8,755 research outputs found

    DeepLight: Robust and unobtrusive real-time screen-camera communication for real-world displays

    Get PDF
    National Research Foundation (NRF) Singapore under NRF Investigatorship gran

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    Keeping track of worm trackers

    Get PDF
    C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral ā€œoutputsā€. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement)

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy

    Multiplexed Immunoassays

    Get PDF

    Miniaturizing High Throughput Droplet Assays For Ultrasensitive Molecular Detection On A Portable Platform

    Get PDF
    Digital droplet assays ā€“ in which biological samples are compartmentalized into millions of femtoliter-volume droplets and interrogated individually ā€“ have generated enormous enthusiasm for their ability to detect biomarkers with single-molecule sensitivity. These assays have untapped potential for point-of-care diagnostics but are mainly confined to laboratory settings due to the instrumentation necessary to serially generate, control, and measure millions of compartments. To address this challenge, we developed an optofluidic platform that miniaturizes digital assays into a mobile format by parallelizing their operation. This technology has three key innovations: 1. the integration and parallel operation of hundred droplet generators onto a single chip that operates \u3e100x faster than a single droplet generator. 2. the fluorescence detection of droplets at \u3e100x faster than conventional in-flow detection using time-domain encoded mobile-phone imaging, and 3. the integration of on-chip delay lines and sample processing to allow serum-to-answer device operation. By using this time-domain modulation with cloud computing, we overcome the low framerate of digital imaging, and achieve throughputs of one million droplets per second. To demonstrate the power of this approach, we performed a duplex digital enzyme-linked immunosorbent assay (ELISA) in serum to show a 1000x improvement over standard ELISA and matching that of the existing laboratory-based gold standard digital ELISA system. This work has broad potential for ultrasensitive, highly multiplexed detection, in a mobile format. Building on our initial demonstration, we explored the following: (i) we demonstrated that the platform can be extended to \u3e100x multiplexing by using time-domain encoded light sources to detect color-coded beads that each correspond to a unique assay, (ii) we demonstrated that the platform can be extended to the detection of nucleic acid by implementing polymerase chain reaction, and (iii) we demonstrated that sensitivity can be improved with a nanoparticle-enhanced ELISA. Clinical applications can be expanded to measure numerous biomarkers simultaneously such as surface markers, proteins, and nucleic acids. Ultimately, by building a robust device, suitable for low-cost implementation with ultrasensitive capabilities, this platform can be used as a tool to quantify numerous medical conditions and help physicians choose optimal treatment strategies to enable personalized medicine in a cost-effective manner
    • ā€¦
    corecore