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ABSTRACT

Modern CPUs suffer from performance and power consump-
tion variability due to the manufacturing process. As a result,
systems that do not consider such variability caused by manu-
facturing issues lead to performance degradations and wasted
power. In order to avoid such negative impact, users and
system administrators must actively counteract any manu-
facturing variability.

In this work we show that parallel systems benefit from
taking into account the consequences of manufacturing vari-
ability when making scheduling decisions at the job scheduler
level. We also show that it is possible to predict the impact
of this variability on specific applications by using variability-
aware power prediction models. Based on these power models,
we propose two job scheduling policies that consider the ef-
fects of manufacturing variability for each application and
that ensure that power consumption stays under a system-
wide power budget. We evaluate our policies under different
power budgets and traffic scenarios, consisting of both single-
and multi-node parallel applications, utilizing up to 4096
cores in total. We demonstrate that they decrease job turn-
around time, compared to contemporary scheduling policies
used on production clusters, up to 31% while saving up to
5.5% energy.

CCS CONCEPTS

• Computer systems organization → Parallel archi-
tectures; • Hardware → Power estimation and opti-
mization;
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1 INTRODUCTION

Power is becoming a major financial and environmental con-
cern, restricting the compute capacity of High Performance
Computing (HPC) systems. Today’s most power efficient
supercomputer operates at 14.1GFLOPS/W [1], but even if
we had a system able to operate at the 50GFLOPS/W rate,
which is the limit that some funding agencies have set up for
building an exascale machine, the full system would consume
several tens of MWatts of power, which constitutes a large
economic burden. Consequently, a report from the US De-
partment of Energy (DOE) [52] identifies energy efficiency as
one of the top ten research challenges on the road to exascale.
For similar reasons, the European Union has set up an HPC
program low-power systems based on mobile technology [45].

An emerging design practice for HPC systems, known
as overprovisioning [43], is to have more nodes than the
maximum power budget could feed if run at peak capacity,
in contrast to traditional approaches, which are focused in
having enough power even when all nodes run at their peak.
Overprovisioning is driven by the observation that most
applications in practice never reach peak power and hence
do not fully utilize the available power envelope. In such
overprovisioned systems, we can lower the average power
provisioned to each node, allowing us to power more nodes
within the same power budget. This approach is made possible
by recent developments in hardware design that enable power
management and power capping from user space, as this is
necessary to efficiently manage power as a limited and shared
resource. As an alternative to restricting power to nodes, we
can choose to only operate fewer but at full power. Their
total power consumption should not exceed that of the total
power budget. This second approach restricts the available
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parallelism in the system, but allows for faster execution
and does not force us to deal with any complications related
slower then expected execution of the system’s workload.
Which approach is preferable (or a combination of both)
should depend on system and workload characteristics. For
example, whether the workload would benefit from extra
processing units or limitations in the completion time set by
the user or administrator.

Workloads at the HPC system level are managed by job
schedulers that allocate resources to dispatched jobs. Such
jobs can run on distributed memory scenarios and, in this
context, MPI [41] is the most common approach to handle
distributed memory communications. It is usually coupled
with a shared memory programming model, like OpenMP [42]
or similar [3]. Either across nodes or within a shared-memory
node, both job and runtime schedulers deal with the re-
source allocation problem, albeit at different levels, offering
opportunities to manage power consumption. Indeed, ex-
amples of power-aware systems that offer solutions either
at the job scheduling [12, 16, 19, 22] or at runtime system
[13, 22, 27, 53, 54] levels already exist in the literature.

Manufacturing variability or process variation refers to
the power and frequency heterogeneity observed across chips
implementing the exact same architecture as a consequence
of uncontrollable material differences in the manufacturing
process [46]. In order to provide homogeneous performance,
chips of the same architecture must hide frequency variabil-
ity, which can only be achieved via variations in their power
consumption. However, in a power constrained environment
where all chips need to operate under a certain power cap,
this frequency variability can no longer be hidden [46], lead-
ing to heterogeneous performance. As a result, a theoretically
homogeneous system turns into a heterogeneous one with
performance variations of up to 64% [27]. While ignoring this
manufacturing variability leads to performance and energy
inefficiencies, there are opportunities for achieving improve-
ments at the power budgeting or parallel runtime system
levels when variability is properly managed [13, 22, 27, 53, 54].
Moreover, manufacturing variability makes hardware imposed
bounds more difficult to deal with, since it has varying and
difficult to predict impact on performance. A system orig-
inally considered homogeneous in terms of performance, is
now an heterogeneous one, after imposing hardware power
bounds.

This paper goes beyond the state-of-the-art by proposing
job scheduling policies driven by variability-aware power pre-
diction models. We extend power-aware scheduling and power
prediction models to deal with manufacturing variabity, pro-
ducing two novel variability- and power-aware job scheduling
policies. We consider the power consumption of the CPU,
since it accounts for more than 50% [15, 24] of the total node’s
power consumption. Our Policies rely on two different models
and leverage their power requirement predictions of individ-
ual parallel jobs to make scheduling decisions that maximize
performance while reducing energy consumption. Many differ-
ent variability-agnostic power and energy prediction models
have been proposed [6, 7, 10, 23, 29] and are often employed

0 500 1000 1500 2000 2500 3000

Time (sec)

0

5000

10000

15000

P
ow

er
(W

at
ts
)

SLURM SLURM+variability aware SLURM+variability agnostic

Figure 1: Total power consumption trace for Con-
servative, Variability agnostic and Variability Aware
scheduling policies, when running the same work-
load. Considering socket variability maximizes per-
formance and meets the power budget.

to manage power distribution on clusters to mitigate the
effects of manufacturing variability [4, 13, 16, 22, 27, 53, 54].
In our approach, we do not consider imposing per node hard-
ware power bounds, in order to avoid the complications of
a performance heterogeneous system. Instead, we use power
prediction models to guide job scheduling and maximize the
system’s utilization for a given system-wide power budget.
Hardware power bounds can be used in our approach however
a safety measure, in case of inaccurate predictions.

As a motivation we show Figure 1, where three different
scheduling policies are compared. The Conservative simply
considers that all jobs consume the same power on all sock-
ets. The Variability agnostic predicts accurately the power
consumption of individual jobs, but does not consider socket
variability. On the contrary, the Variability Aware policy does
also consider socket variability, making a different prediction
per socket. As displayed in Figure 1, the Conservative policy
is the one providing the worse performance. The Variability
Agnostic improves performance by making more accurate
predictions but fails to account for the more power consuming
sockets, exceeding the 15KWatts power budget. Finally, the
Variability Aware policy manages to improve performance,
while respecting the power budget. Figure 1 illustrates how
accounting for manufacturing variability while scheduling par-
allel jobs provides performance benefits. Section 4.1 describes
the experimental setup we consider to generate Figure 1.

This paper shows how variability-aware power prediction
models can be effectively used to guide job scheduling policies
and bring significant benefits with respect to the variability-
agnostic ones. In particular, this paper makes the following
contributions beyond the state-of-the-art:

• Two new variability-aware power prediction models.
Both models use Performance Monitoring Counters
(PMC) to predict an application’s power consumption
on a specific socket. PMCs are used to measure the
activity of individual architectural components while
the targeted application is running and a linear model
is then used to find their contribution to power con-
sumption. The first model assumes power variability to
impact all applications equally. It uses a single bench-
mark to measure the power consumption variability
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Table 1: Architectural component activity ratios
formulas for Intel Broadwell Architecture, inferred
from Intel’s 64 and IA-32 Architectures Software De-
veloper’s Manual [28]

Power Component Component Activity Formula

Fetch
UOPS RETIRED.ALL /

CPU CLK UNHALTED.THREAD P

Branch Prediction Unit
BR INST RETIRED.ALL BRANCHES
/ CPU CLK UNHALTED.THREAD P

Arithmetic & Logic Unit

(UOPS DISPATCHED.PORT 0 +

UOPS DISPATCHED.PORT 1 +
UOPS DISPATCHED.PORT 5) /

CPU CLK UNHALTED.THREAD P

Floating Point
FP COMP OPS EXE.X87 /

CPU CLK UNHALTED.THREAD P

L1 cache
L1D ALL.REF /
CPU CLK UNHALTED.THREAD P

L2 cache
(L2 RQSTS.ALL RFO +
L2 RQSTS.ALL DEMAND DATA RD)

/ CPU CLK UNHALTED.THREAD P

L3 cache
LLC.References /
CPU CLK UNHALTED.THREAD P

Memory
LLC.Misses /
CPU CLK UNHALTED.THREAD P

across sockets and apply it to the Variability Agnos-
tic PMC-based model. The second model extends the
PMC-based approach to take power consumption vari-
ability into account, as part of the model. It trains the
model for each individual socket, using a reduced set
of benchmarks.

• Two power- and variability-aware job scheduling poli-
cies that optimize job turnaround time and energy
efficiency while respecting a system-wide power budget.
Unlike previous work that does not consider variability
during job scheduling decisions [16, 22, 27, 53], our
policies use variability-aware predicton model to guide
scheduling.

• A complete evaluation of the two variability-aware
policies via a discrete event simulator. We implement
additional scheduling policies for our evaluation, which
represent traditional and state-of-the-art practices used
in today’s HPC systems. Our evaluation demonstrates
how variability-aware policies achieve energy savings
up to 5.5% and job turnaround time reductions up
to 31%, considering different power budgets and two
workload traffic scenarios (bursty and heavy).

The remainder of this paper is organized as follows. Sec-
tion 2 presents the two variability-aware power prediction
models. Section 3 introduces the variability and power-aware
scheduling policies we propose. A validation of the models
and evaluation of our job scheduling policies are presented
in Section 4. Section 5 discusses the related work on power
prediction and power-aware scheduling and, finally, Section 6
provides concluding remarks.

2 POWER VARIABILITY

PREDICTION MODELS

Power modeling has received a lot of attention from re-
searchers and developers as it provides a quick and robust
way to understand the power behavior of a system. A com-
mon approach for predicting power consumption consists in
the usage of Performance Monitoring Counters (PMC) [5, 7,
9, 11, 36, 51], since sampling PMC does not introduce signif-
icant power interference [29, 32] and PMC-based prediction
models decompose a chip into several components in terms
of power consumption [7]. While power prediction models
are employed to find the best tradeoff between power and
performance [22], we are not aware of any previous work that
uses variability-aware power models to guide job scheduling
decisions.

2.1 Power Ratio Model

Our first (baseline) model attempts to circumvent the rela-
tive complexity of dealing with manufacturing variability by
assuming that all applications are impacted the same by it.
It uses a PMC-based model to predict an application’s power
consumption, without considering variability. Then it uses a
single benchmark, in our case an OpenMP implementation
of the cholesky1 decomposition of a dense 65 MB matrix,
and measures the average power consumption on each socket
we want to generate a model for. Once this information is
obtained, we characterize the variability between sockets in
terms of power ratios and we apply them to power prediction
of a target application (denoted as app), made by using the
PMC profiles obtained from an execution on a single reference
socket (denoted as socketref ).

PMC values capture the contribution of each chip’s ar-
chitectural component to power consumption, by modeling
their usage as activity ratios. These ratios are defined as the
number of retired micro operations relevant to the targeted
architectural component per active cycle. For example, for
main memory and caches, activity ratios are the number of
references or misses per cycle, respectively. The model as-
sumes that a component’s contribution to power consumption
is proportionate to its usage. The granularity at which we
can decompose a chip into architectural components depends
on the underlying architecture and the available PMC. Ta-
ble 1 shows the different components and their corresponding
PMC formulas for the Intel’s Broadwell architecture.

Figure 2 shows power and activity ratio profiles for the
active cores (CORES), fetch unit (FE) and L1 cache, for
the blackscholes, bodytrack, lu-mz C.16 and sp-mz D.8 par-
allel codes. For multi-node applications, lu-mz C.16 and sp-

mz D.8, we show the activity ratios and power consumption
of one of the processes, running on one of the sockets.

Each process has its own set of activity ratios that result
in individual predictions, per socket that it run on (see Sec-
tion 4.1 for experimental setup details). All applications have

1We chose cholesky because it is a dense linear algebra kernel, which
stresses both CPU and cache memory accounting for power consump-
tion variability across the sockets.
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Figure 2: Power, active cores and component activity ratio traces when running on 12 cores of a single socket.
Architectural components shown are the fetch unit (FE) and L1 cache. The activity ratios are the number of
retired micro operations per unhalted cycle, relevant to each architectural component. In the case of cores,
activity ratio is the number of active cores. For memory the activity ratio is measured as the number of
references (for caches) or LLC misses (for main memory) per cycle. For multi-node applications, we show
the activity on the socket running one of the MPI processes. PMC data is collected for all the processes and
individual predictions are made for each socket.

a unique power profile that is the result of the different compo-
nent activity ratios. For example, blackscholes and sp-mz D.8

have high CORES activity that contribute to the power con-
sumption. However, blackscholes has minimal activity in L1
cache, which results in lower overall power consumption, when
compared to sp-mz D.8. Moreover, lu-mz C.16 has similar
activity ratios to sp-mz D.8 but significantly lower activity
in cores (only uses 1 core per process), which results in lower
power consumption. Finally, we can observe how changes
in component activity influences power consumption in the
cases of blackscholes and bodytrack.

We then align the activity ratios with measured power
data, which allows us to express the power of an application
on a particular socket as:

P = AC ∗Wcores +

Ncomp∑

c=1

(ARc ∗Wc) (1)

where ARi is the activity ratio of power component i, AC

is the average number of active cores and P is the power
consumption, at a given moment. These values are known for
any given application in our training set. However, we need
to find the contribution of each component to the total power
consumption P . This is expressed using a set of weights,

denoted as Wi for architectural component i and Wcores for
active cores.

We determine the weights using a training stage during
which we monitor power along with the architectural compo-
nent activity for a small set of kernels. The choice of training
benchmarks should reflect different application behaviors
(e.g., computation vs. memory bound) and stress different
architectural components, such as integer or floating point
units and the different memory levels. The list of applica-
tions used for training can be found in Table 2. To better
account for the power contribution of the memory subsystem,
this list includes an additional synthetic code, mem bench, a
microbenchmark that causes misses on different levels of the
memory hierarchy.

2.2 Variability-Trained Prediction Model

With the data measured in this training stage, we then use
linear regression to determine the values of Wi and Wcores

that best fit in Equation 1 on a given socket. The resulting
linear model is socket-specific and can predict the power
consumption of a generic application assuming its activity
ratios for all architectural components and cores are known.

We obtain the values of Wi and Wcores for a specific socket
we use as reference. To account for manufacturing variability
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Figure 3: Actual and predicted power consumption, using the PMC-based (Optimized PMC) model, for
blackscholes under three distinct sockets. Same CPU chip model is mounted on all three sockets, utilizing all
12 available cores.

Table 2: Benchmark training set for PMC-based
power prediction model.

Benchmark Description

cholesky
Floating point cholesky factorazation ker-
nel. Latency-bound.

knn K-nearest neighbours kernel. CPU-bound.

matmul
Floating point matrix multiplication kernel.
Latency-bound.

md5
MD5 message-digest algorithm. Memory-
bound.

prk2 stencil
Tests the efficiency with which a space-
invariant symmetric filter (stencil) applies
to images. Memory-bound.

qr tile Tiled QR factorization kernel. CPU-bound.

sparseLU
Sparse LU factorization kernel. Memory-
bound.

stap
Space-Time Adaptive RProcessing for
radar detection of an objects position.
Latency-bound.

symmatinv
Floating point symmetric matrix inversion
kernel. CPU-bound.

vector-redu
Computes the sum of the integer elements
of a vector. Memory-bound.

mem bench
A micro-benchmark that stretches different
memory levels.

we use the power ratios computed using the cholesky bench-
mark. The power consumption of app on any socketi is then
obtained by the following formula:

P
app

socketi
= P

app

socketref
∗
P

choleksy

socketi

P
cholesky

socketref

(2)

In the case of multi-node applications, we predict the
power consumption of each socket an MPI process runs on,
by applying the power ratio corresponding to that socket.

Our second model does not assume the impact of manu-
facturing variability to be independent of the parallel code.
Instead, it aims at capturing the impact of manufacturing
variability on each specific application. Due to manufacturing
variability, power consumption differs between sockets, which
means that Wc and Wcores are socket-specific and obtained
by solving Equation 1 individually for each socket. In terms

of the activity ratio values per application, we assume them
to be invariant across all sockets featuring the same archi-
tectural design. Consequently, the socket-specific Formula 1
can be extended to integrate all sockets featuring the same
architectural design:

P
app

socketi
= AC

app ∗W socketi
cores +

Ncomp∑

c=1

(AR
app
c ∗W socketi

c ) (3)

From this formula we can obtain a power prediction of an
application running on any chosen socket, which is charac-
terized in terms of its weights. For each parallel code we just
need a single run on a generic socket to compute ARc and
AC, which are socket-independent as they are determined by
the architectural design.

For multi-node applications, individual predictions need
to be made for each socket an MPI process is run on. A
corresponding model needs to be applied to each socket,
which has been trained for each socket individually, producing
a different set of weights. The resulting prediction is a set of
predictions, equal to the number of sockets the application
run on, each prediction accounting for the individual socket’s
own variability.

Figure 3 shows power profiles of the blackscholes code
(solid line) running on three different sockets, together with
the corresponding predicted power consumption (dashed line).
Figure 3 displays how the power consumption varies up to
19% for the same application (from 76W to 96W peak power),
depending on the socket it runs on. The predicted values
capture the power consumption variability for all cases.

To improve the model’s precision, per each application,
we consider using only a subset of architectural components
that provides the most accurate results. This way we mediate
any biasing the training set may have. All possible combi-
nations of architectural components are considered and a
prediction error is computed for each one. We use the Mean
Absolute Percentage Error (MAPE) formula for computing
this prediction error

M =
100

n

n∑

t=1

|
At − Ft

At

| (4)

where At and Ft are the actual and predicted values for
observation t, and n is the total number of observations. The
model with the lowest error value is chosen for all future
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predictions. This tuning process can be done offline per each
targeted application using data obtained from a single parallel
execution. The same optimization is also applied to the PR
model. From this point on, any mention to the PR and VT
models, references the optimized versions of the models (or
otherwise unoptimized PR and VT). Section 4.3 shows a
detailed evaluation and validation of both models.

2.3 Predicting Power for Multi-Node

Applications

For multi-node applications, individual predictions need to me
made for each MPI process (process with similar workloads
can be treated as the same one). A corresponding model
needs to be applied to each socket and process, producing a
different set of weights. The result is a prediction of power
consumption of each process and each socket. For example, if
we have an application with N processes and a system with
M sockets, then we make N ×M predictions.

3 JOB SCHEDULING POLICIES

We propose two new variability-aware job scheduling policies,
the Power Ratio Variability Prediction and the Variability-

Trained Prediction. These schedulers make use of the power
variability prediction models introduced in Section 2. With
these models, the schedulers predict the job’s power con-
sumption on all available sockets and schedule the job on the
most efficient one. Before scheduling the job, the scheduler
checks whether the system-wide power budget would be re-
spected once the job starts running. If this is not the case,
the job will wait until other jobs finish and more power is
available. In the case of multi-node jobs, we consider the total
power consumption of all its processes. Our scheduler does
not explicitly consider the interconnect topology. We use the
default configuration of SLURM, where nodes are viewed as
a one-dimensional array and node distances are set to be
equal. In such configuration, inter-node communication has
always the same cost. Our scheduler always allocates entire
nodes to the same application to exploit fast inter-socket
communication as much as possible.

Furthermore, we consider three job scheduling policies
representative of the state-of-the-art and with increasing
complexity: SLURM extended, Power Estimation, and Power

Estimation+Variability Aware. The first two are variability-
agnostic, while the third is variability-aware. Finally, we also
consider an Ideal Variability Prediction, which is based on
an oracle power variability predictor that knows exactly how
much power a job will consume on any processor in the
system. We extend the SLURM’s logic [30] to implement the
various power- and variability-aware job scheduling policies
presented in this section. We chose SLURM as our reference
because it is widely used on HPC production systems and
well studied in the literature. All job scheduling policies are
described in the following:

SLURM Extended : This policy implements SLURM sched-
uler’s logic. We extend the default behavior to not exceed the
global power budget, by considering the worst case scenario,

which is that each job can consume the maximum power bud-
get allowed per socket. Additionally, we extend the scheduler
to initiate backfilling for power as well [44]. Typically, if a job
requests more sockets than currently available, the scheduler
will try to schedule a different job without causing delays.
The same will happen if a job requests more power than the
system can allocate.

Power Estimation (SLURM+PE): This policy extends
further SLURM extended ’s behavior by using a user provided
estimation of a job’s power consumption. For precision we
obtain power profiles of previous execution of the jobs to
estimate the power consumption. This is the equivalent of
using a variability-agnostic prediction model. This scheduler
does not consider manufacturing variability as it assumes all
sockets consume the same power for a given job.

Power Estimation+Variability Aware (SLURM+PEVA):
This policy implements elements from the state-of-the-art
practices in power-aware job scheduling [22, 27]. Similarly
to SLURM+PE, it estimates the power requirements of a
job using a power trace from a previous execution. It also
orders sockets and allocates first the most power efficient
ones to minimize the system’s net power consumption. The
socket ordering is obtained by running a simple benchmark,
the cholesky kernel, on all sockets and observing their power
consumption. This approach assumes all parallel jobs to be
influenced by manufacturing variability in the very same
way. Moreover, a job’s power estimation depends on the
socket used for profiling and thus it is possible to under or
over-estimate the final power.

Power Ratio Variability Prediction (SLURM+PRVP):
This is the first new policy we propose. It relies on our
Power Ratio Model, presented in Section 2.1, to guide sched-
uling decisions. A single power and performance profile of a
given job (or one for each socket a process was run on, for
multi-node jobs) is required in order to compute the activity
ratios, which can be performed on any set of sockets in the
system. Running the single benchmark a priori on all sockets
is also required.

If the predicted power for a new job makes the system
budget to go over its limit, then the job waits until resources
are released. The backfilling scheme is the same as with the
previous policies. This policy’s framework is shown in Figure 4.
The lower box shows the training stage corresponding to this
policy.

Variability-Trained Prediction (SLURM+VTP): Our sec-
ond proposed policy is similar to the PRVP policy, but it
uses our VT prediction model (see Section 2.2). This policy
requires running the training benchmark set from Table 2 on
all sockets in order to train the model. The framework for
this policy is described in Figure 4. The box on the upper
right corner corresponds to the training process of this policy.

Ideal Variability Prediction (SLURM+IVP): This policy
is identical to SLURM+PRVP and SLURM+VTP, but us-
ing an oracle power predictor to drive job scheduling de-
cisions. This policy is aimed at showing the impact of us-
ing a 100% accurate model to guide scheduling decisions.
Thus, SLURM+IVP is used for comparison purposes to show
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the maximum benefits that can be achieved by power- and
variability-aware job scheduling policies.

4 METHODOLOGY EVALUATION

4.1 Experimental Setup

To evaluate the proposed models and job scheduling policies,
we have access to 128 nodes of the Quartz cluster at Lawrence
Livermore National Laboratory [37], which contain 4096 cores
in total. We use an in-house simulator to mimic the behavior
of a job scheduling system on a production platform like
Quartz. For training the prediction models, we use the set
of kernel and micro-benchmark applications described in
Table 2. We maintain socket temperature between 38-42 ◦C,
in order to only observe the power consumption variation
relevant to manufacturing variability.

Hardwareand Simulation Platforms: The Quartz cluster [37]
consists of 2634 NUMA nodes, each with two 16-core Intel
Xeon E5-2695v4 sockets and equipped with 128GB of main
memory.

For testing our scheduling policies, we implement a discrete
event simulator 2, and implemented our scheduling policies
on top of it. It requires all jobs to be first executed on the
physical hardware to gather performance and power traces,
which are then used to simulate their execution under different
scheduling schemes. Idle power is modeled as the average
power consumed by each socket, as measured on the actual
hardware. Using a simulator allows us to rapidly test and
evaluate new policies without any accuracy loss since the
simulations are led by power traces obtained from real parallel
executions.

Training and Workload Benchmark Applications: To train
our models we use a set of small kernel and micro-benchmarks,
listed in Table 2, that capture different behaviors. In addition
to these kernels, we design a microbenchmark that stresses
each level of the memory hierarchy, in order to measure the
impact that each cache level has on power consumption. To
evaluate the job scheduling policies considered, we use the

2The simulator, along with the traces used in this document, are avail-
able at https://bitbucket.org/dchasap/cwm-simulator/src/master/.

PARSECSs benchmark suite [14] (task-based implementation
of PARSEC [8]) as our set of single socket parallel jobs and
the MPI+OpenMP versions of the NAS-MZ benchmarks [31]
as our multi-node jobs. The PARSECSs benchmark suite con-
sists of emerging workloads for shared memory architectures,
representative of applications run on typical HPC systems.
The NAS-MZ benchmarks are also a well known set of kernel
applications that can run on a large set of nodes, often used
in HPC. The multi-node jobs run with different configura-
tions for 8, 16 and 64 MPI processes, where each process
runs on a single socket. All instances and processes run on 16
cores, with the exception of facesim (8 cores), fluidanimate

(8 cores), lu-mz D.8 and lu-mz D.8 (1 core per MPI process).
The numbers at the end of the multi-node application names
denote the number of processes instantiated for the given
benchmark configuration. Individual application in our di-
verse set of benchmarks can run from a single core up to 1536
cores, for the larger MPI codes.

Cluster Workload Generation Typically, workload man-
ager schedulers are evaluated using workload traces from the
job queues of actual HPC clusters [19, 20]. However, in our
case this is not applicable, since these type of traces do not
contain information on power and manufacturing variability.
Moreover, we are not able to create a job queue trace out
of the clusters we have access to, since reading performance
counters such as the RAPL interface requires root access.
For these reasons we generate our own cluster workload com-
bining single- and multi-node applications, allowing us to
measure the performance and power profiles of the workload.
A similar methodology is used in other power and manufac-
turing variability related studies [16, 44], but in our approach
we use a wider number and range of applications.

We generate two random job distributions as our workload
on the cluster, corresponding to bursty and heavy loads. The
bursty scenario consists of 763, periodically creating a heavy
load that requires a large number of sockets to be served,
even exceeding the systems total capacity, having jobs wait.
However, there are also time periods that the system may be
idle or have only a few jobs to serve. The heavy load scenario
consists of 2286 jobs, where there are always enough jobs to
occupy the whole system, for 98% of the total execution (2%
corresponds to initial submission when the whole system is
idle and the few last jobs remaining at finalization, before all
jobs complete and system returns to idle state). In the rest
of this document, we use the term traffic when referring to
the cluster’s load.

Performance and Power Monitoring: Our methodology
requires to monitor performance counters plus power con-
sumption rates. We use perf version 3.10 and mpstat version
10.5.1 for monitoring architectural and core component ac-
tivity. For measuring power and enforcing power limits we
implement a daemon built on top of libmsr [49], which is
a framework for accessing RAPL registers safely from user
space. RAPL registers are known to have very good accuracy
[15, 24, 25, 33]. The sample rate is 100ms for power mon-
itoring and 1s for performance counters. Although we are
able to monitor an applications real power consumption on
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Figure 5: Comparison of average power prediction
error for all models over all sockets. The error bars
show the standard error deviation across all sockets
for the corresponding application.

a finer grain, our predictions are limited to 1s granularity,
since they depend on the performance counter data collected
at the coarser granularity.

4.2 Simulator Validation

To validate the simulator we run a small scale experiment
using 8 nodes (16 sockets) on Quartz. The workload we
use consists of a mix of a 100 randomly chosen instances
of the PARSECSs benchmarks. We run a bash script that
periodically issues 10 instances (every 60s) until all the job
instances are issued and wait for all jobs to finish execution.
We generate a trace with the timestamp of each job’s issue
time and the node it was run on. We also keep track of the
total time it takes for all the jobs to complete along with the
total energy consumed.

We then use the simulator to repeat the experiment and
reproduce the results measured on the actual machine. We
run again all PARSECSs applications on all 16 sockets to
gather the traces and power profiles, this time to give as input
to the simulator. Then we issue the same 100 jobs again, this
time on the simulator, at the same intervals as with the
original run on the actual machine. The simulator will also
use the workload trace to get the socket each job run on,
and try to replicate the same socket to job allocation. This
way, it essentially recreates the same scheduling decisions
SLURM took on the actual machine. When all jobs finish
execution, we measure the total execution time and energy
consumption.

Comparing total execution time and energy consumption
between the two experiments shows that the simulator is 1.6%
slower than the actual execution on the cluster. Moreover,
the jobs’ total power consumption is higher on the simulator
by 1.1%. These results show that our simulator has very
good accuracy and the results discussed in this Section are
representative of the impact our scheduling policies would
have on the actual machine.

4.3 Model Validation

In this section we experimentally validate the prediction mod-
els presented in Section 2. We analyze the models in terms of

Mean Absolute Percentage Error (MAPE) (see Equation 4)
between predicted and real values. Figure 5 shows the MAPE
values of the average power predictions for all applications
over all sockets. The error bars show the standard deviation of
the MAPE metric, computed over all the 256 sockets. These
results correspond to the optimized versions of the Power Ra-
tio (PR) prediction model, presented in Section 2.1, and the
Variability-Trained (VT), which is presented in Section 2.2.
Since the PR model incorrectly assumes that all applications
are affected by manufacturing variability the same way, we
show two versions of the PR. Models are denoted as PR-MB
and PR-CB, using by a memory bound (sparseLU ) and a
computation bound benchmark (cholesky) for computing the
variability ratios, respectively. Overall, all models performs
well, achieving an average error below 10%. The VT model
outperforms the PR models, while PR models varies depend-
ing on the benchmark used to compute the variability ratios.
PR-MB consistently performs worse than PR-CB, since the
memory bound benchmark detects up to 15% less variability
than the computation bound one. This disparity among re-
sults for the PR model can become a more serious problem
in the future, as variability is expected to increase [39]. The
more robust VT model will be better suited, since it does
not falsely assume that variability is application independent.
The unoptimized versions (see Section 2) of the same models
reach up to a 16% error (results not shown).

Our results show that all three models are able to predict
the power consumption variability in most cases. However, it
is possible to misspredict if an application’s behavior is not
well represented by the benchmarks used for training. Two
such cases are bodytrack and facesim, that although they are
effectively using more than 8 cores, their power consumption
remains below 60 Watts.

4.4 Variability-Aware Scheduling

Evaluation

In this section we evaluate the two novel scheduling policies
proposed in this paper, SLURM+PRVP and SLURM+VTP,
which are presented in Section 3. We compare them to four
other scheduling policies, SLURM extended, SLURM+PE,
SLURM+PEVA and SLURM+IVP, which are also described
in 3. SLURM extended policy implements SLURM’s logic
in our simulator, with the addition of power-awareness and
power backfilling. SLURM+PE and SLURM+PEVA employ
state-of-the-art features of proposed power-aware policies [12,
22, 43], while SLURM+IVP demonstrates the ideal scenario,
where prediction is 100% accurate. The evaluation is done
based on a simulator, as described in Section 4.1, by feeding it
performance and power traces from actual executions on the
Quartz cluster. For our experiments we generate random job
workloads composed of nine applications from the PARSECSs
suite and seven multi-node jobs from NAS-MZ, simulating
both bursty and heavy traffic scenarios (see Section 4.1).
The main objective of each policy is to improve the cluster’s
performance and energy consumption, while exceeding a
global power budget. All policies treat power as a limited
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Figure 6: Power and Average turnaround time reduction over SLURM extended. Results SLURM+PE and
SLURM+PEVA values range as shown by the corresponding lines, depending on the estimation provided.

resource and depending on a predicted or estimated power
peak for each job, they restrict the number of running jobs
to only those that can be accommodated by the given power
budget.

Figure 6 compares the different policies in terms of average
job turnaround time reduction (x axis) and their maximum
power consumption (y axis). The turnaround time reduc-
tion shown in percentages on x axis is over the SLURM

extended policy, for the corresponding power budget and traf-
fic. We define job turnaround time as the time a job waits
to be scheduled, including scheduler overhead, plus its exe-
cution time. The average job turnaround time is computed
as the sum of turnaround time of all jobs, divided by the
number these jobs. Results consider five different system-wide
power budgets, 5K, 7.5K, 10K, 15K and 20KWatts and the
bursty and heavy traffic scenarios described in Section 4.1.
Our workloads require 25K Watts to run using the whole
cluster without restricting any jobs. In the 5KW case, the
SLURM extended is forced to drop jobs that use 64 sock-
ets, since it estimates that these jobs require more power
than available to the system. The minimum budget that
allows SLURM extended to run jobs that demand 64 sockets
is 7.5KW. Since the case of 5KW SLURM extended runs
a lighter load (dropped 64 socket jobs), results are slightly
biased towards SLURM extended (just for the 5KW case).

SLURM+PRVP, SLURM+VTP and SLURM+IVP poli-
cies are denoted with different symbols. The two considered
traffic scenarios produce similar results. SLURM+PRVP per-
forming slightly better, reflecting the better precision of
the underlying prediction model. An exception is the case
of a 20KWatts power budget, where SLURM+VTP per-
forms marginally better than SLURM+PRVPby 2%. In
this case, almost all jobs can be run without exceeding

the power budget, thus rendering the improved precision
of SLURM+PRVP irrelevant. The lowest reduction in terms
of job turnaround time, 15%, is observed in the case of the
bursty traffic scenario, under a power budget of 20KWatts,
for the SLURM+VTP policy. The largest improvement, 31%,
is obtained by the SLURM+VTP policy when managing
the bursty traffic under a power budget of 5KWatts. The
benefits of the SLURM+PRVP, and the SLURM+VTP poli-
cies reach an average of 25%, considering all power bud-
gets and traffic scenarios. SLURM+IVP, which is the ideal
scenario, performs slightly better than SLURM+PRVPand
SLURM+VTPunder all power budgets, although the bene-
fits achieved by our two proposed policies are very close to the
best possible scheduling. SLURM+PE and SLURM+PEVA are
shown as lines, where their performance and maximum power
consumption can lie on any point on the corresponding
line. This is because unlike our proposed policies, which
use prediction models to compute the power consumption
of each job on each socket, the power-estimation-based poli-
cies, SLURM+PE and SLURM+PEVA, use a single power
estimation obtained from power profiling on a single socket.
Due to the power variability of each socket, it is possible
that the estimation varies according to the variability of the
socket used for profiling. This variance impacts the policies’
efficiency.

Underestimating power by using a power efficient socket
allows more sockets to get allocated, but the net power con-
sumption of the system can exceed the system-wide power
budget. Contrary, overestimating power can lead to signifi-
cant performance degradation, since the policy becomes more
conservative, underutilizing the available power budget. Us-
ing a socket with moderate power consumption to get the
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power trace used for the estimation can achieve compara-
ble results to SLURM+PRVP, SLURM+VTP. However, all
points on the lines showing the range of possible results for
SLURM+PE and SLURM+PEVA show worse reduction than
SLURM+PRVP, SLURM+VTP and SLURM+IVP, since
variability is not considered.
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Figure 7: Energy consumption Reduction over
SLURM extended, under different budgets and traffic
scenarios. SLURM+PE, which is Variability Agnos-
tic fail to save any energy, while SLURM+VTVP
performs best.

Figure 7 shows the reduction in the system-wide energy
consumption. Both traffic scenarios’ benefits increase as the
system-wide power budget is reduced. When less power is
available, considering variability is important for energy sav-
ing, since we can choose to always use the most power efficient
sockets. Note that under heavy traffic, the 5K scenario offers
no benefit. This is because a significant number of multi-
node jobs are dropped by the SLURM extended since they
appear to require more power than available to the system.
As a result, SLURM extended runs a lighter workload than
he rest of the policies. This also happens in the bursty sce-
nario, but since the workload only contains a few 64 socket
jobs that are dropped, we still observe significant benefits.
SLURM+PE, which is variability-agnostic, offers no benefit
over the SLURM extended policy. SLURM+PEVA, which
prioritizes allocation of power efficient sockets, matches the en-
ergy savings of the SLURM+PRVP and SLURM+VTP poli-
cies. Accounting for power variability can have a significant
impact on energy efficiency reaching 5.5% on the most energy-
restricted scenarios.

Results shown across Section 4 prove that our proposed
policies, SLURM+PRVP and SLURM+VTP, can improve
energy efficiency up to 5.5% (3% on average) over sim-
ple solutions commonly used. Moreover, job turnaround
time is reduced up to 31% (25% on average). Compared
to the SLURM+PEVA policy, which is variability-aware, our
method is more robust as none of the SLURM+PE and
SLURM+PEVA policies can guarantee that the system-wide
power budgets are respected.

5 RELATED WORK

In this Section we present the state-of-the-art approaches
on power prediction models and power management in HPC

clusters. We compare the related work to our own and discuss
how they differ.

5.1 Power Prediction Models

Power prediction models have been extensively studied over
the years. In particular, models based on PMC have been very
successful in predicting power consumption [6, 7, 10, 23, 29].
Our PMC-based model is based on the work of Bertran
et al. [6, 7], which aims at providing insight into the way
individual architectural components influence power con-
sumption. Our PMC-based model extends Bertran’s model
to account for manufacturing variability in terms of power
consumption. The original model requires carefully crafting
micro-benchmarks that isolate activity per architectural com-
ponent, in order to train it. We show that comparable results
can be obtained by training the model with a small set of
kernel applications and a microbenchmark that stresses the
memory unit.

5.2 Power-Aware Budgeting and

Scheduling

Managing power has become an important issue in HPC. A
survey on the techniques developed in nine of the TOP500
HPC centers for improving energy efficient is presented by
Maiterth et al. [38]. They identify several emerging techniques,
some with common characteristics. Over-provisioning [48]
considers building a system where it is not possible to run
all the nodes at full capacity. Instead, the system operates
under a certain power budget and dynamically distributes
the available power among nodes. Nodes can operate under
different power caps. For example, a few nodes may operate
at full capacity, while the rest are disabled or constrained.
Other approaches [40, 44] take advantage of applications that
can be considered moldable, meaning that these applications
can run at different configurations (e.g. number of threads).

A significant body of work examines approaches on how
to optimally use DVFS or hardware imposed power con-
strains (e.g. RAPL) in order to save energy but also optimize
performance [2, 17, 19, 21, 26, 44]. A different approach is
also identified, where instead of using hardware imposed
power caps, energy efficiency is achieved only by job schedul-
ing [21, 34, 35]. Manufacturing variability is also considered
in some studies, which exploit the variance in power and per-
formance among nodes to improve energy efficiency [44, 50].
Although the identified techniques are not used in produc-
tion in any of the HPC centers, they provide some insight on
future trends in energy efficient HPC computing.

Etinski et al. [18] propose a job scheduling policy that seeks
the optimal frequency for parallel jobs in order to lower power
consumption. Sarood et al. [48] use performance modeling
to increase job throughput in power constrained systems. A
power management of overprovisioned systems has also been
studied by Patki et al. [12, 43]. Unlike our work, all sockets
are viewed as homogeneous in terms of power consumption,
which can lead to suboptimal scheduling decisions.
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More recent work identifies the need to consider manu-
facturing variability when making scheduling decisions or
managing a system’s power budget [4, 13, 16, 22, 27, 53, 54].
Inadomi et al. [27] extensively study the impact of man-
ufacturing variability on a number of production clusters
and propose a variation-aware power budgeting framework.
They introduce variability to their prediction model in simi-
lar fashion to our PR model, by measuring power variability
using a single microbenchmark on each socket and then apply
it to their original, Variability Agnostic, prediction model.
In contrast to our work, their prediction model is used to
guide work balancing within an MPI application and not
system-wide job scheduling. Unlike our VT model, Inadomi’s
and our PR models assume that variability is application
independent, which is not correct in general. As the effects of
manufacturing variability are expected to increase in future
CPUs [39], a more robust model is needed, such as our VT

model. Chasapis et al. [13] and Totoni et al. [54] also employ
runtime scheduling solutions for mitigating manufacturing
variability at application level. Teodorescu et al. [53] study
the impact of manufacturing variability and propose a linear
programming algorithm to find the best parameters for power
budgeting with DVFS, instead of optimizing job scheduling.
Ellsworth et al. [16] propose a power distribution framework
that optimizes an HPC cluster’s power consumption under a
certain system-wide power budget. In contrast to our work,
jobs are scheduled without considering power consumption,
but power is redistributed, favoring more power intensive jobs.
A two level solution for overprovisioned clusters is presented
by Gholkar et al. [22], where a job scheduler is used at system
level to allocate nodes and distribute power. The job sched-
uler predicts the total energy consumption in order to make
a scheduling decision, but unlike our work, the prediction
model does not consider variability. Individual sockets may
run under power constrains and a second runtime scheduler
decides the optimal configuration of active processors and
the power distribution among them in order to mitigate the
power variability.

Our job scheduling policies can also be coupled with energy
saving runtimes, to further reduce power consumption. For
example, our approach can be coupled with Adagio [47],
which detects the critical path of MPI codes and uses DFVS
to reduce power consumption of non-critical pieces of work.

6 CONCLUSIONS

In this work, we demonstrate that taking into account manu-
facturing variability to drive job scheduling policies provides
significant benefits in terms of performance and power con-
sumption. We also demonstrate how traditional PMC based
power prediction models can be extended to consider and
predict manufacturing variability. We propose two job sched-
uling policies, each one using a different power prediction
model: the first assumes that power variability impacts all
application equally, while the second one aims at obtain-
ing the power variability impact per application by training

the model for each individual socket. We compare both ap-
proaches with a range of state-of-the-art approaches as well
as an approach using an oracle model.

We examine the benefits of our policies under bursty and
heavy traffic scenarios and different power budgets. We ob-
serve significant improvements on job turnaround time (up
to 31% and 25% on average) and energy consumption (re-
ducing it up to 5.5% and 3% on average) when compared
to state-of-the-art approaches that do not consider appro-
priately the manufacturing variability in existing processors.
Moreover, the model-driven policies proposed in this work
accurately predict the variability per socket and, as a result,
they guarantee that power consumption always remains be-
low the system-wide budget, while the policies that rely on
user estimations or prior power profiling fail to do so.
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