17 research outputs found

    Assessing Parkinson’s Disease at Scale Using Telephone-Recorded Speech:Insights from the Parkinson’s Voice Initiative

    Get PDF
    Numerous studies have reported on the high accuracy of using voice tasks for the remote detection and monitoring of Parkinson’s Disease (PD). Most of these studies, however, report findings on a small number of voice recordings, often collected under acoustically controlled conditions, and therefore cannot scale at large without specialized equipment. In this study, we aimed to evaluate the potential of using voice as a population-based PD screening tool in resource-constrained settings. Using the standard telephone network, we processed 11,942 sustained vowel /a/ phonations from a US-English cohort comprising 1078 PD and 5453 control participants. We characterized each phonation using 304 dysphonia measures to quantify a range of vocal impairments. Given that this is a highly unbalanced problem, we used the following strategy: we selected a balanced subset (n = 3000 samples) for training and testing using 10-fold cross-validation (CV), and the remaining (unbalanced held-out dataset, n = 8942) samples for further model validation. Using robust feature selection methods we selected 27 dysphonia measures to present into a radial-basis-function support vector machine and demonstrated differentiation of PD participants from controls with 67.43% sensitivity and 67.25% specificity. These findings could help pave the way forward toward the development of an inexpensive, remote, and reliable diagnostic support tool for PD using voice as a digital biomarker

    Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease

    Get PDF
    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD

    Comparing Lab-based and Telephone-based Speech Recordings Towards Parkinson's Assessment: Insights from Acoustic Analysis

    Get PDF

    Comparing lab-based and telephone-based speech recordings towards Parkinson’s assessment: insights from acoustic analysis

    Get PDF

    Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning

    Get PDF
    This study focuses on the development of an objective, automated method to extract clinically useful information from sustained vowel phonations in the context of Parkinson’s disease (PD). The aim is twofold: (a) differentiate PD subjects from healthy controls, and (b) replicate the Unified Parkinson’s Disease Rating Scale (UPDRS) metric which provides a clinical impression of PD symptom severity. This metric spans the range 0 to 176, where 0 denotes a healthy person and 176 total disability. Currently, UPDRS assessment requires the physical presence of the subject in the clinic, is subjective relying on the clinical rater’s expertise, and logistically costly for national health systems. Hence, the practical frequency of symptom tracking is typically confined to once every several months, hindering recruitment for large-scale clinical trials and under-representing the true time scale of PD fluctuations. We develop a comprehensive framework to analyze speech signals by: (1) extracting novel, distinctive signal features, (2) using robust feature selection techniques to obtain a parsimonious subset of those features, and (3a) differentiating PD subjects from healthy controls, or (3b) determining UPDRS using powerful statistical machine learning tools. Towards this aim, we also investigate 10 existing fundamental frequency (F_0) estimation algorithms to determine the most useful algorithm for this application, and propose a novel ensemble F_0 estimation algorithm which leads to a 10% improvement in accuracy over the best individual approach. Moreover, we propose novel feature selection schemes which are shown to be very competitive against widely-used schemes which are more complex. We demonstrate that we can successfully differentiate PD subjects from healthy controls with 98.5% overall accuracy, and also provide rapid, objective, and remote replication of UPDRS assessment with clinically useful accuracy (approximately 2 UPDRS points from the clinicians’ estimates), using only simple, self-administered, and non-invasive speech tests. The findings of this study strongly support the use of speech signal analysis as an objective basis for practical clinical decision support tools in the context of PD assessment.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice

    Get PDF
    Recent studies have demonstrated that analysis of laboratory-quality voice recordings can be used to accurately differentiate people diagnosed with Parkinson's disease (PD) from healthy controls (HC). These findings could help facilitate the development of remote screening and monitoring tools for PD. In this study, we analyzed 2759 telephone-quality voice recordings from 1483 PD and 15321 recordings from 8300 HC participants. To account for variations in phonetic backgrounds, we acquired data from seven countries. We developed a statistical framework for analyzing voice, whereby we computed 307 dysphonia measures that quantify different properties of voice impairment, such as, breathiness, roughness, monopitch, hoarse voice quality, and exaggerated vocal tremor. We used feature selection algorithms to identify robust parsimonious feature subsets, which were used in combination with a Random Forests (RF) classifier to accurately distinguish PD from HC. The best 10-fold cross-validation performance was obtained using Gram-Schmidt Orthogonalization (GSO) and RF, leading to mean sensitivity of 64.90% (standard deviation, SD 2.90%) and mean specificity of 67.96% (SD 2.90%). This large-scale study is a step forward towards assessing the development of a reliable, cost-effective and practical clinical decision support tool for screening the population at large for PD using telephone-quality voice.Comment: 43 pages, 5 figures, 6 table

    New Statistical Transfer Learning Models for Health Care Applications

    Get PDF
    abstract: Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma. The first topic is a Mixed Effects Transfer Learning (METL) model that can flexibly incorporate mixed effects and a general-form covariance matrix to better account for similarity and heterogeneity across subjects. I further develop computationally efficient procedures to handle unknown parameters and large covariance structures. Domain relations, such as domain similarity and domain covariance structure, are automatically quantified in the estimation steps. I demonstrate METL in an application of smartphone-based telemonitoring of PD. The second topic focuses on an MRI-based transfer learning algorithm for non-invasive surgical guidance of glioblastoma patients. Limited biopsy samples per patient create a challenge to build a patient-specific model for glioblastoma. A transfer learning framework helps to leverage other patient’s knowledge for building a better predictive model. When modeling a target patient, not every patient’s information is helpful. Deciding the subset of other patients from which to transfer information to the modeling of the target patient is an important task to build an accurate predictive model. I define the subset of “transferrable” patients as those who have a positive rCBV-cell density correlation, because a positive correlation is confirmed by imaging theory and the its respective literature. The last topic is a Privacy-Preserving Positive Transfer Learning (P3TL) model. Although negative transfer has been recognized as an important issue by the transfer learning research community, there is a lack of theoretical studies in evaluating the risk of negative transfer for a transfer learning method and identifying what causes the negative transfer. My work addresses this issue. Driven by the theoretical insights, I extend Bayesian Parameter Transfer (BPT) to a new method, i.e., P3TL. The unique features of P3TL include intelligent selection of patients to transfer in order to avoid negative transfer and maintain patient privacy. These features make P3TL an excellent model for telemonitoring of PD using an At-Home Testing Device.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Exploring pause fillers in conversational speech for forensic phonetics: findings in a Spanish cohort including twins

    Get PDF
    Pause fillers occur naturally during conversational speech, and have recently generated interest in their use for forensic applications. We extracted pause fillers from conversational speech from 54 speakers, including twins, whose voices are often perceptually similar. Overall 872 tokens of the sound [e:] were extracted (7-33 tokens per speaker), and objectively characterised using 315 acoustic measures. We used a Random Forest (RF) classifier and tested its performance using a leaveone- sample-out scheme to obtain probabilistic estimates of binary class membership denoting whether a query token belongs to a speaker. We report results using the Receiver Operating Characteristic (ROC) curve, and computing the Area Under the Curve (AUC). When the RF was presented with at least 20 tokens in the training phase for each of the two classes, we observed AUC in the range 0.71-0.98. These findings have important implications in the potential of pause fillers as an additional objective tool in forensic speaker verification
    corecore