloaded or cloned using a git client 2. For

Windows®, the preferred installation approach is to use setup_for_windows.bat.

Once executed, it will guide the user through the installation process and automate

the process as much as possible. This script is not advanced and may fail for some

systems. If the script fails, please try the steps below for a manual installation.

Below are the steps for the manual installation. All the paths are given relative to

the root folder for the Sim-ATAV distribution. In case any problems are experienced

during the installation of the packages, most of the packages can also be found in

Christoph Gohlke’s website3:

1. Install Python 3.7-64 Bit

2. Install Webots r2019a.

3. (optional) If the system has CUDA-enabled GPU and it will be utilized for an

increased performance:

a. Install CUDA Toolkit 10.0

b. Install CUDNN 7.3.1

4. Download Python_Dependencies from http://www.public.asu.edu/ etuncali/-

2Sim-ATAV: https://cpslab.assembla.com/spaces/sim-atav

3Christoph Gohlke’s website: https://www.lfd.uci.edu/ gohlke/pythonlibs/
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downloads/ and unzip it next to this installation script. The Python wheel

(.whl) files should be directly under ./Python_Dependencies/

5. Install commonly used Python packages:

a. Install Numpy+MKL 1.14.6 either from Python_Dependencies folder or

from Christoph Gohlke’s website:

pip3 i n s t a l l −−upgrade Python_Dependencies/numpy−1 .14.6+

mkl−cp37−cp37m−win_amd64 . whl

b. Install scipy 1.2.0:

pip3 i n s t a l l s c ipy ==1.2.0

c. Install scikit-learn:

pip3 i n s t a l l s c i k i t− l e a r n

d. Install pandas:

pip3 i n s t a l l pandas

e. Install Absl Py:

pip3 i n s t a l l absl−py

f. Install matplotlib:

pip3 i n s t a l l matp lo t l i b

g. Install pykalman:

pip3 i n s t a l l pykalman

h. Install Shapely:

pip3 i n s t a l l Shapely

! If any problems are experienced during the installation of Shapely, it

can be installed from Python_Dependencies folder:
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pip3 i n s t a l l Python_Dependencies/Shapely−1 . 6 . 4 .

post1−cp37−cp37m−win_amd64 . whl

i. Install dubins:

pip3 i n s t a l l dubins

! If any problems are experienced when installing pydubins:

One option is to go into the folder Python_Dependencies/pydubins

and execute python setup.py install. Another option is the follow-

ing:

(i) Download pydubins from github.com/AndrewWalker/pydubins.

(ii) Do the following changes in dubins/src/dubins.c:

#i f n d e f M_PI

#de f i n e M_PI 3.14159265358979323846

#end i f

(iii) Call python setup.py install inside pydubins folder.

6. For controllers with DNN (Deep Neural Network) object detection:

! Currently, Python 3.7 support for Tensorflow is provided by a 3rd party (only

for Windows). Installation wheels are provided under Python_Dependencies

folder.

Check if the system CPU supports AVX2 (for increased performance) 4.

a. If the system GPU has CUDA cores, CUDNN is installed and the system

CPU supports AVX 2: Install Tensorflow-gpu with AVX2 support.

pip3 i n s t a l l −−upgrade Python_Dependencies/tensorflow_gpu−1

. 1 2 . 0−cp37−cp37m−win_amd64 . whl

4A list of CPUs with AVX2 is available at:
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2
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b. If the system GPU has CUDA cores, CUDNN is installed and the system

CPU does NOT support AVX 2: Install Tensorflow-gpu without AVX2

support.

pip3 i n s t a l l −−upgrade

Python_Dependencies/sse2/tensorflow_gpu−1 . 1 2 . 0

−cp37−cp37m−win_amd64 . whl

c. If the system GPU does not have CUDA cores or CUDNN is not installed,

and the system CPU supports AVX 2: Install Tensorflow with AVX2

support.

pip3 i n s t a l l −−user −−upgrade Python_Dependencies/tensorflow−1

. 1 2 . 0−cp37−cp37m−win_amd64 . whl

d. If the system GPU does not have CUDA cores or CUDNN is not installed,

and the system CPU does NOT support AVX 2: Install Tensorflow without

AVX2 support.

pip3 i n s t a l l −−user −−upgrade

Python_Dependencies/sse2/tensorf low−1 . 1 2 . 0

−cp37−cp37m−win_amd64 . whl

7. Install Python Dependencies of SqueezeDet (if the existing controllers that use

SqueezeDet will be used). There is no need to install SqueezeDet separately, as

it is provided in the framework.

a. Install joblib:

pip3 i n s t a l l −−upgrade j o b l i b

b. Install opencv:

pip3 i n s t a l l −−upgrade opencv−contrib−python
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c. Install pillow:

pip3 i n s t a l l −−upgrade Pi l l ow

d. Install easydict:

pip3 i n s t a l l −−upgrade ea syd i c t==1.7

! If any problems are experienced while installing easydict, try the following:

cd Python_Dependencies/easydict−1 .7\

python setup . py i n s t a l l

cd . . / . .

8. To design Covering Array Tests: Please request a copy and install ACTS from

NIST5.

9. To do robustness-guided falsification, MATLABr and S-TaLiRo are needed:

a. Install MATLAB from Mathworks(tested with r2017b).

b. Install S-TaLiRo6.

10. After installation is finished, the Python package wheel files that are under

Python_Dependencies folder can be deleted to save some disk space.

5.2.0.0.1 Setting to Utilize GPU:

If the system has a CUDA-enabled GPU, and CUDA Toolkit, CUDNN are installed,

the variable has_gpu should be set to True in the following file to make the experiments

use the system GPU for SqueezeDet:

Sim_ATAV/classifier/classifier_interface/gpu_check.py.

5ACTS tool can be requested from
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software/downloadable-tools

6S-TaLiRo is available at https://sites.google.com/a/asu.edu/s-taliro/s-taliro
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5.3 Reference Manual

5.3.1 Simulation Entities

Sim-ATAV starts building a testing scenario from an existing Webots world file

provided by the user, which we will call as base world file. The user has the option

to have all or some of the simulation entities, i.e., roads, vehicles, etc., saved in the

base world file before the test generation time. The user can use the functionality

provided by Sim-ATAV to add more simulation entities to the world at the time of

test generation. This functionality is especially useful when the search space for the

tests contain some parameters of the simulation entities such as road width, number

of lanes, positions of the vehicles.

This section describes the most commonly used simulation entities that can be

programmatically added into the simulation world at the time of test generation.

Note that Sim-ATAV may not provide the functionality to add all possible types of

simulation objects that are supported by Webots. In this section, the class names and

properties with their default values for the simulation entities supported by Sim-ATAV

are provided. Test Generation Script which is developed by the user typically creates

instances of required simulation entities and uses the provided functions to add those

entities into the test scenario. For modifying the simulation environment beyond the

capabilities of Sim-ATAV, the user can do the changes manually and save in the base

world file or modify the source code of Sim-ATAV to add or change the capabilities as

needed. For a deeper understanding of the possibilities, the reader is advised to get

familiar with the Webots simulation environment and details of available simulation

entities [39].
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The class properties for the simulation entities are provided in the tables below.

The first row of each table gives the class name. Other rows start with the property

name, gives the default value of the property (the value used if not explicitly changed

by the user), and a brief description of the property. For each class, a related source

code snippet from a running example is provided. The original source code for the

running example can be found as tests/tutorial_example_1.py in the Sim-ATAV

distribution.

Figure 43 is an image from the scenario described in the running example. A

yellow Ego vehicle is behind a pedestrian walking in the middle of a 3-lane road, and

an agent vehicle is approaching from the opposite direction in the next lane. There is

a bumpy road surface for a short distance, and a stop sign placed on the right side of

the road. This is only a simple example to illustrate how to use Sim-ATAV.

Figure 43. A view from the generated scenario for the running example.
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5.3.1.0.1 General information:

In Webots, all simulation entities are kept in a simulation tree and they can be

easily accessed using their DEF_NAME property. Position fields are 3D arrays as

[x, y, z], keeping the value of the position at each axis in Webots coordinate system,

where y is typically the vertical axis to the ground (in practice, this depends on the

Webots world file provided by the user). Rotation fields are 4D arrays as [x, y, z, θ],

where x, y, z represents a rotation vector and θ represents the rotation around this

vector in clockwise direction.

5.3.1.1 Simulation Environment

Once an object is created for a simulation entity, the user can utilize the cor-

responding function provided by Sim-ATAV to add the entity to the scenario. An

easier alternative is to utilize the SimEnvironment class provided by Sim-ATAV.

An object of this class can be populated with the necessary simulation entities and

passed to the simulation environment with a single function call. Table 4 summarizes

the SimEnvironment class.
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Table 4. Simulation Environment Class.
Class Name: SimEnvironment
Property Default Description
fog None Keeps fog object.
heart_beat_config None The heartbeat configuration.
view_follow_config None The viewpoint configuration.
ego_vehicles_list [] The list of Ego vehicles.
agent_vehicles_list [] The list of agent vehicles.
pedestrians_list [] The list of pedestrians.
road_list [] The list of roads.
road_disturbances_list [] The list of road disturbances.
generic_sim_objects_list [] The list of generic simulation objects.
control_params_list [] The list of controller parameters that will

be set in the run time.
initial_state_config_list [] The list of initial state configurations.
data_log_description_list [] The list of data log descriptions.
data_log_period_ms None Data log period (ms).

Example 1 For the running example, we start with an empty simulation environment.

Listing 5.1 creates an empty SimEnvironment object that will later keep the required

simulation entities.

1 from Sim_ATAV. s imu l a t i on_con f i g u r a t o r . sim_environment \

2 import SimEnvironment

3

4 sim_environment = SimEnvironment ( )

Listing 5.1. Source code for creating a simulation environment.
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5.3.1.2 Road

A user-configurable road structure to use in the simulation environment is given

in Table 5.

Table 5. Simulation Entity: Road.
Class Name: WebotsRoad
Property Default Description
def_name “STRROAD” Name as it appears in the simulation

tree.
road_type “StraightRoadSegment” Road type name as used by Webots.
rotation [0, 1, 0, math.pi/2] Rotation of the road
position [0, 0.02, 0] Starting position.
number_of_lanes 2 Number of lanes.
width number_of_lanes * 3.5 Road width (m).
length 1000 Road length (m).

Example 2 Listing 5.2 provides a source code snippet that creates a 3-lane straight

road segment lying between 1000m and -1000m along the x-axis.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webots_road import WebotsRoad

2

3 road = WebotsRoad ( number_of_lanes=3)

4 road . r o t a t i o n = [0 , 1 , 0 , −math . p i / 2 ]

5 road . p o s i t i o n = [1000 , 0 .02 , 0 ]

6 road . l e n g t h = 2000.0

7

8 # Add the road i n t o s imu l a t i on environment o b j e c t :

9 sim_environment . r o a d_ l i s t . append ( road )

Listing 5.2. Source code for creating a road.
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5.3.1.3 Vehicle

A user-configurable vehicle class to use in the simulation environment in Table 6.

Table 6. Simulation Entity: Vehicle.
Class Name: WebotsVehicle
Property Default Description
def_name “” Name as it appears in We-

bots simulation tree.
vhc_id 0 Integer ID for referencing to

the vehicle.
vehicle_model “AckermannVehicle” Vehicle model can be any

model name available in We-
bots.

rotation [0, 1, 0, 0] Rotation of the object.
current_position [0, 0.3, 0] x,y,z values of the position.
color [1, 1, 1] R,G,B values of the color in

the range [0,1].
controller “void” Name of the vehicle con-

troller.
is_controller_name_absolute False Indicates where to find the

vehicle controller. Find the
details below.

vehicle_parameters [] Additional parameters for
the vehicle object.

controller_parameters [] Parameters that will be sent
to the vehicle controller.

controller_arguments True Arguments passed to the ve-
hicle controller executable.

sensor_array [] List of sensors on the vehicle
(WebotsSensor objects).

The vehicle_model field of a vehicle object should match with the models avail-

able in Webots (or any custom models added to Webots by the user). Webots

r2019a version provides vehicle model options ToyotaPrius, CitroenCZero, BmwX5,

RangeRoverSportSVR, LincolnMKZ, TeslaModel3 as well as truck, motorcycle and
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tractor models. When is_controller_name_absolute is set to true, Webots will

load the given controller from Webots_Projects/controllers folder, otherwise, it

will load the controller named vehicle_controller which is located under the same

folder but will take the controller name as an argument.

Example 3 We can now create vehicles and place them on the road that was cre-

ated above. Listing 5.3 provides an example source code snippet that creates an

Ego vehicle at the position x = 20m, y = 0, and an agent vehicle at the position

x = 300m, y = 3.5m, vehicles facing toward each other. The controllers for the

vehicles are set and the controller arguments are provided. The arguments accepted

are controller-specific. The vehicle controllers used in this example can be found under

Webots_Projects/controllers folder.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webo t s_veh i c l e import WebotsVehic le

2

3 # Ego v e h i c l e

4 ego_x_pos = 20.0 # S e t t i n g the x p o s i t i o n o f t h e Ego v e h i c l e in a

v a r i a b l e .

5

6 vhc_obj = WebotsVehic le ( )

7 vhc_obj . cu r r en t_pos i t i on = [ ego_x_pos , 0 .35 , 0 . 0 ]

8 vhc_obj . c u r r en t_or i en t a t i on = math . p i /2

9 vhc_obj . r o t a t i o n = [ 0 . 0 , 1 . 0 , 0 . 0 , vhc_obj . c u r r en t_or i en t a t i on ]

10 vhc_obj . vhc_id = 1

11 vhc_obj . c o l o r = [ 1 . 0 , 1 . 0 , 0 . 0 ]

12 vhc_obj . se t_veh ic l e_mode l ( ' ToyotaPrius ' )

13 # Name o f our c o n t r o l l e r python f i l e i s '

automated_driv ing_with_fus ion2 ' :

14 vhc_obj . c o n t r o l l e r = ' automated_driv ing_with_fus ion2 '

15 # Con t r o l l e r w i l l be found d i r e c t l y under c o n t r o l l e r s f o l d e r :
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16 vhc_obj . i s_contro l l e r_name_abso lu te = True

17 # Below i s a l i s t o f arguments s p e c i f i c to t h i s c o n t r o l l e r .

18 # For re f e r ence , t he arguments are : car_model , target_speed_kmh ,

targe t_la t_pos ,

19 # sel f_vhc_id , s l ow_at_in t e r s ec t i on , has_gpu , proces sor_id

20 vhc_obj . con t ro l l e r_argument s . append ( ' Toyota ' )

21 vhc_obj . con t ro l l e r_argument s . append ( ' 70 .0 ' )

22 vhc_obj . con t ro l l e r_argument s . append ( ' 0 .0 ' )

23 vhc_obj . con t ro l l e r_argument s . append ( ' 1 ' )

24 vhc_obj . con t ro l l e r_argument s . append ( ' True ' )

25 vhc_obj . con t ro l l e r_argument s . append ( ' Fa l s e ' )

26 vhc_obj . con t ro l l e r_argument s . append ( ' 0 ' )

27

28 # Agent v e h i c l e :

29 vhc_obj2 = WebotsVehic le ( )

30 vhc_obj2 . cu r r en t_pos i t i on = [ 300 . 0 , 0 .35 , 3 . 5 ]

31 vhc_obj2 . c u r r en t_or i en t a t i on = 0.0

32 vhc_obj2 . r o t a t i o n = [ 0 . 0 , 1 . 0 , 0 . 0 , −math . p i /2 ]

33 vhc_obj2 . vhc_id = 2

34 vhc_obj2 . se t_veh ic l e_mode l ( ' TeslaModel3 ' )

35 vhc_obj2 . c o l o r = [ 1 . 0 , 0 . 0 , 0 . 0 ]

36 vhc_obj2 . c o n t r o l l e r = ' path_and_speed_fol lower '

37 vhc_obj2 . con t ro l l e r_argument s . append ( ' 20 .0 ' )

38 vhc_obj2 . con t ro l l e r_argument s . append ( ' True ' )

39 vhc_obj2 . con t ro l l e r_argument s . append ( ' 3 .5 ' )

40 vhc_obj2 . con t ro l l e r_argument s . append ( ' 2 ' )

41 vhc_obj2 . con t ro l l e r_argument s . append ( ' Fa l s e ' )

42 vhc_obj2 . con t ro l l e r_argument s . append ( ' Fa l s e ' )

43

44 # Here , we don ' t save the v e h i c l e s i n t o s imu l a t i on environment y e t
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45 # because we w i l l add some sen so r s on the v e h i c l e s be low .

Listing 5.3. Source code for creating a vehicle.

5.3.1.4 Sensor

Table 7 provides an overview of the WebotsSensor class that can be used to

describe a sensor. Webots vehicle models have specific sensor slots on the vehicles.

These are typically TOP, CENTER, FRONT, RIGHT, LEFT. The property sensor_type

accepts the type of the sensor which should match the type used by Webots. The

translation field of the sensor can be used to place the sensor to a different position

relative to its corresponding sensor slot. As sensors can vary a lot in terms or

parameters, sensor_fields property is provided to accept names and values of the

desired parameters as a list of WebotsSensorField objects for flexible configuration

of sensors.

Table 7. Simulation Entity: Sensor.
Class Name: WebotsSensor
Property Default Description
sensor_type “” Type of the sensor as defined in Webots.
sensor_location FRONT Sensor slot enumeration.

<FRONT, CENTER, LEFT, RIGHT, TOP>
sensor_fields [] List of WebotsSensorField objects to customize the

sensor.
Class Name: WebotsSensorField
field_name “” Name of the field that will be set.
field_val “” Value of the field.

Example 4 An example source code of adding sensors to vehicles is provided in

Listing 5.4. In this example, we add a compass and a GPS device that are used by
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the controllers for path following. The receiver device added to the vehicles is used

by the controllers to receive new commands from Simulation Supervisor. We add the

receivers because we will later need them to update target paths of the vehicles. Note

that although the necessary infrastructure for this approach is provided by Sim-ATAV,

it is implementation specific and not mandated. In this example, we also add a radar

device to Ego vehicle for collision avoidance.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webots_sensor import WebotsSensor

2

3 # Add a rad io r e c e i v e r to the c en t e r sensor s l o t

4 # with the name f i e l d s e t to ' r e c e i v e r ' .

5 # This i s o p t i o n a l and w i l l be used to communicate wi th the c o n t r o l l e r

a t t he run−t ime .

6 vhc_obj . sensor_array . append ( WebotsSensor ( ) )

7 vhc_obj . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

8 vhc_obj . sensor_array [ −1] . sensor_type = ' Rece i ver '

9 vhc_obj . sensor_array [ −1] . add_sensor_f ie ld ( 'name ' , ' " r e c e i v e r " ' )

10

11 # Add a compass to the c en t e r s l o t w i th the name f i e l d s e t to ' compass

' .

12 vhc_obj . sensor_array . append ( WebotsSensor ( ) )

13 vhc_obj . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

14 vhc_obj . sensor_array [ −1] . sensor_type = 'Compass '

15 vhc_obj . sensor_array [ −1] . add_sensor_f ie ld ( 'name ' , ' " compass" ' )

16

17 # Add a GPS r e c e i v e r to the c en t e r sensor s l o t .

18 vhc_obj . sensor_array . append ( WebotsSensor ( ) )

19 vhc_obj . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

20 vhc_obj . sensor_array [ −1] . sensor_type = 'GPS '

21
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22 # Add a Radar to the f r o n t sensor s l o t w i th the name f i e l d s e t to '

radar ' .

23 vhc_obj . sensor_array . append ( WebotsSensor ( ) )

24 vhc_obj . sensor_array [ −1] . sensor_type = 'Radar '

25 vhc_obj . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .FRONT

26 vhc_obj . sensor_array [ −1] . add_sensor_f ie ld ( 'name ' , ' " radar " ' )

27

28 # Fina l l y , add the v e h i c l e to t he s imu l a t i on environment as an Ego

v e h i c l e .

29 sim_environment . e g o_v e h i c l e s_ l i s t . append ( vhc_obj )

30

31 # Simi l a r f o r t he agent v e h i c l e :

32 vhc_obj2 . sensor_array . append ( WebotsSensor ( ) )

33 vhc_obj2 . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

34 vhc_obj2 . sensor_array [ −1] . sensor_type = ' Rece i ver '

35 vhc_obj2 . sensor_array [ −1] . add_sensor_f ie ld ( 'name ' , ' " r e c e i v e r " ' )

36

37 vhc_obj2 . sensor_array . append ( WebotsSensor ( ) )

38 vhc_obj2 . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

39 vhc_obj2 . sensor_array [ −1] . sensor_type = 'Compass '

40 vhc_obj2 . sensor_array [ −1] . add_sensor_f ie ld ( 'name ' , ' " compass" ' )

41

42 vhc_obj2 . sensor_array . append ( WebotsSensor ( ) )

43 vhc_obj2 . sensor_array [ −1] . s en so r_ loca t i on = WebotsSensor .CENTER

44 vhc_obj2 . sensor_array [ −1] . sensor_type = 'GPS '

45

46 # Add the agent v e h i c l e to the s imu l a t i on environment

47 sim_environment . a g e n t_ v e h i c l e s_ l i s t . append ( vhc_obj2 )

Listing 5.4. Source code for adding sensor to a vehicle.
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5.3.1.5 Pedestrian

The user-configurable pedestrian class, WebotsPedestrian, to use in the simula-

tion environment is described in Table 8. Target speed and target path (trajectory)

of the pedestrian are automatically passed as arguments to the given controller.

Table 8. Simulation Entity: Pedestrian.
Class Name: WebotsPedestrian
Property Default Description
def_name “PEDESTRIAN” Name as it appears in Webots simulation

tree.
ped_id 0 Integer ID for referencing to the pedes-

trian.
rotation [0, 1, 0, math.pi/2.0] Rotation of the object.
current_position [0, 0, 0] x,y,z values of the position.
shirt_color [0.25, 0.55, 0.2] R,G,B values of the shirt color in the

range [0, 1].
pants_color [0.24, 0.25, 0.5] R,G,B values of the pants color in the

range [0, 1].
shoes_color [0.28, 0.15, 0.06] R,G,B values of the shoes color in the

range [0, 1].
controller “void” Name of the pedestrian controller.
target_speed 0.0 Walking speed of the pedestrian.
trajectory [] Walking path of the pedestrian.
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Example 5 Listing 5.5 provides an example code snippet to create a pedestrian object,

and provide a target speed and a path to define the motion of the pedestrian.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webo t s_pedes t r ian import

WebotsPedes tr ian

2

3 pedes t r ian_speed = 3.0 # Se t t i n g the p e d e s t r i a n wa l k ing speed in a

v a r i a b l e .

4

5 p e d e s t r i an = WebotsPedes tr ian ( )

6 p e d e s t r i an . ped_id = 1

7 p e d e s t r i an . cu r r en t_po s i t i on = [ 5 0 . 0 , 1 . 3 , 0 . 0 ]

8 p e d e s t r i an . s h i r t_co l o r = [ 0 . 0 , 0 . 0 , 0 . 0 ]

9 p e d e s t r i an . pants_co lor = [ 0 . 0 , 0 . 0 , 1 . 0 ]

10 p e d e s t r i an . t a rge t_speed = pedes t r ian_speed

11 # Pedes t r i an t r a j e c t o r y as a l i s t o f x1 , y1 , x2 , y2 , . . .

12 p e d e s t r i an . t r a j e c t o r y = [ 5 0 . 0 , 0 . 0 , 80 .0 , −3.0 , 200 .0 , 0 . 0 ]

13 p e d e s t r i an . c o n t r o l l e r = ' p ed e s t r i an_con t r o l '

14

15 # Add the p e d e s t r i an i n t o the s imu l a t i on environment .

16 sim_environment . p e d e s t r i a n s_ l i s t . append ( p e d e s t r i a n )

Listing 5.5. Source code for creating a pedestrian.
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5.3.1.6 Fog

User-configurable fog class to use in the simulation environment is summarized in

Table 9.

Table 9. Simulation Entity: Fog.
Class Name: WebotsFog
Property Default Description
def_name “FOG” Name as it appears in Webots simulation tree.
fog_type “LINEAR” Defines the type of the fog gradient.
color [0.93, 0.96, 1.0] R,G,B values of the fog color in the range [0,

1].
visibility_range 1000 Visibility range of the fog (m).

Example 6 No camera is involved in this scenario, hence fog will not impact the

performance of the controller. However, an example source code snippet is provided in

Listing 5.6 for reference.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webots_fog import WebotsFog

2

3 # Creat ing f o g wi th 700m v i s i b i l i t y and adding i t to t he s imu l a t i on

environment .

4 sim_environment . f o g = WebotsFog ( )

5 sim_environment . f o g . v i s i b i l i t y _ r a n g e = 700.0

Listing 5.6. Source code for creating fog.

5.3.1.7 Road Disturbance

Road disturbance objects are solid triangular objects placed on the road surface

to emulate a bumpy road surface. WebotsRoadDisturbance, which is described in
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Table 10, contains the properties to describe how the solid objects will be placed to

create a bumpy road surface.

Table 10. Simulation Entity: Road Disturbance Object.
Class Name: WebotsRoadDisturbance
Property Default Description
disturbance_id 1 Object ID for later reference.
disturbance_type INTERLEAVED Enumerated type of the disturbance.

<INTERLEAVED,
FULL_LANE_LENGTH,
ONLY_LEFT, ONLY_RIGHT>

rotation [0, 1, 0, 0] Rotation of the object.
position [0, 0, 0] x,y,z values of the position.
length 100 Length of the bumpy road surface (m).
width 3.5 Width of the corresponding lane.
height 0.06 Height of the disturbance (m).
surface_height 0.02 Height of the corresponding road sur-

face (m).
inter_object_spacing 1.0 Distance between repeating solid ob-

jects on the road (m).

Example 7 An example road disturbance object creation is given in Listing 5.7.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webots_road_dis turbance import

WebotsRoadDisturbance

2

3 # Create bumpy road f o r 3m where t h e r e are road d i s t u r b an c e s on bo th

s i d e o f t he l ane

4 # of h e i g h t 4cm, each s epa ra t ed wi th 0 .5m.

5 road_dis turbance = WebotsRoadDisturbance ( )

6 road_dis turbance . d i s t u rbance_type = WebotsRoadDisturbance .

TRIANGLE_DOUBLE_SIDED #i . e . , INTERLEAVED

7 road_dis turbance . r o t a t i o n = [0 , 1 , 0 , −math . p i / 2 . 0 ] # Same as the

road

8 road_dis turbance . p o s i t i o n = [40 , 0 , 0 ]
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9 road_dis turbance . wid th = 3.5

10 road_dis turbance . l e n g t h = 3

11 road_dis turbance . h e i g h t = 0.04

12 road_dis turbance . i n t e r_ob j e c t_spac ing = 0.5

13

14 # Add road d i s t u r b an c e i n t o the s imu l a t i on environment o b j e c t .

15 sim_environment . r oad_d i s t u r banc e s_ l i s t . append ( road_dis turbance )

Listing 5.7. Source code for creating road disturbance.

5.3.1.8 Generic Simulation Object

Generic simulation object is for adding any type of object into the simulation

which is not covered above. For these objects, there are no checks performed or there

are no limitations on the field values. The user can manually create any possible

Webots object by setting all of its non-default field values.

Table 11. Simulation Entity: Generic Simulation Object.
Class Name: WebotsSimObject
Property Default Description
def_name “” Name as it appears in Webots simulation tree.
object_name “Tree” Type name of the object. Must be same as the

name used by Webots.
object_parameters [] List of (field name, field value) tuples as strings.

Names must be same as the field names used by
Webots.

Example 8 In Listing 5.8, although it is not expected to have an impact on the

controller performance, a Stop Sign object is created as a generic simulation object

example for reference.
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1 from Sim_ATAV. s imu l a t i on_con t ro l . webots_sim_object import

WebotsSimObject

2

3 sim_obj = WebotsSimObject ( )

4 sim_obj . object_name = ' StopSign ' # The name o f t he o b j e c t as d e f i n e d

in Webots .

5 # The f i e l d names and format as they are used by Webots .

6 sim_obj . ob j ec t_parameters . append ( ( ' t r a n s l a t i o n ' , ' 40 0 6 ' ) )

7 sim_obj . ob j ec t_parameters . append ( ( ' r o t a t i o n ' , ' 0 1 0 1.5708 ' ) )

8

9 # Add the s t op s i gn as a g ene r i c i tem in t o the s imu l a t i on environment

o b j e c t .

10 sim_environment . g ene r i c_s im_ob j e c t s_ l i s t . append ( sim_obj )

Listing 5.8. Source code for adding a stop sign to the simulation.

5.3.2 Configuring the Simulation Execution

5.3.2.1 Additional Controller Parameters

Depending on the application and implementation details, controller parameters

can be directly given to the controllers or they can be sent in the run-time. To

emulate runtime inputs, such as human commands, Sim-ATAV can transmit controller

commands over virtual radio communication. The controller should be able to read

those commands from a radio receiver and a receiver object should be added to one

of the sensor slots of the vehicles. This is an optional approach and the user is free to

use other approaches such as reading data from a file, using socket communications

etc.
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Table 12. Controller parameters.
Class Name: WebotsControllerParameter
Property Default Description
vehicle_id None ID of the corresponding vehicle.
parameter_name “” Name of the parameter as string.
parameter_data [] Parameter data.

Example 9 An example controller parameter creation.

1 from Sim_ATAV. s imu l a t i on_con t ro l . webo t s_contro l l e r_parameter \

2 import WebotsContro l l erParameter

3

4 # −−−−− Con t r o l l e r Parameters :

5 # Ego Target Path :

6 t a r g e t_po s_ l i s t = [ [ −1000.0 , 0 . 0 ] , [ 1 000 . 0 , 0 . 0 ] ]

7

8 # Add each t a r g e t p o s i t i o n as a c o n t r o l l e r parameter f o r Ego v e h i c l e .

9 f o r targe t_pos in t a r g e t_po s_ l i s t :

10 sim_environment . c on t r o l l e r_pa rams_ l i s t . append (

11 WebotsContro l l erParameter ( v e h i c l e_ i d =1,

12 parameter_name=' t a r g e t_po s i t i o n ' ,

13 parameter_data=targe t_pos ) )

14

15 # Agent Target Path :

16 t a r g e t_po s_ l i s t = [ [ 1 0 0 0 . 0 , 3 . 5 ] , [ 1 4 5 . 0 , 3 . 5 ] , [ 1 1 0 . 0 , −3.5] ,

[−1000.0 , −3.5 ] ]

17

18 # Add each t a r g e t p o s i t i o n as a c o n t r o l l e r parameter f o r agent v e h i c l e

.

19 f o r targe t_pos in t a r g e t_po s_ l i s t :

20 sim_environment . c on t r o l l e r_pa rams_ l i s t . append (

21 WebotsContro l l erParameter ( v e h i c l e_ i d =2,
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22 parameter_name=' t a r g e t_po s i t i o n ' ,

23 parameter_data=targe t_pos ) )

Listing 5.9. Source code for creating controller parameters.

5.3.2.2 Heartbeat Configuration

Simulation Supervisor can periodically report the status of the simulation execution

to Simulation Configurator with heartbeats. Simulation Configurator can further modify

the simulation environment on the run time by responding to the heartbeats.

Table 13. Heartbeat Configuration.
Class Name: WebotsSimObject
Property Default Description
sync_type NO_HEART_BEAT NO_HEART_BEAT: Do not report simula-

tion status.
WITHOUT_SYNC: Report the status and
continue simulation.
WITH_SYNC: Wait for new commands after
each heartbeat.

period_ms 10 Period of the simulation status reporting.

Example 10 An example heartbeat configuration.

1 from Sim_ATAV. s imu l a t i on_con t ro l . hear t_beat import HeartBeatConf ig

2

3 # Create a h e a r t b e a t c o n f i g u r a t i o n t h a t w i l l make S imu la t i on

Supe r v i s o r r e po r t

4 # s imu l a t i on s t a t u s a t every 2 s and con t inue e x e cu t i on w i t hou t wa i t i n g

f o r a new

5 # command .

6 sim_environment . hear t_bea t_conf i g = \
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7 HeartBeatConf ig ( sync_type=HeartBeatConf ig .WITHOUT_SYNC, period_ms

=2000)

Listing 5.10. Source code for creating a heartbeat configuration.

5.3.2.3 Data Log Item

Data log items are the states that will be collected into the simulation trace by
Simulation Supervisor.

Table 14. Data Item Description.
Class Name: ItemDescription
Property Default Description
item_type None Type of the corresponding simulation

entity.
<TIME, VEHICLE, PEDESTRIAN>

item_index None Index of the corresponding simulation
entity.

item_state_index None Index of the state that will be recorded.

Example 11 An example list of data log items for simulation trajectory generation.

1 # −−−−− Data Log Con f i g u ra t i on s :

2 # F i r s t en t ry in the s imu l a t i on t r a c e w i l l be t he s imu l a t i on time :

3 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

4 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_TIME,

5 i tem_index=0, i tem_state_index=0) )

6

7 # For each v e h i c l e in Ego and Agent v e h i c l e s l i s t ,

8 # record x , y p o s i t i o n s , o r i e n t a t i o n and speed :

9 f o r vhc_ind in range ( l en ( sim_environment . e g o_v e h i c l e s_ l i s t ) + l en (

sim_environment . a g e n t_ v e h i c l e s_ l i s t ) ) :

10 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (
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11 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE,

12 i tem_index=vhc_ind ,

13 i t em_state_index=WebotsVehic le .STATE_ID_POSITION_X) )

14 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

15 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE,

16 i tem_index=vhc_ind ,

17 i t em_state_index=WebotsVehic le .STATE_ID_POSITION_Y) )

18 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

19 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE,

20 i tem_index=vhc_ind ,

21 i t em_state_index=WebotsVehic le .STATE_ID_ORIENTATION) )

22 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

23 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE,

24 i tem_index=vhc_ind ,

25 i t em_state_index=WebotsVehic le .STATE_ID_SPEED) )

26

27 # For each pede s t r i an , record x and y p o s i t i o n s :

28 f o r ped_ind in range ( l en ( sim_environment . p e d e s t r i a n s_ l i s t ) ) :

29 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

30 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_PEDESTRIAN,

31 i tem_index=ped_ind ,

32 i t em_state_index=WebotsVehic le .STATE_ID_POSITION_X) )

33 sim_environment . d a t a_ l o g_de s c r i p t i on_ l i s t . append (

34 I t emDesc r i p t i on ( item_type=I t emDesc r i p t i on .ITEM_TYPE_PEDESTRIAN,

35 i tem_index=ped_ind ,

36 i t em_state_index=WebotsVehic le .STATE_ID_POSITION_Y) )

37

38 # Set the pe r i od o f data l o g c o l l e c t i o n from the s imu l a t i on .

39 sim_environment . data_log_period_ms = 10

40
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41 # Create Tra j e c t o ry d i c t i o n a r y f o r l a t e r r e f e r e n c e .

42 # Dic t i onary w i l l be used to r e l a t e r e c e i v e d s imu l a t i on t r a c e to

o b j e c t s t a t e s .

43 sim_environment . popu la t e_s imu la t i on_trace_d ic t ( )

Listing 5.11. Source code for creating data log items.

5.3.2.4 Initial State Configuration

Initial state configuration objects are for setting an initial state ofa simulation

entity.

Table 15. Initial State Configuration.
Class Name: InitialStateConfig
Property Default Description
item None Data item for the corresponding state as an

ItemDescription object.
value None Initial value of the corresponding state.

Example 12 An example initial state configuration.

1 from Sim_ATAV. s imu l a t i on_con t ro l . i n i t i a l _ s t a t e_ c o n f i g import

I n i t i a l S t a t e C o n f i g

2 from Sim_ATAV. s imu l a t i on_con t ro l . i t em_desc r i p t i on import

I t emDesc r i p t i on

3

4 ego_init_speed_m_s = 10.0 # Keeping the Ego i n i t i a l speed in a

v a r i a b l e

5

6 # Create and add an i n i t i a l s t a t e c o n f i g u r a t i o n i n t o s imu l a t i on

environment o b j e c t .
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7 sim_environment . i n i t i a l _ s t a t e_ c o n f i g_ l i s t . append (

8 I n i t i a l S t a t e C o n f i g ( i tem=I t emDesc r i p t i on (

9 i tem_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE, # S ta t e o f a v e h i c l e

10 i tem_index=0, # Veh i c l e index 0 ( f i r s t added v e h i c l e )

11 i t em_state_index=WebotsVehic le .STATE_ID_VELOCITY_X) , # Speed

a long x−a x i s

12 va l u e=ego_init_speed_m_s ) )

Listing 5.12. Source code for setting an initial state value.

5.3.2.5 Viewpoint Configuration

Webots viewpoint can automatically follow a simulation entity throughout the

simulation. Viewpoint configuration is used to describe which object to follow if

desired.

Table 16. Viewpoint Configuration.
Class Name: ViewFollowConfig
Property Default Description
item_type None Type of the corresponding simulation en-

tity.
<TIME, VEHICLE, PEDESTRIAN>

item_index None Index of the corresponding simulation en-
tity.

position None [x, y, z] values of the initial position of the
viewpoint.

rotation None [x, y, z, θ] Rotation of the viewpoint.

Example 13 An example viewpoint configuration.

1 from Sim_ATAV. s imu l a t i on_con f i g u r a t o r . v i ew_fo l l ow_con f i g import

ViewFol lowConf ig
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2

3 # Create a v i ewpo in t c o n f i g u r a t i o n to f o l l o w Ego v e h i c l e ( v e h i c l e

indexed as 0 as i t

4 # i s the f i r s t added v e h i c l e ) . Viewpoint w i l l be p o s i t i o n e d 15m beh ind

and 3m above

5 # the v e h i c l e .

6 sim_environment . v i ew_fo l l ow_con f i g = \

7 ViewFol lowConf ig ( i tem_type=I t emDesc r i p t i on .ITEM_TYPE_VEHICLE,

8 i tem_index=0,

9 p o s i t i o n =[ sim_environment . e g o_v e h i c l e s_ l i s t [ 0 ] . c u r r en t_pos i t i on [ 0 ]

− 15 .0 ,

10 sim_environment . e g o_v e h i c l e s_ l i s t [ 0 ] . c u r r en t_po s i t i on [ 1 ] + 3 .0 ,

11 sim_environment . e g o_v e h i c l e s_ l i s t [ 0 ] . c u r r en t_po s i t i on [ 2 ] ] ,

12 r o t a t i o n =[0 .0 , 1 . 0 , 0 . 0 , \

13 −sim_environment . e g o_v e h i c l e s_ l i s t [ 0 ] . c u r r en t_or i en t a t i on ] )

Listing 5.13. Source code for creating a viewpoint configuration.

5.3.2.6 Simulation Configuration

Simulation configuration provides the information necessary to execute a simulation
through TCP/IP connection between Simulation Configurator and Simulation Supervisor.
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Table 17. Simulation Configuration.
Class Name: SimulationConfig
Property Default Description
world_file “../Webots_Projects/ Name of the base Webots

worlds/test_world_1.wbt” world file.
server_port 10021 Port number for connecting

to Simulation Supervisor.
server_ip “127.0.0.1” Port number for connecting

to Simulation Supervisor.
sim_duration_ms 50000 Simulation duration (ms).
sim_step_size 10 Simulation time step (ms).
run_config_arr [] List of run configurations

for supporting multiple par-
allel simulation executions
(RunConfig objects).

Class Name: RunConfig
Property Default Description
simulation_run_mode FAST_NO_GRAPHICS Webots run mode (simula-

tion speed).
REAL_TIME:
Real-time speed,
FAST_RUN:
As fast as possible with vi-
sualization,
FAST_NO_GRAPHICS:
As fast as possible without
visualization.

Example 14 An example simulation configuration creation.

1 from Sim_ATAV. s imu l a t i on_con f i g u r a t o r import s im_conf i g_too l s

2

3 s im_conf ig = s im_conf i g_too l s . S imu la t i onCon f i g (1)

4 s im_conf ig . run_config_arr . append ( s im_conf i g_too l s . RunConfig ( ) )

5 s im_conf ig . run_config_arr [ 0 ] . simulation_run_mode = SimData .

SIM_TYPE_REAL_TIME

6 s im_conf ig . sim_duration_ms = 15000 # 15 s s imu l a t i on

7 s im_conf ig . s im_step_size = 10
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8 s im_conf ig . wo r l d_ f i l e = ' . . / Webots_Projects / wor ld s /empty_world . wbt '

Listing 5.14. Source code for creating a simulation configuration.

5.3.3 Executing the Simulation

To start execution of a scenario, it is advised to first start Webots with the base

world file manually. If Webots crashes or communication is lost, Sim-ATAV can

restart Webots when necessary (only is Webots is executing in the same system).

To start the simulation, Simulation Configurator should be used to connect to the

Simulation Supervisor, send the simulation environment and configuration details, start

the simulation, and finally collect the simulation trace. Below is an example source

code for this step.

Example 15 An example for execution of the simulation.

1 from Sim_ATAV. s imu l a t i on_con f i g u r a t o r . s im_environment_conf igurator

import SimEnvironmentConf igurator

2

3 # Create a S imu la t i on Con f i gu ra to r wi th the p r e v i o u s l y d e f i n e d sim .

c on f i g u r a t i o n .

4 s im_env_conf igurator = SimEnvironmentConf igurator ( s im_conf ig=

sim_conf ig )

5

6 # Connect to the S imu la t i on Supe r v i s o r .

7 # Try maximum o f 3 ( max_connection_retry ) t imes to connect .

8 ( is_connected , s imu la to r_ins t ance ) = sim_env_conf igurator . connect (

max_connection_retry=3)

9 i f not i s_connected :

10 r a i s e ValueError ( ' Could not connect ! ' )
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11

12 # Setup the s c ena r i o wi th p r e v i o u s l y popu l a t ed S imu la t i on Environment

o b j e c t .

13 s im_env_conf igurator . setup_sim_environment ( sim_environment )

14

15 # Execute the s imu l a t i on and g e t t he s imu l a t i on t r a c e .

16 t r a j e c t o r y = sim_env_conf igurator . run_simulat ion_get_trace ( )

Listing 5.15. Source code for executing the scenario.

5.4 Combinatorial Testing

Sim-ATAV provides basic functionality to read test scenarios from csv files, in

which, each row represents a test case and each column holds the values of a test param-

eter. This feature can be used to automatically execute a set of predefined test cases.

The user can create csv files that contain a set of test cases either manually or by using a

tool. Table 18 provides a list of methods provided in covering_array_utilities.py.
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load_experiment_data(file_name, header_line_count=6, index_col=None)
Description: Loads test cases from a csv file.
Arguments: file_name: Name of the csv file

header_line_count: Number of header lines to skip. (default: 6)
index_col: Index of the column that is used for data indexing.
(default: None)

Return: A pandas data frame (a tabular data structure) containing all test
cases.

get_experiment_all_fields(exp_data_frame, exp_ind)
Description: Returns all parameters for a test case (one row of the test table).
Arguments: exp_data_frame: Data frame that was read using

load_experiment_data
exp_ind: Index of the experiment

Return: A row from the test table that contains the requested test case.
get_field_value_for_current_experiment(cur_experiment, field_name)
Description: Returns the value of the requested test parameter.
Arguments: cur_experiment: Current test case that was read using

get_experiment_all_fields.
field_name: Name of the test parameter.

Return: Value of the requested parameter for the given test case.

Table 18. A list of Sim-ATAV methods for loading test cases from csv files.

For combinatorial testing, ACTS from NIST [108] can be used as a tool for

generating covering arrays. Providing a complete guide on covering arrays and how

to use ACTS is out of the scope of this chapter. The user of ACTS creates a system

definition by defining the system parameters and providing the possible values for

each parameter. The system definition is saved as an xml file. ACTS can generate a

covering array of desired strength and export the outputs in a csv file. An example

of a system definition and a corresponding 2-way covering array are provided in

Sim-ATAV distribution in tests/examples/TutorialExampleSystemACTS.xml and

tests/examples/TutorialExample_CA_2way.csv files, respectively. Below is an

example of reading test cases from a csv file and running each test one by one. Note
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that, in the example, simulation trajectories are not evaluated. Outputs of each test

case should be evaluated to decide the test result.

Example 16 An example for running covering array test cases.
In this example, a 2-way covering array for the test parameters is gener-

ated in ACTS. Table 19 shows the original test parameter name from the file
tutorial_example_1.py, the name used in ACTS, and the possible values for each
parameter (corresponding ACTS file is TutorialExampleSystemACTS.xml).

Table 19. Describing test parameters for creating a covering array.
Parameter Name in ACTS Possible Values
ego_init_speed_m_s ego_init_speed 0, 5, 10, 15
ego_x_pos ego_x_position 15, 20, 25
pedestrian_speed pedestrian_speed 2,3,4,5

After entering the parameter descriptions in Table 19 to ACTS, a 2-way covering ar-

ray is generated and exported as a csv file. Listing 5.16 shows the contents of the output

csv file. The file is available as: tests/examples/TutorialExample_CA_2way.csv.

# ACTS Test Su i t e Generat ion : Mon Jan 14 22 :46 :33 MST 2019

# '∗ ' r e p r e s e n t s don ' t care va l u e

# Degree o f i n t e r a c t i o n coverage : 2

# Number o f parameters : 3

# Maximum number o f v a l u e s per parameter : 4

# Number o f c o n f i g u r a t i o n s : 16

ego_init_speed , ego_x_posit ion , pedes t r i an_speed

0 ,20 ,2

0 ,25 ,3

0 ,15 ,4

0 ,20 ,5

5 ,25 ,2

5 ,15 ,3
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5 ,20 ,4

5 ,25 ,5

10 ,15 ,2

10 ,20 ,3

10 ,25 ,4

10 ,15 ,5

15 ,20 ,2

15 ,25 ,3

15 ,15 ,4

15 ,15 ,5

Listing 5.16. CSV file containing a set of test cases generated by ACTS.

Below is the source code that is reading the test cases from the csv file using the

functions listed in Table 18 and running each test case one by one.

1 import t ime

2 from Sim_ATAV. s imu l a t i on_con f i g u r a t o r import c o v e r i n g_a r r a y_u t i l i t i e s

3

4 de f run_tes t ( ego_init_speed_m_s=10.0 , ego_x_pos=20.0 , pedes t r i an_speed

=3.0) :

5 """Runs a t e s t w i th the g i v en arguments """

6 .

7 .

8 .

9 # This f un c t i on i s c r e a t i n g the t e s t scenar io , e x e cu t i n g i t and

r e t u rn in g t r a j e c t o r y as d e s c r i b e d in p r e v i ou s s e c t i o n . Content i s

not r epea t ed here f o r space c on s i d e r a t i o n s .

10 .

11 .

12 .

13 r e tu rn t r a j e c t o r y
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14

15 de f run_cover ing_array_tes ts ( ) :

16 """Runs a l l t e s t s from the cove r i n g array csv f i l e """

17 exp_file_name = 'TutorialExample_CA_2way . c sv ' # csv f i l e

c on t a in in g the t e s t s

18

19 # Read a l l exper iment i n t o a t a b l e :

20 exp_data_frame = co v e r i n g_a r r a y_u t i l i t i e s . load_experiment_data (

exp_file_name , header_l ine_count=6)

21

22 # Decide number o f exper iment s based on the number o f e n t r i e s in

the t a b l e .

23 num_of_experiments = l en ( exp_data_frame . index )

24

25 t r a j e c t o r i e s_ d i c t = {} # A d i c t i o n a r y data s t r u c t u r e to keep

s imu l a t i on t r a c e s .

26

27 f o r exp_ind in range ( num_of_experiments ) : # For each t e s t case

28 # Read the cur r en t t e s t case

29 current_exper iment = c o v e r i n g_a r r a y_u t i l i t i e s .

g e t_expe r imen t_a l l_ f i e l d s (

30 exp_data_frame , exp_ind )

31

32 # Read the parameters from the cur r en t t e s t case :

33 ego_ini t_speed = f l o a t (

34 c o v e r i n g_a r r a y_u t i l i t i e s .

ge t_f i e ld_va lue_for_curren t_exper iment (

35 current_exper iment , ' ego_ini t_speed ' ) )

36 ego_x_posi t ion = f l o a t (
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37 c o v e r i n g_a r r a y_u t i l i t i e s .

ge t_f i e ld_va lue_for_curren t_exper iment (

38 current_exper iment , ' ego_x_posi t ion ' ) )

39 pedes t r ian_speed = f l o a t (

40 c o v e r i n g_a r r a y_u t i l i t i e s .

ge t_f i e ld_va lue_for_curren t_exper iment (

41 current_exper iment , ' pedes t r i an_speed ' ) )

42

43 # Execute the t e s t case and record the r e s u l t i n g s imu l a t i on

t r a c e :

44 t r a j e c t o r i e s_ d i c t [ exp_ind ] = run_tes t ( ego_init_speed_m_s=

ego_init_speed ,

45 ego_x_pos=ego_x_posit ion , pedes t r i an_speed=pedes t r ian_speed )

46 t ime . d e l a y (2) # Give Webots some time to r e l o ad the wor ld

47 r e tu rn t r a j e c t o r i e s_ d i c t

Listing 5.17. Source code for executing the covering array test cases.

5.5 Falsification / Search-based Testing

For performing falsification, a CPS falsification tool like S-TaLiRo [60] can be

used. As S-TaLiRo is in MATLAB, we need to call the Sim-ATAV test cases which

are developed in Python from MATLAB. In this section, first a simple approach is

described to call the test cases from MATLAB, then a simple S-TaLiRo setup is

described to perform falsification. This chapter does not provide a complete guide to

S-TaLiRo. Reader is referred to S-TaLiRo website for further details 7.

7S-TaLiRo iwebsite: https://sites.google.com/a/asu.edu/s-taliro/s-taliro
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5.5.1 Connecting to MATLAB

MATLABr has built-in support to call Python functions. However, type con-

versions are required both in Sim-ATAV and in the MATLAB code 8. Sim-ATAV

provides basic functionality to convert simulation trace to a format (single dimen-

sional list) that can be easily interpreted in MATLAB. Listing 5.18 shows the

necessary updates on the Python side. First, sim_duration argument is added

to run_test function allow S-TaLiRo run different length of simulations. Next,

for_matlab argument is added to tell the function is called from MATLAB so

that experiment_tools.npArray2Matlab method from Sim-ATAV is used to convert

simulation trace to a single list for MATLAB.

1 de f run_test ( ego_init_speed_m_s=10.0 , ego_x_pos=20.0 , pedestr ian_speed

=3.0 , sim_duration=15000 , for_matlab=False ) :

2 """Runs a t e s t with the g iven arguments """

3 . . .

4 # This func t i on i s c r e a t i n g the t e s t s cenar io , execut ing i t and

re tu rn ing t r a j e c t o r y as de s c r ibed in prev ious s e c t i o n . Content i s

not repeated here f o r space c on s i d e r a t i o n s .

5 . . .

6 i f for_matlab :

7 t r a j e c t o r y = exper iment_tools . npArray2Matlab ( t r a j e c t o r y )

8 re turn t r a j e c t o r y

Listing 5.18. Source code for executing the covering array test cases.

On the MATLAB side, we need a wrapper function to call the func-

tion run_test. Listing 5.19 provides an example to such a wrapper func-

8The user is free to use a different approach than what is described here.
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tion. This MATLAB code can be found in Sim-ATAV distribution in the file

/tests/examples/run_tutorial_example_from_matlab.m. Unused return parame-

ters YT, LT, CLG, GRD and input arguments steptime, InpSignal are to maintain

compatibility with S-TaLiRo function call format.

1 f unc t i on [T, XT, YT, LT, CLG, GRD] = run_tutorial_example_from_matlab (

XPoint , sim_duration_s , steptime , InpS igna l )

2 %run_tutorial_example_from_matlab Run Webots s imu la t i on with the

parameters in XPoint .

3 % XPoint conta in s : [ ego_init_speed_m_s , ego_x_pos , pedestr ian_speed ]

4

5 % Run the s imu la t i on and r e c e i v e the t r a j e c t o r y :

6 t r a j = py . tutorial_example_1 . run_test (XPoint (1 ) , XPoint (2 ) , XPoint (3 ) ,

in t32 ( sim_duration_s ∗1000 .0 ) , t rue ) ;

7

8 % Convert t r a j e c t o r y to matlab array

9 mattraj = Core_py2matlab ( t r a j ) ; % Core_py2matlab i s from Matlab

f i l e ex change , developed by Kyle Wayne Karhohs

10 YT = [ ] ;

11 LT = [ ] ;

12 CLG = [ ] ;

13 GRD = [ ] ;

14 i f isempty ( mattraj )

15 T = [ ] ;

16 XT = [ ] ;

17 e l s e

18 % Separate time from the s imu la t i on t r a c e :

19 T = mattraj ( : , 1 ) /1000 . 0 ; % Also , convert time to s from ms

20 XT = mattraj ( : , 2 : end ) ; % Rest o f the t r a c e

21 end
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22 end

Listing 5.19. Matlab code as a wrapper to execute Python test execution function.

5.5.2 Connecting to S-TaLiRo

To perform falsification with S-TaLiRo, an MTL specification should be defined,

ranges for test parameters and the MATLAB code, which is given in Listing 5.19, for

running a simulation should be provided to S-TaLiRo as the model under test. Listing

5.20 gives a very simple example for falsification with an MTL requirement that checks

x and y coordinates of Ego and agent vehicles to decide a collision. This MATLAB code

can be found in Sim-ATAV distribution in /tests/examples/run_falsification.m.

The requirement is not to collide onto the agent vehicle. Note that, this requirement

is very simplified to provide a simple example source code. A more complete check for

collision would require incorporating further vehicle details and/or extracting collision

information from the simulation.

1 % Ind i c e s o f s t a t e s in s imu la t i on t r a c e :

2 cur_traj_ind = 1 ;

3 EGO_X = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

4 EGO_Y = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

5 EGO_THETA = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

6 EGO_V = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

7 AGENT_X = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

8 AGENT_Y = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

9 AGENT_THETA = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

10 AGENT_V = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

11 PED_X = cur_traj_ind ; cur_traj_ind = cur_traj_ind + 1 ;

12 PED_Y = cur_traj_ind ;
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13 NUM_ITEMS_IN_TRAJ = cur_traj_ind ;

14

15 % Pred i ca t e s f o r MTL requirement :

16 i i = 1 ;

17 preds ( i i ) . s t r=' y_check1 ' ;

18 preds ( i i ) .A = ze ro s (1 , NUM_ITEMS_IN_TRAJ) ;

19 preds ( i i ) .A(AGENT_Y) = 1 ;

20 preds ( i i ) .A(EGO_Y) = −1;

21 preds ( i i ) . b = 1 . 5 ;

22

23 i i = i i +1;

24 preds ( i i ) . s t r=' y_check2 ' ;

25 preds ( i i ) .A = ze ro s (1 , NUM_ITEMS_IN_TRAJ) ;

26 preds ( i i ) .A(AGENT_Y) = −1;

27 preds ( i i ) .A(EGO_Y) = 1 ;

28 preds ( i i ) . b = 1 . 5 ;

29

30 i i = i i +1;

31 preds ( i i ) . s t r=' x_check1 ' ;

32 preds ( i i ) .A = ze ro s (1 , NUM_ITEMS_IN_TRAJ) ;

33 preds ( i i ) .A(AGENT_X) = 1 ;

34 preds ( i i ) .A(EGO_X) = −1;

35 preds ( i i ) . b = 8 ;

36

37 i i = i i +1;

38 preds ( i i ) . s t r=' x_check2 ' ;

39 preds ( i i ) .A = ze ro s (1 , NUM_ITEMS_IN_TRAJ) ;

40 preds ( i i ) .A(AGENT_X) = −1;

41 preds ( i i ) .A(EGO_X) = 1 ;

42 preds ( i i ) . b = 0 ;

179



43

44 % Metric Temporal Logic Requirement :

45 phi = ' [ ] ( ! ( y_check1 /\ y_check2 /\ x_check1 /\ x_check2 ) ) ' ;

46

47 % Ranges f o r t e s t parameters ( ego_init_speed_m_s , ego_x_pos ,

pedestr ian_speed ) :

48 in it_cond = [ 0 . 0 , 1 5 . 0 ;

49 15 . 0 , 2 5 . 0 ;

50 2 . 0 , 5 . 0 ] ;

51

52 % Provide our Matlab wrapper func t i on f o r running the t e s t s as the model

.

53 model = @run_tutorial_example_from_matlab ;

54 opt = s t a l i r o_op t i on s ( ) ;

55 opt . runs = 1 ; % Do f a l s i f i c a t i o n only once .

56 opt . black_box = 1 ; % Because we use a custom Matlab func t i on as the

model .

57 opt . SampTime = 0 . 0 1 0 ; % Sample time . Same as Webots world time step .

58 opt . spec_space = 'X ' ; % Requirements are de f ined on s t a t e space .

59 opt . opt imiza t i on_so lve r = ' SA_Taliro ' ; % Use Simulated Annealing

60 opt . t a l i r o = ' dp_tal i ro ' ; % Use dp_tal i ro to compute robus tnes s

61 opt . map2line = 0 ;

62 opt . f a l s i f i c a t i o n = 1 ; % Stop when f a l s i f i e d

63 opt . optim_params . n_tests = 100 ; % maximum number o f t r i e s

64 sim_duration = 15 . 0 ;

65

66 di sp ( [ ' Running S−TaLiRo . . . ' ] )

67 [ r e s u l t s , h i s t o r y ] = s t a l i r o (model , init_cond , [ ] , [ ] , phi , preds ,

sim_duration , opt ) ;

68
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69 res_f i l ename = [ ' r e su l t s_ ' , da t e s t r ( datet ime ("now") , 'yyyy_mm_dd__HH_MM'

) , ' . mat ' ] ;

70 save ( res_f i l ename )

71 di sp ( [ " Resu l t s are saved to : " , res_f i l ename ] )

Listing 5.20. Matlab code for running falsification with S-TaLiRo.

5.6 Other Remarks

A user guide for Sim-ATAV is provided with a running example. The source code

for the running example used in this chapter is available in Sim-ATAV distribution

under tests/examples folder. As Sim-ATAV is a research tool that is not directly

targeted for production-level systems special caution should be taken before using it

for testing any critical functionality. Sim-ATAV is still evolving and it may contain a

number of bugs or parts that are open to optimization. Here, only major functionality

provided by Sim-ATAV is discussed. It provides further functionality like a number of

sample vehicle controller subsystems, additional computations on simulation trajectory

such as collision detection, and functionality toward evaluating perception-system

performance. For a deeper understanding of Sim-ATAV’s capabilities, the reader is

encouraged to go through the source code for examples and experiments that are used

as case studies for publications.
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