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ABSTRACT Speech impairment in Parkinson’s Disease (PD) has been extensively studied. Our 

understanding of speech in people who are at an increased risk of developing PD is, however, rather limited. 

It is known that isolated Rapid Eye Movement (REM) sleep Behavior Disorder (RBD) is associated with a 

high risk of developing PD. The aim of this study is to investigate smartphone speech testing to: (1) 

distinguish participants with RBD from controls and PD, and (2) predict a range of self- or researcher-

administered clinical scores that quantify participants’ motor symptoms, cognition, daytime sleepiness, 

depression, and the overall state of health. The rationale of our analyses is to test an initial hypothesis that 

speech can be used to detect and quantify the symptoms associated with RBD and PD. We analyzed 4242 

smartphone voice recordings collected in clinic and at home from 92 Controls, 112 RBD and 335 PD 

participants. We used acoustic signal analysis and machine learning, employing 337 features that quantify 

different properties of speech impairment. Using a leave-one-subject-out cross-validation scheme, we were 

able to distinguish RBD from controls (sensitivity 60.7%, specificity 69.6%) and RBD from PD participants 

(sensitivity 74.9%, specificity 73.2%), and predict clinical assessments with clinically useful accuracy. These 

promising findings warrant further investigation in using speech as a digital biomarker for PD and RBD to 

facilitate intervention in the early and prodromal stages of PD. 

INDEX TERMS Digital biomarkers, Parkinson’s disease, REM sleep behavior disorder, speech analysis, 

statistical learning, smartphones, telemedicine.  

I. INTRODUCTION 

Neurological disorders pose an increasing burden to health 

systems worldwide as leading sources of disability [1]. 

Parkinson’s Disease (PD) is characterized by a range of 

progressively debilitating motor symptoms (including 

bradykinesia, tremor, rigidity) and non-motor (e.g. cognitive, 

neuropsychiatric, autonomic, sleep) symptoms [2]. Speech 

performance degradation is reported in the vast majority of 

people diagnosed with PD and speech-related problems are 

strongly associated with overall PD symptom severity [3], [4].   

There is currently no known cure for PD, however, 

pharmacological and surgical treatment can to some extent 

alleviate the symptoms and improve quality of life for most 

People with PD (PWP) [5]. Regular monitoring of symptom 

progression is indicated to optimize treatment regimens, 

which has relied on expert-based clinical assessments and 

PWP’s self-reports. Clinical assessment relies on established 

validated instruments (rating scales). One of the most widely 

used instruments is the Movement Disorder Society (MDS)-

sponsored revision of the Unified Parkinson's Disease Rating 

mailto:arora@maths.ox.ac.uk
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Scale (MDS-UPDRS) [2], which requires skilled expert raters 

to administer. Even though this is well standardized and rater 

training is administered, similarly to other expert-rated scales 

the MDS-UPDRS is known to be prone to inter-rater 

variability [6]. Additionally, the time required to administer 

the MDS-UPDRS often prohibits its routine clinical use. 

Expert administered clinical assessments provide a clinical 

impression of symptom severity and are well-suited for non-

motor and motor-tasks that are more amenable to objective 

external assessment. However, it is crucial to consider the 

PWP’s self-perception of symptom severity, since ultimately 

different PWP have different needs [1]. The proliferation of 

smartphones and smartphone apps has facilitated longitudinal 

collection of Patient Reported Outcome Measures (PROMs) 

for participant symptom self-reporting [7]–[9]. This further 

motivates the need to use PROMs for PD management and 

monitoring of the diverse range of PD symptoms. 

In addition to clinically validated rating scales (expert-based 

assessments and PROMs), the research community has 

embraced the use of technology in the hope of facilitating 

objective, sensor-based PD assessments [10]. These 

developments include the use of wearable sensors [11] and 

smartphones [12]–[14]. We have previously demonstrated the 

use of sustained vowel “aaah” towards: (i) very accurate 

binary differentiation of a matched control group versus PWP 

[15]; (ii) replication of MDS-UPDRS with greater accuracy 

than the inter-rater variability [3], [16]–[18]; (iii) automatic 

assessment of PD voice rehabilitation using the Lee Silverman 

Voice Treatment (LSVT) [19]; (iv) distinguishing people with 

genetic PD predisposition (Leucine-Rich Repeat Kinase 2 

(LRRK2) mutations [20]), PWP, and matched controls; and 

(v) using a large database of voice recordings collected over a 

standard telephone network (sampling frequency 8 KHz) to 

distinguish PWP from age- and sex-matched controls [21]. 

Voice abnormalities have been reported to precede the onset 

of motor symptoms in PD [22]. Investigating the nature and 

extent of vocal impairment in individuals who are at risk of 

developing PD can provide a crucial opportunity to intervene 

in the prodromal stages of the disease and facilitate potential 

recruitment of participants for neuroprotective treatment trials 

aimed at slowing down or preventing conversion to PD. Rapid 

Eye Movement (REM) sleep Behavior Disorder (RBD) is 

among the strongest known predictors of PD risk [23]. Isolated 

RBD is associated with high rates of phenoconversion to a 

neurodegenerative disorder, including PD, dementia with 

Lewy bodies, and multiple system atrophy [24]. Isolated RBD 

is a parasomnia that is typically characterized by dream 

enactments and excess muscle tone during REM sleep [25]–

[27]. Age and sex are the two most common risk factors 

associated with RBD, whereby there is a higher 

preponderance in males. The risk of developing a 

neurodegenerative syndrome, from the time of RBD 

diagnosis, is estimated to be 33.1 at five years, 75.5% at ten 

years, and 90.9% at 14 years, with a median conversion time 

of 7.5 years [24]. The aforementioned reasons motivated our 

decision to investigate the signs and extent of potential vocal 

impairment in participants with isolated RBD. 

For the assessment of RBD, a screening questionnaire is 

sometimes employed (REM Sleep Behavior Disorder 

Screening Questionnaire (RBDSQ)), and the gold standard for 

RBD diagnosis is a polysomnography (PSG) test. 

Administering full PSG incurs substantial logistical costs for 

the healthcare service providers (as the participants need to be 

admitted and monitored throughout the night at hospital). The 

average cost of an overnight PSG test is estimated to be around 

USD 800 [28]. Voice analysis offers the exciting possibility to 

risk stratify individuals and prioritize those who are most 

likely to benefit from a PSG investigation.   

The literature on investigating vocal impairment in 

individuals with RBD is rather scarce. Using speech 

recordings (sustained phonation, syllable repetition and 

monologue) from 16 RBD and 16 age- and sex-matched 

healthy controls, a sensitivity of 96% and specificity of 79% 

has been reported [29]. Using 50 RBD, 30 PD and 30 healthy 

controls, an Area Under the Curve (AUC) value of 0.69 

(sensitivity 69.8%, specificity 64.7%) was achieved in 

discriminating RBD and controls using smartphone-based 

speech, and a high correlation and reliability were found 

between acoustic measures extracted from a professional 

microphone and smartphone [30]. These findings suggest that 

recordings collected from smartphones and professional 

microphones could be of comparable quality. Using the 

speech dataset employed by Rusz et al. [30], a classification of 

up to 66% between early PD and RBD was reported by Benba 

et al. [31]. However, these studies on speech-RBD have 

mainly relied on high-quality recordings, collected in a 

laboratory under controlled acoustic conditions, using small 

cohorts (typically fewer than 50 participants). Thus, current 

studies may be rather limited in drawing inferences and 

scaling findings for screening people with isolated RBD. 

Moreover, in the absence of detailed clinical measures of key 

interest, studies thus far have been unable to offer new insights 

into the relationship between the extent of speech impairment 

and severity of symptoms in RBD.  

The aim of this study is to utilize smartphone speech 

assessments to make the following three main contributions: 

(1) differentiating cohorts of healthy controls (𝑛 = 92), isolated 

RBD (𝑛 = 112), and PD (𝑛 = 335) participants using sustained 

vowel phonations; (2) predicting diverse self- or researcher-

rated established validated clinical metrics assessing symptom 

severity from a deeply phenotyped cohort; (3) highlighting the 

benefits of deep clinical phenotyping to fully maximize the 

application of smartphone speech evaluation for RBD and PD. 

We aim to provide an overview of symptoms in RBD and 

early PD by bridging objective data collected using 

smartphones (voice), clinical ratings (e.g., MDS-UPDRS), 

and self-reports, with the ultimate aim of contributing towards 

the development of a decision support tool for RBD and PD. 

The motor symptoms associated with RBD are subtle, which 

makes it challenging to detect and monitor granular changes. 
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Our analysis is aimed at testing an initial hypothesis that 

acoustic analysis of speech signals can be used to detect and 

quantify the symptoms associated with RBD and PD. This is 

relevant as the objective quantification of symptom severity 

using voice can potentially help identify and prioritize 

participants for PSG, and facilitate intervention in the 

prodromal stage of PD. The novelty of our work lies in 

assessing the relationship between speech impairment and 

symptom severity in isolated RBD, with a focus on motor 

symptoms, cognition, daytime sleepiness, depression, and the 

overall state of health. To the best of our knowledge, this is the 

largest dataset of smartphone-based voice recordings collected 

from a deeply phenotyped RBD cohort. 

The paper is organized as follows. Section II presents the 

study design and clinical data. Section III describes the 

methodology focusing on voice segmentation, feature 

extraction and selection, statistical mapping, and model 

validation. Section IV presents out-of-sample results for 

discriminating the three groups (Controls, RBD, and PD) and 

predicting PROMs and clinician-rated scores. Conclusions are 

presented in Section V, and limitations of this study and plans 

for future work are discussed in Section VI. 
 
II. DATA 

Voice recordings and clinical data were collected from 

participants enrolled in the Oxford Discovery Cohort (further 

details are discussed in Barber et al. [32]; Baig et al. [33]; Lo 

et al. [13]). PWP met the United Kingdom PD Brain Bank 

criteria for probable PD [34]. We included PWP for whom the 

probability of PD was at least 90% (as ascertained by a trained 

researcher) at their most recent clinic visit.  Participants with 

isolated RBD were included if their PSG provided evidence 

supportive of their clinical diagnosis, in keeping with the 

International Classification of Sleep Disorders criteria [35]. 

The study was prospectively approved by the local UK 

National Health Service Ethics research ethics committee 

(10/H0505/71 and 16/SC/0108), in adherence with national 

legislation and the Declaration of Helsinki. All participants 

provided written informed consent before any study-related 

procedures. 

We used data from a cohort of 539 participants, comprising 

92 Controls, 112 RBD, and 335 PWP. Participants were 

provided smartphones installed with a fully customized 

smartphone application that enabled the recording of a range 

of diverse modalities including voice, gait, balance, dexterity, 

reaction time, rest tremor, and postural tremor [12]. We 

focused only on the voice task in this study, for which the 

participants were provided with the instruction: “Hold the 

phone to your ear, take a deep breath, and say ‘aaah’ at a 

comfortable and steady, tone and level, for as long as you 

can.” The sustained vowel phonations “aaah” (International 

phonetic alphabet /a:/) were sampled at 44.1 kHz directly at 

the smartphone, and the recordings were encrypted, 

timestamped, and uploaded to a secure online database.  

During their in-clinic visit, in conjunction with clinical 

assessments, participants performed the voice task under the 

supervision of a trained researcher. Moreover, participants 

were encouraged to take the smartphones home to perform the 

voice task up to four times a day, for seven days. The duration 

of each voice task was 20 seconds. Smartphone data collected 

during the first clinic visit and subsequent home recordings 

(performed within three months of their clinic visit) were used 

for analysis. Our findings are thus not dependent on the voice 

task being performed by participants under supervision in 

clinic. In total, we identified 4242 phonations (𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠  = 

688, 𝑛𝑅𝐵𝐷  = 1359, 𝑛𝑃𝐷 = 2195) from participants that fulfilled 

the above inclusion criteria.  

Along with speech, we collected various established 

clinically validated metrics that are either expert rater-based or 

PROMs-based, including the MDS-UPDRS (we report both 

the motor MDS-UPDRS (part III, motor examination) and the 

total MDS-UPDRS), Montreal cognitive assessment, Epworth 

sleepiness scale, Beck depression inventory, and visual 

analogue scale (details for each outlined below). In all cases, 

the clinical assessment and the self-reports were collected in 

addition to the speech data. Basic demographics and 

participant information are summarized in Table I. 

 
TABLE I 

SUMMARY DEMOGRAPHICS AND PARTICIPANT INFORMATION 

 
Controls 

(𝑛=92) 

RBD 

(𝑛=112) 

PD 

(𝑛=335) 

Age (years) 68.5 ± 13.2 68.4 ± 12.1 69.5 ± 13.3 

Gender (male/female) 73/19 97/15 206/129 

Total number of /a:/ 

phonations (male/female) 
 

688 

(583/105) 

1359 

(1154/205) 

2195 

(1311/884) 

Years since PD diagnosis 

and smartphone assessment 

 

N/A N/A 3.93 ± 2.2 

Motor MDS-UPDRS  2.0 ± 3.0 

*(𝑛=54) 

5.0 ± 6.0 28.0 ± 17.0 

Total MDS-UPDRS I-III 7.0 ± 7.0 

*(𝑛=30) 

16.0 ± 12.0 49.0 ± 26.0 

MoCA 27.0 ± 3.0 

*(𝑛=50) 

26.0 ± 3.0 26.0 ± 5.0 

ESS 5.0 ± 5.0 

*(𝑛=51) 

6.0 ± 7.0 7.0 ± 6.8 

BDI 2.0 ± 5.5 

*(𝑛=51) 

8.0 ± 12.0 

*(𝑛=109) 

8.0 ± 8.0 

*(𝑛=327) 

EQ-5D-3L VAS 85.0 ± 10.0 

*(𝑛=50) 

80.0 ± 20.0 

*(𝑛=111) 

70.0 ± 20.0 

*(𝑛=332) 

RBDSQ N/A 10.0 ± 3.0 N/A 

Summary statistics are presented in the form median ± interquartile range. 

Abbreviations used: RBD, rapid eye movement sleep behaviour disorder; 

PD, Parkinson’s disease; MDS-UPDRS, Movement Disorder Society 
(MDS)-sponsored revision of the Unified Parkinson’s disease rating scale; 

MoCA, Montreal cognitive assessment; ESS, Epworth sleepiness scale; 

BDI, Beck depression inventory; VAS, Visual analogue scale; RBDSQ, 
RBD screening questionnaire. We have included the number of participants 

(n) for the cases as we do not have entries for all participants in that group. 

A. MDS-UPDRS 

The  MDS-UPDRS is one of the most widely used measures 

to quantify the severity of PD [2]. In this study, we use the 
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motor MDS-UPDRS (the third subscale of the MDS-UPDRS, 

which is also referred to as MDS-UPDRS part III) and the total 

MDS-UPDRS, which constitutes of the following four 

subscales: (I) nonmotor elements of PD, (II) nonmotor 

experiences of daily living, (III) motor examination, and (IV) 

motor complications. The motor MDS-UPDRS is 

administered by a clinician and focuses on assessing the 

severity of motor symptoms. It comprises 33-items, whereby 

each item is scored using the following points scheme: normal 

(0), slight (1), mild (2), moderate (3), and severe (4). The 

maximum value of the motor MDS-UPDRS is 132 points, and 

a higher score represents more severe impairment. For the 

Discovery cohort, part (IV) of the MDS-UPDRS was 

administered only for the PD cohort. In this study, the total 

MDS-UPDRS was computed as the sum of the first three 

subscales (which we refer to as total MDS-UPDRS I-III). 

B. MoCA 

The Montreal Cognitive Assessment (MoCA) is a brief 10-

minute screening test, which exhibits high sensitivity and 

specificity in detecting the signs of Mild Cognitive 

Impairment (MCI), which is a clinical state that may evolve to 

dementia [36]. The MoCA is a 30-point test that evaluates: 

short-term memory recall, visuospatial abilities, multiple 

aspects of executive functions, attention, concentration, 

working memory, language, and orientation to time and place. 

A lower score is associated with a higher likelihood of MCI. 

We used the total MoCA score that was adjusted for education, 

whereby participants with ≤ 12 years of education were 

assigned an additional MoCA point [37].  

C. ESS 

The Epworth Sleepiness Scale (ESS) is a PROMs-based 

questionnaire that assesses ‘daytime sleepiness’ [38]. The test 

comprises 8-items, each rated on a 4-point scale (with 0 

denoting ‘would never doze’ and 3 denoting ‘high chance of 

dozing’), and the total ESS has a range of 0–24.  

D. BDI 

The Beck Depression Inventory (BDI) is a patient self-

reported test that is used to measure the symptoms and severity 

of depression in persons aged ≥ 13 years. The BDI was 

introduced in 1961 and has since undergone multiple revisions 

[39]. In this study, we use BDI-II, which is a 21-item multiple-

choice inventory, in which each item is rated out on a 4-point 

scale (0 to 3, where 3 indicates an extreme form of each 

symptom) [40]. The total BDI-II score has a range of 0 to 63, 

and the interpretation of this score is based on the following 

guidelines: minimal range (0–13), mild depression (14–19), 

moderate depression (20–28), and severe depression (29–63).  

E. EQ-5D-3L VAS 

The Visual Analogue Scale (VAS) is a self-reported test used 

to measure the participants’ health status on the day of the 

interview [41]. Participants were asked to mark their health 

status on a vertical scale, whereby the ‘Worst imaginable 

health state’ corresponds to a score of 0 and ‘Best imaginable 

health state’ equates to a score of 100.  

F. RBDSQ 

The RBD Screening Questionnaire (RBDSQ) is a PROMs-

based instrument which is based on a 10-item questionnaire 

(with each response being either ‘yes’ or ‘no’) [42]. The range 

is 0 to 13 points, where a higher score is associated with a 

higher likelihood of clinical RBD. RBDSQ assesses sleep 

behavior, focusing on a range of different nocturnal aspects, 

including frequency and content of dreams, nocturnal motor 

behavior, injuries, nocturnal awakenings, disturbed sleep, and 

presence of any neurological disorder. Using a cut-off of 5 

points (as a positive diagnosis of RBD), a sensitivity of 96% 

and a specificity of 56% in discriminating RBD versus 

controls has been reported [42]. 

 

III. METHODS 

Our methodology is aimed at characterizing each sustained 

vowel phonation to extract informative acoustic measures 

(also referred to as features), determining a robust feature 

subset using feature selection algorithms, and mapping the 

selected feature subset onto the clinical outcomes of interest. 

A schematic diagram illustrating the different key stages of 

our modeling framework is provided in Fig. 1.  

FIGURE 1. Schematic diagram illustrating the acquisition of the clinical 
and voice data, and major steps involved in the analyses. 

 

Following the confirmation of study group 

(Control/RBD/PD), quantification of symptom severity (using 
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the clinical scores) and vocal assessment, as shown in Fig. 1 

(step A), the first step of our analyses undertook voice 

segmentation, which was aimed at identifying the voice 

segment that corresponds to the sustained vowel phonation 

from the complete duration of the voice recording (step B in 

Fig. 1). Using the segmented phonation, we performed feature 

extraction, which was aimed at characterizing different 

acoustic measures of the signal (step C in Fig. 1). The feature 

matrix (and corresponding labels) were split into training data 

and testing data using a leave-one-subject-out cross-validation 

scheme, whereby all recordings except recordings from one 

participant were used for training the model and for 

identifying the most salient set of features, i.e., feature 

selection (step D in Fig. 1). The process was repeated, 

iteratively leaving the recordings from each participant out. 

We then performed statistical mapping to establish the 

relationship between the input features and the target label, 

whereby using the trained model, predictions were generated 

for the test dataset (one-by-one, for all participants) and the 

model accuracy was validated using a performance score (step 

E in Fig. 1). We now describe the different steps of our 

methodology in more detail below. 

A. Voice segmentation  

Compared to supervised laboratory collected recordings, data 

acquired under non-controlled, free-living conditions yields 

findings that are more scalable to the real-world environment. 

Collecting data under non-controlled settings can, however, 

give rise to data quality issues, such as background noise, 

unexpected user behaviors, etc., which can potentially reduce 

the interpretability and reliability of the analysis. To tackle this 

issue, we developed an automated voice segmentation 

algorithm to identify the most stable single 2-second segment 

of sustained phonation from the voice recordings. The 

segmentation was based on the analysis of changes in 

fundamental frequency over different parts of the voice signal. 

The fundamental frequency (F0) of the speech signals was 

computed using the Sawtooth Waveform Inspired Pitch 

Estimator (SWIPE) algorithm [43], which we had previously 

demonstrated to be the most accurate F0 estimation algorithm 

in sustained vowel /a:/ signals [44]. 

B. Feature extraction 

We characterized each sustained vowel /a:/ phonation using 

custom-built signal processing algorithms to compute 337 

acoustic measures. We have developed a toolkit containing 

known and novel acoustic measures which we have refined 

over the years, specifically for processing sustained vowel /a:/ 

phonations [3], [16], [45], [46]. Briefly, these acoustic 

measures aimed to quantify the deviation from vocal fold 

periodicity (in terms of frequency the jitter variants and in 

terms of amplitude the shimmer variants), acoustic/turbulent 

noise, and articulator placement. For the physiological 

background, rationale, and detailed algorithmic expressions 

for the computation of the acoustic measures please refer to 

our previous studies [6], [13-15]. The MATLAB source code 

for the computation of the acoustic measures is freely 

available on the author’s (AT) website: https://www.darth-

group.com/software. Applying the speech signal processing 

algorithms to the study cohort gave rise to a 4242×337 feature 

matrix. These acoustic measures are summarized in Table II, 

whereas Table III for convenience summarizes the key 

acoustic aspects we aim to quantify using algorithmic 

processing and the corresponding acoustic measures. We 

remark there are different approaches to categorizing the 

acoustic measures, and the proposed approach serves as a 

useful methodological summary perspective. Also note that 

some acoustic measures to a certain extent, quantify aspects of 

more than one of the assigned categories. 

TABLE II 

BREAKDOWN OF THE 337 ACOUSTIC MEASURES USED IN THIS STUDY 

Family of acoustic 
measures 

Brief description 

Number 

of 

measures 

Jitter variants F0 perturbation 21 
Shimmer variants Amplitude perturbation 22 

Harmonics to Noise Ratio 

(HNR) and Noise to 
Harmonics Ratio (NHR) 

Signal to noise, and noise to 

signal ratios 4 

Glottis Quotient (GQ) Vocal fold cycle duration 
changes 

3 

Glottal to Noise 

Excitation (GNE) 

Extent of noise in speech using 

energy and nonlinear energy 

concepts 
6 

Vocal Fold Excitation 

Ratio (VFER) 

Extent of noise in speech using 

energy, nonlinear energy, and 
entropy concepts 

6 

Empirical Mode 
Decomposition Excitation 

Ratio (EMD-ER) 

Signal to noise ratios using 
EMD-based energy, nonlinear 

energy and entropy 
6 

Mel Frequency Cepstral 

Coefficients (MFCC) 

Amplitude and spectral 

fluctuations 
84 

Wavelet-based 
coefficients 

Amplitude, scale, and 
envelope fluctuations 

quantified using wavelet 

coefficients 

182 

Pitch Period Entropy 

(PPE) 

Inefficiency of F0 control 
1 

Detrended Fluctuation 

Analysis (DFA) 

Stochastic self-similarity of 

turbulent noise 
1 

Recurrence Period 

Density Entropy (RPDE) 

Uncertainty in estimation of 

fundamental frequency 1 

Algorithmic expressions for the 337 acoustic measures summarized here are 

described in detail in [3], [19], [45], [46], [53]. The MATLAB source code 
for the computation of the acoustic measures is freely available on the 

author’s (AT) website: https://www.darth-group.com/software. F0 refers to 

fundamental frequency estimates, here computed using SWIPE [43]. 

C. Feature exploration and statistical analysis 

We explored the data using standard visualization tools in 

the form of violin plots to get a succinct representation of the 

underlying variable distributions. Subsequently, we computed 

correlation coefficients to express the statistical association 

between the acoustic measures and the clinical scales. We 

used the non-parametric Spearman correlation coefficient to 

account for a generic approach which does not require data 

normality, and computed statistical significance at the 95% 

https://www.darth-group.com/software
https://www.darth-group.com/software
https://www.darth-group.com/software
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level (p-values) for the null hypothesis that the acoustic 

measures were not statistically correlated with the clinical 

scales. We considered a relationship to be statistically strong 

when the magnitude of the correlation coefficient R is at least 

0.3, using the empirical rule of thumb in biomedical 

applications [47]. 

TABLE III 

KEY ACOUSTIC ASPECTS AND CORRESPONDING ACOUSTIC MEASURES 

Key acoustic aspect 

quantified 
Acoustic measures used 

Deviations in retaining 

stable F0 and F0 
variability 

Jitter variants, Pitch Period Entropy (PPE), 

Recurrence Period Density Entropy (RPDE), 
Glottis Quotient (GQ), wavelet-based 

coefficients for F0 variability assessment 

Deviations in retaining 

stable amplitude 

Shimmer variants 

Signal to noise ratio, 

quantifying excessive 
level of acoustic noise 

Harmonics to Noise Ratio (HNR) and Noise 

to Harmonics Ratio (NHR), Detrended 
Fluctuation Analysis (DFA), Glottal to Noise 

Excitation (GNE), Vocal Fold Excitation 

Ratio (VFER), Empirical Mode 
Decomposition Excitation Ratio (EMD-ER) 

Envelope (low 

frequency, general 
waveform aspect) 

Lower MFCCs (and corresponding delta and 

delta-delta MFCCs) 

High 

frequency/harmonic 
components  

Higher MFCCs (and corresponding delta and 

delta-delta MFCCs)  

D. Feature selection 

A well-known problem in practical data analytics is the curse 

of dimensionality: a large number of features increases the 

noise in the dataset and may be detrimental in the statistical 

learning process [48]. Occam’s razor dictates that we should 

aim to determine the most parsimonious statistical model, i.e. 

develop a statistical learning model that is maximally 

predictive with the minimum number of features. There are 

many different strategies to perform Feature Selection (FS); 

for an overview please refer to Guyon et al. [49]. Here, we 

used the importance scores from the Random Forests (RF) 

algorithm (see the following section) to rank the features and 

identify a robust subset. This embedded FS approach has the 

advantage that it is integral to the RF model building process 

alleviating the need for an additional external step towards FS, 

and has shown promising results in diverse applications [50]. 

E. Statistical mapping 

There are many statistical mapping algorithms in the literature, 

and this continues to be an active area of research. Here, we 

used RF [51] following the recommendation of Hastie et al. 

that tree-based ensembles are the best off-the-shelf classifiers 

[48]. A key competitive advantage of RF over some 

competing advanced statistical learning algorithms is that RF 

is very robust to the choice of hyperparameters (number of 

trees and number of features over which to optimize). We used 

the standard settings for these hyperparameters following 

Breiman’s recommendations [51]: 500 trees and the square 

root of the number of features for split point selection at each 

node. Moreover, to tackle class imbalance, the votes cut-off 

for the classes was changed such that the minority class had a 

lower cut-off (directly proportional to the number of 

observations in that class) [52]. 

F. Model performance and validation 

To assess the statistical model performance and investigate its 

performance in unseen data, we used the standard Leave-One-

Subject-Out (LOSO) Cross-Validation (CV) approach. 

Specifically, the statistical learning model was trained using 

the samples of the 𝑁-1 unique participants, and tested on the 

performance of correctly estimating the data for the participant 

that was not used in the training phase. Using LOSO, the 

process of model training and predicting was repeated for a 

total of 𝑁 times (one time for each participant). Using all 𝑁 

labels and corresponding predictions, we report the sensitivity 

and specificity for pairwise discriminations, and the Mean 

Absolute Error (MAE) when referring to estimating the 

clinical scores. The MAE values are summarized in the form 

median ± Interquartile Range (IQR). 

To discriminate the three groups (Controls, RBD and PD), 

using only the features extracted from sustained phonations, 

we performed the following pairwise comparisons: (1) 

Controls versus PD, (2) Controls versus RBD, and (3) RBD 

versus PD. For each pairwise comparison, we employed an 

ensemble of classification trees using: (1) all available 

recordings, (2) only male recordings, and (3) only female 

recordings. Moreover, to investigate the effect of the data size 

on classification accuracy, we performed the analyses using: 

(i) only a single voice recording per participant (first voice 

recording collected from each participant), and (ii) total 

number of recordings contributed by a given participant. Since 

different participants contributed a different number of 

recordings in the testing scenario (ii), we performed model 

validation such that each participant was assigned equal 

weight during the model validation. Specifically, for a given 

participant, we used a majority voting scheme to determine if 

the majority of recordings were classified as belonging to 

either class 1 or class 2, assigning the final estimate to the 

majority class for that participant. This resulted in one label 

and one classification per participant, which was subsequently 

used for assessing the model performance. Additional details 

pertaining to the analyses can be found in [3], [19], [45], [46], 

[53], and references therein.   

IV. RESULTS 

Participants from the three groups were age-matched. Pairwise 

comparisons of age distributions (Controls vs PD, Controls vs 

RBD, and RBD vs PD) rejected the null hypothesis that the 

age distributions were significantly different (using a two-

sided Kolmogorov-Smirnov test with 5% significance level). 

This helps garner confidence that the findings of our study are 

not biased due to the presence of presbyphonia as a potential 

confounding factor. We start our exploration by visualizing 

the underlying distributions of the clinical scales for the three 

cohorts (see Fig. 2). 
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FIGURE 2. Violin plots summarizing the distributions of the key clinical 
metrics and comparing the three groups. The boxplot is embedded within 
each violin plot, where the white circle denotes the median and the grey 
box denotes the 25th percentile (lower end) and 75th percentile (upper 
end). The horizontal line within each violin plot denotes the mean. 

Clinical metrics are analysed across the three groups (Controls vs RBD, 

RBD vs PD, and Controls vs PD) using the Mann–Whitney U test. 

Statistically significant findings (𝑝 < 0.05) are marked using *.  

 

The difference in all clinical metrics for the control and PD 

cohorts were found to be statistically significant, while this 

was not the case for MoCA and BDI for the RBD and PD 

cohorts. To account for potential group differences in sex, we 

stratified the data to present the results separately for each 

pairwise group comparison, using all recordings, only female 

recordings, and only male recordings. We next focus on 

investigating the pairwise discrimination of the three cohorts 

using speech signals. Using only a single recording per 

participant (𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠  = 92, 𝑛𝑅𝐵𝐷 = 112, 𝑛𝑃𝐷 = 335), the out-

of-sample classification accuracy was slightly higher for RBD 

versus PD, compared to the accuracy obtained in 

discriminating Controls vs PD, and Controls versus RBD, as 

shown in Table IV.  
TABLE IV 

DISCRIMINATION ACCURACIES FOR THE 3 PAIRWISE COMPARISONS USING 

THE LEAVE-ONE-RECORDING-OUT CROSS-VALIDATION SCHEME  
(USING ONLY 1 RECORDING PER PARTICIPANT) 

Discrimination 

accuracy 
 

 Sensitivity (%) Specificity (%) 

 
Controls vs PD 

 

All 62.1% 56.5% 

Male 61.7% 58.9% 

Female 47.3% 36.8% 

 
Controls vs RBD 

 

All 56.3% 70.7% 

Male 57.7% 69.9% 

Female 40.0% 42.1% 

 

RBD vs PD 

 

All 66.9% 66.1% 

Male 60.7% 70.1% 

Female 59.7% 66.7% 

No. of recordings 𝑛𝐴𝑙𝑙  𝑛𝑀𝑎𝑙𝑒 𝑛𝐹𝑒𝑚𝑎𝑙𝑒 

Controls 92 73 19 

RBD 112 97 15 

PD 335 206 129 
    

We chose the recording corresponding to the first speech test 

performed by each participant in Table IV. For all three 

pairwise comparisons, the accuracy obtained using all 

recordings and only male recordings were rather similar, while 

the accuracy using only female recordings were poor. This can 

be attributed to the fact that both RBD and Control cohorts 

comprised very few female participants, and thus the analyses 

using only female recordings are likely to be less reliable.  

The out-of-sample classification accuracy obtained using the 

total number of available recordings and a majority 

assignment scheme (to assign equal weight to each participant 

during the model validation) is presented in Table V. While 

we were able to distinguish RBD participants from controls 

and PD with decent accuracies (Table V), the discrimination 

accuracy for Controls vs PD, was surprisingly poor. Although 

this requires further investigation, a potential reason for poor 

discrimination accuracy using the control recordings could be 

that compared to the other two cohorts, the number of control 

recordings were about half and one-third of the total number 

of recordings from RBD and PD participants, respectively. 

Moreover, only 39 controls contributed more than one speech 

recording, as opposed to 76 RBD and 126 PD participants who 

performed multiple speech tests.  

In terms of discriminating Controls vs RBD, the results of 

this study (as presented in Table V, sensitivity 56.3% and 

specificity 70.7%) are in broad agreement with previous 

findings that were based on a smaller cohort which had 

reported sensitivity 69.8% and specificity 64.7% [30].  

To further explore reasons for the poor discrimination 

accuracy, using all recordings for Controls vs PD, we 

undertook additional analyses employing following schemes 

to alleviate class imbalance issues: class weights, 

undersampling the majority class, and RUSBoost [52], [54]. 

However, the discrimination accuracy was not noticeably 

better using these schemes. 

 
TABLE V 

DISCRIMINATION ACCURACIES FOR THE 3 PAIRWISE COMPARISONS USING 

THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION SCHEME  
(USING TOTAL NUMBER OF RECORDINGS AND MAJORITY ASSIGNMENT) 

Discrimination 

accuracy 
 

 Sensitivity (%) Specificity (%) 

 
 

Controls vs PD 
 

All 59.4% 67.4% 

Male 55.3% 72.6% 

Female 48.1% 36.8% 

 
Controls vs RBD 

 

All 60.7% 69.6% 

Male 59.8% 74.0% 

Female 46.7% 26.3% 

 
RBD vs PD 

 

All 74.9% 73.2% 

Male 74.8% 75.3% 

Female 51.9% 46.7% 

No. of recordings 𝑛𝐴𝑙𝑙 𝑛𝑀𝑎𝑙𝑒  𝑛𝐹𝑒𝑚𝑎𝑙𝑒  

Controls 688 583 105 

RBD 1359 1154 205 

PD 2195 1311 884 
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FIGURE 3. Heatmap summarizing the statistical associations for all 
participants across the 337 features with the 6 clinical scales. 

 

 
FIGURE 4. Heatmap summarizing the statistical association for the 
stratified group cohorts across the 337 features with the 6 clinical scales.  

 

Subsequently, we investigated the statistical associations of 

the features with the clinical scales; to keep those concise the 

results are summarized in Fig. 3 for all participants, and then 

in Fig. 4 stratifying the data for the three cohorts. Collectively, 

the findings in Figs. 3 and 4 suggest there are some statistically 

strong associations between the acoustic measures and the 

clinical scales. In Figs. 3 and 4, the magnitude of the Spearman 

correlation coefficients (using only one speech recording per 

participant) was less than 0.5 and hence we have compressed 

the scale presented in the range [-0.5 0.5], whereby the order 

of the 337 features in the heatmap follows the presentation in  

Table II. In a few cases, strong correlations were revealed only 

after stratifying the original dataset into the group cohorts, 

which motivates the need to develop stratified cohort-based 

models to estimate the different clinical scales using speech. 

We defer more detailed elaboration on the most strongly 

associated features with the clinical scales and cross-

comparisons for the Discussion.  

Table VI presents the out-of-sample LOSO results for each 

of the clinical scales for the three cohorts and also for the three 

groups collectively. We have followed the methodology 

outlined above assessing the performance of the classifier both 

when using a single recording per participant, and also all 

available recordings with a majority voting scheme on LOSO 

validation. The results were similar, and here we present only 

the findings with a single recording per participant. 

TABLE VI 

OUT OF SAMPLE MAE PERFORMANCE ACROSS CLINICAL SCALES 

Clinical 
scale 

Cohort 

Controls 

(𝑛=92) 

RBD 

(𝑛=112) 

PD 

(𝑛=335) 

Motor MDS-
UPDRS  

1.0 ± 2.0 2.5 ± 5.0 8.0 ± 9.0 

Total MDS-

UPDRS I-III 

1.0 ± 3.0 6.0 ± 8.0 14.0 ± 18.0 

MoCA 1.0 ± 2.0 2.0 ± 2.0 2.0 ± 3.0 

ESS 2.0 ± 2.0 3.0 ± 4.0 3.0 ± 4.0 

BDI 1.0 ± 4.0 5.0 ± 8.0 4.0 ± 6.0 

VAS 6.5 ± 5.0 10.0 ± 18.0 10.0 ± 15.0 

The out of sample Mean Absolute Error (MAE) performance reported here 
was computed using the leave-one-subject-out cross-validation scheme: this 

corresponds to the MAE between the ground truth and the estimates for each 

individual in the cohort (e.g. we computed 335 entries for PD). 
Subsequently we need to succinctly summarize these MAE entries and here 

we report findings in the form median ± IQR. These results were determined 

by feeding into RF all 337 features and also exploring whether feeding in 
progressively the top 1…25 features resulting from the RF importance 

scores for each sub-problem (indicatively, we illustrate these for motor 

MDS-UPDRS in Fig. 5). 
 

Indicatively, we illustrate in Fig. 5 performance of RF in 

predicting the motor MDS-UPDRS. The out-of-sample model 

performance, as quantified using the MAE, is shown as a 

function of the number of most salient features used during the 

modelling. The order of the presented features was determined 

using the ranked RF importance scores. For brevity, we only 

illustrate the results for motor MDS-UPDRS.  

 
FIGURE 5. LOSO MAE performance of the RF in predicting the motor 
MDS-UPDRS as a function of the number of features presented into the 
classifier. The corresponding symbol in each case indicates the median 
and the bars the IQR.  

 

Finally, for the RBD cohort, we explored how the acoustic 

measures relate to the RBDSQ score. Table VII presents the 

correlation coefficients of the ten most strongly associated 

acoustic measures with the RBDSQ score. Similarly, to the 

preceding analyses, we have aimed to estimate RBDSQ 

presenting the acoustic measures into RF for evaluating the 



                                                     Arora et al.: SMARTPHONE SPEECH TESTING FOR SYMPTOM ASSESSMENT IN RBD and PD  

9 
 

model performance in a LOSO framework. Encouragingly, we 

have found that the RBDSQ can be estimated accurately for 

the RBD cohort (𝑛𝑅𝐵𝐷 = 112) with a LOSO MAE of (median 

± IQR) 1 ± 1 RBDSQ points. 

 
TABLE VII 

CORRELATION COEFFICIENTS OF ACOUSTIC MEASURES WITH RBDSQ  

Acoustic measure Correlation coefficient 

Standard deviation of the 0th delta-delta MFCC 0.260 

VFERmean -0.253 

Average of the 9th delta MFCC 0.248 

VFERentropy -0.244 

Standard deviation of the 3rd MFCC 0.241 

Standard deviation of the 0th MFCC 0.220 

EMD-ERSNR,SEO -0.217 

Standard deviation of the 0th delta MFCC 0.215 

Standard deviation of the 3rd delta-delta MFCC 0.206 

Average of the 7th delta MFCC -0.196 

 We present only the 10 most strongly associated acoustic measures for 

brevity. In all cases the correlations were statistically significant (p<0.05). 

V. CONCLUSIONS 

This study aimed to provide the first comprehensive 

investigation of a diverse range of PD and RBD clinical scales 

when using smartphone-based speech signal analysis. We 

have found that speech can be used to estimate diverse PD and 

RBD clinical scales with reported MAE that would make these 

estimations clinically meaningful. We demonstrated that 

RBDSQ can be estimated very accurately with a MAE of 

(median ± IQR) 1 ± 1 points. Given that RBD is a group that 

may convert to PD and that the RBDSQ quantifies RBD 

symptoms, this finding may have important implications 

towards early assessment of prodromal symptoms in PD prior 

to clinical diagnosis. Moreover, we were able to distinguish 

RBD participants from both controls (sensitivity 60.7%, 

specificity 69.6%) and PD (sensitivity 74.9%, specificity 

73.2%). These results could potentially indicate that the vocal 

deficits in participants with isolated RBD might be different 

than those with PD. These findings warrant longitudinal 

studies to investigate speech impairment in participants with 

RBD. While previous studies have typically focused on 

speech analysis for PD, this study demonstrates that speech 

provides the means towards clinically meaningful insights into 

symptom severity displayed across the spectrum of both PD 

and RBD. These results from a deeply clinically phenotyped 

cohort highlights that speech can potentially be used as a 

digital biomarker for prodromal PD. 

We emphasize that the PD cohort were at the early stages of 

the disease with relatively mild symptoms as summarized in 

MDS-UPDRS (see Table I). Moreover, whilst previous 

speech-RBD studies have employed lab-quality recordings, 

we felt it was imperative to use recordings collected under 

realistic environment settings to address issues regarding 

scalability and generalizability of previous findings. It is for 

this reason that we collected voice recordings under clinic- and 

home-based settings via smartphones, from one of the largest 

cohorts of RBD and PD participants. The data were collected 

by participants themselves using a wide variety of off-the-

shelf consumer-grade smartphones (manufactured by major 

international brands). 

We explored the statistical associations (using Spearman 

correlation coefficients) of 337 features, which have been used 

in similar problems when processing sustained vowel /a:/ 

phonations in PD, with six widely used PD clinical scales (see 

Fig. 3). We confirmed some of our previous findings [3], [16], 

finding statistically strong associations (|R|>0.3) between 

some of the acoustic measures and the MDS-UPDRS (both 

motor MDS-UPDRS and total MDS-UPDRS I-III). 

Interestingly, for some of the clinical scales, we observed that 

statistical correlation became more pronounced in stratified 

groups (see Fig. 4). Further work is needed to verify these 

findings in larger Control, RBD and PD cohorts. 

RF derived feature rankings were sub-problem specific and 

did not generalize across problems (results not shown), 

verifying what could have been expected also when 

visualizing the statistical correlations summarized in Fig. 4. 

This tacitly suggests there are different underlying properties 

quantified by the acoustic measures which were best tailored 

for the estimation of the different clinical scales. Overall, we 

found that a proportion of features from the VFER-family, 

MFCCs and wavelet-based acoustic measures were 

statistically strongly correlated with the clinical scales (Fig. 4) 

and were highly ranked using the RF importance scores. This 

is broadly in agreement with our previous findings in related 

PD applications [3], [19], [21]. 

VI. LIMITATIONS AND FUTURE WORK 

 Despite the promising findings reported herein, there are 

some limitations of this study. Firstly, the quality of voice 

samples collected using smartphones under clinic- and home-

based settings is likely to be of relatively worse quality 

compared to data collected under acoustically highly 

controlled lab-settings (e.g., double-walled sound booths), 

which potentially translates into lower discriminatory 

accuracy for the cohorts investigated. Secondly, this study 

relies on acoustic signal analysis using only one type of 

sustained phonation (“aaah”), which may not adequately 

encapsulate the whole spectrum of speech symptoms in RBD 

and PD. It is plausible that acoustic analysis based on a 

multitude of sustained phonation types, syllable repetition, and 

monologue, may improve the efficacy of the biomarker and 

provide a more complete understanding of the degree of 

speech impairment in PD, such as soft speech (hypophonia), 

monotonous speech with the lack of inflection (aprosody), and 

dysarthria in the form of inability to separate syllables clearly 

(tachyphemia). Thirdly, we collected data from only three 

groups (controls, RBD, and PD), thereby not accounting for 

other parkinsonism and tremor disorders that may also exhibit 

comparable patterns of impairment in speech. Therefore, the 
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extent of our claims on the basis of the available data is 

restricted to the differentiation of the three cohorts. The 

development of a robust, reliable clinical decision support tool 

towards differential diagnosis would require the use of a large 

sample size across a wider range of related neurodegenerative 

disorders. Finally, although we validated our statistical 

framework on an independent test dataset, we used data from 

only one cohort (Discovery cohort). Validation based on an 

external independent cohort would have provided additional 

reliability to these findings. Future studies could address some 

of the aforementioned limitations. An interesting line of future 

work would be to longitudinally monitor speech, along with 

other motor and non-motor symptoms, with a particular focus 

on participants with RBD who eventually convert to an overt 

neurodegenerative disease. We envisage the findings of this 

work would contribute towards the risk stratification of 

individuals who are at the risk of developing PD and assist in 

remote longitudinal monitoring of PD symptoms. Overall, this 

study extends the increasing evidence presented in the 

research literature capitalizing on biomedical speech signal 

processing towards the objective assessment of RBD and PD. 
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