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Abstract—The use of high-quality lab-based speech 

recordings has led to key breakthroughs in a range of 

Parkinson’s Disease (PD) assessment applications. We recently 

reported on the Parkinson’s Voice Initiative (PVI) study 

collecting telephone-based speech recordings under non-

controlled acoustic conditions towards large-scale PD assessment. 

In this study, we aim to compare the underlying acoustic 

properties of the sustained vowel /a/ recordings across two large 

PD datasets focusing only on US speakers to avoid any linguistic 

confounders. We acoustically characterized 2097 sustained vowel 

/a/ recordings from 1138 PD participants and compare findings 

against a large public high-quality speech-PD database of 5875 

recordings across 16 dysphonia measures using the symmetric 

Kullback-Leibler divergence. We explored gender stratification 

and two-dimensional projections using t-distributed Stochastic 

Neighbor Embedding (t-SNE) to facilitate visual examination and 

understand database differences. We find that there are 

considerable differences in the distributions of the dysphonia 

measures both univariately and when considered in lower 

dimensional t-SNE projections even for the linear dysphonia 

measures. Collectively, these findings provide new insights into 

understanding the inherent challenges when aiming to generalize 

findings from lab-based settings to real-world practical 

applications towards speech-PD clinical decision support tools 

and may motivate the development of new speech signal 

processing algorithms. 

Keywords—Acoustic characterization, clinical decision 

support tool, Parkinson’s Disease (PD), speech signal processing, 

tele-assessment 

I. INTRODUCTION 

Parkinson’s Disease (PD) is a progressive 
neurodegenerative disorder with alarmingly increasing 
prevalence rates: it is estimated there were approximately 2.5 
million people diagnosed with PD (PwP) in 1990, steeply 
increasing to 6.1 million PwP in 2016 [1]. Strikingly, a large 
global burden of disease study in 2021 highlighted PD as one 
of the top five leading causes of death from neurological 
disorders in the US [1]. Cardinal PD symptoms include tremor, 
rigidity, bradykinesia, and postural instability, amongst other 
motor and non-motor symptoms [2]. Crucially for the purposes 
of this study, PwP also experience considerable speech 
performance degradation as a key PD symptom [2]–[4]. 

Given that speech signals are easy to (self-) collect, this has 
attracted considerable research interest in the PD literature [3], 
[4]. Typically, sustained vowel /a/ phonations are used in 
speech clinical assessments because they overcome linguistic 
effects [3]. Indicative speech-PD applications include: (a) 
differentiating PwP from age- and gender-matched controls 
with almost 99% accuracy [5]; (b) accurately replicating the 
standard clinical scale denoting PD symptom severity [6]–[10]; 
(c) assessing voice rehabilitation in PD home monitoring 
systems [11]; (d) providing early PD precursors which may 
lead to early accurate diagnosis [12], [13]; (e) clustering PwP 
towards identifying PD subtypes and developing more targeted 
approaches for individuals [14]; and (f) speech articulation 
kinematic models to characterize PD dysarthria, thus providing 
tentative insights into the underlying physiology [15]. 

Most speech-PD studies report findings by processing 
recordings collected using high-quality equipment and under 
highly controlled acoustic conditions. Whilst this is the right 
first step to demonstrate feasibility under favorable conditions 
and minimize heterogeneity, current findings may be 
challenging to scale up in practice if there is a strict 
requirement of lab-based conditions. To enable large scale 
analysis into PD we set up a large international multi-site trial, 
the Parkinson’s Voice Initiative (PVI), collecting more than 
19,000 sustained vowel /a/ recordings over the standard 
telephone network, with PwP across 7 countries [16]–[18]. 
Although the data collected in PVI is not of the same high 
quality as data collected under carefully controlled acoustic 
conditions in the lab, the large number of samples facilitates 
new explorations. However, the reduced data quality poses new 
challenges, and current algorithms have led to considerable 
performance degradation in the binary differentiation of PwP 
and controls [16], [18] compared to the very promising results 
using the exact data processing methodology we have 
previously reported when processing lab-based data [5].  

Therefore, the motivation for this study was to understand 
the underlying reasons for those differences in resulting 
accuracies which might inform further developments towards 
extracting more nuanced information from the PVI speech 
recordings. Within this context, the aim of this study was to 
explore similarities and differences in the acoustic 
characteristics of the sustained vowels between PVI and a 
benchmark high-quality database we have previously used [4].  
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Table I: Summary of dysphonia measures 

Measure Description 

Jitter(%) 
Jitter as a percentage, quantifying changes 

in fundamental frequency (F0) 

Jitter(Abs) Absolute jitter in microseconds 

Jitter: RAP Relative Amplitude Perturbation 

Jitter: PPQ5 Five-point Period Perturbation Quotient 

Jitter: DDP 
Average absolute differences between 

cycles, divided by the average period 

Shimmer Quantifying changes in amplitude 

Shimmer (dB) Local shimmer in decibels 

Shimmer: APQ3 
Three-point Amplitude Perturbation 

Quotient 

Shimmer: APQ5 Five point Amplitude Perturbation Quotient 

Shimmer: APQ11 11-point Amplitude  Perturbation Quotient 

Shimmer: DDA 
Average absolute difference between 

consecutive differences of amplitudes 

NHR Noise-to-Harmonics Ratio 

HNR Harmonics-to-Noise Ratio 

RPDE Recurrence Period Density Entropy 

DFA Detrended Fluctuation Analysis 

PPE Pitch Period Entropy 

 

 

 

 

 

II. DATA 

The study uses two databases: the Intel At-Home Testing 
Device (AHTD) [4], [6] and the PVI [16]–[18]. The former 
used a high-quality device where 42 PwP in the US collected 
data at home weekly for six months, giving rise to 5875 
sustained vowel /a/ phonations. The 42 PwP (28 males, age 
64.4±9.24 years) had a PD diagnosis within the previous five 
years at trial onset and remained un-medicated for the duration 
of the study. The extracted acoustic characteristics (see III.B) 
of AHTD is available from the UCI ML repository: 
http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.  

The PVI study invited participants across seven major 
geographical locations (Argentina, Brazil, Canada, Mexico, 
Spain, USA, and the UK), to self-enroll and donate their voices 
towards facilitating PD research. Apart from basic 
demographics and sustained vowel /a/ phonations, no further 
information regarding PD onset and symptoms was collected in 
order to minimize participant burden. In this study we only 
used the phonations from US participants to minimize 
confounding factors when comparing to the AHTD dataset: in 
total, 2097 sustained vowel phonations from 1138 PwP (605 
males; age 63.7±10.8 years) were processed for PVI. 

For further details on the two databases please refer to the 
cited studies above where the data was first used. 

III. METHODS 

A. Data preprocessing 

In AHTD the authors had developed an automated speech 
signal processing tool to screen out erroneous recordings (e.g. 
coughing, non-voiced recordings) [4], and therefore the public 
version of the dataset used here had already been cleaned. 
Similarly, in PVI we extended that tool to identify suspicious 
recordings which do not conform to the expected time-series 
pattern which were subsequently aurally inspected and 
discarded as required: for details please see [16]. 

B. Acoustic characterisation of sustained vowels 

To directly compare against the publicly available AHTD 
dataset we extracted the same 16 dysphonia measures in the 
PVI dataset (see Table I). We used the implementation that was 
previously used to generate the AHTD acoustic dataset [4], [6], 
[19]. The MATLAB source code for the computation of a large 
range of dysphonia measures is freely available from: 
https://www.darth-group.com/software.  

C. Statistical exploration and dataset comparisons 

As a first step we standardized all dysphonia measures, 
separately in each dataset, to ensure we operate on similar 
scales. Subsequently, we estimated densities using kernel 
density estimation with Gaussian kernels for each of the 
dysphonia measures for the two datasets and present 
distributions using violin plots. We quantified differences in 
the distributions of the dysphonia measures between the two 
datasets using the symmetric Kullback-Leibler Divergence 
(KLD) [20], which was computed using trapezoidal numerical 
integration. Moreover, we employed two-dimensional 
projections using t-distributed Stochastic Neighbor Embedding 

(t-SNE) [21] to facilitate visual examination of the dysphonia 
measures jointly in the projected two-dimensional space and 
intuitively understand overall differences. For the optimization 
of the t-SNE hyper-parameters we followed the methodology 
we previously outlined in similar applications for the lower 
dimensional representation [22]. We also explored data 
stratification by gender, following recommendations in the PD 
literature [4], [7] and wider speech signal assessment literature 
[3], [23]. 

IV. RESULTS 

Figure 1 presents the density distributions summarized 
using violin plots across the 16 dysphonia measures for both 
datasets. By visual inspection we observe there are some clear 
differences between AHTD and PVI in terms of spread. This 
was verified with the computation of the symmetric KLD 
which was 4.4 for Jitter: PPQ5, 3.4 for DFA and 1.85 for PPE. 
The symmetric KLD was considerably smaller (<0.4) for all 
shimmer variants, NHR and HNR, and RPDE.  

Next, we explored the two dimensional representation of 
the two datasets when considered jointly to visually inspect 
homogeneity and whether the AHTD and PVI datasets have 
overall similar properties (see Fig. 2). Whereas the AHTD data 
are homogeneous, the PVI dataset is more fragmented and a 
large number of samples appear to be beyond the range of the 
main bulk of the AHTD data, which tentatively suggests that it 
spans on a feature space area not represented in AHTD. 

http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
https://www.darth-group.com/software


 

Fig. 1 Density distributions of the computed 16 dysphonia measures 

across the two databases presented using violin plots for easier visual 

comparison. 

 

 

 

 

 

Fig. 2 Two dimensional representation of the AHTD and PVI datasets 

using t-SNE to explore data homogeneity and differences across 

datasets. The axes denote the t-SNE projected variables (embedded 

space) for the two-dimensional data representation.  

 

 

 

 

 

V. DISCUSSION 

We investigated indicative acoustic characteristics of two 
large databases comparing the AHTD data, where high-quality 
speech recordings had been collected, and the PVI data, where 
telephone-based speech recordings had been collected. Both 
datasets have been collected to enable large scale PD 
assessment, and we found that there are substantial differences 
both in stand-along dysphonia measures (see Fig. 1) and in the 
overall joint representation when projecting the dysphonia 
measures in a two dimensional feature space (see Fig. 2). These 
findings suggest that there are inherent differences in the 
acoustic characteristics between the two databases and 
tentatively highlight challenges associated with telephone-
based quality recordings. Moreover, these exploratory results 
serve to justify the differences observed in PD assessment with 
high-quality speech data and telephone-quality speech data. 
The two dimensional representation (Fig. 2) is revealing of the 
underlying differences between AHTD and PVI: a large 
proportion of the PVI samples appear to populate feature space 
not represented in AHTD. In turn, this finding along with the 
univariate distributions in Fig. 1 highlights important 
differences in the acoustic properties of AHTD and PVI which 
likely reflects the underlying differences of high-quality speech 
recordings and telephone-based speech recordings. Therefore, 
this implicitly suggests that dysphonia measures that operate 
well on high-quality data may not be optimally suited for PVI. 

We note that the AHTD and PVI datasets are well age-
matched which mitigates the challenge that acoustic 
characteristic differences might be due to vocal changes as a 
result of presbyphonia [3]. The differences between the 
dysphonia measures’ distributions were quantified with the 
symmetric KLD: it is noteworthy that dysphonia measures 
which have been very successful in different PD applications 
such as DFA and PPE [4], [7] were markedly different in the 
two datasets. As part of our exploration we also worked on 
gender stratified datasets and observed that results did not 
substantially differ from those presented herein; due to space 
constraints these are not shown. 

The choice of the 16 dysphonia measures used in this study 
was mandated by the dysphonia measures that are available in 
the public AHTD dataset to enable direct comparisons. A 
further practical consideration for the purposes of this study is 
that the dysphonia measures explored here mainly rely on the 
linear properties of the speech signal and do not inherently 
require considerable signal bandwidth (or in other words the 
higher end of the signal spectrum) [3], [4]. This is a particularly 
important consideration for the choice of dysphonia measures 
when processing telephone-based speech, where the sampling 
frequency is 8 kHz: more advanced nonlinear dysphonia 
measures use spectral information beyond 4 kHz [4], [7] and 
therefore are fundamentally not well-suited for this type of 
lower quality speech recordings [16]–[18].  

There are certain limitations to the exploratory nature of 
this work which we acknowledge. Participants in the PVI study 
were self-selected and reported whether they had a clinical PD 
diagnosis: there is no way we can verify this was accurate. 
Moreover, the sampling frequency of the PVI data was 8 kHz, 
a major limitation for biomedical speech signal analysis where 
the recommended sampling frequency is 20 kHz [3]. This was 
imposed by the use of the standard telephone network and was 
a pragmatic trade-off for the collection of such a large 
database. Finally, participants used their standard phone 
devices (landline or mobile phones), which may introduce 
different signal distortions. On the other hand, for the AHTD 
study, participants remained off PD-medication and provided 
phonations on a weekly basis: using data from only 42 
participants might not be sufficiently representative as in PVI. 

Future work could integrate additional modalities including 
wearable sensor data [24] and other modalities such as PwP 
self-reports, e.g. the mPower study [25]. This would enable a 
large scale multimodal exploration, and we can use advanced 
machine learning tools to determine the most parsimonious 
subset of features or modalities towards specific PD 
applications building on our previous framework [26], [27]. 



VI. CONCLUSION 

The present study’s findings provide further insights to 
explain differences between the reported high accuracies in the 
literature using high-quality speech recordings [5] and 
accuracies reported using the data collected over the standard 
phone network in PVI [16], [18]. We envisage these 
considerations may be useful if the field is to move beyond 
standard highly controlled research studies which are rarely 
translated into clinical practice [28], and therefore researchers 
should explore innovative solutions, which come with new 
challenges, to facilitate uptake and generalize findings at scale. 
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