34,081 research outputs found

    Dynamic temporary blood facility location-allocation during and post-disaster periods

    Get PDF
    The key objective of this study is to develop a tool (hybridization or integration of different techniques) for locating the temporary blood banks during and post-disaster conditions that could serve the hospitals with minimum response time. We have used temporary blood centers, which must be located in such a way that it is able to serve the demand of hospitals in nearby region within a shorter duration. We are locating the temporary blood centres for which we are minimizing the maximum distance with hospitals. We have used Tabu search heuristic method to calculate the optimal number of temporary blood centres considering cost components. In addition, we employ Bayesian belief network to prioritize the factors for locating the temporary blood facilities. Workability of our model and methodology is illustrated using a case study including blood centres and hospitals surrounding Jamshedpur city. Our results shows that at-least 6 temporary blood facilities are required to satisfy the demand of blood during and post-disaster periods in Jamshedpur. The results also show that that past disaster conditions, response time and convenience for access are the most important factors for locating the temporary blood facilities during and post-disaster periods

    Uncertainty Models in Reverse Supply Chain: A Review

    Get PDF
    Reverse logistic has become an important topic for the organization due to growing environmental concern, government regulation, economic value, and sustainable competitiveness. Uncertainty is one of the key factors in the reverse supply chain that must be controlled; thus, the company could optimize the reverse supply chain function. This paper discusses progress in reverse logistic research. A total of 72 published articles were selected, analyzed, categorized and the research gaps were found among them. The study began by analyzed previous research articles in reverse logistic. In this stage, we also collected and reviewed journals discussing about the reverse supply chain. Meanwhile, the result of this stage shows that uncertainty factor has not been reviewed in detail. The most common theme as the background research in reverse logistic is environmental and economic aspect. Uncertainty in Close Loop Supply Chain is the most widely used approach, followed by the usage on reverse logistics, reverse supply chain and reverse Model. The most used approach and method on uncertainty are Mixed Integer Linear Programing, mixed integer nonlinear Programing, Robust Fuzzy Stochastic Programming, and Improved kriging-assisted robust optimization method. Customer demand, total cost, product returns are the most widely researched aspects. This paper may be useful for academicians, researchers and practitioners in learning on reverse logistic and reverse supply chain; therefore, close loop supply chain can be guidance for upcoming researches. Research opportunity based on this research combines total cost, quality return product, truck capacity, delivery route, remanufacturing capacity, and facility location got optimum function in uncertainty. The research method and approach for MINLP, IK-MRO and RSFP provide many opportunities for research. For theme and area in reverse logistic, close loop supply chain is the theme that provides the most research opportunities

    Evaluating logistics villages in Turkey using hybrid improved fuzzy SWARA (IMF SWARA) and fuzzy MABAC techniques

    Get PDF
    Positioning in the right location for organizing logistics activities is a determinative factor in the aspect of costs, effectivity, productivity, and performance of these operations carried out by logistics firms. The proper logistics village selection is a crucial, complicated, and time-consuming process for decision-makers who have to make the right and optimal decision on this issue. Decision-makers need a methodological frame with a practical algorithm that can be implemented quickly to solve these decision-making problems. Within this scope, the current paper aims to present an evaluation tool, which provides more reasonable and reliable results for decision-makers to solve the logistics village selection problem that is very complicated and has uncertain conditions based on fuzzy approaches. In this study, we propose the Improved Fuzzy Step-Wise Weight Assessment Ratio Analysis (IMF SWARA), a modified and extended version of the traditional fuzzy Step-Wise Weight Assessment Ratio Analysis (F-SWARA) to identify the criteria weights. Also, we suggest applying the fuzzy Multi-Attributive Border Approximation area Comparison (F-MABAC) technique to determine the preference ratings of the alternatives. This combination has many valuable contributions. For example, it proposes to use a more reliable and consistent evaluation scale based on fuzzy sets. Hence, decision-makers can perform more reliable and reasonable pairwise comparisons by considering this evaluation scale. Besides, it presents a multi-attribute evaluation system based on the identified criteria weights. From this perspective, the proposed model is implemented to evaluate eight different logistics village alternatives with respect to nine selection criteria. According to the analysis results, while A8 is the most appropriate option, C1 Gross National Product (GNP) is the most significant criterion. A comprehensive sensitivity analysis was performed to test the robustness and validation of the proposed model, and the results of the analysis approve the validity and applicability of the proposed model. As a result, the suggested integrated MCDM framework can be applied as a valuable and practical decision-making tool to develop new strategies and improve the logistics operations by decision-makers

    A Multi-Criteria Vertical Coordination Framework for a Reliable Aid Distribution

    Get PDF
    Purpose: This study proposes a methodology that translates multiple humanitarian supply chain stakeholders’ preferences from qualitative to quantitative values, enabling these preferences to be integrated into optimization models to ensure their balanced and simultaneous implementation during the decision-making process. Design/methodology/approach: An extensive literature review is used to justify the importance of developing a strategy that minimizes the impact of a lack of coordination on humanitarian logistics decisions. A methodology for a multi-criteria framework is presented that allows humanitarian stakeholders’ interests to be integrated into the humanitarian decisionmaking process. Findings: The findings suggest that integrating stakeholders’ interests into the humanitarian decision-making process will improve its reliability. Research limitations/implications: To further validate the weights of each stakeholder’s interests obtained from the literature review requires interviews with the corresponding organizations. However, the literature review supports the statements in this paper. Practical implications: The cost of a lack of coordination between stakeholders in humanitarian logistics has been increasing during the last decade. These coordination costs can be minimized if humanitarian logistics’ decision-makers measure and simultaneously consider multiple stakeholders’ preferences. Social implications: When stakeholders’ goals are aligned, the humanitarian logistics response becomes more efficient, increasing the quality of delivered aid and providing timely assistance to the affected population in order to minimize their suffering. Originality/value: This study provides a methodology that translates humanitarian supply chain stakeholders’ interests into quantitative values, enabling them to be integrated into mathematical models to ensure relief distribution based on the stakeholders’ preferences.Peer Reviewe

    Production and Logistics Systems Improvements - Biim Ultrasound AS

    Get PDF
    A crucial aspect of the supply chain network design process is deciding on optimal locations to situate new facilities. Facility location decisions rely on many factors, some of which might be conflicting with each other. The decision factors can be either quantitative or qualitative, thus a brute-force prioritization of one over another could be detrimental overall. To ensure the efficacy of the selection process, decision makers must consider both the quantitative and qualitative factors in tandem. Some of the common methods employed in the literature by organizations to facilitate their decision-making process include: optimization models and algorithms, decision support systems and computerized analytics tools. To this end, this thesis proposes a hybrid Multi-Criteria Decision Making (MCDM) model to aid the selection of an optimal location that suits the strategic fit of an organization. The proposed model integrates the Analytic Hierarchy Process (AHP) methodology for Multi-Attribute Decision Making (MADM) with Mixed Integer Programming (MIP). The solution is modeled and implemented with the AIMMS modeling language as well as the Gurobi Optimization tool in Python. This thesis work is based on a case study from Biim Ultrasound

    Decision Support System for Managing Reverse Supply Chain

    Get PDF
    Reverse logistics are becoming more and more important in the overall Industry area because of the environment and business factors. Planning and implementing a suitable reverse logistics network could bring more profit, customer satisfaction, and an excellent social picture for companies. But, most of the logistics networks are not equipped to handle the return products in reverse channels. Reverse logistics processes and plans rely heavily on reversing the supply chain so that companies can correctly identify and categorize returned products for disposition, an area that offers many opportunities for additional revenue. The science of reverse logistics includes return policy administration, product recall protocols, repairs processing, product repackaging, parts management, recycling, product disposition management, maximizing liquidation values and much more. The focus of this project is to develop a reverse logistics management system/ tools (RLMS). The proposed tools are demonstrated in the following order. First, we identify the risks involved in the reverse supply chain. Survey tool is used to collect data and information required for analysis. The methodologies that are used to identify key risks are the six sigma tools, namely Define, Measure, Analyse, Improve and Control (DMAIC), SWOT analysis, cause and effect, and Risk Mapping. An improved decision-making method using fuzzy set theory for converting linguistic data into numeric risk ratings has been attempted. In this study, the concept of ‘Left and Right dominance approach’(Chen and Liu, 2001) and Method of ‘In center of centroids’ (Thoran et al., 2012a,b) for generalized trapezoidal fuzzy numbers has been used to quantify the ‘degree of risk’ in terms of crisp ratings. After the analysis, the key risks are identified are categorized, and an action requirement plan suggested for providing guidelines for the managers to manage the risk successfully in the context of reverse logistics. Next, from risk assessment findings, information technology risk presents the highest risk impact on the performance of the reverse logistics, especially lack of use of a decision support system (DSS). We propose a novel multi-attribute decision (MADM) support tool that can categorizes return products and make the best alternative selection of recovery and disposal option using carefully considered criteria using MADM decision making methodologies such as fuzzy MOORA and VIKOR. The project can be applied to all types of industries. Once the returned products are collected and categorized at the retailers/ Points of return (PoR), an optimized network is required to determine the number of reprocessing centres to be opened and the optimized optimum material flow between retailers, reprocessing, recycling and disposal centers at minimum costs. The research develops a mixed integer linear programming model for two scenarios, namely considering direct shipping from retailer/ PoR to the respective reprocessing centers and considering the use of centralized return centers (CRC). The models are solved using LINGO 15 software and excel solver tools respectively. The advantage of the implementation of our solution is that it will help improve performance and reduce time. This benefits the company by having a reduction in their cost due to uncertainties and also contributes to better customer satisfaction. Implementation of these tools at ABZ computer distributing company demonstrates how the reverse logistics management tools can used in order to be beneficial to the organization. The tool is designed to be easily implemented at minimal cost and serves as a valuable tool for personnel faced with significant and costly decisions regarding risk assessment, decision making and network optimization in the reverse supply chain practices
    corecore