19,314 research outputs found

    Power efficient job scheduling by predicting the impact of processor manufacturing variability

    Get PDF
    Modern CPUs suffer from performance and power consumption variability due to the manufacturing process. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this work we show that parallel systems benefit from taking into account the consequences of manufacturing variability when making scheduling decisions at the job scheduler level. We also show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensure that power consumption stays under a system-wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications, utilizing up to 4096 cores in total. We demonstrate that they decrease job turnaround time, compared to contemporary scheduling policies used on production clusters, up to 31% while saving up to 5.5% energy.Postprint (author's final draft

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Feedback and time are essential for the optimal control of computing systems

    Get PDF
    The performance, reliability, cost, size and energy usage of computing systems can be improved by one or more orders of magnitude by the systematic use of modern control and optimization methods. Computing systems rely on the use of feedback algorithms to schedule tasks, data and resources, but the models that are used to design these algorithms are validated using open-loop metrics. By using closed-loop metrics instead, such as the gap metric developed in the control community, it should be possible to develop improved scheduling algorithms and computing systems that have not been over-engineered. Furthermore, scheduling problems are most naturally formulated as constraint satisfaction or mathematical optimization problems, but these are seldom implemented using state of the art numerical methods, nor do they explicitly take into account the fact that the scheduling problem itself takes time to solve. This paper makes the case that recent results in real-time model predictive control, where optimization problems are solved in order to control a process that evolves in time, are likely to form the basis of scheduling algorithms of the future. We therefore outline some of the research problems and opportunities that could arise by explicitly considering feedback and time when designing optimal scheduling algorithms for computing systems

    Genetic optimization of energy- and failure-aware continuous production scheduling in pasta manufacturing

    Get PDF
    Energy and failure are separately managed in scheduling problems despite the commonalities between these optimization problems. In this paper, an energy- and failure-aware continuous production scheduling problem (EFACPS) at the unit process level is investigated, starting from the construction of a centralized combinatorial optimization model combining energy saving and failure reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm (IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS problem. The IGA is integrated with three features: Memory search, problem-based randomization, and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems. Large-scale experiments are further conducted to validate the effectiveness of IGA

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Day-Ahead Scheduling for Economic Dispatch of Combined Heat and Power with Uncertain Demand Response

    Get PDF
    This paper presents an energy management method for the interconnected operation of power, heat, Combined Heat and Power (CHP) units to settle the Day-Ahead market in the presence of a demand response program (DRP). A major challenge in this regard is the price uncertainty for DRP participants. First, the definitive model of the problem is introduced from the perspective of the Regional Market Manager (RMM) in order to minimize the total supply cost in the presence of TOU program, which is a type of DRP. Furthermore, a market-oriented tensile model is presented in the form of a combination of over-lapping generations (OLG) and price elasticity (PE) formulations to determine the amount of electricity demand in the TOU program. Then, a price uncertainty model of the proposed problem is introduced according to the IGDT risk aversion and risk-taking strategies considering information gap decision theory (IGDT). The above problem is solved through the use of the co-evolutionary particle swarm optimization (C-PSO) algorithm and the proposed model is implemented on a standard seven-unit system for a period of 24 hours.© 2022 authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore