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ABSTRACT

IMAGE PROCESSING AND UNDERSTANDING BASED
ON GRAPH SIMILARITY TESTING: ALGORITHM

DESIGN AND SOFTWARE DEVELOPMENT

FEBRUARY 2017

JIEQI KANG

B.E., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Weibo Gong

Image processing and understanding is a key task in the human visual system.

Among all related topics, content based image retrieval and classification is the most

typical and important problem. Successful image retrieval/classification models re-

quire an effective fundamental step of image representation and feature extraction.

While traditional methods are not capable of capturing all structural information on

the image, using graph to represent the image is not only biologically plausible but

also has certain advantages.

Graphs have been widely used in image related applications. Traditional graph-

based image analysis models include pixel-based graph-cut techniques for image seg-

mentation, low-level and high-level image feature extraction based on graph statistics

and other related approaches which utilize the idea of graph similarity testing. To

compare the images through their graph representations, a graph similarity testing
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algorithm is essential. Most of the existing graph similarity measurement tools are

not designed for generic tasks such as image classification and retrieval, and some

other models are either not scalable or not always effective. Graph spectral theory

is a powerful analytical tool for capturing and representing structural information of

the graph, but to use it on image understanding remains a challenge.

In this dissertation, we focus on developing fast and effective image analysis mod-

els based on the spectral graph theory and other graph related mathematical tools.

We first propose a fast graph similarity testing method based on the idea of the heat

content and the mathematical theory of diffusion over manifolds. We then demon-

strate the ability of our similarity testing model by comparing random graphs and

power law graphs. Based on our graph analysis model, we develop a graph-based im-

age representation and understanding framework. We propose the image heat content

feature at first and then discuss several approaches to further improve the model. The

first component in our improved framework is a novel graph generation model. The

proposed model greatly reduces the size of the traditional pixel-based image graph

representation and is shown to still be effective in representing an image. Meanwhile,

we propose and discuss several low-level and high-level image features based on spec-

tral graph information, including oscillatory image heat content, weighted eigenvalues

and weighted heat content spectrum. Experiments show that the proposed models

are invariant to non-structural changes on images and perform well in standard image

classification benchmarks. Furthermore, our image features are robust to small dis-

tortions and changes of viewpoint. The model is also capable of capturing important

image structural information on the image and performs well alone or in combina-

tion with other traditional techniques. We then introduce two real world software

development projects using graph-based image processing techniques in this disser-

tation. Finally, we discuss the pros, cons and the intuition of our proposed model
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by demonstrating the properties of the proposed image feature and the correlation

between different image features.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the greatest masterpiece of evolution is the creation of the human visual

system (HVS). Images, the most important source of information input for humans,

are processed and analyzed every second when our eyes are open. Millions years of

evolution made the HVS extremely fast, effective and light weight. The development

of modern science and engineering has already unraveled many of mysteries in such

a marvelous complicated system. However, creating a computer vision system to

achieve the performance of the HVS still remains a dream. Although researchers

have accumulated a great amount of knowledge about the biology behind the HVS,

the story behind the intelligence remains a mystery to us.

The HVS is a combination of hardware and software. State-of-the-art technolog-

ical breakthroughs have tremendously narrowed the gap between machines and our

eyes at least on the hardware side. Advanced cameras such as the Canon 5D mark

III can produce very high resolution vivid color images and videos. Some cameras

can capture high resolution images that are even sharper than the human retina can

receive. However, the advancement of hardware does little to help solve the major

challenge of understanding the HVS: the software of the visual system. How does the

visual cortex work to understand the input image? Although in recent years, deep

neural networks such as the convolutional neural network [41,44] and deep belief net-

works [27] have shown considerable potential in catching up to the performance of

the HVS, the human visual system is still far better than any of the best artificial
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computer vision systems. We have not even mentioned the embarrassed comparison

of power consumption between the extremely lightweight HVS and the big clusters

of workstations and GPUs yet. Reaching human-level performance of processing and

understanding images remains an active and difficult problem for a long time.

The general computer vision problem can be tackled by dividing it into small

sub-problems. One of the most well-defined sub-problem, which also can be seen as

a trophy in the general machine learning and image understanding community, is the

human-like fast image retrieval and classification. Finding visually similar images

and assigning a label to an input image is considered to be one of the most important

applications of any vision system. In this dissertation, in spite of the existence of a

vast literature, algorithms, models in such field, instead of modifying current models

to improve the performance a little bit, we focus on providing some new ideas and

methods to this long-existed difficult problem.

1.2 Related work: Traditional CBIR/CBIC and feature ex-

traction

The most typical problem of image retrieval and classification is content based

image retrieval/classification, or CBIR/CBIC problem. By “content”, we mean that

we only look at the image itself. We do not use any other information attached to

the image such as tags, locations and exif information to help the analysis. The

information that we use will be the pixels on the image. Our visual system can only

take the image as input. Even if the attached information proves to be useful, we can

always handle it later. Figure 1.1 illustrates the definition and the goal of the general

image retrieval/classification problem. The images are from the COREL dataset. [73]

Fast content based image retrieval/classification has been a subject of intensive

research for many years [15, 16, 45, 51, 56, 58, 66, 71]. The task of a typical image

retrieval problem is to find similar images in the database according to the query
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Figure 1.1. The general CBIR/CBIC problem

image. For the image classification problem, the target would be to assign a label in

the dataset to the query image. Generally, solving CBIR/CBIC problems includes

requiring solving a set of sub-tasks. Among all the traditional models, the most

standard solution includes three major steps, which are the image pre-processing,

feature selection and design of machine learning algorithms or classifiers. Figure 1.2

shows the general structure of this standard solution to the CBIR/CBIC problem.

In the standard model, the critical initial step in most image retrieval/classification

systems is the extraction of appropriate image features. Normally the input of the

image is high dimensional and cannot be directly used as an input to the learning

systems. A feature extraction procedure for the image can help to capture important

information on the image as well as to greatly reduce the dimension of the input

data, which generates appropriate feature vector for classifiers at the same time. Re-

searchers have designed a variety of image features based on intensity, color, shape

and texture statistics or descriptors. Recent surveys [15, 17, 30, 58] have briefly in-

troduced or evaluated many of the low-level or high-level image features appearing
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in the state of the art CBIR/CBIC literature [36, 77]. These features have all been

derived from reasoning and/or intuition about useful information for classification.

However, no feature can completely capture all of the essential structural information

in the image. Among most models, the “bag of words” model, which means to use a

combination of features, is still the mainstream of the traditional system.

Figure 1.2. The standard solution model for CBIR/CBIC problem

One thing worth mentioning is the new development in the deep learning models.

In recent years, the idea of deep learning and deep neural network models has become

increasingly popular in machine learning [43, 63]. The philosophy behind this type

of approach is completely different compared to the traditional approach. In deep

learning models, hand designed feature-extraction is no longer necessary. Instead,

the learning process automatically generates feature extraction for the system. There

are certain advantages and disadvantages of such a philosophy. We will discuss the

pros, cons and the comparison to our model in the last chapter.

The second major step is learning algorithm selection, or the choice of an appropri-

ate classifier for the input features. Widely used methods include logistic regression,

support vector machine, k-nearest-neighbor and other machine learning techniques.
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A great volume of literature has focused on the selection of learning algorithms or on

ways to improve the standard models to be more suitable for specific image problem-

s. In this dissertation, we directly utilize some existing traditional learning models,

because they have proven to be very effective as long as the extracted features are

good.

In the dissertation, we will generally focus on the first step of the CBIR/CBIC

model, which is to effectively generate a low-dimensional representation of and extract

features from the input image. This step is more important than any other step in the

model. In machine learning, there is a saying:“Garbage in, garbage out”. If the image

features or the low-dimensional representation vectors are not good enough, even the

best learning algorithm cannot do much to improve the retrieval/classification result.

As a matter of fact, feature extraction is not only the essential component in human

visual system, but also the most important part in standard machine learning models.

The key question in this dissertation is to design an image feature or an image

representation model to analyze and encode the image effectively and efficiently. Our

model has the following properties:

(1) The image feature should capture all important information on the image, in-

cluding low-level local image features and high-level structural information;

(2) The result should be effective for the subsequent learning process;

(3) The algorithm should be efficient enough for real-time processing of high-resolution

images;

(4) The model should have a connection to the real human visual system.

1.3 Related work: Why use a graph?

Among the vast literatures exploring topics related to image feature extraction,

a recent trend is the use of graphs in image representation and understanding tasks.
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Some models have already been shown to be effective in a variety of image related

applications [3, 18, 24,25,54,64,72].

Using a graph to help our feature extraction and image understanding is natural.

As a matter of fact, all the texts, images, memories, theories and even human faces are

stored in the brain represented by the neurons with their connections. Neural science

has already proved that the connection structure of neurons is the basic component

for long-term memory [7,11]. Some recent literature [8,9,47,61] also suggested graphs

as the form that organizes information in the brain. We can simplify neurons with

their connections to be a graph contains nodes and edges and we believe that all the

information should be captured by the graph structure. One evidence for this graph-

representation of information is that some neural science experiments have shown

that the same area of brain (a number of neurons) is capable of handling both tasting

and language processing tasks [8]. That is to say, human intelligence and the human

vision system are built upon the neurons with their connections in the visual cortex,

which forms a complex network [9, 61, 68]. This discovery is profound evidence that

the structure of the connections of neurons, not the neurons themselves, really matter

in the brain when we talk about the intelligence, or at least to some extent. Thus, we

believe that a graph-representation for images (and of course, for other information)

is not only probable, but also essential.

The idea of graph-based image processing and understanding is not entirely new

[54]. In [19] and [24], the authors treat every pixel in the image as a vertex in a graph

and connect the neighboring pixels according to the intensity differences. This type

of model is widely used in graph based image segmentation literature [18, 24, 64, 72].

In these models, the problem of image segmentation is transformed to a graph-cut

problem and ideas such as min-cut or max-flow can be used in the segmentation

models. Graph based image segmentation now becomes a rich source of literature

and a very successful area of applying graph in image processing and understanding.
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Meanwhile, besides the image segmentation problem, the graph representation of

image is also widely applied in other image understanding tasks. In [3,25], researchers

build graphs based on descriptors such as the edge location and segmented region for

generating image signatures. Other applications include image retrieval, clustering

and classification based on graph statistics [3,4,14,25,54]. In [22,23] the author points

out that Monte-Carlo simulations of diffusion can be helpful in testing the similarity

of complex graphs, which would essentially help the analysis of graphs generated by

images. Graph based image representation also allows the possibility of applying some

well-studied techniques in graph theory to the image related applications. Theories

and methods like the graph-cuts theory, similarity testing [40, 53] and the spectral

graph theory [13] can then be used as new tools in image related problems.

1.4 The basic idea: testing similarity between graphs

It is generally accepted that images are represented by neuronal networks in the

brain but the structure and the signal processing in such neuronal networks are not

clear. Our basic motivation of the algorithm development is guided by the following

observations in the behavior of the human (and many animal) brains:

(1) Quickness of the recognition with slow neurons;

(2) Most brain neurons have multiple input (dendrite branches) with only one out-

put (axon);

(3) Slight rotation, stretching or siding of an image does not alter recognition;

(4) The brain consumes very little energy performing tasks comparing to the current

computer algorithms.

If graphs are mathematical representations of images then it follows that an ef-

ficient graph similarity-finding algorithm is at the core of image retrieval and classi-

fication. Similarity-finding is the key in intelligence and fast comparison of objects
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is a daily task in every corner of the human brain. The idea leads us to propose

the following guidelines for the development of fast image representation and feature

extraction model.

(1) Images are represented by network connectivity, or graphs;

(2) Image representations should be invariant against the rotation/permutation

changes of the input signal representations;

(3) Image representations could check similarity almost instantaneously;

(4) The spatial/temporal signal conversion mechanisms should be plausible for e-

merging from randomness.

In this work we motivate our image processing and understanding algorithm based

on a high level of analogue to the processes in the brain. We abstract the neuronal

networks, regarding them as weighted graphs, and we use random walks over the

graph to model the effect of neuronal spikes as the initial idea. In doing so we

disregard many details and hope to grasp the fundamental mechanisms of fast image

retrieval and classification.

1.5 Outlines of this dissertation

This dissertation includes six chapters. Chapter 1 is the introduction of the disser-

tation. In this chapter, we first discuss the background, the motivation and propose

the idea of graph-based image processing and graph similarity testing as a tool of an-

alyzing images. We also briefly introduce the traditional image retrieval/classification

models and graph-based image understanding models in modern image analysis.

In Chapter 2, we propose a fast graph similarity testing algorithm based on the

asymptotic behavior of the graph heat content. In Section 2.1, we introduce the idea
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of graph similarity testing. In Section 2.2 we propose the heat content generation al-

gorithm for complex network. In Section 2.3, we show a preliminary experiment result

of graph similarity testing based on the graph heat content. Section 2.4 summarize

the proposed heat content methord.

In Chapter 3, we propose the image heat content feature as a feature extraction

for image understanding tasks. In Section 3.2, we propose a framework of the graph

generation based on the image. We then propose and discuss in detail the fast feature

extraction algorithm based on the heat content method proposed in section 3.3. In

Section 3.4, five experiments are shown to illustrate the performance of the image

heat content feature. Section 3.5 is a brief summation of this chapter.

In Chapter 4, we discuss the possibility of improving the image heat content

feature. In Section 4.2, we introduce several approaches to drastically reduce the size

of the traditional pixel-based graph representation. In Section 4.3, we propose a novel

feature extraction model based on the spectral graph information. Experiments in

Section 4.4 show that our improved features perform better than the original heat

content feature and is a more effective supplement to further improve the performance

of traditional feature-based classification. Section 4.5 is a summation of the improved

model proposed in this chapter.

In Chapter 5, we describe two software development projects of fast image pro-

cessing and understanding. In Section 5.2, we propose the design and the result of

a desktop image retrieval/classification application based on the image heat content

model. We also use the result of the Google Image Search to illustrate the ability

of our algorithm. In Section 5.3, we briefly introduce an Android application of fast

real-time image processing and analysis based on a grid-graph representation of the

image.
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The last chapter is the discussion and conclusion chapter. We discuss the pros

and cons of our proposed model and introduce a few potential future directions of

research.
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CHAPTER 2

GRAPH SIMILARITY TESTING

2.1 Related work: graph similarity testing

The foundation of our work is based on the graph representation of the image. In

order to find the similarity between images, naturally one can ask a simple question:

how do we compare two graphs? The question is not trivial at all. In fact, graph

similarity is not a well-defined problem which has a close-form solution. Consider

we have two graphs, and we know they represent two different objects, which can be

images and other interesting things. Like everything we have ever met, we care about

what is ”same” or ”different”. Are they similar or not? How similar they are? These

questions not only are the consequences of logic, but also have application values in

many areas if we use graph-base techniques. In fact, many applications require a

quantitative measurement of the similarity between two graphs. With this similarity

measurement, we can apply classification techniques on the graph-based training and

testing samples without huge effort.

Unfortunately, the idea of ”graph similarity” is a complex concept and varies

from different applications. There is no single definition that satisfying all kinds of

problems. For example, consider three graphs as Figure 2.1 shows, which two graphs

are more similar? The answer might be not as obvious as we think. In some situations,

the number of vertices is very important since it roughly represent the scale of the

graph, and that will lead to a higher similarity score for graph (a) and (b). However,

intuitively we can easily observe the graph (b) and (c) have two clusters while graph

(a) only has one. Can we also say that graph (b) and (c) should be considered more
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Figure 2.1. Which two are more similar?

similar in this perspective? We believe that the answer is yes if we care about the

topological structure of networks. We can immediately notice that if we delete or

destroy any node in (a), the rest of the nodes are still connected, but if we delete the

hub node in (b) and (c), the network will be disconnected which means the whole

system is down in this case. As we can see, the concept of ”graph similarity” should

be defined by the specific application case by case.

Graph similarity testing is useful in many different areas. The demanding of

appropriate approach rises as the graph sizes are increasing extremely fast in diverse

areas, such as social networks (like Facebook, Twitter, etc.), Web graphs (like Google),

knowledge networks (like Wikipedia), etc. As we can expect, there are many existing

traditional methods. In [40], the authors summarized the traditional methods into

three categories: graph isomorphism, feature extraction and iterative methods.

One of the most typical and popular definition of graph similarity is derived from

graph matching problem. From middle of last century, researchers developed tremen-
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dous methods to find exact matching of two graphs. Exact graph matching means

that the mapping between the nodes of the two graphs must be edge-preserving.

Namely that if two nodes in the first graph are linked by an edge, they are mapped

to two nodes in the second graph that are linked by an edge as well. In fact, if two

graphs has a perfect match, they can be treated as same graph, and that is the start

point of one definition of traditional graph similarity.

Generally, given two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph exact

matching methods called graph isomorphism requires to find a one-to-one mapping

f : V 1 7→ V 2 such that (u, v) ∈ E1 if (f(u), f(v)) ∈ E2 with |V 1| = |V 2|. And

if a strict correspondence among the nodes or the edges of the two graphs can not

be found, namely no isomorphism can be expected between both graphs, the graph

matching task can be revised to find the best matching between them, which can be

viewed as an inexact graph matching problem.

Inexact graph matching can lead to edit operations on graph, and this idea can be

used to define the similarity of graphs based on the effort needed to make the graphs

identical. This is the basic idea for the concept of graph edit distance (GED) [62].

Since there are many approaches to edit one graph into another, the cost of the

least expensive sequence of edit operations that are needed to transform one graph

into another is defined as graph edit distance. The task is transforming the current

graph into a target graph and all edit operations are performed on the current graph.

A cost function is defined for each operation and the cost for this edit operation

sequence is sum of costs for all operations in the sequence. The formal definition of

graph edit distance can be described as: Let g1 = (V1, E1, µ1, v1) be the source and

g2 = (V2, E2, µ2, v2) the target graph. The graph edit distance between g1 and g2 is

defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑
i=1

c(ei), (2.1)
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where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and c denotes

the cost function measuring the strength c(ei) of edit operation ei. The following

algorithm shows a typical graph edit distance algorithm [21].

Algorithm 1 Graph edit distance algorithm

INPUT: Non-empty graph g1 = (V1, E1, µ1, v1) and g2 = (V2, E2, µ2, v2).
OUTPUT: A minimum cost edit path from g1 to g2

Initialize OPEN to the empty set
For each vertex ω ∈ V2, insert the substitution {u1 → ω} into OPEN
Insert the deletion {u1 → ε} into OPEN
loop

Remove pmin=arg minp∈OPEN{g(p) + h(p)} from OPEN
if pmin is a complete edit path then

Return pmin as the solution
else

Let pmin = {u1 → vi1 , . . . , uk → vik}
if k < |V1| then

For each ω ∈ V2 \ {vi1 , . . . , vik}, insert pmin ∪ {uk+1 → ω} into OPEN
Insert pmin ∪ {uk+1 → ε} into OPEN

else
pmin ∪

⋃
ω∈V2\{vi1 ,...,vik}

{ε→ ω} into OPEN

end if
end if

end loop

If our target graphs are not with labels, the problem will become more compli-

cated. The algorithm of this graph edit distance is usually carried out by tree search

type approaches. The algorithm explores the space of all possible mappings of the

nodes and edges of the first graph to the nodes and edges of the second graph. In

application a widely used algorithm is based on the A* algorithm [26] which is a

best-first search algorithm.

Unfortunately, to find a global optimal of the edit distance problem is NP-complete

even for planar graphs [39]. There are a great number of literatures proposing different

types of fast algorithms such as [59], gives suboptimal solutions. However, algorithms

which are based on search technique, hardly can be applied in large scale graphs.

Therefore, researchers proposed another type of algorithms based on feature extrac-
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tion. The key idea behind these methods is that similar graphs probably share certain

properties, such as degree distribution, diameter, spectra, etc. After extracting these

features, some similarity measure is applied in order to compute the similarity be-

tween the graphs. Some researchers combine the idea with the previous described

edit difference, which provides a synthesis of ideas from spectral graph-theory and

structural pattern recognition. Robles-Kelly and Hancock [60] use a graph spectral

seriation method based on the leading eigenvector of the adjacency matrix to convert

graphs into strings, and match the resulting string representations by finding the path

on the edit lattice whose cost is minimum. These methods are powerful and scale

well, as they map the graphs to several statistics that are much smaller in size than

the graphs. However, depending on the statistics that are chosen, it is possible to get

results that are not intuitive. For instance, it is possible to get high similarity between

two graphs that have very different node set size, which is not always desirable.

One group of graph similarity measure algorithm is labelled as iterative methods.

The motivation of the iterative methods is that two nodes are similar if their neigh-

borhoods are also similar. In each iteration, the nodes exchange similarity scores

and this process ends when convergence is achieved. In this category, there are some

successful algorithms. First, we have the similarity flooding algorithm by Melnik et

al. [50] This algorithm focus on the matching problem, that is, it attempts to find the

correspondence between the nodes of two given graphs. What is interesting about the

paper is the way that the algorithm is evaluated: humans check whether the match-

ings are correct, and the accuracy of the algorithms is computed based on the number

of adaptations that have to be done in the solutions in order to get the right ones.

Another successful algorithm is SimRank [35], which measures the self-similarity of

a graph, ie. it assesses the similarities between all pairs of nodes in one graph. The

algorithm computes iteratively all pairs similarity scores, by propagating similarity

scores in the A2 matrix, where A is the adjacency matrix of the graph; the process
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ends when convergence is achieved. Furthermore, a recursive method related to graph

similarity and matching is the algorithm proposed by Zager and Verghese et al. [75].

This method introduces the idea of coupling the similarity scores of nodes and edges

in order to compute the similarity between two graphs. In this work, the node corre-

spondence is unknown and the proposed algorithm computes the similarity between

all pairs of nodes, as well as all pairs of edges, in order to find the mapping between

the nodes in the graph. Bayati et al. [5] proposed two approximate sparse graph

matching algorithms using message passing algorithms. Specifically, they formalized

the problem of finding the correspondence between the nodes of two given graphs as

an integer quadratic problem and solved it using a Belief Propagation (BP) approach.

The major problem of the graph isomorphism and iterative methods is scalabili-

ty. Feature extraction methods are more like the method that we will propose. But

sometimes, the features can be partial and inaccurate, like eigenvalues. For exam-

ple, in [49], the authors proved that two isospectral nonisometric planar graphs can

be distinguished by using the heat content method, even they share the same set-

s of eigenvalues. In [53], the authors discussed methods for similarity testings in

directed web graphs (although we are only interested in assessing similarities of sym-

metric graphs in our current work), like vertex ranking, sequence similarity, signature

similarity, etc. However, like the proposed algorithm in [40], most of the methods

discussed need knowing the nodes correspondence. In the following section, we will

propose a new graph similarity testing algorithm based on the asymptotic behavior

of the heat content.

2.2 Graph similarity testing using heat content

The asymptotic behavior of the heat content has been used as a tool to understand

the structure of a manifold [6,55] or a graph [48,49], etc.. Heat content is determined

by the solution to the heat equation associated to the corresponding Laplacian oper-
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ators. It describes the heat diffusion with time on the structure with a given initial

heat distribution. In [?], the authors showed that the convergence of a random graph

Laplacian to manifold Laplacian under certain conditions. The convergence of Lapla-

cian operator shows close connections between heat diffusion on manifold and on

graph. One advantage of the heat content method is that, the asymptotic behavior of

the heat amount as t → 0+ makes the heat content curves separate from each other

at the very beginning part if the structures are different. This property enables us

to generate fast speed graph distinguishing algorithm, combining with our simulation

method. In [49], the authors gave an example to use the heat content to distinguish

isospectral planar graphs. Our work is the first attempt to apply the heat content

methods to distinguish complex networks, which involves work about graph similarity

testing and multivariate distribution matching. In [22,23] the author points out that

Monte-Carlo simulations of diffusion can be effective in testing the similarity of com-

plex graphs and that this may have implications on concept abstraction mechanisms

in human and animal intelligence. Heat content can be estimated using a random

walk on graph. In [46], the authors show that a random walk based similarity al-

gorithm is effective in differentiating large graphs with the same heavy tail degree

distribution.

Given a graph G = (V,E) with vertex set V and edge set E ⊆ V × V . The

adjacency matrix A = [avu] is defined as follows:

auv =


wuv if (u, v) ∈ E

0 otherwise

,

wvu is the edge weight from u to v. The degree matrix is D = diag[du], a diagonal

matrix with

du =
∑
v

avu.
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Graph Laplacian, a matrix representation of a graph, is defined as

L = D − A.

For undirected graph with wuv = wvu, the adjacency matrix A is symmetric and the

degree matrix is diagonal, so the Laplacian matrix L is symmetric and diagonalizable.

The normalized Laplacian is defined as

L = D−1/2LD−1/2.

L is also diagonalizable. However, the random walk Laplacian, defined as Lr = LD−1,

is unsymmetric. The relationship between L and Lr is as follows:

Lr = D1/2LD−1/2.

Now, let λ1 ≤ λ2 ≤ . . . ,≤ λn be the eigenvalues of L and φi, i = 1, . . . , n be the cor-

responding eigenvectors. With Λ = diag[λi] and Φ = [φ1, . . . , φn], we can diagonalize

L to be

L = ΦΛΦ−1.

Meanwhile, we can get

Lr = (D1/2Φ)Λ(Φ−1D−1/2) = (D1/2Φ)Λ(D1/2Φ)−1. (2.2)

Equation 2.2 proves that, Lr is also diagonalizable. Lr and L share the same group

of eigenvalues, but the corresponding eigenvectors are different. L is the Laplacian

operator used in the heat equation. With the relationship between L and Lr, we

propose a random walk simulation method in the later section.
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The Heat equation associated with the normalized Laplacian is


∂ht
∂t

= −Lht

ht(v, u) = 0 for u ∈ ∂D
,

with initial condition

h0(u, u) =


1 if u ∈ iD

0 else

,

∂D is the boundary set, the collection of all boundary vertices. The other vertices

are called interior vertices and their collection is denoted as iD. Assume the total

number of vertices is N and the number of interior vertices is m, ht is an N × N

matrix. ht(u, v) is the amount of heat flow from vertex v to vertex u at time t. All

the heat flowing to the boundary vertices will be absorbed. The normalized Laplacian

L can be partitioned into four parts:

L =

LiD,iD L∂D,iD

LiD,∂D L∂D,∂D


We call LiD,iD the interior Laplacian and the unique solution to the above heat

equation is

ht = eLiD,iDt

LiD,iD is still symmetric and diagonalizable. For convenience, still use Λ and Φ to be

the eigenvalue matrix and eigenvector matrix of LiD,iD, we have

ht = Φe−ΛtΦ−1 = Φe−ΛtΦT .

So, for each entry of ht,

ht(u, v) =
m∑
i=1

e−λitφi(u)φi(v) (2.3)
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Heat content Q(t) is defined as the summation of all the entries in ht, which measures

the total heat remaining in the interior domain. We have

Q(t) =
∑
v∈iD

∑
u∈iD

ht(u, v) =
∑
v∈iD

∑
u∈iD

m∑
i=1

e−λitφi(u)φi(v) (2.4)

Let αi =
∑

v∈iD
∑

u∈iD φi(u)φi(v), we get

Q(t) =
m∑
i=1

αie
−λit (2.5)

From equation 2.5, the heat content can be viewed as the summation of exponential

decay functions with different rates and different weights. The rates and weights are

determined by the Laplacian eigenvalues and eigenvectors separately.

According to the work in [10] and [13], eigenvalues of the normalized Laplacian for

symmetric weighted graphs will be bounded between 0 and 2. Except for a dominant

small eigenvalue closing to 0, the eigenvalues of a random power law graph follow

the semicircle law and are close to 1. The dominant small eigenvalue has a large

corresponding α value, the exponential decay component of which drops much slower

and dominates the heat content curve. To emphasize more on the larger eigenvalues,

we may use the time derivatives of the heat content to compare, as equations below:

∂Q(t)

∂t
= −

m∑
i=1

αiλie
−λit

∂2Q(t)

∂t2
=

m∑
i=1

αiλ
2
i e
−λit

Larger eigenvalues will be given comparatively larger weights by the derivation

process. Meanwhile, when t → 0+, Q(t)|t→0+ =
∑

i αi = 1, while ∂Q(t)
∂t
|t→0+ =

−
∑

i αiλi and ∂2Q(t)
∂t2
|t→0+ =

∑
i αiλ

2
i . So, the differences of the graphs can be seen

immediately using the initial time derivatives of the heat content.

20



Intuitively, the idea of our graph similarity testing algorithm is shown in Figure

2.2. We can understand the algorithm by apply the idea in heat diffusion of a hot

object surrounded by fixed-degree ice. Eventually the temperature of the object

would be the same as the ice because of the heat diffusion process. However, we can

imagine that if the shape of the object and the conductivity efficient is different, the

heat diffusion pattern will be not the same neither. Thus the total heat preserved in

the object over time should follows a unique pattern determined by the properties of

the object itself, which is exactly the intuition behind the idea of the heat content.

Figure 2.2. The intuition of similarity testing using heat content

2.3 Graph similarity testing example: E-R vs B-A

A Erdos-Renyi (E-R) graph G(n, p) is constructed by connecting nodes randomly.

Each edge is included in the graph with probability p. This model is used to generate

random graphs. The Barabasi-Albert(B-A) model generate the power-law graphs with

m0 initial nodes. Each new node is connected to m existing nodes with a probability

proportional to the number of links that the existing nodes already have. The degree
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distribution follows P (k) ∼ k−3. Barabasi-Albert model is normally used to generate

undirected power law graphs. The average degree of the graph is about 2m.

We use Barabasi-Albert model and generate one power law graph with m0 = m =

10 and the total number of nodes is n = 5000. We treat the edges between two

vertices the same, and set the weights to be 1. The adjacency matrix of the graph

generated by the above two models are symmetric. So, we can apply our method to

the generated graph to get the approximated heat content curves to compare. We are

interested in comparing the graphs with scale-free degree distributions to the random

graphs and finding similarities of the graphs generated by one growing model with

different parameters.

Two groups of graphs are generated using the B-A model and E-R model respec-

tively. The total number of nodes are 5000. In each group, there are four graphs

with mean degree varies from 20 to 50. Boundaries are selected to be the 4% smallest

degree vertices. Q̂(t) for the 8 graphs are plotted in the Fig. 2.3.

As shown in the Figure 2.3, the heat content curves of the two groups of graphs

perform differently. At the beginning part, curves for Power Law graphs drop faster,

but quickly slow down at the later part. The dropping speed for the curves of random

graphs are comparatively more constant during the whole process. The difference

between the curves of the two kinds of graphs can be indicated more clearly if we

draw the time derivative of the curves instead, as shown in Fig. 2.4. The heat

content derivative at time t→ 0+ for power law graphs separated from those for the

E-R random graphs dramatically. And if we zoom in the derivatives for the power law

graphs, as shown in the subfigure on right, we can see that the time derivatives at the

beginning part are in the order of the average degrees. So, using heat content method,

not only we can separate graphs with heavy tail distribution from the random graphs,

we can tell apart graphs with different mean degrees generated from the same model.

22



Figure 2.3. Heat content comparison between power law graphs and E-R random
graphs (red line: power law graphs; blue line: E-R random graphs)

Figure 2.4. Time derivative of the Heat Content curves for power law graphs and
E-R random graphs (left: red line: Power Law graphs; blue line: E-R random graphs)

To explain the difference between heat content curves of power law graphs and E-R

random graphs, we study the spectrum of the two kinds of graphs first. In [13], Chung

et.al. proved that eigenvalues of the normalized Laplacian satisfy the semicircle law

under the condition that the minimum expected degree is relatively large. Both E-R

random graphs and power law graphs satisfy this condition as the paper indicated;
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and if two graphs has the same mean degree, the circle radius will be almost the

same. As shown in the Fig. 2.5, for the two graphs we generated (a power law graph

generated with B-A model and a random graph generated with E-R model with the

same mean degree 20), since only a very small proportion of vertices are chosen to

be boundary, the main structures are kept and the interior Laplacians still follow

semicircle law.

Figure 2.5. The Laplacian spectrum distribution of one power law graph and one
random graph with mean degree 20

Using Laplacian spectrum only can hardly distinguish the two kinds of graph;

however, according to (2.5), the values of αi also play important roles in heat content.

In Fig. 2.6, the eigenvalues (except for the smallest eigenvalue) and corresponding α

values are plotted with the x-axis being the index.

As shown in Fig. 2.6, the eigenvalues of the two graphs, which are plotted in red

line, are quite similar. But the weights for the power law graph are much larger than

that for the E-R random graph. Exponential decay with decay constant larger than

0.5 drops much faster and will goes to 0 in less than 10 time steps. With the larger

weights, the impact of the larger eigenvalues in the heat content curve are highlighted.

So, heat content curve for the power law graph drops faster at the beginning part.

On the other hand, for the E-R random graph, which is more homogeneous in the

graph structure, the α1 value corresponding to the smallest eigenvalue λ1 is larger.
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(a) Power Law graph

(b) E-R random graph

Figure 2.6. Eigenvalues and corresponding α values

On the other hand, the larger eigenvalues in the Laplacian spectrum have quite small

weights, thus do not impact the heat content behavior much.

2.4 Summary

In this section, we proposed a heat content feature for symmetric weighted graph.

We can apply the method to compare different types of networks. Graphs with heavy

tail degree distribution have different heat content curves comparing to the random

graphs generated by the E-R model: the dropping speed for the previous is much faster

than that for the later at the very beginning part. This difference is caused by the
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different α values (determined by the corresponding eigenvectors) of the Laplacian’s

eigenvalues (except for the smallest eigenvalue).

Comparing to the previous work, our algorithm has the following advantages in

graph similarity testing. The heat content method is a kind of feature extraction

method. It maps the graphs to one dimensional data to compare. The difference of

two graphs can be presented at the very beginning part of the heat content curves.

Meanwhile, our algorithm does not need a given nodes correspondence, which means

our method can be applied into the practical problems in wider fields. At last, ac-

cording to the interlacing theorem in [10], our method is robust to the minor changes

in comparatively large graphs. This feature is quite useful when we are dealing with

complex random graphs.
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CHAPTER 3

THE IMAGE HEAT CONTENT FEATURE

3.1 Introduction

As we have discussed in the first chapter, graph structure plays an important role

in representing images, texts and concepts in human intelligence. In this chapter, we

formally propose the idea of using graph to help the process of image representation.

We will also discuss the possibility of applying the graph similarity testing model

that we have proposed in Chapter 2 in the following image understanding process and

propose a new general image feature extraction model: the image heat content feature.

Further more, we will show the ability of the new feature by several experiments focus

on different aspects of image variations.

3.2 From image to graph

The first step in our model is to generate a graph based on an image. One of

the the most apparent approach is to treat each pixel in the image as a node in the

graph. In this approach, every pixel on the input image corresponds to a vertex of

the graph we want to generate. Basically the input image is represented by a M ×N

matrix in which each entry corresponds to one pixel on the image. The value of the

entry is the intensity of the related pixel which is an integral number from 0 to 255

in typical situation for gray-scale images. In the following algorithm, every pixel pi

is represented by one vertex vi ∈ V in our graph G = (V,E).

One problem of this idea is that the nodes in the graph do not capture the intensity

information of the pixels in the image. In order to code the intensity information
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in the graph, the only approach that we can choose is to use edges to represent the

difference of images. Consider one situation that all the pixels in an image increase the

same amount of intensity at the same time, the image is essentially not changed much

especially when regarding the understanding of the image only. In most of the normal

situations, the relative relationship between the pixels is more important comparing

to the absolute intensity values of the pixels, which is basically the motivation of our

graph generative model.

We denote the image matrix by I with the intensity value of the pixel (i, j) denoted

as Iij. Our graph is denoted as G(V,E,W ) where V is the set of the graph vertex

with |V | = n = MN , E is the set of the edges and W is the set of the weights on

the edges. First, every pixel pi is represented by one vertex vi ∈ V in our graph

G = (V,E). Then the weight of each edge e = (vi, vj) ∈ E is defined by the following

equation

A(i, j) =


ε1+f(Ii,Ij)

d(pi,pj)
(Ii 6= Ij)

ε2
d(pi,pj)

(Ii = Ij)

(3.1)

in which Ii, Ij are intensities of pixels pi and pj. d(pi, pj) is a distance measure of

pixel pi to pj. A monotonically increasing function f(Ii, Ij) calculates the difference

between the intensity of pixel pi and pj. We could either connect every pixels pair

or only connect all the neighboring pixels for less computational complexity. The

intuition behind this graph generation approach is that human vision tends to focus

on high-contrast places. Our approach emphasizes the close high-difference pixel pairs

by giving the corresponding graph edges larger weights.

The representation vertexes of the pixels on the frame or the natural boundaries

of the image are defined as the boundary vertexes of the graph, with the collection

denoted as the set VB. We now consider the graph G = (V,E,W ) with a nonempty set

of boundary vertexes. The adjacency matrix of the graph G is denoted as A = [wv,u]

with wv,u being the weight of the edge between the vertexes u and v. The degree
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matrix is D = diag [du] with du =
∑

v wvu. Algorithm 2 shows the pseudo code of our

proposed model.

Algorithm 2 Generate a graph from an image

The input is grey level image Image
The output is an adjacency matrix A, a boundary set B
nc=0
for i = 1 to Image.height do

for j = 1 to Image.width do
Assign every pixel an index
nc=nc+1
I(nc)=Image(i, j)
I(nc).h=i
I(nc).w=j
if Image(i, j) is a boundary node then
nc→ B

end if
end for

end for
for m = 1 to nc do

for n = 1 to nc do
Connect node m and n
d=((I(m).h− I(n).h)2 + (I(m).w − I(n).w)2)
if Im > In then
A(i, j)=(α + f(I(m), I(n)))/d

else
A(i, j)=γ/d

end if
end for

end for
return A, B

The intuition of this graph generation approach is stated as follows. The first

reason is still from biology, which is, human vision tends to be focusing on high-

contrast parts, namely ”edges” of the image. Our approach emphasize the high-

difference pixel pairs by giving the corresponding edges in graph higher weights. The

connectivity has to be normalized by the geometric distance between the nodes. Here

we just arbitrarily choose the square of the Euclidean distance. In the real application,

29



we eliminate links with very small weights in order to make the random walk based

algorithm faster.

The following example illustrate the graph generation model which is shown in

Figure 3.1. The graph representation of this fish image is in the right side, and we

can take the natural boundary of the object as the boundary nodes in the graph.

However, it’s hard to illustrate the edge weights in this small figure. A more precise

graph of a compressed is shown in Figure 3.2, in which different level of weights

corresponds to colors and widths of lines.

Figure 3.1. Pixel-based graph representation

Figure 3.2. Detailed illustration of pixel-based graph representation.
Red lines(weight>50), Yellow lines(weight>20), Green lines(weight>10), Blue
lines(weight>2, edges with weight less than 2 are not shown in this figure)

A simplified model would possibly speed up the graph generation process, which

is actually a ”lazy” version of the previous model. The major difference is that

instead connecting all the nodes pairs first, only the four-neighboring nodes pairs are
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connected. Consequently, the weight of each directed edge e = (vi, vj) ∈ E (from pi

to pj) can be defined by the following equation

w(i, j) =


ε+ f(Ii, Ij) (Ii ≥ Ij)

ε (Ii < Ij)

(3.2)

in which Ii, Ij are intensity of four-neighboring pixel pi and pj, similarly, a monoton-

ically increasing function f(Ii, Ij) calculate the difference between the intensity value

of pixel pi and pj.

Although this graph, which is an approximation of the original graph, is less-

connected, all the information is still stored in the connection weights combinations.

However, this approach may lead to negative effect on the global behavior of the

random walk on the graph, we still consider it as a reasonable compromise between

running speed and potential precision improvement. Furthermore, by introducing

localized behavior of the random walk and lower-resolution compressed graph, the

disadvantages of this approach could be reduced to certain level. Another side effect

of this approach is that this grid like graph happens to be planar graph, which is

exactly the type of graph discussed in [48].

For the graph generation process, the time complexity for an image with resolution

M ×N is O(M2N2) in the worst case because we need to compute every link weight

between two arbitrary chosen nodes for MN as the total number of nodes in the

representation graph of the given image. And meanwhile, the stored weight matrix

will consume O(M2N2) memory space. However, for a grid graph, the time and space

complexity tremendously reduce to be both O(MN) since the maximum number of

links for each nodes is fixed to be four. Another property for grid graph is that we

can simply prove that in this grid graph, if any one pixel’s intensity is given or the

average intensity is known, the rest pixel intensities can be automatically calculated
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one by one from the neighbor nodes consequently. This property means that nearly

all the information of the original image is preserved in this grid graph.

3.3 The image heat content feature

After we generate a graph for the image, what’s next? As we have discussed in

the first chapter, One obvious idea should naturally come into our mind, that is,

the similarity measurement of graphs could be the only way that two images (or

ideas, etc) are compared. Because similarity measure is the fundamental element of

intelligence, to effectively measure the similarity of graphs (with very fast speed) turns

to be the major challenge if we accepted the graph based representation of images,

which is essentially the very task in image retrieval – to find visually similar images

in very fast speed. As we have discussed in Chapter 2, traditional graph similarity

measurement is NP-hard and is impossible to solve when the target graphs has more

than a couple dozens of nodes. The approach we want, on the other hand, should be

very fast on large scale graphs, robust to little changes of the graph, and comparable

to the visual similarity of the images.

3.3.1 Heat equation and heat content

The proposed image feature is based on a fast feature extraction algorithm for com-

plex networks. As we proposed in last chapter, we utilize the heat content concept

to design the image feature based on the graph representation. We briefly introduce

the heat content concept first in this subsection. For a symmetric image graph repre-

sentation G, let D = diag[du] be the diagonal degree matrix. The normalized graph

Laplacian [13] of the graph G is defined as L = D−1/2LD−1/2, where L = D − A.

Suppose that vertex set V is divided into V = iD∪∂D, where iD is the interior nodes

and ∂D is the boundary. Then the following heat equation describes the heat-flow

dynamics on the graph:
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
∂ht
∂t

= −Lht

ht(u, v) = 0 for u ∈ ∂D,
(3.3)

with the initial condition h0(u, u) = 1 if u ∈ iD. Suppose Λ = diag[λi] is the diagonal

eigenvalue matrix and Φ is the eigenvector matrix of the interior part of L. The

solution to the heat equation is Ht = e−Lt = Φe−ΛtΦT and for each entry of Ht, we

have Ht(u, v) =
∑|iD|

i=1 e
−λitφi(u)φi(v), where φi is the ith column vector in Φ. The

heat content Q(t) is defined as

Q(t) =
∑

Ht(u, v) =
∑
uv

|iD|∑
i=1

e−λitφi(u)φi(v). (3.4)

A discrete-time heat content vector with a given length could be seen as a type of

feature of the corresponding image. Research has already proved that small changes

in the graph will not affect the Laplacian spectrum too much [10]. Thus the heat

content feature should be invariant to perturbations and small distortions of the

original image.

Directly finding the eigenvalues and the eigenvectors of the graph is very time

consuming. We have to estimate the heat content in a more affordable way, especially

when image-generated graphs typically have tens of thousand of nodes. One approach

to estimate the heat content is to use matrix multiplication estimation algorithm. We

could also approximate the continuous heat content by the summation of a discrete

time random walk on graph.

3.3.2 Heat content estimation based on matrix multiplication

Assume that the transition probability is proportional to the weights of the edges,

then random walkers on graph G move from vertex u to neighbor vertex v with
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probability wvu/du. Define the transition matrix M = AD−1 and the lazy random

walk transition matrix is defined as follows:

ML = (1− δ)I + δM,

which means the random walkers move to one of the neighbor vertex with probability

δ, or stay at the current state with probability 1 − δ. Now, for any time t = kδ, we

have

Pt = Mk
LP0 = [1− t

k
Lr]

kP0
k→∞, δ→0−−−−−−→ e−LrtP0 (3.5)

P0 is the initial amount of random walker distributions. So, we have Mk
L

k→∞, δ→0−−−−−−→

e−Lrt. With equation 2.2, we can prove each entry in matrix Mk
L converging to the

following:

Mk
L(u, v)

k→∞, δ→0−−−−−−→
m∑
1

e−λitφi(u)φi(v)

√
du
dv
,

comparing to equation 2.3, multiply
√

dv
du

on both sides, we have

Mk
L(u, v)

√
dv
du

k→∞, δ→0−−−−−−→ ht(u, v)

Mk
L(u, v) measures the proportion of random walkers initiated at vertex v and end

up at vertex u in k steps of lazy random walk. The term
√

dv
du

is a correction term

makes the value converges to the value of ht(u, v). Now, with equation 3.4, we get

the approximation for Q(t):

Q̂(t) =
∑
v∈iD

∑
u∈iD

Mk
L(u, v)

√
dv
du

(3.6)

Computing the matrix multiplication, we can get the approximation of Mk
L(u, v),

for each pair of nodes u, v ∈ iD. Then, multiply with the correction term and

add up the terms, we get the estimated heat content value at time t = δk. Thus, the
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approximated heat content curve can be achieved consequently. The major advantage

of our algorithm is, eigenvalue and eigenvector computing can be avoided. So, no

matter how large the graph is, it is possible to get an approximated heat content.

3.3.3 Heat content estimation based on random walk

We can also use a Monte Carlo method to estimate the heat content. Suppose we

have already generated a graph G = (V,E) from an image I with the boundary B

defined as a set of all the nodes corresponding to pixels on the natural boundary of

the image. The major steps of our Monte Carlo heat content estimation algorithm

are:

(1) According to the weight matrix A, compute the degree of each node D and

the corresponding random walk matrix P .

(2) At the initial time, give every vertex the same number k of random walkers to

simulate a uniform initial condition. The initial size of random walkers on the graph

is s = nk.

(3) In each step, every random walker stays at its current vertex vi with probability

δ (0 ≤ δ ≤ 1) and with probability 1−δ goes out. The probability of going to neighbor

vj should equal to pji in the stochastic random walk matrix P . If vj ∈ B, for which

B represent all the boundary vertices, then the random walker is deleted.

(4) After every step, a heat content value is calculated by Q̂(t) =
∑s

i=1 1× (du
dv

)
1/2
i

in which du and dv are the degree of origin node u and current node v of the ith

random walker.

(5) Running the algorithm for T/δ steps to get the heat content Q̂(t) from 0 to

T .

The above basic algorithm can have the following generalized formation which is

could improve the classification performance in experiments and also point to some

interesting conjectures in neuroscience.
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Suppose we would like to emphasize more the traffic from a heavily connected

vertex to a less connected vertex. Here the connectivity of a vertex v is described by

the total edge weight dv. It is reasonable to insert a multiplicative factor (du/dv)
η, η >

0 for the traffic from u to v. We call this factor the “ridge factor” since its purpose

is to emphasize the connections from heavily connected regions to the less connected

ones. In the matrix notations this insertion is amount to change the i step graph

response expression from

hi = rM ip0

to

hi = rD−ηM iDηp0.

Since the degree matrix D is closely related to the transition matrix M = AD−1,

at a first glance it seems that by inserting such factors we are changing the eigenvalues

that govern the motion modes of the random walkers. But this is not true. Note that

in multiple step transitions D−η and Dη cancels each other so our algorithm simply

collect the traffic as before and then insert the factor (dv/du)η only once:

g′L,i+1

=
∑n

k=1 λ
i+1
k

∑
u∈V,v∈V φL,k(u)ψTL,k(v)(dv/du)η

=
∑n

k=1 α
′
L,kλ

i+1
L,k .

(3.7)

Our algorithm have the following properties:

(1) We view the random walk over the representation graph as a dynamic system

and we use the initial response to distinguish graphs and thus the images they

represent;

(2) In our algorithm the earlier the random walk data come in the more impor-

tant they are, enabling an early decision that achieves the quickness of feature

extraction;
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(3) Our algorithm is intrinsically rotation invariant. It also handles stretching and

posing very well without any preprocessing;

(4) Our algorithm is “embarrassingly parallel” in that it executes the same simple

operations on every edge of the graph and the results collected from all the

edges are simply added together to give the final output.

Algorithm 3 shows the detail of the proposed algorithm. The time complexity of

this algorithm is O(tn2) if we use a full adjacency matrix to represent P , or O(tn)

if we use list like (since normally the number of links from one vertex to another

is less than a certain threshold which can be seen as a constant if we ignore edges

with weights less than a threshold), n is the size of vertices and t is the number of

random walk steps. In our classification applications, the number of random walk

steps is usually set to be dozens to hundreds which depend on the size of graph, how

ever, this number will be more than enough if it equals to n. Thus in the worst

case, we can anticipate it to be a O(n2) time algorithm. Further more, the algorithm

can be parallelized using multiple machines, the random walkers are distributed to

several computers and once a random walker is moved, the information is sent to a

server, then the server can compute the heat content without any further effort but

adding them up with a normalization. The time complexity for such a parallelized

mechanism is O(t).

We can directly use the image heat content in the image retrieval/classification

tasks. The heat content is treated as an input feature extracted from the image

and become a representation of the original image. We then use a distance measure

to calculate the similarity between two heat content vectors, which represents the

similarity between two images. The distance measure is set to be the Euclidean

distance. Figure 3.3 shows this basic image retrieval algorithm.
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Algorithm 3 Calculate image heat content from time 0 to t

The input is the graph adjacency matrix A, boundary set B, the random walkers
list RW and time t
The output is a series of heat content values grf from 0 to t
grf(0)← initial condition
for x = 1 to t do

for i = 1 to the size of random walkers RW.length do
rand1 = a random number in [0, 1]
if rand1 >= lazy probability ε then

prepare to walk out
rand2 = a random number in [0, 1]
sum = 0
for j = 1 to size of the nodes do
a=RW (i).now
a is the index of the node where the random walker is right now
P (a, j)=A(a, j)/degree(a)
sum=sum+P (a, j)
if rand2 <= sum then

BREAK
end if

end for
j is the destination node
if j ∈ B then

set the label of the random walker to be ”deleted”
RW (i).label=deleted

else
coff=(Degree(RW (i).initial)/Degree(RW (i).now))ridge factor

h(x) = h(x− 1) + 1× coff
update the random walker’s property
RW (i).now=j

end if
end if

end for
end for
return hc = hc/hc(0)

38



Figure 3.3. Basic image retrieval algorithm based on heat content feature

3.3.4 Connections to continuous domain heat diffusion

Let P (t) be a density matrix of the random walkers at time t and Pij(t) describes

the density of the random walkers initialized in node j and currently in node i at

time t. For lazy random walk we have

P (t+ δ) = [(1− δ)I + δM ]P (t), (3.8)

which is equivalent to

P (t+ δ)− P (t) = −δ(I −M)P (t). (3.9)

Multiplying
√
di/dj to equation 2,

Pij(t+ δ)

√
di
dj
− Pij(t)

√
di
dj

= −δ
n∑
x=1

(Iix −Mix)Pxj(t)

√
di
dj
. (3.10)

Letting Hij(t) = Pij(t)
√

di
dj

,
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Hij(t+ δ)−Hij(t) = −δ
n∑
x=1

(Iix −Mix)Pxj(t)

√
di
dj

= −δ
n∑
x=1

(Iix −Mix)

√
di
dx
Pxj(t)

√
dx
dj

= −δ
n∑
x=1

(Iix −Mix)

√
di
dx
Hxj(t)

.

Thus we have

H(t+ δ)−H(t) = −δ(I −D1/2MD−1/2)H(t)

= −δ(I −D−1/2MD−1/2)H(t)

= −δLH(t).

The 2D matrix H can not be mapped to the original h(u, v) on the plane di-

rectly. However, h(u, v) can be computed by H. Suppose the (u, v) position block

corresponds to node k in the grid network, h(u, v) is in fact the summation of all

the components in the kth row of H. We can also transform the 2D h(u, v) into

an 1D vector h′ = [h′1, · · · , h′n]T according to the node mapping relations. We have

huv = h′k =
∑n

x=1 Hkx(t). Meanwhile,

Hij(t+ δ)−Hij(t) = −δ
n∑
x=1

LixHxj(t),

n∑
j=1

Hij(t+ δ)−
n∑
j=1

Hij(t) = −δ
n∑
j=1

n∑
x=1

LixHxj(t),

h′i(t+ δ)− h′i(t) = −δ
n∑
x=1

Lixh′x(t),

so we have
∂h′

∂t
= −Lh′.
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3.3.5 Multi-scale image heat content

For a more precise matching, we believe that the heat contents of local patches

of the image could be compared for local similarity as well. Thus we developed the

following approaches to extract more information in the same random walk process

described in previous subsection. Without adding complexities to the running time,

the algorithm could provide much more information than the global heat content

alone.

For example, suppose an image is divided into 4 by 4 in total 16 blocks, in the

random walk process, the random walkers still follow the same instruction and the

total image heat content is the same as before, but the only difference is that we

further more compute the local image heat content for each block, namely we only

consider random walkers inside a certain block each time when we calculate the heat

content for that block.

Based on this idea, we use an example to illustrate the idea of multi-scale image

heat content. In the experiment, 2 images are partitioned into 16 blocks. Figure

3.4 shows an example of each block’s image heat content which are all normalized to

start at 1. This partition trick can not only create more combinations of local image

heat content to make the feature extraction more precise but also allow to compare

local image patches of images potentially. Further more, we can design arbitrary-sized

overlapping image blocks at any position to accumulate the information at any level

everywhere in only one random walk simulation process. We call this technique the

multi-scale image heat content.

3.4 Image retrieval and classification based on the image heat

content

In this section, five experiments were performed to examine the performance of our

heat content feature. The first experiment is an example to show the performance
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Figure 3.4. Local image heat content estimation

of the image heat content under image variations such as rotation, stretching and

affine transforms. The second experiment if a facial recognition demo to show our

algorithm’s ability to handle pose-variations of human faces. The third experiment

is an image retrieval experiment for natural images. In this experiment, we test our

multi-scale image heat content by showing relative differences of all the image pairs in

a dataset with natural images. The Fourth experiment is another retrieval experiment

for spectrograms. The purpose of this experiment is to check the robustness of the

heat content feature for similar-structure but largely distorted spectrogram images

due to different reading speed and background environment. The experiment also

shows the potential of applying our method on voice and speech recognition projects.

In the last experiment, we apply the heat content feature in a typical classification

task for hand written digits dataset MNIST and compare it with some widely used

image features through standard machine learning models.
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3.4.1 Affine-transformed images

In the first experiment, we set up a dataset contains seven types of fish images.

The original fish image is from [2]. To each type of fish image, five affine transforms

under random but bounded (the variations are less than 30%) coefficients were applied

to generate five similar fish images for each type. Figure 3.5(a) shows the result of

fish images after affine transform.

The simulated heat contents of all of the fish images are plotted in Figure 3.5(b).

The heat content curves of the same color corresponds to the same type of the fish

images. We can see that even from the beginning part (t < 10), the heat content

curves can successfully cluster the same types of fishes into one group. The result

illustrates that the heat content feature is robust to rotation, stretching and affine

transform of images, which is a useful property for image feature extraction.

3.4.2 Facial images with pose variations

The second experiment is designed to test our algorithm’s ability of handling pose-

variations of human facial images. Face recognition is always considered to be a major

challenge in computer vision society [37, 76, 78]. Specific algorithms are designed to

only deal with the characteristics of the facial images [33, 57,65].

Figure 3.6 shows a test set contains 36 facial images, in which there are 3 pose

variations each for 12 different people. The test samples are chosen from part of the

database in [69]. Instead of using natural boundary of the human face, a rectangular

frame which are exactly combined by the out contour pixels of the image are treated

as the boundary vertices in the graph. Suppose the image heat content for person i of

pose j is hij(t), and we define a distance measure of global image heat content to be

dis(hij(t), hmn(t)) =
√∑

t(hij(t)− hmn(t))2. We calculate the maximum distances

among poses of one person and also the average distances between one person to the

other. In this experiment we set the ridge factor to be 0.5. Tables 3.4.2 and 3.4.2
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(a) Fish image examples

(b) Heat content curves

Figure 3.5. Affine transformed fish image examples and corresponding image heat
content curves. In the graph generation process, f(Ii, Ij) = |Ii − Ij|, d is the square
of distance, ε1 = ε2 = 1. In the Monte Carlo estimation, δ = 0.1 and the number of
initial random walkers per vertex is 1.
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shows the result. We can see that the maximum distances among poses are smaller

than the distances between different people, thus the algorithm can naturally cluster

the same person’s facial images into one community and the algorithm can be used

to classify facial images.

Figure 3.6. Human facial images with pose variations

Person 1 2 3 4 5 6
Maximum Distance 0.396 0.571 0.372 0.417 0.475 0.574

Person 7 8 9 10 11 12
Maximum Distance 0.249 0.534 0.668 0.977 0.371 0.797

Table 3.1. Maximum distances of different poses for one person

Person 1 2 3 4 5 6
Average Distance 0 2.211 1.326 2.989 1.835 1.212

Person 7 8 9 10 11 12
Average Distance 1.619 2.181 3.099 1.508 1.715 1.445

Table 3.2. Average distances between person 1 to other people
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3.4.3 Natural image retrieval

In this experiment, we selected some natural images online and downloaded to

form a testing dateset. We then get rid of the color information of the image. Figure

3.7 shows all the images in the dataset. For this dataset, we compute the normalized

multi-scale image heat content for each image and by comparing a distance matrix

we illustrate the capability of only using image heat content to do image retrieval.

Figure 3.8 illustrate the distance matrix of the image heat content difference of

the all pairs of images. We first compute a baseline heat content for all the images

and then input all the images again to calculate the distances of each image to all the

baselines, the result is shown in every raw. In the illustration, the dark red entries

represent small distances and the dark blue ones represent large distances. In this

experiment we set the ridge factor to be 2. Figure 3.9 shows that some examples of

the ”similar” pairs based on the distances. We can see that our algorithm captures

the structural information of the image despite some “similar” pairs of image are

actually quite different at pixel level.

Figure 3.7. Image database
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Figure 3.8. The distance matrix of all images

Figure 3.9. Similar pairs in the database

3.4.4 Speech and spectrogram retrieval

In this experiment, we test our feature by a spectrogram retrieval experiment. A

spectrogram is an image, which is the result of a short time fourier transform (STFT)

of an audio sample.
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The experiment is set to check the similarity measurement of the same words in

different reading speeds. We record 40 ”.wav” files and all of them are 3-seconds

speech samples. The 40 samples are divided into 2 groups. The first group is the

reference group in which 20 words are read by one person in normal speed. These

words are: ”University, December, China, America, Massachusetts, Amherst, Christ-

mas, Holiday, Wednesday, Computer, Engineering, Mathematics, Equation, Freedom,

Five, October, January, Arsenal, Soccer, Ladygaga”. The second group is the test

set. In this set all the previous words are read by the same person again but in slower

speed. The sampling frequency is 16, 000 Hz in this experiment.

First we do some pre-processing for all the samples. We first use an energy based

algorithm to detect the duration time of the speech. Then we only keep the ac-

tive speech part and remove the rest inactive periods. Afterwards, we calculate the

spectrograms of all the 40 active speech samples. The STFT window sizes and the

overlapping lengths are set to be the same as the typical widely used setups in speech

recognition tasks. These spectrograms are used in the following similarity testing

experiment. Figure 4.21 shows the spectrograms of several word examples in the

reference group as well as the test group. We can see that in this experiment the

test words are read in slower speed than the references. The goal is to check if our

algorithm can find the similarities among the two speech samples of the same word

despite the differences of reading speed. Figure 3.11 shows the exact ratio of dura-

tions between the 20 slower test samples and the 20 original reference samples. From

the figure we can see that the reading speeds of the test samples are slower than the

reference ones from 15% up to 80% and the average is around 45%.

For all the reference samples and the test samples, we uniformly convert all the

spectrograms into the same-size images. Namely no matter how long the duration

of the speech is, we resize the spectrogram to a fixed length. Then, for each resized

spectrogram S, we use our graph generation algorithm to generate a big graph for the
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Figure 3.10. Spectrogram examples of the normal and slower samples

Figure 3.11. Ratio of durations between the test samples and reference samples

whole spectrogram and several small graphs for some image blocks in the spectrogram

which can be denoted as G1 to Gn. We want to capture the general structure as well

as some details of the spectrogram. Then we compute the 10-steps heat contents for
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all the graphs generated to be h1 to thn. All the heat contents are combined as a big

vector h which is the feature vector of the spectrogram S. In the experiment, we use

some 14 resolution blocks to capture details of the spectrogram.

For every reference speech samples S1 to S20, we now have the corresponding

reference feature vectors h1 to h20. The next step is to compute the feature vectors

for all the test samples and to check the differences between the test samples and

all the reference samples. Figure 3.12 shows the Euclidean distance matrix of heat

content vectors between all the reference and test samples. We can see that every

test sample is correctly matched to its reference one.

Figure 3.12. Similarity matrix of spectrograms

3.4.5 Hand written digits classification experiment

The MNIST database [42] is a benchmark widely used in image classification

algorithm comparison. It contains a training group of 60, 000 images and a testing

group of 10, 000 images. One property of this dataset is that all the images are hand
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written digits with standard size and contrast, which is very “similar” already. Figure

3.13 shows some example images.

Figure 3.13. Hand-written digit image examples in MNIST database

We first compute the heat content feature for every image based on forty-nine

10 × 10 random position overlapping local image blocks. Five steps of heat content

is used for each image block. Table 4.2 compares the classification error rates of the

heat content feature and other blockwise similar-size low-level features including the

intensity histogram, intensity moments, Gabor coefficients, gray-level co-occurrence

matrix (GLCM) and edge directions histogram. All the features are normalized and

the classification algorithm is a k-nearest-neighbors classifier with L2 norm as the

distance measure. The result shows that although the heat content feature alone is

not the best, it is still better than some single low-level features. More importantly,

if we add the heat content feature to any other feature and form a combined feature,

the error rate always drops. This result provides preliminary evidence that the heat

content feature contains some useful image information which is not represented by

the existing low-level image features.

Our next experiment is to simulate the real image retrieval task by combining three

types of features (Intensity, texture and shape). We apply logistic and linear kernel
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support vector machine (SVM) [12] classifiers to execute the classification. Table

3.4 shows that in all situations the performance of the combined feature with the

heat content is better than the original combination in both classifiers. This result

further illustrates that the heat content feature contains unique and useful image

information as a new type of low-level feature which has the potential to improve the

feature exaction step for current image retrieval systems.

Feature Alone with HC

Intensity histogram (Histogram) 10.76% 6.89%

Intensity moments (Moments) 8.94% 7.04%

Gabor coefficients (Gabor) 3.05% 2.94%

Gray-level co-occurrence (GLCM) 6.92% 4.49%

Edge directions (Edge) 3.68% 3.15%

Heat content (HC) 6.54% N/A

Table 3.3. Classification error rate (k-NN classifier)

Feature Logistic SVM

Histogram + Gabor + Edge 2.12% 1.47%

Histogram + Gabor + Edge + HC 2.01% 1.31%

Histogram + GLCM + Edge 2.58% 1.62%

Histogram + GLCM + Edge + HC 2.28% 1.54%

Moments + Gabor + Edge 2.06% 1.30%

Moments + Gabor + Edge + HC 1.90% 1.24%

Moments + GLCM + Edge 2.36% 1.48%

Moments + GLCM + Edge + HC 2.20% 1.41%

Combined feature 1.82% 1.29%

Combined feature with HC 1.78% 1.22%

Table 3.4. Classification error rate (logistic/SVM classifier)

3.5 Summation

Feature extraction is the first and most fundamental step of a fast image retrieval

system. In this section, we propose a graph-based image representation associated

with a fast graph similarity comparison algorithm based on the asymptotic behavior

of the heat content. The heat content feature is shown to be a robust, easily computed
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image feature and has the potential to be an effective and efficient multi-scale feature

for image retrieval. The heat content feature can also be combined with other existing

low-level features to create a complex visual signature which may improve the fol-

lowing classification/retrieval tasks. Although we still need further experiments and

analysis to thoroughly understand the advantages and drawbacks of the heat content

feature, our preliminary results show that heat content computation could be a useful

component of image retrieval.classification tasks.
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CHAPTER 4

IMAGE UNDERSTANDING BASED ON SPECTRAL
GRAPH INFORMATION

4.1 How to improve the heat content feature?

In the last chapter, our preliminary result shows that the heat content feature can

improve the image retrieval/classification performance when combined with existing

low level features. However, for a mid-size image with more than 10, 000 pixels, the

image heat content feature can only be roughly estimated. Moreover, the functions

that are summed to generate the feature decay exponentially with rates given by

the graph Laplacian eigenvalues; hence, information carried by larger eigenvalues is

mostly lost.

In this chapter, we first introduce several approaches to drastically reduce the size

of the traditional pixel-based graph representation. By detecting corner/edge pixels

or merging nodes, our model can generate a much smaller graph for the same image,

which makes complicated feature extraction methods such as spectral analysis a pos-

sible option. We then formally propose an analysis of forming the asymmetric graph

to represent the image, where the oscillatory heat content contains additional useful

frequency information. We also propose a novel feature extraction model based on

the spectral graph information. Experiments show that our re-designed features per-

form better than the original heat content feature and is a more effective supplement

to further improve the performance of traditional feature-based image retrieval and

classification.
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4.2 Graph generation of large images

Traditional pixel-based graph generation precisely represent the pixel relations in

the image. However, it is a challenging task to apply powerful tools such as spectral

analysis when the graph is very large. Even when the graph is made to be sparse, the

size is still too large for a mid-size natural image input. In this section, we propose

three graph generation model which has a far smaller number of nodes compared to

pixel-based graph generation models.

4.2.1 Graph generation by corner detection

We first introduce a typical widely used approach to construct a reduced-size graph

which represents an arbitrary grey-level image based on Harris corner detection and

Delauney triangulation. The first step of generating the network is to set up vertices

of the graph on the given image. A typical method which is to use Harris Corner

Detector to generate vertices for the graph. The Harris Corner Detector is based

on the local auto-correlation function of a signal, where the local auto-correlation

function measures the local changes of the signal with patches shifted by a small

amount in different directions.

Given a shift (∆x,∆y) and a point (x, y), the auto-correlation function is defined

as,

c(x, y) =
∑
W

[I(xi, yi)− I(xi + ∆x, yy + ∆y)]2. (4.1)

where I(·, ·) denotes the image function and (xi, yi) are the points in the window W

(Gaussian) centered on (x.y). The shifted image is approximated by a Taylor expan-

sion truncated to the first order terms, Harris Corner Detector is the approximation

of the function and the result is a corner response map R associated with the original

image. We take the local maxima of R and they becomes the vertices we want.

A Delaunay triangulation for a set P of points in the plane is a triangulation

DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P).
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And the next step is to set the outside nodes as boundary nodes, as Figure 4.1 shows,

the blue points and lines are the interior vertices and edges of the network, the red

points are the boundary vertices of the network.

Figure 4.1. Delaunay network generation of the image

Then we build a weighted transition matrix in which the transition probability

from vertex u to v is inversely proportional to the square of the distance of the link

between vertices u and v. It means that a weight WE(u, v) of each edge (u, v) is

defined by the square of the Euclidean distance between u and v which is d2
(u,v). So

we have WE(u, v) = WE(v, u) = 1/d2
(u,v). Then the transition probability from vertex

u to vertex v, P (u, v) is

P (u, v) =
WE(u, v)

wV (u, u)
(4.2)

We apply the heat content estimation in the experiment. In the test data set, we

use the contours of fishes to be the original image. The basic fish contour database

we used here contains 20 types of fish, as figure 4.2 shows.

To each type of fish, as we discussed before, a Harris-corner detector is used

to locate and acquire the nodes of our graph and then we fix the boundary nodes

according to its shape. Meanwhile we connect these nodes by a Delauney network.

Then we do 20 affine transforms to the original fish shapes in each type. In the

transform, the nodes (including the boundary nodes) are fixed but the Delauney
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Figure 4.2. Fish Contour Database

network is reconstructed, namely the network has the same number of the total

nodes and boundary nodes, but slightly different network structures which caused by

the changes of shapes. Figure 4.3 shows some examples of such networks after the

transform.

We randomly choose 10 fishes in each type to forms a training set. Then we

compute the heat content estimation if all the fish shapes. Figure 4.4 shows the heat

content curves of 7 types of fishes. We then use a distance defined as the following

equation to do the recognition of fishes in the test set:

‖ hc1 − hc2 ‖=

√∫ t

0

(hc1(x)− hc2(x))2dx. (4.3)

The successful rate is 94.5% in our experiment, which can even be improved if with

more complicated recognition technique. How ever, this approach based on Delauney

network and heat content simulation has difficulties in some other classification ap-
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Figure 4.3. Sample fishes and networks after the transform

Figure 4.4. Heat content curves of 7 types of fish contours on Delauney graphs

plications. The major problem is that normally the network only contains hundreds

of nodes and the boundary nodes plays a very important role in the upcoming heat

content simulation process due to the small scale of these networks, and Harris corner
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detector could not provide us stable output of vertex positions and total number of

boundary nodes. That will cause serious problem in real classification problems. For

example, if we use the algorithm on the previous facial image experiment, the result

is not very good.

4.2.2 Graph generation by nodes merging

The first simple but effective small-size graph generation model is based on the

super-pixel pre-segmentation of the image. We first divide the image into super-pixels

using a very fast and effective SLIC-like algorithm [1]. In each super-pixel areas, the

image area has very similar pixels with almost the same color and intensity contents.

The original RGB colorful image is transformed to CIELAB format with the pixel

representation of [L, a, b, x, y]. L is a general intensity measurement and a, b describe

the visual color of the pixel. The SLIC-like super-pixel is generated by iteratively

applying the following distance calculation of the similarity between a pixel and the

local super-pixel center:

D =

√
d2
c +

(
ds
S

)2

m.

The color distance is defined as dc =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 and the

location distance is defined as ds =
√

(xi − xj)2 + (yi − yj)2. S and m are controlling

factors for the size of super-pixels. The center of the super-pixel is the local pixel

with the lowest gradient position. Figure 4.5 shows a super-pixel segmentation of

two images. The super-pixel pre-segmentation of the original image not only tremen-

dously reduces the following computational complexity, but also captures most of the

essential local edge information of the image. We construct the simple graph rep-

resentation of the image based on the super pixel segmentation using the following

equation

Asp(i, j) =


k1

(
dc
d2s

)
(i 6= j)

0 (i = j).
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Figure 4.5. Super pixel segmentation of the image

Our second small-size graph generation model is derived from traditional pixel-

based models. We can reduce the size of the graph by ”nodes merging”. Specifically,

if some pixels form a homogenous area, they can be clustered into an image segment.

In our graph generation model, we assign a single node for such an image segment.

By doing so, the total number of nodes in the graph is greatly decreased.

The first step of this model is similar to our original pixel-based graph mod-

el in the previous chapter. We generate a vertex for every pixel in the image and

the weight of any edge is determined by a distance measurement between the corre-

sponding pixels. For color images, like the super-pixel algorithm, the original RGB

representation is transformed to the CIELAB format with every pixel represented by

a five-dimensional vector [L, a, b, x, y]. L is an intensity measurement, a, b describes

the visual color and x, y represents the location of the pixel on the image. We com-

pute two distances to form the definition of the edge weight. For any two pixels

pi, pj, the color distance is defined as dc =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (for

grayscale image we just use the intensity part) and the geometrical distance is defined

as ds =
√

(xi − xj)2 + (yi − yj)2. The edge weight between any two pixels pi and pj
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is defined as

wij = e−d
2
c/σI · e−ds2/σX , (4.4)

where σI and σX are controlling parameters. On the other hand, we can also use our

original graph generation model [38] in this step to produce pixel-based graph for the

image to still focus on the high contrast part of the image.

The pixel-based graph describes similarities between pixels and captures impor-

tant structural information on the image. Our goal is to merge similar nodes together

while keeping the major structure of the graph intact. A MinMax K-Means clustering

algorithm [70] is applied to acquire a fast segmentation for the image.

Suppose we generate k different-size segments S1, S2, . . . , Sk after clustering. We

merge all the nodes in each segment together and form k new nodes s1 to sk to be the

vertices in our new graph. All the edges connected to any node in set Si from outside

in the original graph will then become links connected to the single node si in the

new graph. At the same time, all the inside edges in each segment are summed up to

be a self-loop edge for the corresponding new node si. Precisely, the weight between

nodes sm and sn in the adjacency matrix of our ”after-merging” graph is defined as

wmn =


e
− d

2
c
σI · e−

ds2

σX (ds < th)

0 (ds ≥ th)

(4.5)

We can easily prove that the total degree of the graph does not change. The

structure of the graph also remains intact. Considering a random walk on our new

graph, the steady-state distribution of the random walkers can be easily calculated

from the original distribution by adding entries from the same cluster together. Al-

though there is some information loss inside every image segment, the general heat

diffusion pattern is largely equivalent to the original one due to the fact that these

image segments are mostly homogenous patches.
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A natural image usually has large image segments. Depending on the parameters

set for the K-Means clustering, for a standard configuration, the size of the graph

normally reduces to less than one percent of the original size, yet most of the structural

information of the image still remains. For example, the generated graph only contains

hundreds of nodes for a typical 128 × 128 as shown input in figure 4.6. The model

not only generate a much smaller graph which makes eigen-decomposition no longer a

big challenge, but also naturally captures important image information through node

merging of homogenous image segments.

Figure 4.6. Pre-segmentation of image

We can also combine the super-pixel graph generation model and the node merging

graph generation model if the image is very large. Based on the super-pixel segmen-

tation of the image, each super pixel is then represented by a similar 3-dimensional

average property vector [L, a, b] with the average position [x, y]. We can then calcu-

late the similarity between neighboring super pixels too by equation 4.5 in which dc

and ds are the distances of the color and location of two super pixels, repectively. The

following procedure is the same and we can therefore generate a very concise graph

representation even for a very large high-resolution natural image.
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Interestingly, our new graph’s degree distribution follows power law. Figure 4.7

shows two examples of power law degree distributions generated from natural images.

Figure 4.8 shows a comparison between our new power law graph and the original

pixel-based graph. The degree distributions and the weight spectrums are shown

to demonstrate that the new power law graph is capable of capturing more high

frequency behaviors as larger values in right part of the weight spectrums.

Figure 4.7. Images and their corresponding power law degree distributions

Figure 4.8. Degree distributions and weight spectrums (First row: original graph.
Second row: power law graph. Left: CCDF. Right: weight spectrum.)
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4.2.3 Graph generation based on edge detection

Another possible way to generate the reduced-size graph is based on the edge de-

tection result of the image. We use the Canny edge detector to acquire the position

of the edge pixels and we use the information in the intensity gradient of the corre-

sponding pixels to define the graph representation of the image. Suppose the edge

detection operator returns a value for the first derivative in the horizontal direction

(Gx) and the vertical direction (Gy). From this the edge gradient and direction can

be determined as

G =
√
G2
x +G2

y (4.6)

Θ = arctanGy, Gx. (4.7)

The following step in the graph generation process is to build a network using

the information of Θ and the relative position of the pixel. Intuitively we want to

make “corner point area” having larger weight in the graph. The weight of the edge

between two pixels is defined by the following equation

wij =


|Θi−π/2|−|Θj−π/2|

d2s
(ds < th)

0 (ds ≥ th)

in which ds are the distances of the location of two edge pixels.

4.3 Improved image representation model based on spectral

graph information

Spectral analysis is a powerful tool to extract useful structural information on the

graph. For a large-size graph, fast eigen-decomposition becomes very difficult. The

image heat content feature in the last chapter is designed to contain all the spectral
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information which can also be estimated by a fast Monte-Carlo algorithm. However,

by drastically reducing the size of the graph, we can directly acquire the precise result

of the eigen-decomposition, which gives us more possibilities for designing features

based on the spectral graph information.

Meanwhile, the heat content feature can be also improved in other aspects. We will

first propose a modified oscillatory heat content feature based on an asymmetric graph

in the following subsection. Second, instead of using a summation of exponentially

decaying functions, which is largely determined by the component functions with

small eigenvalues, we will propose a novel feature extraction model directly based on

the spectral information of the graph.

4.3.1 Oscillatory image heat content

We first modify the symmetric graph into an asymmetric one by simply giving very

small weights to edges from low average-intensity segments to high average-intensity

segments. While this may seem arbitrary, the directional asymmetry in the resulting

graph actually carries more information about the image structure.

The eigenvalues and eigenvectors of the normalized graph Laplacian L of the

asymmetric graph can be complex valued, and exist as complex conjugates. The

solution to the heat equation of this asymmetric graph Laplacian L is Ht = Φe−ΛtΨ.

Λ = diag[λi] is the diagonal eigenvalue matrix. Φ and Ψ are the right and left

eigenvector matrices (Ψ = Φ−1). For any complex conjugates pairs of eigenvalues

λ = a + bi and λ = a − bi with corresponding eigenvectors φ, ψ, φ and ψ, suppose

that
∑

uv φ(u)ψ(v) = α + βi, then we have
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α− βi =
∑
uv

φ(u)ψ(v) (4.8)

= (
∑

φ)(
∑

ψ) (4.9)

= (
∑

φ)(
∑

ψ) (4.10)

=
∑
uv

φ(u)ψ(v). (4.11)

The summation is

e−λt
∑
uv

φ(u)ψ(v) + e−λt
∑
uv

φ(u)ψ(v) (4.12)

which is equal to

e−(a+bi)t(α + βi) + e−(a−bi)t(α− βi) = 2e−at(α cos(bt)) + β sin(bt)). (4.13)

So the summation is still a real-valued function. Therefore, the total summation

is still real valued and can be written as

Q(t) =

|iD|∑
i=1

e−ait(
√
α2
i + β2

i sin(bit+ arctan
βi
αi

)). (4.14)

Compared to the original heat content, the new oscillatory heat content (OHC)

is no longer a summation of purely exponentially decaying functions. It becomes an

oscillatory function which contains components of different frequencies, amplitudes

and phases. These variations can be helpful in classification tasks. We can also

amplify the asymmetric part of L to generate more pairs of complex eigens by defining

a new matrix Lk = (L+ L′)/2 + k(L − L′)/2 where k > 1.

We use the following example to show the components in the asymmetric graph

heat content. The asymmetric graph shown here is a fully connected graph G=(V,E)

with |V | = 30. The edges set E = {(u, v), u, v = 1, . . . , |V |} is separated into two
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parts: E = {E1, E2}. Define the weight matrix W = [wi,j] with each element as

below:

wi,j =


100
di,j

(i, j) ∈ E1

1
di,j

(i, j) ∈ E2

where di,j =
√

(xi − xj)2 + (yi − yj)2 is the distance between vertex i and j. In Figure

4.9, the edges in E1 are draw in the graph using arrows. Edges in E2 are omitted in

the figure.

Figure 4.9. Asymmetric graph with edges in E1

The eigenvalues and eigenvectors of the graph’s Laplacian is shown in Table 4.3.1.

In the table, two conjugated eigenvalues can be seen as one frequency component of

the heat content function. For λ2 and λ3, the heat content component is

H2,3 =(−2.1414− 1.097i)e−(1.329+0.4435i)t + (−2.1414 + 1.097i)e−(1.329−0.4435i)t

=e−1.329t(−2.1414− 1.097i)(cos(−0.4435t) + i sin(−0.4435t))+

e−1.329t(−2.1414 + 1.097i)(cos(0.4435t) + i sin(0.4435t))

=e−1.329t(−2× 2.1414 cos(0.4435t)− 2× 1.097 sin(0.4435t))

=e−1.329t(−4.2828 cos(0.4435t)− 2.194 sin(0.4435t)).
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For real eigenvalues, the heat content component is simple, take λ1 as an example,

H1 = 40.6379e−0.0193t.

k 1 2 3 4
λk 0.0193 1.329+0.4435i 1.329-0.4435i 1.4858
αk 40.6379 -2.1414-1.097i -2.1414+1.097i 1.1364
k 5 6 7 8
λk 0.7302+0.3524i 0.7302-0.3524i 1.36 1.0168+0.3138i
αk 8.4138-13.046i 8.4138+13.046i -15.2173 -12.365-10.6865i
k 9 10 11 12
λk 1.0168-0.3138i 0.7325+0.0686i 0.7325-0.0686i 1.1235+0.1867i
αk -12.365+10.6865i -2.3982+2.9213i -2.3982-2.9213i 8.0052+0.2153i
k 13 14 15 16
λk 0.899-0.0717i 0.9951+0.132i 0.9951-0.132i 0.9649+0.0865i
αk 0.947-0.2215i -0.0708-0.8629i -0.0708+0.8629i -0.8915-0.7349i
k 17 18 19 20
λk 1.1235-0.1867i 0.899+0.0717i 0.9649-0.0865i 1.077+0.0928i
αk 8.0052-0.2153i 0.947+0.2215i -0.8915+0.7349i -0.1227+0.2333i
k 21 22 23 24
λk 1.077-0.0928i 1.1471+0.0127i 1.1471-0.0127i 1.1046
αk -0.1227-0.2333i 0.0108+0.3151i 0.0108-0.3151i -1.3316

Table 4.1. Eigenvalues and eigenvectors of the graph’s Laplacian

The asymmetric heat content totally have 14 frequency components. We draw

the 14 components separately and compare them with the added up heat content,

as shown in Figure 4.10. The dark black line is the total heat content curve. The

red solid red line is curve for H1, which is the low frequency component of the heat

content. As shown in the figure, at the beginning part of the heat content curve,

the high frequency components pull down the curve; and at last, the low frequency

component dominates.

The asymmetric heat content can also be simulated by collecting traffic of random

walk at each step with correction (du/dv)1/2 for the transition starting at vertex u

and ending at v. Take out the correction, the curve will be like the red curve in

Figure 4.11. The green curve is the same as the heat content curve in previous part.

Considering random walk with correction (du/dv)2/3 and with correction du/dv, the
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Figure 4.10. The 14 heat content components of the directed graph

curves are the blue and black curve in Figure 4.11 separately.

Figure 4.11. The curves under different du/dv corrections
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4.3.2 Weighted eigenvalues

The second approach in our algorithm is the feature extraction of the graphs

generated in the first section. The original heat content is first computed for the

graph. Based on such result, our new feature extraction method is designed to be the

combination of three component descriptors.

The first component descriptor in our improved feature is based on the information

of the eigenvalue spectrum. Suppose we have the λ-spectrum to be [λ1, λ2, . . . , λn],

the component descriptor [f1, f2, . . . , fm] is defined as

fj =



k1n (j = 1)

k2λ2 (j = 2)

k3(λn − 2) (j = 3)

k4t1/n (j = 4)

k5t2/n− 1 (j = 5)

kj|λpjn − 1| (j = 6, . . . ,m)

.

t1 and t2 are locations on the spectrum that λ are very close to 1 in between, pi

and ki are some coefficients. Figure 3 shows the original eigenvalues as well as our

designed feature vectors. We can see that the original eigenvalues are very hard to

distinguish, yet the proposed feature vectors are quite effective both in differentiating

and clustering.

4.3.3 Weighted heat content spectrum

The second component in the improved model is motivated by the middle step

of calculation the original theoretical heat content. Starting from the original heat

content in (3.4), we define the heat content spectrum as [α1, . . . , α|iD|]
′, in which
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Figure 4.12. Eigenvalue distribution descriptor of the image

αi =
∑
uv

φi(u)φi(v) =

[∑
u

φi(u)

]2

. (4.15)
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The original heat content can then be expressed as Q(t) =
∑|iD|

i=1 αie
−λit. The heat

content spectrum has some interesting properties. First, the summation of all the αs

equals the number of interior nodes. Because λ1 ≈ 0, we have the first eigenvector

φ1 ≈
[√

di
m|iD| , . . . ,

√
dn

m|iD|

]T
(m is the mean degree of the graph).

We use the following example to illustrate the property of the heat content spec-

trum. In this example illustration, we generated totally 32 graphs. Figure 4.13 shows

the degree distributions of a powerlaw graph and a lognormal graph with the same

mean degree. The graphs are:

(1) 4 Erdos-Renyi random graphs.

(2) 4 power law random graphs generated by Barabasi-Albert model.

(3) 12 power law random graphs generated by 3 different models (Molloy Reed model,

Kalisky model, Model A [46]) based on the power law degree distributions in (2).

(4) 12 lognormal random graphs generated by 3 different models based on degree

sequences sampled from lognormal distributions.

Figure 4.13. Degree distribution of graphs with power law and lognormal degree
distributions

We calculate the heat content spectrums for every graph. Figure 4.14 shows the

spectrums of all the graphs. We can see that graphs generated by the same model
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share similar shape of the weight spectrum. We can also see that the magnitude of

α1 is related to the density of the network as well as the type of degree distribution

of the network.

In general, α1 increases when the mean degree of the network increases, which

means that the rest αs will decrease accordingly because
∑n

i=1 αi = n. For networks

which have the same average degree, the α1 of the power law network, lognormal

network, ER network follows a descent order. Figure 4.15 shows such an observation.

The blue one is α1s of ER random graphs, the green ones are α1s of lognormal random

graphs and the red ones are α1s of power law graphs.

α1 reaches its maximum max(α1) ≈ |iD| only when all the vertices have the same

degree in the graph. For the rest of the spectrum, the general shape of the weight

spectrum captures some major structural information of the graph. Another obser-

vation is that the overall shape of the α spectrum is more related with the network

models rather than the degree distributions. However, the differences between dif-

ferent distributions are still noticeable. On the other hand, α spectrum can be used

to differentiate networks with the same degree distributions generated by different

models.

We also demonstrate the ability of the heat content spectrum by the following

graph mixture analysis experiment. We generated power law graphs which have the

same degree sequence but with drastically different structure. Five types [32] of 2,000-

nodes graphs as described in [46] were generated with the average degree set to be

m = 2.

Figure 4.16 shows sorted (based on the ascending order of elements in the Fiedler

vector [67]) adjacency matrices generated by Barabasi-Albert model (BA), Model

A, Model B, Kalisky model and Molly-Reed (MR) model with corresponding weight

spectrums. The shape of the weight spectrum captures different structural informa-

tion of the graph very well. The demonstration is particularly clear for Model B as
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Figure 4.14. The heat content spectrums of power law graphs
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Figure 4.15. α1 and the network’s mean degree

(a) BA (b) Model A (c) Model B (d) Kalisky (e) MR

Figure 4.16. Sorted adjacency matrices (first row) and weight spectrums (second
row) of graphs with different structure.

the large αs on the left reflect the densely connected sub-graph. Figure 4.17 shows

the weight spectrum of graphs generated by combining two models. The weight spec-

trum of the graph combination of same type models maintains the original shape, and

the shape of the spectrum for the combined graph for two different models reflects

properties from both models.

In the original heat content spectrum, we can notice that the entries are not evenly

distributed and the length of the spectrum is determined by the size of the graph. In
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Figure 4.17. Heat content spectrums of graphs combined by two models. The color
spectrums are for original graphs and the black spectrums are for combined graphs.

order to create a more general representation, we propose a model which utilizes the

information of both the eigenvalue distribution and the heat content spectrum.

In this combined model, every eigenvalue λi of the normalized graph Laplacian

satisfies λi ∈ [0, 2]. We first generate k overlapping intervals I1 to Ik on [0, 2]. The

middle point of each interval Ii is located on (2i− 1)/k and the length of the interval

is 2/k + ε(1 − |(k − 2i + 1)/k|). The weighted heat content spectrum (WHCS) f =

[f1, f2, . . . , fk] is then defined as fx =
∑

i:λi∈Ix αi. We call this the weighted heat

content spectrum.

4.4 Experimental results

We first illustrate the proposed new features (OHC and WHCS) by two experi-

ments that show the ability of the OHC feature to differentiate images in different
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classes and the robustness of the WHCS feature to view point changes. We then show

the improvement of our new features compared to the heat content feature combined

with traditional low-level features in a handwritten digits recognition experiment.

4.4.1 Oscillatory heat content

We select thirty-five images from seven categories in the COREL dataset [73]. The

images are shown in figure 4.18. We calculate both the heat content based on the

original graph in [38] and the oscillatory heat content. Figures 4.19 and 4.20 shows

the results. The same color curves represent images in the same category. We can see

that although the original heat content can somewhat differentiate these images, the

oscillatory heat content performs much better in either clustering or differentiating.

The richer frequency behavior of the new feature better represent more diverse images

and textures, which will eventually be helpful in a large scale image retrieval task.

Figure 4.18. Seven categories of similar images from COREL
dataset
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Figure 4.19. Heat Content Figure 4.20. Oscillatory HC

4.4.2 Coil-100 color image retrieval

We test the weighted heat content spectrum with the COIL100 [52] dataset. K

is set to be 6 in the K-Means clustering algorithm. σI = 0.01 and σX = 4 in the

graph generation procedure. Figure 4.21 shows some examples of the images and their

corresponding WHCS feature vectors. We can see that the WHCS is robust to small

viewpoint changes yet still captures the differences between images. The feature is

also effective at differentiating between different objects.

COIL100 contains 100 different objects in 72 different view angles. We select

8 different views for each object to form the reference set and the rest to be the

testing set. Table 4.2 shows the resulting classification rate using a 1-nearest-neighbor

classifier. The new WHCS is much better than the original HC because it is directly

generated by the full-size image. When the feature is used with the multi-scale color

histogram, the classification rate is only a little less than the state of the art hand-

designed method.

Feature Classification rate

HC + Color Hist 85.3%

WHCS + Color Hist 92.1%

Typical state of the art [74] 95%

Table 4.2. Classification rates of COIL100
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Figure 4.21. Weighted heat content spectrum

4.4.3 Outex-10 texture classification

4.4.4 Hand written digits classification

The MNIST database [42] is a widely used hand written digits benchmark contain-

ing a training set of 60, 000 images and a testing set of 10, 000 images. We simulate

the image classification task using combinations of different basic features includ-

ing intensity histogram (Hist), intensity moments (Mo), Gabor coefficients (Gabor),

gray-level co-occurrence matrix (GLCM), edge directions histogram (Edge), heat con-

tent feature (HC) and the two proposed features oscillatory heat content (OHC) and

weighted heat content spectrum (WHCS). The length of the HC, OHC and WHC-

S is set to be the 10. The combined feature contains all traditional features. All

the features are computed for forty-nine 10 × 10 average-positioned blocks. Logistic

and linear kernel supported vector machine (SVM) [12] classifiers are used in the

experiment.
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Logistic Classifier Self w/ HC w/ OHC w/ WHCS

Hist + Gabor + Edge 2.45% 2.34% 2.18% 2.20%

Hist + GLCM + Edge 2.77% 2.47% 2.41% 2.39%

Mo + Gabor + Edge 2.41% 2.37% 2.28% 2.12%

Mo + GLCM + Edge 2.54% 2.48% 2.23% 2.28%

Combined feature 2.29% 2.18% 2.08% 1.98%

SVM Classifier Self w/ HC w/ OHC w/ WHCS

Hist + Gabor + Edge 1.47% 1.45% 1.42% 1.28%

Hist + GLCM + Edge 1.69% 1.62% 1.50% 1.52%

Mo + Gabor + Edge 1.54% 1.48% 1.42% 1.37%

Mo + GLCM + Edge 1.60% 1.57% 1.45% 1.42%

Combined feature 1.39% 1.36% 1.31% 1.23%

Table 4.3. Classification error rate

Table 4.3 shows that the performance of the combined features with the OHC and

the WHCS are better than the ones with the heat content feature in all situations.

In most cases feature sets that include WHCS perform slightly better than those

using OHC. This result further illustrates that the proposed two features based on

graph spectral information contain unique and useful image information, and could

be useful supplement to traditional feature extraction for image classification tasks.

4.5 Summary

In this section, we propose three approaches to reduce the size of pixel-based graph

generation and to use graph spectral information for image feature extraction. The

proposed image features improve on the original heat content feature and demonstrate

an ability to serve as a useful supplement to traditional image feature extraction. Al-

though there are still open questions on the theoretical side, in particular on details

of the relationship between the heat content spectrum and graph structure, the ex-

periment results support that the proposed method effectively captures useful image

information.
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CHAPTER 5

GRAPH-BASED IMAGE PROCESSING AND
UNDERSTANDING SOFTWARE DEVELOPMENT

5.1 introduction

Fast image processing and understanding is not only a theoretical or algorithmic

problem. A successful engineering application may not use the most state-of-the-art

algorithms, unless it is available in a software system. In this chapter, we briefly de-

scribe two image related projects which focus on different aspects of the engineering

problem. The first project is to apply our multi-scale image heat content to image re-

trieval software. The second project is a fast graph-matching based marker detection

Android application with real-time efficiency and robustness.

5.2 Fast image retrieval/classification desktop application based

on image heat content

The image retrieval software is designed to have two major parts. Part one is

image retrieval module and part two is image comparison module. The image retrieval

module is for standard task of image retrieval, namely by choosing an arbitrary image,

the program should select several ”visually similar” images to be the result of retrieval,

and if the original image happens to be the target, it should become the first retrieved

result. The image comparison module is designed for efficiency algorithm analysis

when the algorithm need to be tuned. In this section, we provide a detailed description

of the structure and the functionality of the platform. We first setup up a database.
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The database is part of a standard image dataset contains 10 categories. Figure 5.1

shows one typical image in each categories.

Figure 5.1. Images in retrieve dataset

5.2.1 Image retrieval module

For image retrieval application, first we need a database contains varieties of

images with its unique ID. For each image, a property vector is computed in advance,

which includes a basic color-histogram vector, an edge-direction signature vector and

multi-scale heat content feature. Namely for any I, the mechanism generates 19

vectors c, e, h and hi (i = 1 to 16).

Once there is an incoming new image waiting for retrieval, the program automat-

ically calculates all the vectors c, e and h, hi for the image. We compare c, e and

h separately first to reduce the search area and then compute weighted distances of

the incoming image with image options. If the distance is below a given threshold,

the program should output all the images satisfy the criteria. We use the following

equation to estimate the distance between two images

d = α
√∑

||hi1 − hi2||+ β||h1 − h2||+ δ||c1 − c2||+ (1− δ)||e1 − e2||. (5.1)

Figure 5.2 shows the interface of the module. The user can click the ”Choose An

Image” button to browse and upload arbitrary image, and it will be automatically

shown in the button with fixed resized image. Below the button is an option panel
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designed to let user choose the retrieval speed. There are three choices: fast, normal

and precise retrieval. The main difference is due to the total number of the random

walker which determines the variance of the heat content estimation. In the retrieval

module, the platform provides two different approaches which are the proposed algo-

rithm as well as a color-preferred google like one. Another useful function is that the

user can add any image into the database by using ”add to database” function. Once

the button is triggered, the software will first check the input image to see if it’s a

duplicate version of exist images in database and if not, the software will compute all

the features into the database and store everything including the original image into

file. The right part of the interface shows the most similar retrieved images.

Figure 5.2. Images retrieve module

5.2.2 Image comparison module

Figure 5.3 shows the interface of the image comparison module. In this module,

the user uploads 2 images for comparison. The option panel includes the total time of

the image heat content and the similar precision options as in image retrieval module.
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On the right the interface will automatically plot the total image heat content of the

two inputs using red and blue curves. Each componentwise distances in the distance

measure are also shown in the interface. By this function one can easily access the

raw data and to adjust the weights on the measure.

Figure 5.3. Images comparison module

5.2.3 Test Examples

In this section we show some examples of the working software. The examples

include ordinary retrieval examples, adding new image example, comparison with

google image search examples and image comparison examples. First we show two

ordinary image retrieval examples. We observe that the retrieved original image is

in the first place and the rest are some visually similar images. In normal cases, the

image retrieval function works reasonably well.

We use some examples to show the the proposed image retrieval algorithm has

some advantages on certain cases where it performs even better than Google image

search engines. The first example is a photo taken of a Hawaiian mountain, the
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Figure 5.4. Retrieval example 1

Figure 5.5. Retrieval example 2

original photo is in color but we remove the color and upload it to Google image

search. Surprisingly, Google image search fails with this example because it gives

color information too much weight. Figure 5.6 is the real google image search result

and Figure 5.7 is our simulated color histogram based retrieval result. We can see

that the color-based difference is not very large regarding to our original image and

the first image that Google has retrieved, which might be the reason for this failure.
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After we add some online images into our dataset (which are also in the Google image

dataset for sure), figure 5.8 shows our retrieval result. This example may be trivial,

but still, the combination of color and structure information seems to be very hard

even for Google.

Figure 5.6. Real Google image search result

5.3 Real-time graph-matching based image marker detection

Android application

5.3.1 Background introduction

The main goal for this project is to design an Android mobile application to help

visually impaired to find their way in indoor environment. Since normally a RFID

based system is used in this situation [31], our sub-system’s goal is to locate these

RFID tags in the building by searching for a visual marker placed near the RFID tag

using smart phones equipped with a camera. The project delivered an application
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Figure 5.7. Simulated Google image search result

Figure 5.8. Retrieval based on our algorithm

for Android cell phones which implement the marker recognition algorithm with user

interface to help visually impaired users locate RFID tags.

Generally, the whole project include the following tasks: first is to design a easily-

to-make visual marker with proper size which can be put close to the RFID tag, and

the second part is to design a corresponding marker detection algorithm to effectively

output the result that if the marker exists on a particular image taken by the user, and
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the third part of the project is to build an application which can apply the marker

detection algorithm as well as help the user to locate the marker. The difficulties

for the project include two major parts. One is to design a proper visual marker

and the corresponding detection algorithm with very low false-detection rate, real-

time performance and long detection range while the marker has to be as small as

possible. Another difficulty is to design a visually impaired user friendly application

that will not make the user frustrating while using.

5.3.2 Software design

The project is divided into three parts. In the first part, we introduce the design

of a multi-color visual marker. In the second part, we briefly introduce the idea of

the grid-graph based marker detection algorithm. Finally, we introduce our designs

of the user-friendly application.

The first part of our project is to design an effective multi-color visual marker

for the indoor environments in Knowles Engineering Building (KEB). Visual marker

has a long history in computer vision society, and has a great number of applications

[20,28,29]. One popular example is the bar-code which was invented decades ago [20].

However, A bar-code like marker is not suitable for our application. Normally there

are dozens or hundreds (2-D code) of distinct areas which will make the detection

miserable in long range. However, if we do not need to encode too much information

in, this black-white type of markers are useful in the project. In [28], the authors

proposed markers like ARToolkit tags or ARTags.

For detection of black-white markers, effective line detection or edge detection

become very important. Basically, the first part is to scan the whole image and to

detect edges. Based on the edge information, the marker can be detected with sum-

marizing the edge information. Despite black and white markers, multi-color visual

marker has an obvious advantage: there are three numbers for one pixel comparing to
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a pure intensity-based approach for black and white marker. In this project, we use

a pizza-like multi-color marker similar to the one in [34] but contains one additional

color slice as in figure 5.9 shown.

We investigate different types of visual markers and analyze their variations of

poses, illuminations, distances and etc. The key step is to collect samples under as

many as possible different situations. We can visualize the color distribution of 3

different marker variations in Fig. 5.9.

Figure 5.9. Color distribution of marker variations in real situations

These images which contains color tags are taken from real-world situations. From

the figure we can see that not only geometrical position will cause the visual marker

to transform and make the color distort, the illumination condition will also leads to

different output of color and geometrical structure of the marker on the screen. The

three dimensional plots at the bottom of the figure illustrate the color of all the pixels

on the plate by their RGB point in a 3D Euclidean space. Despite some transition
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pixels, most of the pixels in area with a certain color clustered pretty well. Although

the exact RGB values for certain area such as ”red” area in 3 different situations

are not in the same range (for example, the right one’s red pixels has a r value for

around 150, but the middle one and the left one have r values for around 200). And

meanwhile, the geometrical distances of pixels with different colors, and even the

projection of the such distances on 3 dimensions follow some obvious patterns. We

can see that the difference of RGB values between pixels in distinct color areas still

lie in certain intervals. Thus we can utilize such patterns to rule out irrelevant blocks

on the image and to detect our marker target. The idea which we will utilize in

the following detection algorithm is that despite the exact RGB values of the pixels

change a lot in different conditions, even vary a lot inside the same tag area which

should be very close theoretically, the distances between the RGB values of pixels

in different color areas should maintain certain underlying restrictions for our tag

comparing to the background.

We briefly introduce our grid-graph based marker detection algorithm. The first

step for the algorithm is the sampling, which is in order to compress the original

input frame into a much smaller grid representation of the image in order to make

the algorithm running faster. In Fig. 5.10, we illustrate the sampling process in our

detection algorithm. We do not use any corner detection nor edge detection here, the

original big input frame is sampled into a much smaller representation and form a

4-neighboring grid network. Let the distance of the original pixels between the two

neighboring nodes is 2r, the original frame is reduced by approximately 1/4r2 times

in scale. Suppose the RGB values are recorded as this formation: (ri, gi, bi) for i

probe, we define the edge weight to be the maximum absolute difference of R, G, B

componentwise as

wij = max{|ri − rj|, |gi − gj|, |bi − bj|}. (5.2)

90



Figure 5.10. Sampling process in the detection algorithm

The next step is a sub-graph matching algorithm to detect the tag base on our

compressed grid network. Cascading graph matching algorithm have one huge ad-

vantage is that they can be implemented with very fast running time because it can

break up the iteration anytime if one comparison fails. In Fig. 5.11 we illustrate

a cascade graph matching algorithm model. In the algorithm, we scanning the grid

network in 2 by 2 sub-graphs. In each sub-graph, the algorithm compares the edge

weight of vertex 1 and 2 first, and if the result pass our criteria, the algorithm then

compares the edge weight of vertex 2 and 3, so on so forth. If all four comparisons

are passed, there is a successful graph matching/marker detection of our visual tag.

In the final part, we discuss our considerations about user experience. Suppose we

have detected a tag in the scanning process, what should the application do to guide

the user to destination? Instead of informing the user about the precise location of

the tag based on the calculation in one frame, we make our user toward the target all

the time by suggesting the user to slide the cell phone toward a certain direction and

with continuous vibrations to let the user know there is a target in the front. The trick

is that when the tag is detected in central area of the screen, the guidance module

of the application will notify the user to go straight and also inform the user how far

the tag is approximately. And when the tag is not in central area, the application
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Figure 5.11. Sub-graph matching algorithm for marker detection

will guide the user to slide the cell phone toward the proper direction to make the

tag into central area. The implementation details of the area partitions and sliding

command suggestions are shown in next sub-section.

5.3.3 Implementation Details

Fig. 5.12 shows the overall software structure of our application. The application

does not use any third party source code or development kit, but just based on pure

Android SDK and JAVA. The test application are build into the first generation of

Google’s Samsung Galaxy cell phone. The preview resolution is set to be 1920×1080

which is the highest supported preview resolution.

The marker detection module is build in the onPreviewFrame() function. The the

default radius of probe buffer r is 4, the default threshold is t = 55, and the default

RGB reference values are listed in the source code. We have discovered that the
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Figure 5.12. Overall structure of the application

chosen of r and t will affect multiple aspects of the application’s performance but not

in a trivial manner. In general, a larger r will lead to a shorted detection range but a

more sensitive scanning feedback, but if we set r to be less than 4, we may encounter

backfire. And a bigger t will generally increase the robustness of the application in

more variations of situation such as lighting condition and pose variations but a big

buffer may make the detection suffer a higher false alarm probability.

In the Marker detection module, once a tag has been detected, the application

will draw a circle and cross according to the tag location in a canvas on a TagView

which extends SurfaceView class. The guidance module includes two parts. If the tag

is not in the central area (we define it to be the middle 1/2 height and width area),

the application will notify the user to slide the cell phone. Fig. 5.13 shows the area

partitions with their corresponding suggestions to user.
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Figure 5.13. Notification of Sliding the cell phone

If the tag is in the central area, the guidance module will calculate the distance

between the cell phone and the tag, then notify the user a rough number in integer

meters. We first estimate the number of the tag’s height h in one frame and acquire

the proportion coefficient h/1080 (The height of one frame can be changed). Then

we can use the coefficient h/1080 to estimate the distance by being divided by a

constant C. C can be calculated theoretically and also can be acquired by try and

error. Here we set C to be 340/1080 and the result of the estimated distance is 340/h

meters. This simple distance calculation algorithm requires some assumptions to be

true. First, the center-located tag give us a great opportunity to estimate the distance

directly by the number of pixels of the tag with enough preciseness. Second, because

the tag should be put on hand-reachable level, we can make a reasonable assumption

that the cell phone does not have a large vertical distance from the tag, and this

assumption let us possible to use the height in estimating the distance which should

be only related with distance.

In the application, text-to-speech (TTS) is implemented to generate speech sug-

gestions for the user, along with vibration notification, provide a clear, helpful, but

simple suggestions to the user. One additional functionality we want to add to the

application is to be able to handle new multi-color tags with different patterns. (The
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partition should be the same) Fig. 5.14 shows the user interface of the maker pattern

update module. It is activated by press the ”input” button in main interface. The

only thing the user need to do is to put the tag inside the circle on screen and align

the four color areas to the four sections inside the circle. By press the ”take this”

button on the upper right corner, the RGB values of pixels on the preview frame

corresponding to the overlapping four black crosses have been consequently updated

into the cell phone’s sharedPreference file. The user can then use ”go back” button to

return to the main activity. The ”reset” button provide a fast restoring functionality

if the user want to reset the application to the default set up.

Figure 5.14. Pattern Update User Interface

5.3.4 Test Examples

The first set of test examples are shown in Fig.5.15 and 5.16. The purpose of this

test is to estimate the maximum detection range. As we can see, the performance of

the detection algorithm in our application is very good in normal conditions of KEB

second floor hallway, especially when the tag is put in the middle of the hallway as
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in Fig.5.15. The detection range can be up to 20 meters (actually the maximum is

23 but the performance is not stable if the distance is more than 20). In Fig.5.16,

the tag is put at the end of the hallway, and the background contrast is larger in this

situation, we have a shorter but still acceptable detection range to be approximately

15 meters.

Figure 5.15. Maximum Detection Range Example 1 (≈ 20 meters)

Figure 5.16. Maximum Detection Range Example 2 (≈ 15 meters)

Our second test example is to show the excellent robustness of tag detection under

very large angles. As shown in Fig.5.17 and Fig.5.18, the tag can be detected even it

is almost perpendicular to the cell phone in a certain range. The maximum detection
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angle could be up to 80 degrees in this distance and the algorithm works well in

all directions. The reason for this high robustness is that our proposed sampling

and cascading algorithm only need dozens of pixels horizontally as well as vertically

to detect the tag, thus the angle of the tag can be as large as possible and this is

obviously to be very practical in environment such as KEB where three long hallways

exist. The robustness under large-angle situation as well as long-distance detection

ability is the major advantage of our application.

Figure 5.17. Maximum Detection Angle Example 1

Figure 5.18. Maximum Detection Angle Example 2
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In this subsection, we present two tests on normal and dim lighting condition-

s. The application works well in both situations. Fig.5.19 is under normal lighting

condition and Fig.5.20 is the same example in a dimmer situation. The dim lighting

condition will not affect the performance of our application to detect the tag cor-

rectly because our the dim lighting will cause the RGB values to decrease while the

differences of such values change less. However, if we turn off all the lights, nobody

can detect any tag apparently.

“‘rt

Figure 5.19. Normal lighting condition Example

Figure 5.20. Dim lighting condition Example
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Another very important problem which we pay a lot of attention to is the false

alarm. The user will suffer a lot if there is a false alarm. Although in previous real-

world tests taken in KEB hallway, we do not encounter any false alarm situation, we

still want to test our application under some sophisticated background. In Fig.5.21,

the tag is put in front of a lot of books which contains varieties of colors and in

Fig.5.22, we create another multi-color tag to be a distraction. In both cases the

algorithm successfully detects the right tag and disregard any background area with

no false alarm at all.

Figure 5.21. Tag Detection Under Sophisticated Background

Figure 5.22. Distraction Background with Different Multi-Color Tag
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Our application can handle new color patterns of our visual tag. For instance, in

Fig. 5.23, we show the process of how to input the new color pattern. By putting the

new tag inside the circle on screen, and let the four black crosses lay on the four color

areas, the new color pattern is automatically being processed. We can then press the

”take this” button to store the pattern into the cell phone. The right figure shows

that now our application starts to detect the new tag instead of the old one.

Figure 5.23. Input and Detect New Color Pattern

The maximum scanning speed is related to the maximum detection range. Actu-

ally if we want a more robust scanning user experience, which means a faster scanning

speed, the smaller the detection range has to be. The reason is that in our proposed

algorithm, suppose the average cascading operations inside one sub-network (contains

four nodes) is k which can be treated as a constant, the total running time for the tag

detection of one frame should be proportional to the number of image blocks. And

suppose the distance between two probe pixels is 2r as we have introduced before,

the number of image blocks should be N ∝ 1
4r2

. Thus the running time of one frame

is proportional to 1
4r2

. In our test samples, the minimum r is chosen to be 4 in order

to achieve maximum detection range. In this situation, if we set the target to be

approximately 1.5 meters away from the user, in a typical situation as in Fig.5.24

shows, the scanning speed is pretty slow to let the detection module functional nor-
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mally. We give a roughly computation of the maximum scanning speed which is 10 -

20 cm/s in this case.

Figure 5.24. Example for Scanning Time

However, if we change r to be larger, the scanning speed increase but not propor-

tionally as we assume. Table 5.3.4 shows the maximum scanning speed of different r

values in Fig.5.24 situation (1.5 meters in typical Knoweles hallway), with the max-

imum detection range of the different r values. The reason is that the maximum

scanning speed does not only depend on the running time of our detection algorith-

m, but also the processing time of acquiring the frames taken by the camera. But

generally speaking, the user experience of scanning in r = 16 situation is comfortable

enough.

r=4 r=16
Maximum Detection Range ≈ 20 m ≈ 10 m
Maximum Scanning Speed 10− 20 cm/s 30− 40 cm/s

Table 5.1. Detection Range vs Scanning Speed
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CHAPTER 6

DISCUSSION

In this chapter, we discuss the properties of our proposed graph-based image un-

derstanding model. First, we present an example to illustrate the eigenvectors in the

Laplacian spectrum of the graph representation of image. The illustration shows that

the eigenvectors do not only carry important information of the image but also follow

an interesting pattern. Second, we investigate the relationship between our proposed

features with traditional image features by using correlation analysis. The experiment

shows that our model captures unique information not covered by traditional image

features. We then discuss limitations and future directions of our model. We end this

chapter by briefly summarizing the contributions of this dissertation.

6.1 The illustration of eigenvectors in the Laplacian spec-

trum

As we have discussed in previous chapters, the eigenvectors of the graph Laplacian

contain important image structural information. We design the following example

to intuitively show the properties of these eigenvectors. For convenience, we use

the original pixel-based graph representation in this experiment. Every pixel pi is

represented by one vertex vi ∈ V in the graph G = (V,E) with the adjacency matrix

defined as

A(i, j) =
ε+ Ii − Ij
d(pi, pj)

, (6.1)

in which Ii, Ij are intensities of pixel pi and pj. The normalized graph Laplacian is

Ln = D
1
2 (D−A)D

1
2 . λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of Ln and ϕi, i = 1, · · · , n
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are the corresponding eigenvectors. We then check every entry of the eigenvectors

in detail. For eigenvector ϕi, we map every entry in the vector to their original

corresponding position in the image and form a two-dimensional matrix. Every entry

of this matrix is normalized into [0 255]. Each eigenvector then becomes a grayscale

image. Figure 6.1 shows the eigenvector illustrations of 3 different images. The

first row shows eigenvectors from ϕ1 to ϕ10; the second row shows eigenvectors from

ϕ101 to ϕ800 (sampled consequently with same length 100); and the third row shows

eigenvectors from ϕ891 to ϕ900 (n = 900) .

We notice that these eigenvectors form a decomposition of the original image.

One interesting observation is that last several eigenvectors represent the shape again

like the first few eigenvectors. But in the middle of the spectrum, the eigenvectors

are periodical meaningless textures with different frequency behaviors (from 101 to

801). Another phenomenon is that the illustration of the high-frequency eigenvectors

contain a lot of edge information of the image, which is more important to represen-

t images than low-frequency information. The improvement from the original heat

content to the heat content spectrum feature can be explained by such a phenomenon

since the latter one focuses more on the high-frequency part of the Laplacian spec-

trum. Although the summary process in our model loses some information of the

eigenvector, the spectrum still describes the general structure of the image. Mean-

while, the pattern showed by the illustration of the eigenvectors poses an interesting

question alone: why do the low-frequency and high-frequency eigenvectors carry more

information of the image structure while the middle ones contain less? We still don’t

know the answer yet.

6.2 Correlation analysis of image features

In order to intuitively show the relationship between our model and other tradi-

tional image features, we propose the following correlation analysis experiment. We
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Figure 6.1. Image illustrations of the eigenvectors

use the data generated by our MNIST handwritten digits classification experiment.

The raw data contains all the feature vectors of every image patch in the training set.

For each image patch, there are total eight image feature samples. We then use these

samples to compute the correlation matrix of these eight different image features.

Figure 6.2 shows the correlation matrix between all the eight image features tested

in the MNIST experiment. We see that the heat content feature is less correlated with

every other feature. While small correlation is evidence for the argument that the heat

content feature contains new information, it is also a sign that the heat content feature

may lose some important information represented by traditional successful features.

The relatively low accuracy rate for the heat content feature alone in the k-nearest-
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neighbor classification experiment may also be explained by such low correlation. In

contrast, our improved features are moderately correlated to other features but still

maintain their own uniqueness, which could probably explain the better performances

in the digits classification experiment.

Figure 6.2. Correlation between different image features. (PF1: Oscillatory heat
content, PF2: Weighted heat content spectrum)

Correlation analysis gives us an intuitive idea of what information our new model

captures. However, we still have difficulties to fully understand the mechanism and

the relationship between our model and visual similarity. On the other hand, we

believe that our model can still be used as a new weapon and contributes to the

image understanding arsenal.

6.3 Limitations of our model

A recent development of image understanding is the deep-learning based model.

Very large scale datasets like ImageNet are used to test the performance of image

classification and understanding in recent researches. And nearly all the models with

the best performances are based on deep neural networks.
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The major advantage of deep-learning based approaches is the depth of the neural

network. These models usually have millions of trainable coefficients. Like our model,

deep neural networks can also be seen as a special type of graph-based method. With

the new development in efficient training algorithms and engineering breakthroughs

such as GPU-based computing, the flexibility and the representing power of these

models is remarkable because of the large number of coefficients. On the contrary,

the only trainable part in our model is still based on the traditional approach, which

inevitably limits our model’s potential in complicated image understanding tasks.

One possible improvement for our model is to add a training process into the

algorithm. The training process might be added to the graph generation component

in our model, since the rest procedures are mostly fixed. However, we do not know

how to form the training algorithm yet and one-layer shadow model might still not be

enough for high-level classification and understanding tasks. On the other hand, it is

always possible to attach more layers on top of the generated features, but normally it

is of little use because the complexity has already vanished in the feature extraction

process. In general, the major weakness of our model is the lack of flexibility in

applying a meaningful training process.

6.4 Contribution of this dissertation

We end the discussion part by briefly summarizing the contributions of this dis-

sertation.

First, we proposed a fast and effective graph similarity testing algorithm based

on the concept of heat content. We also design estimation algorithms for large dense

graphs. Compared to previous work, our algorithm has the following advantages in

graph similarity testing. First, the heat content method maps the graph to one-

dimensional data to compare. Second, the difference of two graphs can be presented

at the very beginning part of the heat content curves. The first two advantages help
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reduce the comparison time significantly. Meanwhile, our algorithm does not need

a given nodes correspondence, which means it can be applied into more practical

problems in real world. Our method is also robust to minor changes in the graph.

Based on the graph similarity testing algorithm, we designed a graph-based image

processing and understanding framework. We proposed a graph-based image repre-

sentation model and invent several useful tools for image analysis tasks, such as the

image heat content feature, the weighted heat content spectrum and the oscillatory

heat content. We also analyzed and discussed the properties of our model by de-

signing several experiments focusing on different aspects of image variations. Our

proposed image features are shown to be robust and easily computed. The model

has the potential to become an effective and efficient multi-scale feature for image

retrieval. The model can also be combined with other traditional image features to

create a complex visual signature. Although we still need further experiments and

analysis to thoroughly understand the advantages and drawbacks of our model, the

proposed image features demonstrate an ability to serve as a useful supplement to

traditional image retrieval and classification. There are still open questions on the

theoretical side, in particular on details of the relationship between the heat con-

tent spectrum and graph structure. However, the experiment results show that the

proposed methods effectively capture some useful and unique image information.

Finally, we presented the design of two real-life desktop and mobile applications

which are related to specific image processing and understanding tasks. We demon-

strate that graph-based image understanding models are efficient enough for real-time

needs.
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