195 research outputs found

    Quantitative Analysis of Non-Linear Probabilistic State Estimation Filters for Deployment on Dynamic Unmanned Systems

    Get PDF
    The work conducted in this thesis is a part of an EU Horizon 2020 research initiative project known as DigiArt. This part of the DigiArt project presents and explores the design, formulation and implementation of probabilistically orientated state estimation algorithms with focus towards unmanned system positioning and three-dimensional (3D) mapping. State estimation algorithms are considered an influential aspect of any dynamic system with autonomous capabilities. Possessing the ability to predictively estimate future conditions enables effective decision making and anticipating any possible changes in the environment. Initial experimental procedures utilised a wireless ultra-wide band (UWB) based communication network. This system functioned through statically situated beacon nodes used to localise a dynamically operating node. The simultaneous deployment of this UWB network, an unmanned system and a Robotic Total Station (RTS) with active and remote tracking features enabled the characterisation of the range measurement errors associated with the UWB network. These range error metrics were then integrated into an Range based Extended Kalman Filter (R-EKF) state estimation algorithm with active outlier identification to outperform the native approach used by the UWB system for two-dimensional (2D) pose estimation.The study was then expanded to focus on state estimation in 3D, where a Six Degreeof-Freedom EKF (6DOF-EKF) was designed using Light Detection and Ranging (LiDAR) as its primary observation source. A two step method was proposed which extracted information between consecutive LiDAR scans. Firstly, motion estimation concerning Cartesian states x, y and the unmanned system’s heading (ψ) was achieved through a 2D feature matching process. Secondly, the extraction and alignment of ground planes from the LiDAR scan enabled motion extraction for Cartesian position z and attitude angles roll (θ) and pitch (φ). Results showed that the ground plane alignment failed when two scans were at 10.5◦ offset. Therefore, to overcome this limitation an Error State Kalman Filter (ES-KF) was formulated and deployed as a sub-system within the 6DOF-EKF. This enabled the successful tracking of roll, pitch and the calculation of z. The 6DOF-EKF was seen to outperform the R-EKF and the native UWB approach, as it was much more stable, produced less noise in its position estimations and provided 3D pose estimation

    On-line learning and updating unmanned tracked vehicle dynamics

    Get PDF
    Increasing levels of autonomy impose more pronounced performance requirements for unmanned ground vehicles (UGV). Presence of model uncertainties significantly reduces a ground vehicle performance when the vehicle is traversing an unknown terrain or the vehicle inertial parameters vary due to a mission schedule or external disturbances. A comprehensive mathematical model of a skid steering tracked vehicle is presented in this paper and used to design a control law. Analysis of the controller under model uncertainties in inertial parameters and in the vehicle-terrain interaction revealed undesirable behavior, such as controller divergence and offset from the desired trajectory. A compound identification scheme utilizing an exponential forgetting recursive least square, generalized Newton–Raphson (NR), and Unscented Kalman Filter methods is proposed to estimate the model parameters, such as the vehicle mass and inertia, as well as parameters of the vehicle-terrain interaction, such as slip, resistance coefficients, cohesion, and shear deformation modulus on-line. The proposed identification scheme facilitates adaptive capability for the control system, improves tracking performance and contributes to an adaptive path and trajectory planning framework, which is essential for future autonomous ground vehicle mission

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots

    Get PDF
    open access articleAs a type of skid-steering mobile robot, the tracked robot suffers from inevitable slippage, which results in an imprecise kinematics model and a degradation of performance during navigation. Compared with the traditional robot, the kinematics model is able to reflect the influences of slippage through the introduction of instantaneous centres of rotation (ICRs). However, ICRs cannot be measured directly and are time-varying with terrain variation, and thus, here, we aim to develop an online estimation method to acquire the ICRs of a robot by means of data fusion technologies. First, an innovation-based extended Kalman filter (IEKF) is employed to fuse the readings from two incremental encoders and a GPS-compass integrated sensor, to provide a real-time ICR estimation. Second, a decision tree-based learning system is used to classify the terrains that the robot traverses, according to the vibration signals gathered by an accelerometer. The results of this terrain classification are improved via a Bayesian filter, by utilizing temporal correlation in the terrain time series. Third, the performances of the ICR estimation and terrain classification are mutually promoted. On one hand, terrain variation is detected with the aid of the terrain classification, and therefore, the process noise variance of IEKF can be automatically adjusted. Hence, the results of ICR estimation are smooth if the terrain does not change and converge rapidly upon terrain variation. On the other hand, the sudden changes in innovation are used to adjust the state transition probability during the recursive calculation of the Bayesian filter, thus increasing the accuracy of the terrain classification. A real-world experiment was undertaken on a tracked robot to validate the effectiveness of the proposed method. It is also demonstrated that the terrain adaptive odometry outperforms the traditional approach with the knowledge of ICRs

    Control of Outdoor Robots at Higher Speeds on Challenging Terrain

    Get PDF
    This thesis studies the motion control of wheeled mobile robots. Its focus is set on high speed control on challenging terrain. Additionally, it deals with the general problem of path following, as well as path planning and obstacle avoidance in difficult conditions. First, it proposes a heuristic longitudinal control for any wheeled mobile robot, and evaluates it on different kinematic configurations and in different conditions, including laboratory experiments and participation in a robotic competition. Being the focus of the thesis, high speed control on uneven terrain is thoroughly studied, and a novel control law is proposed, based on a new model representation of skid-steered vehicles, and comprising of nonlinear lateral and longitudinal control. The lateral control part is based on the Lyapunov theory, and the convergence of the vehicle to the geometric reference path is proven. The longitudinal control is designed for high speeds, taking actuator saturation and the vehicle properties into account. The complete solution is experimentally tested on two different vehicles on several different terrain types, reaching the speeds of ca. 6 m/s, and compared against two state-of-the-art algorithms. Furthermore, a novel path planning and obstacle avoidance system is proposed, together with an extension of the proposed high speed control, which builds up a navigation system capable of autonomous outdoor person following. This system is experimentally compared against two classical obstacle avoidance methods, and evaluated by following a human jogger in outdoor environments, with both static and dynamic obstacles. All the proposed methods, together with various different state-of-the-art control approaches, are unified into one framework. The proposed framework can be used to control any wheeled mobile robot, both indoors and outdoors, at low or high speeds, avoiding all the obstacles on the way. The entire work is released as open-source software

    Sistemas de suporte à condução autónoma adequados a plataforma robótica 4-wheel skid-steer: percepção, movimento e simulação

    Get PDF
    As competições de robótica móvel desempenham papel preponderante na difusão da ciência e da engenharia ao público em geral. E também um espaço dedicado ao ensaio e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género de iniciativas e entre o público em geral são as competições de condução autónoma. Tipicamente as Competi¸c˜oes de Condução Autónoma (CCA) tentam reproduzir um ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa de rodagem `a interação com distintos elementos que compõem uma estrutura rodoviária típica, do planeamento trajetórias à localização. O objectivo desta dissertação de mestrado visa documentar o processo de desenho e concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização de tarefas de condução autónoma em ambiente estruturado numa pista que pretende replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos. Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o processo de simulação e a sua transposição para uma plataforma robótica física. inferir sobre a diferenças de performance e de comportamento.Mobile robotics competitions play an important role in the diffusion of science and engineering to the general public. It is also a space dedicated to test and compare different strategies and approaches to several challenges of mobile robotics. One of the aspects that has attracted more the interest of promoters for this kind of initiatives and general public is the autonomous driving competitions. Typically, Autonomous Driving Competitions (CCAs) attempt to replicate an environment similar to a traditional road structure, in which autonomous systems should respond to a wide variety of challenges ranging from lane detection to interaction with distinct elements that exist in a typical road structure, from planning trajectories to location. The aim of this master’s thesis is to document the process of designing and endow a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks in a structured environment on a track that intends to replicate a motorized roadway including signs and obstacles. In parallel, the dissertation also intends to make a qualitative analysis between the simulation process and the transposition of the developed algorithm to a physical robotic platform, analysing the differences in performance and behavior

    Modeling and Simulation Longitudinal Mobile Robotic with Rough Terrain and Ascent Angle Disturbance

    Get PDF
    Model mobile robot that used to this simulation is type car like vehicle steering. Mobile robot type car like vehicle steering is mobile robot that move using force of rear wheel and front rear of mobile robot functions as steering to control direction of mobile robot. The dynamic nonlinear model mobile robot is implemented to view influence disturbance of mobile robot to longitudinal direction mobile robot that used to planetary exploration in rough terrain. The model that used to simulation is nonlinear multivariable MIMO with 5 input and 7 output. The simulation has done by using Simulink of Matlab. The simulations were carried out by giving 4 conditions, namely without disturbance, with an incline angle of 30 (0.5236 rad), with a rough terrain angle of 28.6479 (+0.5 rad), and a combination of 30 incline angle and 28.6479 rough terrain angle. The simulation results with 3 mobile robots show accurate results
    corecore