142 research outputs found

    A Survey on Acoustic Side Channel Attacks on Keyboards

    Full text link
    Most electronic devices utilize mechanical keyboards to receive inputs, including sensitive information such as authentication credentials, personal and private data, emails, plans, etc. However, these systems are susceptible to acoustic side-channel attacks. Researchers have successfully developed methods that can extract typed keystrokes from ambient noise. As the prevalence of keyboard-based input systems continues to expand across various computing platforms, and with the improvement of microphone technology, the potential vulnerability to acoustic side-channel attacks also increases. This survey paper thoroughly reviews existing research, explaining why such attacks are feasible, the applicable threat models, and the methodologies employed to launch and enhance these attacks.Comment: 22 pages, conferenc

    Acoustic-channel attack and defence methods for personal voice assistants

    Get PDF
    Personal Voice Assistants (PVAs) are increasingly used as interface to digital environments. Voice commands are used to interact with phones, smart homes or cars. In the US alone the number of smart speakers such as Amazon’s Echo and Google Home has grown by 78% to 118.5 million and 21% of the US population own at least one device. Given the increasing dependency of society on PVAs, security and privacy of these has become a major concern of users, manufacturers and policy makers. Consequently, a steep increase in research efforts addressing security and privacy of PVAs can be observed in recent years. While some security and privacy research applicable to the PVA domain predates their recent increase in popularity and many new research strands have emerged, there lacks research dedicated to PVA security and privacy. The most important interaction interface between users and a PVA is the acoustic channel and acoustic channel related security and privacy studies are desirable and required. The aim of the work presented in this thesis is to enhance the cognition of security and privacy issues of PVA usage related to the acoustic channel, to propose principles and solutions to key usage scenarios to mitigate potential security threats, and to present a novel type of dangerous attack which can be launched only by using a PVA alone. The five core contributions of this thesis are: (i) a taxonomy is built for the research domain of PVA security and privacy issues related to acoustic channel. An extensive research overview on the state of the art is provided, describing a comprehensive research map for PVA security and privacy. It is also shown in this taxonomy where the contributions of this thesis lie; (ii) Work has emerged aiming to generate adversarial audio inputs which sound harmless to humans but can trick a PVA to recognise harmful commands. The majority of work has been focused on the attack side, but there rarely exists work on how to defend against this type of attack. A defence method against white-box adversarial commands is proposed and implemented as a prototype. It is shown that a defence Automatic Speech Recognition (ASR) can work in parallel with the PVA’s main one, and adversarial audio input is detected if the difference in the speech decoding results between both ASR surpasses a threshold. It is demonstrated that an ASR that differs in architecture and/or training data from the the PVA’s main ASR is usable as protection ASR; (iii) PVAs continuously monitor conversations which may be transported to a cloud back end where they are stored, processed and maybe even passed on to other service providers. A user has limited control over this process when a PVA is triggered without user’s intent or a PVA belongs to others. A user is unable to control the recording behaviour of surrounding PVAs, unable to signal privacy requirements and unable to track conversation recordings. An acoustic tagging solution is proposed aiming to embed additional information into acoustic signals processed by PVAs. A user employs a tagging device which emits an acoustic signal when PVA activity is assumed. Any active PVA will embed this tag into their recorded audio stream. The tag may signal a cooperating PVA or back-end system that a user has not given a recording consent. The tag may also be used to trace when and where a recording was taken if necessary. A prototype tagging device based on PocketSphinx is implemented. Using Google Home Mini as the PVA, it is demonstrated that the device can tag conversations and the tagging signal can be retrieved from conversations stored in the Google back-end system; (iv) Acoustic tagging provides users the capability to signal their permission to the back-end PVA service, and another solution inspired by Denial of Service (DoS) is proposed as well for protecting user privacy. Although PVAs are very helpful, they are also continuously monitoring conversations. When a PVA detects a wake word, the immediately following conversation is recorded and transported to a cloud system for further analysis. An active protection mechanism is proposed: reactive jamming. A Protection Jamming Device (PJD) is employed to observe conversations. Upon detection of a PVA wake word the PJD emits an acoustic jamming signal. The PJD must detect the wake word faster than the PVA such that the jamming signal still prevents wake word detection by the PVA. An evaluation of the effectiveness of different jamming signals and overlap between wake words and the jamming signals is carried out. 100% jamming success can be achieved with an overlap of at least 60% with a negligible false positive rate; (v) Acoustic components (speakers and microphones) on a PVA can potentially be re-purposed to achieve acoustic sensing. This has great security and privacy implication due to the key role of PVAs in digital environments. The first active acoustic side-channel attack is proposed. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smartphone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movement can be monitored to steal Android unlock patterns. The number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 phone can be reduced by up to 70% using this novel unnoticeable acoustic side-channel

    SoK: Acoustic Side Channels

    Full text link
    We provide a state-of-the-art analysis of acoustic side channels, cover all the significant academic research in the area, discuss their security implications and countermeasures, and identify areas for future research. We also make an attempt to bridge side channels and inverse problems, two fields that appear to be completely isolated from each other but have deep connections.Comment: 16 page

    When keystroke meets password: Attacks and defenses

    Get PDF

    USER AUTHENTICATION ACROSS DEVICES, MODALITIES AND REPRESENTATION: BEHAVIORAL BIOMETRIC METHODS

    Get PDF
    Biometrics eliminate the need for a person to remember and reproduce complex secretive information or carry additional hardware in order to authenticate oneself. Behavioral biometrics is a branch of biometrics that focuses on using a person’s behavior or way of doing a task as means of authentication. These tasks can be any common, day to day tasks like walking, sleeping, talking, typing and so on. As interactions with computers and other smart-devices like phones and tablets have become an essential part of modern life, a person’s style of interaction with them can be used as a powerful means of behavioral biometrics. In this dissertation, we present insights from the analysis of our proposed set of contextsensitive or word-specific keystroke features on desktop, tablet and phone. We show that the conventional features are not highly discriminatory on desktops and are only marginally better on hand-held devices for user identification. By using information of the context, our proposed word-specific features offer superior discrimination among users on all devices. Classifiers, built using our proposed features, perform user identification with high accuracies in range of 90% to 97%, average precision and recall values of 0.914 and 0.901 respectively. Analysis of the word-based impact factors reveal that four or five character words, words with about 50% vowels, and those that are ranked higher on the frequency lists might give better results for the extraction and use of the proposed features for user identification. We also examine a large umbrella of behavioral biometric data such as; keystroke latencies, gait and swipe data on desktop, phone and tablet for the assumption of an underlying normal distribution, which is common in many research works. Using suitable nonparametric normality tests (Lilliefors test and Shapiro-Wilk test) we show that a majority of the features from all activities and all devices, do not follow a normal distribution. In most cases less than 25% of the samples that were tested had p values \u3e 0.05. We discuss alternate solutions to address the non-normality in behavioral biometric data. Openly available datasets did not provide the wide range of modalities and activities required for our research. Therefore, we have collected and shared an open access, large benchmark dataset for behavioral biometrics on IEEEDataport. We describe the collection and analysis of our Syracuse University and Assured Information Security - Behavioral Biometrics Multi-device and multi -Activity data from Same users (SU-AIS BB-MAS) Dataset. Which is an open access dataset on IEEEdataport, with data from 117 subjects for typing (both fixed and free text), gait (walking, upstairs and downstairs) and touch on Desktop, Tablet and Phone. The dataset consists a total of about: 3.5 million keystroke events; 57.1 million data-points for accelerometer and gyroscope each; 1.7 million datapoints for swipes and is listed as one of the most popular datasets on the portal (through IEEE emails to all members on 05/13/2020 and 07/21/2020). We also show that keystroke dynamics (KD) on a desktop can be used to classify the type of activity, either benign or adversarial, that a text sample originates from. We show the inefficiencies of popular temporal features for this task. With our proposed set of 14 features we achieve high accuracies (93% to 97%) and low Type 1 and Type 2 errors (3% to 8%) in classifying text samples of different sizes. We also present exploratory research in (a) authenticating users through musical notes generated by mapping their keystroke latencies to music and (b) authenticating users through the relationship between their keystroke latencies on multiple devices

    Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives

    Full text link
    A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-Ă -vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409); National Institute of Mental Health (R01 DC02852

    Using Sonic Enhancement to Augment Non-Visual Tabular Navigation

    Get PDF
    More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested. Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book
    • …
    corecore