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ABSTRACT

Biometrics eliminate the need for a person to remember and reproduce complex secre-

tive information or carry additional hardware in order to authenticate oneself. Behavioral

biometrics is a branch of biometrics that focuses on using a person’s behavior or way of

doing a task as means of authentication. These tasks can be any common, day to day

tasks like walking, sleeping, talking, typing and so on. As interactions with computers

and other smart-devices like phones and tablets have become an essential part of modern

life, a person’s style of interaction with them can be used as a powerful means of behav-

ioral biometrics.

In this dissertation, we present insights from the analysis of our proposed set of context-

sensitive or word-specific keystroke features on desktop, tablet and phone. We show

that the conventional features are not highly discriminatory on desktops and are only

marginally better on hand-held devices for user identification. By using information of the

context, our proposed word-specific features offer superior discrimination among users

on all devices. Classifiers, built using our proposed features, perform user identification

with high accuracies in range of 90% to 97%, average precision and recall values of 0.914

and 0.901 respectively. Analysis of the word-based impact factors reveal that four or five

character words, words with about 50% vowels, and those that are ranked higher on the

frequency lists might give better results for the extraction and use of the proposed features

for user identification.

We also examine a large umbrella of behavioral biometric data such as; keystroke laten-

cies, gait and swipe data on desktop, phone and tablet for the assumption of an underly-

ing normal distribution, which is common in many research works. Using suitable non-

parametric normality tests (Lilliefors test and Shapiro-Wilk test) we show that a majority

of the features from all activities and all devices, do not follow a normal distribution. In



most cases less than 25% of the samples that were tested had p values > 0.05. We discuss

alternate solutions to address the non-normality in behavioral biometric data.

Openly available datasets did not provide the wide range of modalities and activities re-

quired for our research. Therefore, we have collected and shared an open access, large

benchmark dataset for behavioral biometrics on IEEEDataport. We describe the collec-

tion and analysis of our Syracuse University and Assured Information Security - Behav-

ioral Biometrics Multi-device and multi -Activity data from Same users (SU-AIS BB-MAS)

Dataset. Which is an open access dataset on IEEEdataport, with data from 117 subjects

for typing (both fixed and free text), gait (walking, upstairs and downstairs) and touch on

Desktop, Tablet and Phone. The dataset consists a total of about: 3.5 million keystroke

events; 57.1 million data-points for accelerometer and gyroscope each; 1.7 million data-

points for swipes and is listed as one of the most popular datasets on the portal (through

IEEE emails to all members on 05/13/2020 and 07/21/2020).

We also show that keystroke dynamics (KD) on a desktop can be used to classify the type

of activity, either benign or adversarial, that a text sample originates from. We show the

inefficiencies of popular temporal features for this task. With our proposed set of 14 fea-

tures we achieve high accuracies (93% to 97%) and low Type 1 and Type 2 errors (3% to

8%) in classifying text samples of different sizes. We also present exploratory research

in (a) authenticating users through musical notes generated by mapping their keystroke

latencies to music and (b) authenticating users through the relationship between their

keystroke latencies on multiple devices.
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4.2.2 Related work in keystroke dynamics . . . . . . . . . . . . . . . 106

4.3 Data and features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 Details of the dataset . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Details of the features . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Experimentation and analysis . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Conclusion and alternate approaches . . . . . . . . . . . . . . . . . . . 115

5 Classification of Threat Level in Typing Activity Through Keystroke Dynamics 123

5.1 Key contributions of the chapter . . . . . . . . . . . . . . . . . . . . . 124

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Dataset and experimentation methods . . . . . . . . . . . . . . . . . . 128

5.3.1 Details of the data collection . . . . . . . . . . . . . . . . . . . 128

5.3.2 Context recognition with conventional features . . . . . . . . . 130

5.3.3 Proposed features . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.4 Context recognition with proposed features . . . . . . . . . . . 135

5.3.5 Correlation analysis of feature pairs . . . . . . . . . . . . . . . 137

5.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 137

6 Exploratory work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1 Authentication by Mapping Keystrokes to Music: The Melody of Typing 139

ix



Page

6.1.1 Key contributions of the section . . . . . . . . . . . . . . . . . 140

6.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.3 Details of the data collection . . . . . . . . . . . . . . . . . . . 143

6.1.4 Music features . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.5 Analysis on music from keystrokes . . . . . . . . . . . . . . . 147

6.1.6 Inter-user and intra-user analysis . . . . . . . . . . . . . . . . 148

6.1.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . 154

6.2 DoubleType: Authentication Using Relationship Between Typing Behav-
ior on Multiple Devices . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Key contributions of the section . . . . . . . . . . . . . . . . . 157

6.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.3 Overview of the authentication system . . . . . . . . . . . . . 160

6.2.4 Details of the data collection . . . . . . . . . . . . . . . . . . . 162

6.2.5 Methodology and experiments . . . . . . . . . . . . . . . . . . 163

6.2.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 168

6.2.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . 169

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A Additional Details of Data Collection . . . . . . . . . . . . . . . . . . . . . 173

A.1 Cognitive Loads[35] . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2 Examples of Free text questions on desktop . . . . . . . . . . . . . . . 173

A.3 Examples of Free text questions on tablet . . . . . . . . . . . . . . . . 173

A.4 Examples of Free text Questions on phone . . . . . . . . . . . . . . . . 174

A.5 Transcription Sentences . . . . . . . . . . . . . . . . . . . . . . . . . 174

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

x



LIST OF TABLES

Table Page

2.1 Data collection tasks performed by the participants. For each participant
we recorded activities on four devices - a Desktop, a Tablet and two Phones
(pocket and hand). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Example for keystroke files from user 1. . . . . . . . . . . . . . . . . . . . 18

2.3 Example for mouse movement data from user 1. . . . . . . . . . . . . . . . 19

2.4 Example for mouse button data from user 1. . . . . . . . . . . . . . . . . . 19

2.5 Example for mouse wheel data from user 1. . . . . . . . . . . . . . . . . . 19

2.6 Example for accelerometer data from user 1. . . . . . . . . . . . . . . . . 20

2.7 Example for gyroscope data from user 1. . . . . . . . . . . . . . . . . . . 20

2.8 Example for swipe data from user 1. . . . . . . . . . . . . . . . . . . . . . 22

2.9 Example for checkpoint data from user 1. . . . . . . . . . . . . . . . . . . 23

2.10 Summary of demographic data. . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Keystroke statistics: Number of keystroke events. . . . . . . . . . . . . . . 32

2.12 Summary of keyhold feature statistics. All values are in milliseconds. . . . 34

2.13 Summary of Flight1 feature statistics. All values are in milliseconds. . . . . 34

2.14 Summary of Flight2 feature statistics. All values are in milliseconds. . . . . 35

2.15 Summary of Flight3 feature statistics. All values are in milliseconds. . . . . 36

2.16 Summary of Flight4 feature statistics. All values are in milliseconds. . . . . 37

2.17 Comparison with other related datasets. . . . . . . . . . . . . . . . . . . . 38

3.1 Conventional features extracted from Uni-Graphs and Di-Graphs with their
brief description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Conventional features extracted from an example string ”this is that”. U: Uni-
Graph, D: Di-Graph. t1R stands for release of key t1 (the subscript 1 stands
for the first occurrence of ”t”) and t1P stands for press of key t1 and so on. . 52

3.3 Proposed context sensitive features and their brief description. . . . . . . . 53

xi



Table Page

3.4 Proposed features extracted from the same example string ”this is that”. t1R
stands for release of key t1 (the subscript 1 stands for the first occurrence of
”t”) and t1P stands for press of key t1 and so on, Avg and Std stand for aver-
age and standard deviation respectively. . . . . . . . . . . . . . . . . . . . 54

3.5 The Inter-User DistB values for KeyHold distributions on all devices. . . . 60

3.6 The Inter-User DistB values Flight1 distributions on all devices. . . . . . . 61

3.7 The Inter-User DistB values for Flight2 distributions on all devices. . . . . 63

3.8 The Inter-User DistB values for Flight3 distributions on all devices. . . . . 64

3.9 The Inter-User DistB values for Flight4 distributions on all devices. . . . . 66

3.10 The Inter-User DistB values for WordHold Distributions across all devices. 70

3.11 The Inter-User DistB for AvgFlight1 Distributions across all devices. . . . 71

3.12 The Inter-User Distb values for AvgFlight2 Distributions across all devices. 72

3.13 The Inter-User DistB values for AvgFlight3 Distributions across all devices. 74

3.14 The Inter-User mean DistB values for AvgFlight4 Distributions across all
devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 The Inter-User DistB values for AvgKeyHold Distributions across all de-
vices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.16 The Inter-User DistB values for StdFlight1 Distributions across all devices. 78

3.17 The Inter-User DistB values for StdFlight2 Distributions across all devices. 79

3.18 The Inter-User DistB values for StdFlight3 Distributions across all devices. 80

3.19 The Inter-User DistB values for StdFlight4 Distributions across all devices. 82

3.20 The Inter-User DistB values for StdKeyHold Distributions across all devices. 83

3.21 Classifier accuracies for the conventional feature based classifiers in our ex-
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.22 Classifier accuracies for the proposed feature based classifiers in our experi-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.23 Example from our desktop dataset: average feature values for a randomly
chosen user shows the variations in the average feature values for the charac-
ter ”h” and digraph ”ha” depending on the context in which they appear. All
values are in milliseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 The different types of data, from SU-AIS BB-MAS [26], that we analyzed
from multiple devices and activities. The gait activity consists of three sub-
activities, walking, climbing upstairs and downstairs. . . . . . . . . . . . . 109

xii



Table Page

4.2 List of features extracted and examined in our experiments for an underlying
normal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Percentage of test samples with p > 0.05 for keyhold feature from unigraphs
on desktop, tablet and phone. . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Percentage of test samples with p > 0.05 for flight1-flight4 features from di-
graphs on desktop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Percentage of test samples with p > 0.05 for flight1-flight4 features from di-
graphs on tablet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Percentage of test samples with p > 0.05 for flight1-flight4 features from di-
graphs on phone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Percentage of test samples with p > 0.05 for features from Swiping activity
on phone and tablet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.8 Percentage of test samples with p > 0.05 for features from Upstairs activity
with phone in hand, phone in pocket and tablet in hand. . . . . . . . . . . 120

4.9 Percentage of test samples with p > 0.05 for features from Downstairs activ-
ity phone in hand, phone in pocket and tablet in hand. . . . . . . . . . . . . 121

4.10 Percentage of test samples with p > 0.05 for features from Walking activity
phone in hand, phone in pocket and tablet in hand. . . . . . . . . . . . . . 122

5.1 Highlights of our data collection effort. . . . . . . . . . . . . . . . . . . . 126

6.1 The average FAR, FRR and Accuracy; for the three standard classifiers with
two-fold and three-fold cross validation experiments (on the left) and for hu-
man classifiers (on the right) on user verification. . . . . . . . . . . . . . . 151

6.2 Summary of the data collection. . . . . . . . . . . . . . . . . . . . . . . . 161

xiii



LIST OF FIGURES

Figure Page

2.1 A screenshot from our phone application keyboard which matches the default
android keyboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The data collection procedure. Tasks a to m were performed by participants
in sequence, the corresponding activities and data collected are described in
Table 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Organisation of the files in our dataset. . . . . . . . . . . . . . . . . . . . 17

2.4 Features extracted from keystroke data. . . . . . . . . . . . . . . . . . . . 25

3.1 Features extracted from the temporal data of keys Ki and Ki+1. . . . . . . 50

3.2 Highlights of our Data Collection effort. . . . . . . . . . . . . . . . . . . . 56

xiv



Figure Page

3.3 Example of DistB computation: Histograms representing the probability den-
sity functions of KeyHold values for the character ’t’, for Users A and B on a)
desktop , b) tablet and c) phone along with their corresponding Bhattacharyya
distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Comparing the Bhattacharyya distances of PDFs for all conventional features
on desktop, tablet and phone. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Comparing the Bhattacharyya distances of PDFs for all proposed context-
sensitive features on desktop, tablet and phone. . . . . . . . . . . . . . . . 85

3.6 Typically, a desktop keyboard offers only two degrees of freedom; forward/back-
ward and left/right. As a typical phone can be held by its user in any comfort-
able posture, it offers six degrees of freedom; forward/backward, left/right,
upward/downward, yaw, pitch and roll as shown in these figures. . . . . . . 96

3.7 Impact of three word-based factors on the performance of proposed features
for user identification. The three factors are: Word length (Fig. 3.7a): number
of characters in a word; Vowel Percentage (Fig. 3.7b): percentage of vowels
in a word; and Oxford English Corpus (OEC) frequency ranking (Fig. 3.7c):
the frequency ranking of the words in our study according to OEC (Top 100).
The words in order of rank (Fig. 3.7c, y-axis) are: (1, the), (8, that), (9, have),
(13, not), (15, with), (21, this), (33, will), (38, there), (69, see), (84, two) and
(88, first). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Illustration summarizing the amount of features in each activity and percent-
age of their samples with p > 0.05, or in other words, where the null hypoth-
esis H0, that the samples came from a normal distribution could not be dis-
carded. The categories and their corresponding color codes are; red- less than
25% of samples with p-value >0.05; orange- 25% to 50% of samples with p-
value >0.05; yellow- 50% to 75% of samples with p-value >0.05; and, green-
above 75% samples with p-value >0.05. A full doughnut in the doughnut
chart represents all the features for an activity on the labelled device. For
example, the outer most doughnut in Figure 4.1a, represents all the features
examined for keystrokes latencies on desktop, the second doughnut for tablet
and innermost doughnut for phone respectively. The area covered by each
color/category on a doughnut represents the amount of features that fall in the
color/category as described above. . . . . . . . . . . . . . . . . . . . . . 111

5.1 The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM,
RF and MLP classifiers trained and tested using the conventional keystroke
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM,
RF and MLP classifiers trained and tested using our proposed keystroke fea-
tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xv



Figure Page

5.3 Heat-maps showing the correlation between feature pairs in the proposed fea-
ture set for different sizes of text samples. F1 to F14 on the x-axis and y-
axis represent the features AvgEnterHold, StdEnterHold, AvgSpaceInFlight,
StdSpaceInFlight, AvgSpaceOutFlight, StdSpaceOutFlight, SpaceRatio, En-
terRatio, ErrorCount, TotalTime, IQRHold, IQRFlight, PunctuationRatio and
SpeedDelta, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM,
RF and MLP classifiers using eight least correlated features from our pro-
posed set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Music notes and their placement, generated from a digraph Ki,Ki+1 using
functions T (v) and P (v) for duration and pitch respectively. . . . . . . . . 144

6.2 Examples of the piano roll plots that are obtained after mapping the keystroke
features to the music features. We illustrate the piano roll plots of two test-
phrase samples from two random users from our data-set, Figures 6.2(a) and
6.2(b) are from samples of user A and Figures 6.2(c) and 6.2(d) are from user
B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Plot of density functions for inter-user and intra-user Canberra distances of
the note-pitch vectors (6.3a) and note-duration vectors (6.3b) between all mu-
sic files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Results from the Human-Classifier (HC) based verification experiments. . . 152

6.5 An overview of the authentication system. . . . . . . . . . . . . . . . . . . 158

6.6 Data preprocessing and formation of datasets from the relationship between
typing behavior on two devices. . . . . . . . . . . . . . . . . . . . . . . . 163

6.7 Illustration of the feature values from two random users selected from our
dataset for scenario 1: relationship− features for Desktop and Phone. . . 163

6.8 Performance of the two classifiers for all three scenarios, Desktop-Phone
(6.8a and 6.8b); Desktop-Tablet (6.8c and 6.8d); and Tablet-Phone (6.8e and
6.8f) relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xvi



1

1. INTRODUCTION

The rise in the popularity of biometrics stems from its inherent property that eliminates

the need for a person to remember and reproduce complex secretive information or carry

additional hardware to authenticate oneself. Possession of such secretive information or

hardware is not only risking their theft but also risking forgetting them (Personal Identifi-

cation Number (PIN), password), either case leads to unnecessary complications regard-

ing an individual’s identity. Biometrics focuses on authenticating a person based on ”who

they are” rather than ”what they know”, which is a prime reason for its growth in popular-

ity and research (eg. see [53] and [32]).

Behavioral biometrics is a branch of biometrics that focuses on using a person’s behavior

or way of doing a task as means of authentication. These tasks can be any common, day

to day tasks like walking, sleeping, talking, typing and so on. As interactions with com-

puters and other smart-devices like phones and tablets have become an essential part of

modern life, a person’s style of interaction with them can be used as a powerful means

of behavioral biometrics. However, there is a lack of large datasets with multiple activ-

ities, such as typing, gait and swipe performed by the same person. Furthermore, large

datasets with multiple activities performed on multiple devices by the same person are

non-existent. The difficulties of procuring devices, participants, designing protocol, se-

cure storage and on-field hindrances may have contributed to this scarcity. The availabil-

ity of such a dataset is crucial to forward the research in behavioral biometrics as usage
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of multiple devices by a person is common nowadays. We present our SU-AIS BB-MAS

dataset, with a total of about: 3.5 million keystroke events; 57.1 million data-points for

accelerometer and gyroscope each; 1.7 million data-points for swipes; and enables future

research to explore previously unexplored directions in inter-device and inter-modality

biometrics. A common assumption in behavioral biometrics, is that feature values follow

a normal distribution. This assumption impacts key facets of research such as decisions

of sampling techniques and authentication models and performance and results from the

resulting systems. We question the assumption of normality in the features extracted from

the data.

Typing is a common form of interaction, where a person provides input for these devices

either on keyboards or touch screens, thus making research in Keystroke Dynamics (KD)

popular. Research in KD has grown far and wide, Umphress and Williams [180], in their

work, demonstrated that keystroke behavior on keyboards/typewriters was indeed a dis-

tinguishable trait among users while more recent research has shown that KD can also

be used on other devices that involve typing, such as phones and tablets [47], [126]. A

considerable amount of research has also explored the effects of the type of text used for

KD, that is fixed text vs free text [4]. The problem of authenticating users by their typing

behavior has also been addressed from multiple perspectives as far as the underlying al-

gorithms are concerned. Although research in KD has been advancing rapidly, there have

been very few attempts to understand the impact of context on the features that are used

for KD.

A user can accomplish various tasks through keystroke inputs. Intuitively some activi-

ties are benign in nature while others are malicious. Common day-to-day activities like
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writing emails, documents or browsing the internet can possess a lesser threat to the sys-

tem from the user, whereas activities involving terminal commands may possess greater

threats. System intrusion detection has been explored by many researchers [31, 150] who

have proposed solutions at various levels of system interaction, ranging from system calls

to data mining techniques [3, 189]. We explore the possibility of using typing behavior to

detect malicious activity.

1.1 Overview of dissertation

The dissertation is presented as follows. Chapter 1 introduces the thesis and provides an

overview of the material presented within the dissertation. Chapter 2 describes the SU-

AIS BB-MAS dataset that we collected and analysed. It also provides insights on collect-

ing and sharing large behavioral biometric datasets. Chapter 3 presents the details of the

context specific keystroke features that we designed and evaluated for user authentication.

Chapter 4 presents analysis of underlying distribution of data from all modalities in our

dataset and the experiments to examine the assumption of normality. Chapter 5 describes

our experiments to differentiate benign typing activity from adversarial typing activity

using a new keystroke feature set that we proposed. Chapter 6 presents two exploratory

research directions that we explored using our SU-AIS BB-MAS dataset, (a) authentica-

tion of users through music notes generated by mapping their keystroke latencies to music

and (b) authenticating users through the relationship between their keystroke latencies on

multiple devices. The related work for chapters 2 - 6 is presented as separate sections in
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each corresponding chapter. Chapter 7 summarizes the dissertation. Finally, Appendix A

provides additional information of our data collection efforts.

1.2 Key contributions of dissertation

The key contributions of our work, detailed in this dissertation are listed below:

• Develop context specific keystroke features: a) We show the shortcomings of

conventional keystroke features for user identification. b) We propose and evaluate

a set of keystroke features that take advantage of the context from which the laten-

cies are extracted. Our evaluations show high accuracies of user identification using

proposed features on desktop, tablet, and phone. c) We draw insights and discuss

impact factors that affect performance of user identification while using our pro-

posed features.

• Question the assumption of normality in behavioral biometrics data: a) We

question the common assumption in behavioral biometrics research that the data

follows an underlying normal distribution. Experiments on our SU-AIS BB-MAS

dataset show that the features extracted from gait, keystroke and swipes data do not

follow a Gaussian distribution for all devices in our dataset. b) We discuss various

approaches to handle non-normality in behavioral biometric data.

• Share benchmark behavioral biometrics dataset: We present details of our SU-

AIS BB-MAS dataset, which is shared on IEEEDataport with open-access per-

missions. This dataset provides a unique advantage of having data from multiple
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modalities (typing, gait, swiping) on multiple devices (desktop, tablet, phone) per-

formed by the same person.

• Detect threat level in typing activity through keystroke features: a) We propose

and evaluate keystroke features that have a mix of content and temporal informa-

tion. b) Using proposed features we achieve high accuracies for classification of

text samples into benign and adversarial categories.

• Develop a method to map keystroke signature to musical signature: We present

a method to map keystroke features to derive the musical equivalent of a keystroke

signature and is also extendable to other behavioral biometrics.

• Explore multi-device typing behavior relationship: We propose a set of features

that relate the typing behavior of a person in multi-device environments. Our pro-

posed features achieve high accuracies for user validation in all three scenarios of

user’s typing behavior relationships, a) desktop-phone; b) desktop-tablet; and c)

tablet-phone.

1.3 Published material in the dissertation

The material presented within Chapter 3 was published as a peer-reviewed journal paper

in the ACM Transactions on privacy and Security[24]. The material presented in Chap-

ters 5 and 6 were published in peer-reviewed conference papers in the Proceedings of

IEEE International conference on Artificial Intelligence and Signal Processing (AISP20)

[23, 27, 28]. The material presented in Chapter 2 is currently under review as a peer-
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reviewed journal paper for IEEE Transactions on Biometrics, Behavior, and Identity Sci-

ence. The material presented in Chapter 4 is under submission as a peer-reviewed journal

paper for IEEE Transactions on Information Forensics and Security.

The material published in AISP20 conference [23, 27, 28] will be extended to be pub-

lished in peer-reviewed journals.

The dataset described in Chapter 2, is published on IEEEDataport [83]. It is listed as

one of the most popular datasets on the portal (through IEEE emails to all members on

05/13/2020 and 07/21/2020) and has about 6000 views at the time of writing this disserta-

tion.



7

2. COLLECTING AND SHARING A LARGE BEHAVIORAL

BIOMETRIC DATASET: INSIGHTS FROM BB-MAS

Behavioral biometrics are key components in continuous and active user authentication.

Rigorous experimentation on large datasets is needed to develop state-of-the-art algo-

rithms and draw meaningful insights. However, there is a lack of large datasets with mul-

tiple activities, such as typing, gait and swipe performed by the same person. Further-

more, large datasets with multiple activities performed on multiple devices by the same

person are non-existent. The difficulties of procuring devices, participants, designing pro-

tocol, secure storage and on-field hindrances may have contributed to this scarcity. The

availability of such a dataset is crucial to forward the research in behavioral biometrics as

usage of multiple devices by a person is common nowadays.

Researchers have explored various modalities such as keystrokes ([20, 121, 158]), gait

([64, 65, 183]), swipes on touch screen ([59, 116, 157]) to name a few. With growing

number of devices used by a person, research in continuous authentication or behav-

ior analysis will have span across devices and activities to stay relevant. However, the

scarcity of benchmark datasets for such scenarios are a hindrance. Several attempts have

been made to provide benchmark datasets for a single activity like keystrokes ([12, 21,

58, 87, 88, 106, 173]), gait ([42, 63, 127, 193]) or swipe ([59, 62, 98, 157]) on a single

device family like desktop or phone. Few attempts were also made to share benchmark

datasets with multiple activities using single device ([11, 114]). However, no large bench-
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mark dataset exists for multi-activity in multi-device scenario, where the same activities

were performed by the same users on multiple devices. We attempt to fill this gap and

provide a benchmark dataset with BB-MAS (Behavioral Biometrics Multi-device and

multi-Activity data from Same users) dataset where the same participants have provided

typing, gait and swiping data on desktop, phone and tablet.

A total of 117 participants voluntarily provided 3.5 million keystroke events; 57.1 mil-

lion data-points for accelerometer and gyroscope each; 1.7 million data-points for swipes.

Each participant performed typing (including transcription and free text), gait (including

walking on a flat corridor, upstairs and downstairs) and swiping using desktop, phone, and

tablet. The data collection spanned about 3 months and various anonymized demograph-

ics information is provided for each participant. The unique ID allocated to the participant

is used on all devices and activities.

Key contributions follow.

2.1 Key contributions of the chapter

• Provide this dataset as a benchmark resource to the community to compare per-

formance for same user performing multiple activities over multiple devices for

multiple modalities, such as typing, swiping, and gait. As of writing of this paper,

this publicly available dataset has been accessed 5815 times (see http://dx.doi.org/

10.21227/rpaz-0h66).

• To the best of our knowledge, a dataset with the typing, gait and touch data from

the same users on desktop, tablet and phone is not available publicly at the time of
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this writing. With data from 117 participants our dataset stands out as unique and

rich for exploration in various directions. Each participant’s session ranged between

2 to 2.5 hours, resulting in a total of about: 3.5 million keystroke events; 57.1 mil-

lion data-points for accelerometer and gyroscope each; 1.7 million data-points for

swipes.

• Describe, extract and share features that are commonly described in literature, for

data from all activities alongside the raw data, thus providing a ready-made re-

source for researchers to compare their algorithms.

• Compare our dataset with other related datasets for keystroke, gait and swipe and

highlight their novelty, differences, and advantages. Other datasets are limited in

the variety of participants. We provide data for individuals from various age groups,

gender, height, language and daily usage of desktop, phone, and tablet, and typing

style.

• Provide insights on the distribution of keystroke feature values across desktop,

tablet, and phone for the same user. We find the keyhold times are smaller in mag-

nitude and inter-key latencies are larger in magnitude on hand-held devices when

compared to desktop. We posit that, difference in number of fingers being in con-

tact with the typing surface (fewer on hand-held device) may lead to such patterns.

• Discuss possible research directions using the BB-MAS dataset and share lessons

learnt from this elaborate data-collection effort to help future researchers on similar

endeavors.
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Data collection was carried out between April and June of 2017, after the IRB approval

from our university. All participants signed consent forms and have willingly participated

in this data collection. All data has been anonymized and any personal identifiers in the

data are removed. All subjects, their data and demographic information can only be refer-

enced through the unique participant ID provided to them.

Although, we have posted the complete dataset on IEEE Dataport [83], this paper presents

unique insights that are not available in the instructional ReadMe document.

In addition, the detailed description of data is interspersed with explanations of collection

procedure, analysis and discussions of extracted features and data-snippets.

2.2 Details of the data collection

The dataset was designed to capture the behavior of the same users performing various

day-to-day activities, such as typing, gait and swipes on three commonly used devices

such as, desktop, tablet, and phone. Activities were deliberately designed to mimic real-

life scenarios, for instance, the typing activity consists of both fixed and free text data,

the gait activity consists of walking on flat corridors, walking downstairs and upstairs and

touch and swipe data consists of activities such as reading and scrolling. The raw data and

the features extracted are shared publicly and can be accessed online at http://dx.doi.org/

10.21227/rpaz-0h66 [83] .
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2.2.1 Devices used in data collection

Three most commonly used device types in current times were selected for our data col-

lection. A desktop, tablet, and phone would cover most of our modern-day interactions

with devices. The details of the devices used in our data collection are as below:

• Desktops: Two identical desktop stations were setup. Each desktop station con-

sisted of a standard QWERTY keyboard (Dell kb212-b), an optical mouse (Dell

ms111-p) and a Dell 21-inch monitor. The keystrokes, mouse movements and clicks

were logged.

• Tablets: HTC-Nexus-9 tablets were used for the tablet section of the data collec-

tion. These tablets had a screen size of 8.9 inches, screen resolution of 1536 x 2048

pixels, device dimensions of 9 x 6 x 0.3 inches (Length X Width X Height) and

weighed about 435 grams. Keystrokes, accelerometer, gyroscope, and touch were

logged.

• Phones: Two different models of phones, Samsung-S6 and HTC-One phones were

used in the data collection. The Samsung Galaxy S6 had a screen size of 5.1 inches

and screen resolution of 1440 x 2560 pixels with body dimensions of 143.4 x 70.5

x 6.8 mm and weighing 138 grams, whereas the HTC-One had a screen size of 5.0

inches and screen resolution of 1080 x 1920 pixels with body dimensions of 146.4

x 70.6 x 9.4 mm and weighing 160 grams. Keystrokes, accelerometer, gyroscope,

and touch were logged. The raw data files from different models are identified by

the suffix in the file names explained in detail in Section 2.2.3.
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As the default android keyboard does not allow logging of keystrokes, we created and

used an android qwerty keyboard on screen which was similar to the default android qw-

erty keyboard. The phones and tablets were locked in portrait orientation and users were

allowed to type on them with any comfortable posture that they preferred. The details

of the data collected from these devices and their formats is described in Section 2.2.3.

Figure 2.1 shows a screenshot of the application with the keyboard for phone. The appli-

cation on tablet had the same layout but was scaled to match the default keyboard of an

android tablet.

Fig. 2.1.: A screenshot from our phone application keyboard which matches the default android
keyboard.
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Fig. 2.2.: The data collection procedure. Tasks a to m were performed by participants in sequence,
the corresponding activities and data collected are described in Table 2.1

2.2.2 How was the data collected?

Emails were sent out to all students, faculty, and staff to procure the participant popula-

tion. Each participant had to spend two hours on average to perform the set of sequential

tasks as illustrated in Fig. 2.2.

Upon arrival at the data collection location, each participant answered a set of questions

that pertained to his/her demographics and technology usage. The participant was then

assigned a unique ID and four devices: a desktop, a tablet and two phones (See Table 2.1).

The participant then performed the tasks a to m in sequence. a) The participant was asked

to sit at the desktop and type two sections of text (fixed-text), ten times each. Each piece

of text consisted of two sentences and had an average of 112 characters. The participant

was then given a shopping list consisting of six items. They had to use a popular web-

browser (Mozilla Firefox) to browse for the best prices for the six items on the list while

making notes (on any familiar text editor) about prices, opinions, and thoughts. The par-

ticipant was then given a list of 12 questions of varying cognitive loads (see Appendix

A.1 - A.3) and asked to type their answers in any order he/she preferred for roughly about
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fifteen minutes. For the entire duration of task a, keystroke and mouse loggers were de-

ployed on the desktop to log all the actions that the participant performed during this task.

b) After the completion of task a, the participant was handed a tablet which was running

an application where he/she was asked to type the two pieces of static text again followed

by a series of ten questions with varying cognitive loads to be answered with a minimum

of 50 characters. The questions were placed in a manner that required the participant to

swipe vertically and horizontally between questions. For the entire duration of task b,

keystroke, touch, accelerometer, and gyroscope loggers were deployed on the tablet to log

all typing, swiping, touch, and movement events. After the completion of task b, the par-

ticipant was asked to place a phone (Phone1) in his/her pants pocket and made to walk in

a predefined path while holding the tablet in hand. The path consisted of three doorways

and a stairwell, as shown in Figure 2.2. The tablet displayed buttons to be pressed by the

participant before and after passing through a doorway and also before and after taking

the staircase. The tasks c, e, and g required the participant to walk, and tasks d and f re-

quired the participant to climb downstairs and upstairs respectively. Throughout the tasks

c to g, the tablet and the phone (Phone1) logged the accelerometer and gyroscope values.

The tablet also logged the pressing of the buttons (doorway and staircase) by the partici-

pant.

Upon completion of task g, the tablet was taken from the participant and another phone

(Phone2) was handed to them. For task h, Phone2 ran the same application as the tablet

in task b, where the participant had to type the two pieces of static text followed by a

series of ten questions (not repeated from task b) with varying cognitive loads to be an-

swered with a minimum of 50 characters, requiring the user to swipe between questions.
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Phone2 logged all keystroke, touch, accelerometer and gyroscope values for typing, swip-

ing, touch, and movement events. Tasks i to m are similar to tasks c to g, differing only

in that the participant held Phone2 (instead of the tablet) and Phone1 remained in pocket

while performing tasks i to m. Phone1 and Phone2 logged all accelerometer and gyro-

scope values. Phone2 also logged the pressing of buttons (doorway and staircase) by the

participant. As the data collection involved logging of timestamps on multiple devices we

made sure that clocks on all devices involved were synchronized to within a few millisec-

onds of each other by conducting several test runs to ensure synchronization.

2.2.3 What is the format of the data?

The raw data from all sensors was originally written to sql databases for speed and ac-

curacy. However, for the convenience of researchers, the raw data and the features ex-

tracted from them are organized in simple flat file structure in comma separated format

(csv) shared at http://dx.doi.org/10.21227/rpaz-0h66 [83]. This section elaborates the or-

ganization and format of both raw data files and feature extracted files. Fig. 2.3 gives an

overview of the entire dataset. It is important that the dataset is clearly understood by its

researchers for successful research. Therefore, we explain our dataset in great detail in

this section.

Description of the raw data

The raw data from each sensor for each user is stored in folder labelled with the user’s

ID. As shown in Fig. 2.3, folders ”1” to ”117” contain the raw data files for each user, the
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Fig. 2.3.: Organisation of the files in our dataset.

prefix <ID> is used to denote the user’s ID. The details and format of the raw data files

are as follows:

• Keystroke Data: The temporal data of every key press and release performed by the

subject during tasks a, b and h (Table 2.1) were logged. These files are named;

- <ID> Desktop Keyboard.csv

- <ID> HandTablet Keyboard.csv

- <ID> HandPhone Keyboard.csv

accordingly. These files consist four columns, ”EID”: event ID (Integer); ”key”: the

key triggering the key-event (String); ”direction”: the type of key-event (Integer, 0 for

press and 1 for release); and ”time”: the timestamp of the key-event (String in date-
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Table 2.2: Example for keystroke files from user 1.
EID key direction time
0 t 0 2017-04-14 18:09:41.538
1 t 1 2017-04-14 18:09:41.679
2 i 0 2017-04-14 18:09:41.819
.. .. .. ..

time format with millisecond resolution). Table 2.2 provides an example of keystroke

files with a snippet from user 1 in our dataset.

• Mouse Data: In addition to keystrokes, data from mouse usage was also collected dur-

ing task a (Table 2.1). Please note that there were sampling issues with the mouse data

resulting in smaller files, they are included, nonetheless. Mouse events such as, move-

ment, button and wheel were logged into files named;

- <ID> Mouse Move.csv

- <ID> Mouse Button.csv

- <ID> Mouse Wheel.csv

respectively. The Mouse Move file has six columns, ”EID”: event ID (Integer); ”rX”

and ”rY”: the x and y coordinates relative to the active window (Integer); ”pX” and

”pY”: the x and y coordinate on screen (Integer); and ”time”: the timestamp of the

mouse-event (String in date-time format with millisecond resolution). The Mouse Button

file has eight columns, six of them are the same as described for Mouse Move, ”LR”:

mouse button (Integer, 0 for left or 1 for right) and ”state”: type of button event (Inte-

ger, 0 for press and 1 for release) are the additional columns. The Mouse Wheel file

has seven columns, six of them are the same as described for Mouse Move in addition
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to, ”delta”: direction of scroll (Integer, Negative for scroll-down and positive for scroll-

up). Tables 2.3, 2.4 and 2.5 provide an example mouse movement, button and wheel

data respectively, from user 1.

Table 2.3: Example for mouse movement data from user 1.
EID rX rY pX pY time
0 4 -8 1004 577 2017-04-14 18:09:29.948
1 8 -14 1919 0 2017-04-14 18:09:30.228
2 -2 -26 1916 0 2017-04-14 18:21:13.712
.. .. .. .. .. ..

Table 2.4: Example for mouse button data from user 1.
EID rX rY pX pY LR state time
0 6 -4 1285 242 0 0 2017-04-14 18:21:17.783
1 -1 3 811 265 0 1 2017-04-14 18:21:21.761
2 0 0 811 265 0 0 2017-04-14 18:21:22.120
.. .. .. .. .. .. .. ..

Table 2.5: Example for mouse wheel data from user 1.
EID rX rY pX pY delta time
0 0 0 1594 708 120 2017-04-14 18:23:10.936
1 0 0 1545 708 120 2017-04-14 18:23:12.000
2 0 0 1618 708 120 2017-04-14 18:23:12.575
.. .. .. .. .. .. ..

• Accelerometer and Gyroscope Data: For tasks from b through m (Table 2.1), the val-

ues from accelerometer and gyroscope sensors were logged on suitable devices, such

as tablet: for tasks c - g; phone in pocket: for tasks c - g and i - m; and phone in hand:

for tasks i - g. The sampling rate for these sensors was about 100Hz. The files with ac-

celerometer and gyroscope from the tablet are named;

- <ID> HandTablet Accelerometer.csv

- <ID> HandTablet Gyroscope.csv
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those from the phone in the pocket are named;

- <ID> PocketPhone Accelerometer.csv

- <ID> PocketPhone Gyroscope.csv

and from the phone in hand are named;

- <ID> HandPhone Accelerometer.csv

- <ID> HandPhone Gyroscope.csv

respectively. The accelerometer files have five columns, ”EID”: event ID (Integer);

”Xvalue”, ”Yvalue”, ”Zvalue”: the acceleration force in m/s2 on x, y and z axes re-

spectively, excluding the force of gravity (Float); and ”time”: the timestamp of the data

point (String in date-time format with millisecond resolution). The gyroscope data have

the same five columns, but ”Xvalue”, ”Yvalue” and ”Zvalue” is the rate of rotation in

rad/s around x, y and z axis respectively (Float). Tables 2.6 and 2.7 show an example

for accelerometer and gyroscope data respectively, from user 1.

Table 2.6: Example for accelerometer data from user 1.
EID Xvalue Yvalue Zvalue time
0 1.043 3.245 9.087 2017-04-14 18:56:40.215
1 0.995 3.303 8.936 2017-04-14 18:56:40.216
2 0.988 3.355 8.880 2017-04-14 18:56:40.234
.. .. .. .. ..

Table 2.7: Example for gyroscope data from user 1.
EID Xvalue Yvalue Zvalue time
0 -0.045 0.036 -0.013 2017-04-14 18:56:40.440
1 -0.027 0.027 -0.017 2017-04-14 18:56:40.449
2 -0.013 0.022 -0.017 2017-04-14 18:56:40.461
.. .. .. .. ..
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• Swipe Data: For tasks b and h, data from swipes were recorded on the tablet and phone

in hand respectively. These were logged into files named;

- <ID> HandTablet TouchEvent.csv

- <ID> HandPhone TouchEvent.csv

respectively. The touch data files have ten columns, ”EID”: event ID (Integer); ”Xvalue”

and ”Yvalue”: the x and y coordinates on screen (Float), ”pressure”: the approximate

pressure applied to the surface by a finger (Float, normalized to a range from 0 (no

pressure at all) to 1 (normal pressure)), ”touchMajor” and ”touchMinor”: the length

of the major and minor axis, respectively, of an ellipse that represents the touch area

(Float, display pixels), ”pointerID”: index of the pointer/touch used in case of multi-

ple touch points (Integer), ”fingerOrientation”: the orientation of the finger in radians

relative to the vertical plane of the device (Float, 0 radians indicates that the major axis

oriented upwards, is perfectly circular or is of unknown orientation), ”actionType”: in-

dicates the type of event (Integer, 0: finger down/swipe begin, 1: finger up/swipe end

and 2:finger move/swipe); and ”time”: the timestamp of the data point (String in date-

time format with millisecond resolution).

• Checkpoints Data: For the tasks c - g and i - m, we require checkpoints to separate

the data into walking, upstairs and downstairs. The participants were asked to click on

buttons on tablet (c - g) or phone in hand (i - m) to mark the opening and closing of

doors and start and end of stairs. These checkpoints can be used to separate the data

from all other sensors into different activities. Please note that a proctor followed the

users during these tasks (making sure not to influence the activity) and noted down
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incidents where some users clicked the buttons either early or late by a few seconds,

adjustments to such timestamps were made manually by adding or subtracting the num-

ber of seconds noted down by the proctor. Checkpoint files have three columns, ”EID”:

event ID (Integer); ”eventType”: type of event (String, DoorEntry: user at doorway

and is about to open door, DoorExit: user has crossed the doorway and the door has

closed behind them, StairEntry: user about to start climbing up or down the staircase

and StairExit: user has completed climbing up or down a staircase.); and ”time”: the

timestamp of the data point (String in date-time format with millisecond resolution).

Table 2.9 shows an example of checkpoint data from user 1. Using the checkpoint

data, the accelerometer and gyroscope data can be segmented into three; a) between

”DoorExit” and ”DoorEntry” event represents walking on a flat corridor; b) between

the first ”StairEntry” and ”StairExit” represents going downstairs; and between second

”StairEntry and ”StairExit” represents going upstairs.

Table 2.9: Example for checkpoint data from user 1.
EID eventType time
0 DoorEntry 2017-04-14 19:41:45.980
1 DoorExit 2017-04-14 19:41:50.639
.. .. ..
4 StairEntry 2017-04-14 19:42:18.724
5 StairExit 2017-04-14 19:42:39.105
.. .. ..

• FreeText Data: In tasks a, b and h, the users had to first transcribe two pieces of fixed

text; a) ”this is a test to see if the words that i type are unique to me. there are two sen-

tences in this data sample.”1; and b) ”second session will have different set of lines.
1The transcription sentences were selected based on two criteria: (1) inclusion of many frequently used

words in the Oxford English Corpus, and (2) encouraging typing activity on both hands (on both sides on
the keyboard). Transcription sentences were typed in lower case.
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carefully selected not to overlap with the first collection phase.”1. The files labelled

”Desktop FreeText.csv”, ”Tablet FreeText.csv” and ”Phone FreeText.csv” provide the

timestamp for each user, at which they completed the transcription section and moved

to free text section. In our analyses we have considered the entire typing activity as a

whole, these files are provided for researchers who may want to separate fixed text and

free text for their work.

Features from raw data

We extracted popular features that are used in literature for each modality. The feature ex-

traction for our dataset can be grouped into three parts, namely keystroke, gait and swipe

features. The files consisting the extracted features have also been included in our dataset.

We briefly describe the features and their storage below.

• Keystroke Features: We select the common twelve unigraphs (single key) and eigh-

teen digraphs (pair of consecutive keys) that occurred the most number of times in all

user’s keystroke data. The unigraphs are: ”BACKSPACE”, ”SPACE”, ”a”, ”e”, ”h”,

”i”, ”l”, ”n”, ”r”, ”S” and ”t”. The digraphs are: (’BACKSPACE’, ’BACKSPACE’),

(’SPACE’, ’a’), (’SPACE’, ’i’), (’SPACE’, ’s’), (’SPACE’, ’t’), (’e’, ’SPACE’), (’e’,

’n’), (’e’, ’r’), (’e’, ’s’), (’n’, ’SPACE’), (’o’, ’SPACE’), (’o’, ’n’), (’r’, ’e’), (’s’, ’SPACE’),

(’s’, ’e’), (’t’, ’SPACE’), (’t’, ’e’) and (’t’, ’h’). For a unigraph Ki we extract the Keyhold

time of the key as a feature:

– KeyholdKi
: KiRelease - KiPress

For a digraph Ki and Ki+1 the following temporal features are extracted:
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– Flight1KiKi+1
: Ki+1Press - KiRelease

– Flight2KiKi+1
: Ki+1Release - KiRelease

– Flight3KiKi+1
: Ki+1Press - KiPress

– Flight4KiKi+1
: Ki+1Release - KiPress

Fig. 2.4.: Features extracted from keystroke data.

The figure 2.4 illustrates the temporal features extracted form keystrokes. These files

are stored in folder labelled ”Keystroke Features” which contains the files names with

syntax ”<ID> <Feature Name> <Device>.csv”, where, <ID> is the user ID (1-

117), <Feature Name> is the keystroke feature (keyhold, flight1 - flight4) and <Device>

is either desktop, tablet or phone. Each of these files have column denoting the key

(”key” in case of keyhold, ”key1” and ”key2” in the case of flight) and a column with

the value extracted for the feature.

• Gait Features: As the raw data for the gait is a pair of signals from the accelerometer

and gyroscope we extract features from both. The gait data is further subdivided into

three activities; ”Walking” (on a flat corridor); ”Downstairs” (going down the stair-

case); and ”Upstairs” (going up the staircase). We use a window size of two seconds

with a one second overlap between two consecutive windows. For each two second
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window we extract a host of features from the accelerometer and the gyroscope for x

(”Xvalue”), y (”Yvalue”), z (”Zvalue”) and m (m=
√
x2 + y2 + z2). A brief description

of the features and their column names in files are as follows:

– Mean: mean of x, y, z and m data denoted xmean, ymean, zmean and mmean

respectively.

– Standard deviation: standard deviation of x, y, z and m data denoted xstd, ystd,

zstd and mstd respectively.

– Band power: band power x, y, z and m data denoted xbp, ybp, zbp and mbp re-

spectively.

– Energy: energy of the signals x, y, z and m denoted xenergy, yenergy, zenergy

and menergy respectively.

– Median frequency: median frequency of x, y, z and m signals denoted xmfreq,

ymfreq, zmfreq and mmfreq respectively.

– Inter quartile range: the inter quartile range of x, y, z and m data denoted xiqr,

yiqr, ziqr and miqr respectively.

– Range: range of the x, y, m and z signals denoted xrange, yrange, zrange and

mrange respectively.

– Signal to noise ratio: the signal to noise ratio in x, y, z and m signals denoted

xsnr, ysnr, zsnr and msnr respectively.

– Dynamic time warping distance: the DTW distance between pairs of signals x-y,

y-z and x-z denoted as xydtw, yzdtw and xzdtw respectively.
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– Mutual information: the mutual information between pairs of signals x-y, x-z, x-

m, y-z, y-m and z-m denoted as xymi, xzmi, xmmi, yzmi, ymmi and zmmi

respectively.

– Correlation: the Pearson correlation coefficients between pairs of signals x-y, y-z

and x-z signals denoted xycorr, yzcorr and xzcorr respectively.

In the ”Gait Features” folder, we have sub-folders named ”<Activity> Features” where

activity is either Walking, Downstairs or Upstairs. Each folder consists files with names

following the syntax ”<ID> <Device In Hand> <Sensor Device> <Sensor>.csv”,

where, <ID> is the user ID (1-117), <Device In Hand> is ”Tablet” for tasks c - g

and Phone for tasks i - l, <Sensor Device> is the device from which data comes from

(HandPhone, HandTablet, PocketPhone) and <Sensor> is either accelerometer or gy-

roscope.

• Swipe Features: For each swipe performed by users on tablet and phone during tasks

b and h respectively, various features related to the speed and trajectory of the swipes

are extracted. A brief description of the features and their column names in files are as

follows:

– Minimum x and y coordinates: the minimum x and y coordinates in the entire

swipe denoted by minx and miny respectively.

– Maximum x and y coordinates: the maximum x and y coordinates in the entire

swipe denoted by maxx and maxy respectively.
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– Euclidean distance: the Euclidean distance between the start and end points of the

swipe denoted by eucliddist.

– Distance list: Euclidean distance between points of a swipe denoted by dlist.

– Angle: the tangent angle of the swipe denoted by tanangle.

– Time: the total time taken to for the swipe denoted by tottime.

– Velocity mean and standard deviation: the mean and standard deviation of veloc-

ity during the swipe, vmean and vstd respectively.

– Velocity quartiles: the first, second and third quartiles of velocity during the swipe,

vquarts 0, vquarts 1 and vquarts 2 respectively.

– Acceleration mean and standard deviation: the mean and standard deviation of

acceleration during the swipe, amean and astd respectively.

– Acceleration quartiles: the first, second and third quartiles of acceleration during

the swipe, aquarts 0, aquarts 1 and aquarts 2 respectively.

– Pressure mean and standard deviation: the mean and standard deviation of pres-

sure during the swipe, pmean and pstd respectively.

– Pressure quartiles: the first, second and third quartiles of pressure during the swipe,

pquarts 0, pquarts 1 and pquarts 2 respectively.

– Area mean and standard deviation: the mean and standard deviation of area dur-

ing the swipe, areamean and areastd respectively.

– Area quartiles: areaquarts 0, areaquarts 1 and areaquarts 2 respectively.
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– Direction: the direction of the swipe comparing the displacement of the fingertip

in x and y direction, the direction of swipes is deduced as either left, right, up or

down denoted by column swipetype.

These files are stored in the directory ”Swipe Features” and named with syntax ”<ID>

<Device in Hand>.csv”, where, <ID> is the user ID (1-117) and <Device in Hand>

(Tablet or Phone) is the device on which the swipe was performed.

2.2.4 Demographic details of the participants

Each participant was given a unique ID and made to fill out a brief questionnaire consist-

ing questions relating to demographic, physiology and background. This data is stored in

the file labelled ”Demographics.csv” in the form of thirteen columns, ”User ID”: unique

ID given to each user (Integer); ”Age”: age of the participant in years (Integer); ”Gen-

der”: the gender of the participants (Character, ”F”: Female, ”M”: Male and ”O”: Other);

”Height”: height of the participant in inches (Integer, inches]); ”Ethnicity”: ethnicity of

the participant (String); ”Languages Spoken”: languages that the participant can speak

fluently (Tuple, [language1, .., languageN]); ”Typing Languages”: languages in which the

participant can type (Tuple, [language1, .., languageN]); ”Handedness”: dominant hand

for the participant (”Right”, ”Left” or ”Ambidextrous”); ”Desktop Hours”, ”Smartphone

Hours” and ”Tablet Hours”: approximate range of hours in a day the participant spends

using a desktop, phone and tablet respectively (Range, in hours: 0-1, 2-4, 5-7, 8-12, More

than 12); ”Typing Style”: denotes touch and visual typists (Character, ”a”: Do not look at

keyboard/Touch typist, ”b”: Must look at keyboard/Visual typist and ”c”: Occasionally
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look at keyboard/Visual typist); and ”Major/Minor”: participant’s major and minor stream

of education (String).

Table 2.10 summarizes the demographics of the participants in our dataset. The average

age of participants in our study was about 25 years with more than half of the participants

aged between 23 to 26 years. The youngest and oldest participants were 19 and 35 years

of age respectively. The average height of participants was about 67 inches. The shortest

and tallest being 54 and 74 inches respectively. The daily usage hours also reflect the pop-

ularity of these devices while desktops and phones appear to be used more than tablets.

Table 2.10: Summary of demographic data.

Category Size Category Size

Age in years

19 - 22 22
Daily
usage of
desktop
in hours

0 - 1 17
23 - 26 61 2 - 4 58
27 - 30 28 5 - 7 28
>30 06 8 - 12 12

Sex
Female 45 >12 2
Male 72

Daily
usage of
phone
in hours

0-1 3

Height in inches

≤60 6 2-4 51
60-65 40 5-7 43
65-70 43 8-12 16
>70 28 >12 4

Spoken
Languages

1 13 Daily
usage of
tablet

0 - 1 93
2 64 2-4 20
3 32 5-7 4

>3 8
Typing
style

Touch 31
Visual 86
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2.2.5 Where is it stored and how to obtain it?

The entire dataset, feature files and demographic file are hosted at IEEE-Dataport [83].

The url of the dataset is http://dx.doi.org/10.21227/rpaz-0h66 and is open-access com-

plaint, so it can be downloaded with a free IEEE account.

2.3 Initial analysis of keystroke data

Through this paper, we present results from initial research directions that we have ex-

plored along with the in-dept description of our dataset. We hope the research community

will benefit from the dataset and explore the various other directions of research that can-

not be addressed in one single research article. We collect the statistics of the keystroke

data and compare the average and standard deviation of the keystroke features (Section

2.2.3) across the three different devices. This helps us provide insights about general typ-

ing behavior traits on various devices.

2.3.1 Statistics of keystroke data and insights from feature values across devices

Table 2.11 shows the statistics of keystroke data from our dataset. On an average each

participant performed around 11,750, 8,950 and 9,400 keystrokes on desktop, tablet and

phone respectively. Even in the minimum condition, each participant has performed 4,350,

4,550 and 5,450 keystrokes on the three devices respectively. When combined, the aver-

age keystrokes per user across all three devices is over 30,000 keystrokes and at minimum

about 19,250.



32

Table 2.11: Keystroke statistics: Number of keystroke events.

Desktop Tablet Phone
All
Devices

Average 11760 8952 9395 30153
Stdev 2132 1584 1472 3880
Min 4365 4580 5463 19252
Max 18716 17029 14694 41828

Outlier Detection for Keystroke Features: From the keystroke data, we extract the all

temporal keystroke features that are popular in literature (See Section 2.2.3). We use

a simple filter to remove any instances of keys that were held down for two seconds or

more. We also remove instances of the inter-key pauses that are greater than two seconds.

We assume that these were caused by pauses, where the user is either thinking or receiv-

ing instructions during the data collection.

Insights from keystroke feature values across devices

To observe how the keystroke features vary across devices, we calculate the average of the

average feature values and average of the standard deviation of the feature values from all

users in our dataset. To maintain clarity in presentation we use symbols d1 through d18

to denote the digraphs (d1: (’BACKSPACE’, ’BACKSPACE’), d2: (’SPACE’, ’a’), d3:

(’SPACE’, ’i’), d4: (’SPACE’, ’s’), d5: (’SPACE’, ’t’), d6: (’e’, ’SPACE’), d7: (’e’, ’n’),

d8: (’e’, ’r’), d9: (’e’, ’s’), d10: (’n’, ’SPACE’), d11: (’o’, ’SPACE’), d12: (’o’, ’n’), d13:

(’r’, ’e’), d14: (’s’, ’SPACE’), d15: (’s’, ’e’), d16: (’t’, ’SPACE’), d17: (’t’, ’e’) and d18:

(’t’, ’h’)). Tables 2.12 to 2.16 present the values computed for each feature.
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Observations: We observe that participants have considerably less keyhold times for

all keys on the hand-held devices (tablet and phone). The average of the standard devia-

tion in keyhold time are also very small, less than 50 milliseconds, in all cases except for

”backspace”. However, it is almost completely the opposite when we consider the flight1

to flight4 features from Tables 2.13 to 2.16. We observe that in case of hand-held devices

the average feature values are larger than those on desktop. Especially in case of flight1,

which is also called the inter-key latency, we can see the values are almost doubled for

many digraphs (d6, d10, d11 etc.). It is also worth noticing that both the hand-held de-

vices exhibit similar values in most cases and contrasts, if present, are only with the desk-

top keystroke features.

Insights: From our observations it appears that participants in general, take longer time

between keys on phones and tablets when compared to a desktop keyboard. However,

once the key is pressed the release event occurs much sooner on the phones and tablets

implying that smaller amount on time is spent with the finger on the key. We posit that

this occurrence maybe a result of lesser number of fingers being in contact with the typing

surface on hand-held devices. In most cases participants type on tablets and phones with

just their thumbs compared to their usage of many more fingers for the desktop keyboard

thus increasing the keyhold time and reducing the inter-key latency on desktop.

2.4 Possible research directions using the dataset

We briefly discuss various research directions that can be explored with the help of our

BB-MAS dataset below.



34

Table 2.12: Summary of keyhold feature statistics. All values are in milliseconds.

Desktop Tablet Phone
Unigraph µ(avg) µ(std) µ(avg) µ(std) µ(avg) µ(std)
bspace 168 211 128 175 128 129
space 114 57 77 18 89 17
a 137 68 98 22 103 19
e 123 58 85 20 90 18
h 116 53 73 16 81 16
i 119 61 71 16 85 17
l 102 50 71 16 89 19
n 122 63 72 16 83 16
o 118 61 72 15 87 16
r 129 63 78 19 85 17
s 130 60 87 21 94 18
t 116 54 76 20 81 16

Table 2.13: Summary of Flight1 feature statistics. All values are in milliseconds.

Desktop Tablet Phone
Digraph µ(avg) µ(std) µ(avg) µ(std) µ(avg) µ(std)
d1 20 258 80 280 20 228
d2 205 247 412 318 360 313
d3 277 247 513 316 472 290
d4 224 245 432 307 433 321
d5 218 240 441 327 408 298
d6 96 167 199 194 162 170
d7 115 151 175 138 144 126
d8 37 110 123 77 130 63
d9 123 114 169 87 162 80
d10 95 137 200 161 186 142
d11 95 110 254 151 236 120
d12 99 110 205 94 181 75
d13 22 92 118 73 121 59
d14 99 163 208 230 163 169
d15 87 97 148 67 147 63
d16 111 158 250 219 198 154
d17 58 94 138 81 136 68
d18 63 88 111 79 121 74

• User authentication for individual devices using keystrokes, gait or swipes: Our

dataset provides multiple modalities, activities and scenarios which can be used

separately as individual device or activities for user authentication data.



35

Table 2.14: Summary of Flight2 feature statistics. All values are in milliseconds.

Desktop Tablet Phone
Digraph µ(avg) µ(std) µ(avg) µ(std) µ(avg) µ(std)
d1 166 169 163 154 173 118
d2 333 248 509 310 462 308
d3 387 246 582 307 556 287
d4 348 247 520 301 529 317
d5 327 238 518 321 488 295
d6 204 165 278 192 253 170
d7 220 156 250 137 231 126
d8 174 114 200 80 217 65
d9 247 119 255 87 253 82
d10 212 148 275 157 274 144
d11 206 117 333 151 326 121
d12 228 122 275 94 263 76
d13 155 93 203 77 209 62
d14 209 165 286 225 255 170
d15 208 103 230 69 238 65
d16 219 158 328 215 288 154
d17 181 101 225 82 224 69
d18 182 97 186 79 202 77

• Activity recognition: We share data from multiple activities and sub-activities like;

free text and fixed text in case of keystrokes; and walking, upstairs and downstairs

in case of gait. Recognizing the activity or sub-activity provides better context for

methods to be applied.

• Feature engineering: Many authentication and identification tasks can be im-

proved with a better understanding of feature sets and their effectiveness for each

of the modalities.

• Inter-Device behavior patterns: A unique property of our dataset that sets it apart

from openly available datasets is that, the same participants performed many over-

lapping activities on multiple devices. Therefore, inter-device patterns in behavior
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Table 2.15: Summary of Flight3 feature statistics. All values are in milliseconds.

Desktop Tablet Phone
Digraph µ(avg) µ(std) µ(avg) µ(std) µ(avg) µ(std)

d1 194 156 179 146 187 110
d2 314 245 491 311 450 306
d3 387 248 588 307 559 288
d4 337 245 509 300 524 315
d5 326 236 518 320 496 294
d6 219 167 284 190 252 168
d7 238 154 265 136 236 120
d8 179 112 218 77 230 64
d9 246 122 251 86 248 80
d10 220 145 267 157 266 143
d11 210 114 326 152 320 119
d12 235 121 279 94 268 76
d13 163 93 197 74 208 60
d14 229 162 297 224 258 167
d15 219 100 237 69 246 63
d16 229 157 324 213 277 151
d17 178 93 216 81 220 69
d18 177 90 189 79 203 74

in same activity or different activities can be researched. For example, ”Can the

typing behavior of a user on desktop reveal their typing behavior on phone?”.

• Physiological or Demographic information leakage in activities: As we provide

a demographic information of each participant, researchers can also explore if the

membership of participants in certain demographic group can be identified from

different behavioral activities.

• Demographic menagerie: Existence of groups of users who perform differently

at various authentication tasks has been shown in literature [188]. Demographic or

physiological links to these groupings can be explored.
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Table 2.16: Summary of Flight4 feature statistics. All values are in milliseconds.

Desktop Tablet Phone
Digraph µ(avg) µ(std) µ(avg) µ(std) µ(avg) µ(std)

d1 380 268 335 230 336 173
d2 441 249 587 302 552 301
d3 495 247 656 299 644 285
d4 459 246 598 294 620 310
d5 436 239 595 313 577 292
d6 327 174 363 188 342 167
d7 343 166 340 135 324 122
d8 315 132 294 82 317 68
d9 369 132 337 89 339 82
d10 336 161 342 155 354 144
d11 320 123 404 150 410 122
d12 362 141 350 95 351 78
d13 296 106 282 79 295 64
d14 339 172 376 222 348 166
d15 340 117 319 72 338 67
d16 337 165 402 210 367 150
d17 300 107 303 83 307 68
d18 296 110 264 79 284 77

2.5 Comparison with other data sets

The datasets that are currently available for behavioral biometrics are collected with the

focus on a single activity. We summarize and compare our dataset to other related datasets

that are available in literature. We present the key points of comparison with sizeable and

related datasets in Tablet 2.17.

A majority of keystroke datasets are focused on fixed text data with short strings like

password, repeated many times by each participant [12, 87, 106]. Most keystroke datasets

are collected on desktops [21, 87, 173, 182] and very few are on hand-held devices, such

as [12], which has a only 42 participants of which 37 participants used tablets and only

5 used phones. Such variations limit the usability of datasets. For gait data, there are
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Table 2.17: Comparison with other related datasets.

Dataset
No. of
users Type of data Type of activity

Device(s)
used by
participants

Highlights

K
ey

st
ro

ke
U@B KD [173] 148 Latencies Fixed & Free text Desktop Four different keyboards used
SBrook KD [21] 196 Latencies Free text Desktop Truthful Vs. Deceptive writing
Video KD [58] 30 Latencies & Video Fixed text Desktop Movement and Motor aspects
Pressure KD [106] 100 Latencies & Pressure Fixed text Desktop Pressure on desktop keyboard

Android KD [12] 42 Latencies & Pressure Fixed text
37 Tablet &
5 Phone users

Addition of pressure features
for Android

Laser 2012 [88] 20 Latencies Fixed & Free text Desktop Free vs Fixed text behavior

CMU KD [87] 51 Latencies Fixed text Desktop
Large number of repititions
by participants

Clarkson I [182] 39 Latencies & Video Fixed & Free text Desktop
Video of face and hand
while typing

Clarkson II[124] 103 Latencies Fixed & Free text Desktop
Natural and uncontrolled
includes mouse and app data

G
ai

t

Kinematics [63] 42
3d Motion Capture
using Force Plates

Overground &
Treadmill

Force Plates
(placed on body)

Anthropometric data &
Pelvis Kinematics

HuGaDB [42] 18
Accelerometer X 6
Gyroscope X 6
EMG X 2

12 Activities
including Gait,
Upstairs and
Downstairs

Accelerometer,
Gyroscope &
EMG sensors
(placed on body)

Body sensor network
data

CASIA-B [193] 124 Video Walking -
Effect of Viewpoint,
Clothing & Carrying

USF humanID [151] 122 Video Walking -
12 Experiments with
changes in conditions.

HAR [11] 30
Accelerometer &
Gyroscope

6 Activities
including Gait,
Upstairs and
Downstairs

Smartphone
Activity recognition
using smartphone

UniMiB SHAR [114] 30 Accelerometer Gait & Fall Smartphone Fall detection

OU-ISIR [132] 744
Accelerometer,
& Gyroscope & Video Gait & Slope

Inertial Sensor,
& Smartphone

Large gait dataset with
video & inertial sensors

Sw
ip

e

ASU Touch[98] 75
X, Y coordinates
Pressure
Area of touch
Orientation of finger

Swipe & Touch
Gestures Smartphone

Re-authentication using
swipe gestures

Touchalytics[62] 41
Swipe to scroll
through images Smartphone

Proposed 30
touch features

LTU Touch[157] 190
Swipe through
questions Smartphone

Evaluation of verifiers
for touch data

FAST[59] 40 Browsing Smartphone
Fingergestures
Authentication System
using Touchscreen (FAST)

O
ur

D
at

as
et Keystroke

Sa
m

e
11

7
pa

rt
ic

ip
an

ts
ac

ro
ss

th
e

da
ta

se
ts

Latencies Fixed and Free text
Desktop, Tablet
& Phone

The same participants
performing multiple, common
day-to-day activities on multiple
devices with real-life placement
and usage of devices

Gait
Accelerometer X 3
Gyroscope X 3

Walking, Upstairs
& Downstairs

Tablet in hand
Phone in hand
Phone in pocket

Swipe
X, Y coordinates
Pressure, Area of touch
Orientation of finger

Swipe through
questions

Tablet
Phone

two datasets that provide sub-activities, similar to our dataset, such as walking, going

up and down the stair case [11, 114]. But, both these datasets have only 30 participants.

HuGaDB [42], provides a dataset with 12 different activities collected with a body-sensor-

network having 6 accelerometers and gyroscopes each and 2 electromyography (EMG)

sensors that are placed on the participants body. Though this data approximates the body

movements of participants very closely, it would not be suitable for continuous authenti-
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cation due to the unrealistic placement of senors compared to day-to-day use of phones.

In case of CASIA B and USF HumanId ([193], [151]), both having over 120 participants,

a third party surveillance approach is more suitable as the datasets consists of video record-

ings of participants gait which is not suitable for on-device continuous authentication.

The OU-ISIR [132] dataset is a large gait dataset consisting of more 744 users from a

wide age range of 2 to 74 years. The dataset also has synchronized of video and inertial

sensor (stand-alone or in smartphone) data for gait and slop-up and down activities.

As touch and swipe as a behavioral biometric is comparatively less explored and the num-

ber of datasets is far fewer. All touch and swipe datasets compared in Table 2.17 collected

similar raw data (coordinates, pressure, area and orientation) while using different ways to

make participants perform the swipes.

All the datasets discussed above provide data for single activity on single device. How

a particular activity from a user varies from device to device, or existence of correlation

between different activities on different devices cannot be explored with these datasets.

Heterogeneity Human-Activity Recognition dataset [169] consists data from multiple de-

vices and multiple movement-related activities (no keystrokes), but as data was collected

from only nine users and the device carrying conditions (eight phones carried together in

a pouch at the waist and two watches worn on each hand) limit the usability of the dataset

for behavioral biometrics.

Therefore, our dataset stands unique by providing data from the same 117 participants

performing; a) typing activity, both fixed and free text, on desktop, tablet and phone; b)

gait activity, including walking, upstairs and downstairs, with phone in hand, tablet in

hand and phone in pocket; and c) swiping activity on tablet and phone.
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2.6 Lessons learnt from collection of the dataset

The process of collection, curation, pre-processing, storage and sharing of a dataset is

indeed challenging. We dealt with various issues at each stage of this effort and share the

key lessons learnt, for the benefit of research community, below:

• Overhead time for the entire process is nontrivial. Time involved in various legalities;

preparation and approval of Institutional Review Board (IRB) documents; reaching out

and procuring participants; and scheduling them is nontrivial and require great consid-

eration and planning beforehand.

• Special attention must be given to avoid Personally Identifiable Information (PII) trick-

ling into data. Especially when data collection aims to capture free text, participants

might unknowingly divulge personal information such as names, phone numbers, email

ids etc., as part of their answers to questions. This can be corrected either in the proto-

col designing phase (careful consideration to questions) or in the pre-processing phase.

• An on-site proctor to oversee each participant’s data collection can ensure quality of

data especially when data involves capturing key timestamps for activity separation

(Section 2.2.3, Checkpoint files). In a few cases we have made manual corrections (by

adding or subtracting seconds noted by proctor) to the timestamps where a participant

logged them either too early or too late.

• When data collection involves logging of timestamps on more than one device it is im-

portant to make sure the clocks on all devices involved are synchronized to within a

few milliseconds of each other. We carried out several test runs to ensure synchroniza-
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tion of the timestamps on all devices, which was challenging as there were four devices

(desktop, pocket-phone, hand-phone and tablet) to be used by every participant.

• Before sharing the data publicly, it is important to represent similar data from different

devices in the same format for easier usability. For example; timestamps were logged

in a string format (yyyy-mm-dd hr-min-sec.milliseconds) on the desktop and UNIX

timestamp on all other devices; and key strokes were logged as characters or keys on

the desktop but as ASCII codes on other devices. Therefore, it is better to standardize

the data fields before sharing the dataset.

• Incomplete data can occur from unexpected application or sensor fault or when partic-

ipants do not complete the entire process. For example, in our dataset, user 117 did not

complete the tasks h to m, but other tasks were complete and are included in the final

dataset. In rare cases, where there was too little information for a task or activity, it was

better to remove the files for completeness of the shared data.

• In a previous data collection effort for keystrokes [156], we observed some participants

tend to fill in low-quality or gibberish text in order to satisfy the minimum text-length

criteria (if any) to finish the session earlier. Such occurrences reduce the quality of data

and can be remedied either by clearly stating the dos and don’ts to the participants or

by the on-site proctor observing and interrupting such behavior.
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2.7 Conclusion and future work

Through this paper, we share and provide the details of our large behavioral biometrics

dataset for typing, gait and swiping activities of the same user on desktop, tablet and

phone (Section 2.2). The availability of the data on different devices for the same per-

son makes our dataset unique; and with data from 117 participants, also one of the largest.

With this dataset researchers can try to explore questions that were not possible with pre-

viously available datasets such as; ”Does the typing of an individual on desktop reveal

their typing on a tablet or phone? and vice versa” ; ”Can a person’s demographics like

age, height, etc., be predicted from the data of typing, gait or swiping activity on any of

the devices?”; to name a few. Each of the files in our dataset are described in detail with

example snippets for easier visualization and understanding (Section 2.2.3).

We explore, describe, extract and analyze the most popular features for each activity in

our dataset. All features are described briefly and also included with the dataset repository

(Section 2.2.3). The demographics of the participants is shared and includes various phys-

iological and background information with good spread for most groups (Section 2.2.4).

The analysis of the features reveals interesting insights. We found participants took more

time between keys on phones and tablets when compared to a desktop keyboard but the

release event was much sooner on the phones and tablets implying that smaller amount

on time is spent with the finger on the key (Section 2.3). As the general style of typing on

tablets and phones is with just the two thumbs as opposed to several fingers on desktop,

we posit that this occurrence maybe a result of lesser number of fingers being in contact
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with the typing surface on hand-held devices thus increasing the keyhold time and reduc-

ing the inter-key latency on desktop.

This dataset helps address the scarcity in benchmark datasets for multi-device, multi-

activity and multi-modality data from the same participants. Collection of a high-quality

dataset that can be publicly shared for the benefit of the community, is indeed a tedious

and demanding task. Throughout the process, lessons that we have shared in Section 2.6

are intended for future researchers who make similar endeavors to have an advantage. We

also discuss several possible research directions (Section 2.4) that can be explored with

the help of this dataset. As part of our future work we will be exploring these directions.
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3. DISCRIMINATIVE POWER OF TYPING FEATURES ON

DESKTOPS, TABLETS AND PHONES FOR USER

IDENTIFICATION

Research in Keystroke-Dynamics (KD) has customarily focused on temporal features

without considering context to generate user templates that are used in authentication.

Additionally, work on KD in hand-held devices like smart-phones and tablets have shown

that these features alone do not perform satisfactorily for authentication. In this work, we

analyze the discriminatory power of the most used conventional features found in litera-

ture, propose a set of context-sensitive or word-specific features and analyze the discrimi-

natory power of proposed features using their classification results.

Typing is a common form of interaction, where a person provides input for these devices

either on keyboards or touch screens, thus making research in Keystroke Dynamics (KD)

popular.Research in KD has grown far and wide, Umphress and Williams [180], in their

work, demonstrated that keystroke behavior on keyboards/typewriters was indeed a dis-

tinguishable trait among users while more recent research has shown that KD can also

be used on other devices that involve typing, such as phones and tablets [47], [126]. A

considerable amount of research has also explored the effects of the type of text used for

KD, that is fixed text vs free text [4]. The problem of authenticating users by their typ-

ing behavior has also been addressed from multiple perspectives as far as the underlying

algorithms are concerned. Fuzzy logic [94], Neural Networks [8], mini-batch bagging
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[73], pairwise user coupling [118] techniques have been explored in an attempt to im-

prove accuracies and complexity of KD systems. New approaches that use special hard-

ware ([171], [186]) for KD systems are also a promising avenue for researchers. One such

work from Sulong et al. [172] explored new features such as a combination of maximum

pressure exerted on the keyboard and time latency between keystrokes and showed their

proposed system was an effective biometric-based security system.

In recent years KD has been used in a myriad of applications, such as, continuous authen-

tication [117], gender detection [177], age detection [138], fatigue detection [178], mood

disturbance detection [198], and lie detection [115] to name a few. There have also been

numerous attempts on side channel attacks on keystrokes based on the acoustic emana-

tions that occur when a person types on physical keyboards. Asonov and Agrawal [16]

trained neural networks to recognize the key pressed using the sounds emanated by their

press. In their work, they used FFT on 2ms windows sound recordings and tested with

recordings from varying distance from 1 meter to 15 meters. A similar work carried out

by Zhu et al. [195] explores attacks using the acoustic emanations assuming that the dif-

ferent keys pressed are not contextually related. Using the Time Difference of Arrival

(TDoA) method, they were able to recover about 72% of the keystrokes. With a modifica-

tion of TDoA approach with mm-level audio ranging on a single phone, Liu et al. [104],

were able to recover 94% keystrokes in their experiments. Although research in KD has

been advancing rapidly, there have been very few attempts to understand the impact of

context on the features that are used for KD and even the few attempts made were not ex-

haustive enough.
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3.1 Key contributions on the chapter

The key contributions of our research work detailed in this article can be summarized as

follows:

• Analyze the discriminatory power of conventional keystroke features for user

identification across 3 most common devices: We present our findings, from

analysis of conventional KD features, on the three most commonly used devices

desktop, Laptop and phone. We find that conventional features do not separate and

hence identify a user’s keystroke data efficiently and are simplistic in disregarding

the context of these features.

• Propose, analyze and evaluate a new set of context-sensitive features across

devices:

We propose a set of context-sensitive or word-specific features, after analyzing the

difference in the discriminative capacity of these features in contrast to the con-

ventional features, we find that context sensitive features are better for user iden-

tification on all three devices. The results of user identification show competitive

accuracies using proposed features.

• Provide insights into efficacy of features for continuous authentication on dif-

ferent device categories: We also provide mathematical justification of the perfor-

mance improvements in user identification using proposed features.

KD on desktops, tablets and phones, which are the three most popular types of devices

that people use everyday, are all analyzed and reported. This work will help gain a deeper
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insight into what features might work better for continuous authentication on different

device categories. Some initial applications are in the field of continuous authentication

of user or as a second factor authentication in existing systems with typing as one of the

interfaces. Scenarios like online examinations, competitions, remote work environments

might benefit from the insights provided by our work. Situations where context is known

can be handled much more accurately with the help of the proposed features described

here. This article is also aimed at inspiring exploration of novel features that use addi-

tional information such as the language and contexts of features to their advantage.

3.2 Related Work

Researchers of KD have explored and studied the effectiveness of various keystroke fea-

tures for a long time now ([176], [139], [155]). In numerous research, available in al-

ready existing literature, it is clear that KD is a promising dimension for authentication

and verification ([79], [119], [153], [82], [143], [43], [7], [160]). Initial work of Obaidat

and Sadoun [130], on the analysis of features for verification of users based on keystroke

dynamics is a continuation of three previously published papers by the authors. They

demonstrated the advantages of using both, KeyHold value and flight time, as opposed

to just one of them. They showed that there was a significant dip in misclassification er-

rors when the features were used in combination. The study consisted of 225 samples

collected each day, for eight days, from 15 users. Each sample was seven characters in

length on average. The authors claimed 100% accuracy on this set of users using fuzzy

ARTMAP, Radial Basis Function Network and learning vector Quantization. The main
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drawbacks of this study were the limited number of users, the small text set of seven char-

acters each and confining the data to only one device that is the desktop. Huang et al. [76]

made one of the most recent efforts to analyze the effects of text filtering on keystroke

biometrics. The authors have used the work of Gunetti and Picardi [71] as their baseline

to present their case on the effect of text filtering. It is worth noting that this study con-

cluded that nearly 23.3% of all free text keystrokes were gibberish. Gibberish was defined

by the authors as text belonging to four main categories: Repetitive, Gaming (”a”, ”s”,

”d” and ”w”), Distinct (too few distinct characters) and Lengthy (long strings with length

more than 20). It is also shown that the density curves of many digraphs changed drasti-

cally after filtering. The authors’ concluding remark is that filtering of gibberish has no

effect on FAR but significantly improves FRR. Using two main filtering techniques, Reg-

ular Expressions and spell checkers, this study establishes that the context from which

a feature is extracted plays an important role in the performance of the keystroke based

system. Balagani et al. [19] analyzed the discriminability of heterogeneous and aggre-

gate feature vectors with different combinations of keystroke features. The authors used

ReliefF, correlation based feature selection, and consistency based feature selection to

perform feature selection analysis. This work provided theoretical proof backed by empir-

ical analysis to confirm that heterogeneous feature vectors were more discriminative than

aggregate feature vectors.

Alsultan et al. [9] explored non-conventional keystroke features. As the authors call them,

”Semi-Timing” and ”Editing” features, and their advantages, were analyzed in this work.

Semi-timing features defined were the Words Per Minute (WPM), Negative Up-Down

(press second key, before releasing first) and Negative Up-Up (release second key, before
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releasing first). The Editing features defined regarded the general tendencies and man-

nerisms of a user, like Error rate (number of backspaces), Caps-lock Usage and Shift Us-

age (resealed before/after letter). The use of Ant Colony Optimization (ACO) feature re-

duction, leading to 5 features that contributed the most (Negative Up-Down, Error Rate,

Right-Shift-Before, Left-Shift-After, Left-Shift-Before) is a valuable insight. Decision

trees and Support Vector Machines were used for a comparative study on classifier per-

formance; Decision Trees had a slightly better performance, possibly due to the inbuilt

feature reduction property of Decision Trees. The study presents competitive False Ac-

ceptance Rates (FAR) and False Reject Rates (FRR), 0.011 and 0.26 respectively, on a

dataset of 30 users. Numerous researchers (Azevedo et al. [18], [52]) have also explored

different feature selection techniques, distance measures and effects of different languages

[72] on a KD system. Sun et al. [174], in their work, described of a group of secondary

features such as shift and comma which had been previously overlooked as noise and also

explored their effectiveness for user classification.

Related context-based work

The effects of linguistic context on KD was explored by Goodkind et al. [67], in their

work authors raised several important questions regarding the treatment of keystroke fea-

tures, with respect to word boundaries and part-of-speech. Another research that comes

close to our work was carried out by Sim and Janakiraman [163], in which the authors

showed that features extracted from Di-Graphs and Tri-Graphs were not discriminative

enough in free text. The authors rightly suggest that embedding of these features play a
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role in their effectiveness. In both, authors fall short of proposing any word based features

and also limit their studies to desktops only.

We show with empirical analysis that conventional features for KD are inadequate and

can be greatly improved by factoring in knowledge of the language being typed. We pro-

pose a set of context based features and draw mathematical insights for their better perfor-

mance. We perform our analysis on the data collected from three of the most common de-

vices that the current populace interacts with: the desktop, the tablet and the phone. From

our literature survey we also note that the search for optimal features for KD has not been

exhausted, and the research community is actively pursuing analysis of non-conventional

feature extraction. This is one of the incentives for us to propose our word-specific fea-

tures.

Fig. 3.1.: Features extracted from the temporal data of keys Ki and Ki+1.

3.3 Conventional keystroke features

We consider all the temporal features that are the building units of conventional features

for KD (see Teh et al. [176]). All research on KD has the logging of keystrokes in com-

mon. When a user types, a log of each key pressed and released is stored along with the
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timestamps of these events, from which a host of features are extracted. A Uni-graph is

any single key being pressed and released. Similarly, a Di-graph is any two consecutive

key being pressed and released. Uni-graphs and Di-graphs are the basic entities of KD

and can be used to understand the temporal features. For example, if a user types ”the”,

then ”t”, ”h” and ”e” are the Uni-graphs and ”th” and ”he” are the Di-graphs. For any Di-

graph formed by keys Ki and Ki+1 the following temporal features can be extracted:

a. KeyHoldKi
: KiRelease - KiPress

b. KeyHoldKi+1
: Ki+1Release - Ki+1Press

c. Flight1KiKi+1
: Ki+1Press - KiRelease

d. Flight2KiKi+1
: Ki+1Release - KiRelease

e. Flight3KiKi+1
: Ki+1Press - KiPress

f. Flight4KiKi+1
: Ki+1Release - KiPress

where KiPress and KiRelease correspond to the time when Ki was pressed and re-

leased respectively and so on. Features (a) and (b) are from Uni-graphs, (c) - (f) are from

Di-graphs. We can also observe that the values of Flight1 and Flight2 could be negative

as it is common for users to press and release a second key before the release of the first

key. Figure 3.1 illustrates these temporal features which are integral to the discussions

throughout this article.

Conventional KD research use features that are formed out of these basic temporal fea-

tures. Each feature is generally sorted into separate groups based on characters that they
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Table 3.1: Conventional features extracted from Uni-Graphs and Di-Graphs with their brief
description.

Feature Description

KeyHold Time duration for which a key is held down.
Flight1 Time between release of first key and press of second key.
Flight2 Time between release of first key and release of second key.
Flight3 Time between press of first key and press of second key.
Flight4 Time between press of first key and release of second key.

Table 3.2: Conventional features extracted from an example string ”this is that”. U: Uni-Graph, D:
Di-Graph. t1R stands for release of key t1 (the subscript 1 stands for the first occurrence of ”t”)

and t1P stands for press of key t1 and so on.
U KeyHold

t (t1R-t1P ),(t2R-t2P ),(t3R-t3P )
h (h1R-h1P ),(h2R-h2P )
i (i1R-i1P ),(i2R-i2P )
s (s1R-s1P ),(s2R-s2P )

( 1R- 1P ),( 2R- 2P )
a (a1R-a1P )

D Flight1 Flight2 Flight3 Flight4

th
(h1P -t1R),
(h2P -t2R)

(h1R-t1R),
(h2R-t2R)

(h1P -t1P ),
(h2P -t2P )

(h1R-t1P ),
(h2R-t2P )

hi (i1P -h1R) (i1R-h1R) (i1P -h1P ) (i1R-h1P )

is
(s1P -i1R),
(s2P -i2R)

(s1R-i1R),
(s2R-i2R)

(s1P -i1P ),
(s2P -i2P )

(s1R-i1P ),
(s2R-i2P )

s
( 1P -s1R),
( 2P -s2R)

( 1R-s1R),
( 2R-s2R)

( 1P -s1P ),
( 2P -s2P )

( 1R-s1P ),
( 2R-s2P )

i (i2P - 1R) (i2R- 1R) (i2P - 1P ) (i2R- 1P )
t (t2P - 2R) (t2R- 2R) (t2P - 2P ) (t2R- 2P )

ha (a1P -h2R) (a1R-h2R) (a1P -h2P ) (a1R-h2P )
at (t3P -a1R) (t3R-a1R) (t3P -a1P ) (t3R-a1P )

are derived from, for example, all KeyHold values for character ”a” are grouped sepa-

rately from those of character ”b” and so on. Descriptive features are then extracted from

these groups and stored as information for the user’s template. The groups can be Uni-

graphs, Di-graphs, Tri-graphs and so on. The features extracted and studied in this man-

ner are referred to as ”Conventional Features” in the following sections. Table 3.1 de-

scribes the conventional features that are widely used in literature. Conventional features,
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as shown in table 3.1, are comprised of KeyHold, Flight1, Flight2, Flight3 and Flight4.

While KeyHold is extracted from a Uni-graph the rest are extracted from Di-graphs. A

brief description for each feature is also provided in the table.

Table 3.2 demonstrates the extraction of these features with the help of an example string

”this is that”. The example string can be indexed as t1 h1 i1 s1 1 i2 s2 2 t2 h2 a1 t3 (char-

acters indexed per occurrence, represents ’space’). The conventional Uni-graph and Di-

graph features extracted from the example string are simplistic in grouping together the

values of Uni-graphs and Di-graphs disregarding the context of their occurrence. For ex-

ample, KeyHold values of Uni-graph ”t” are grouped. Conventional features do not dis-

tinguish where the values occur and most descriptive features derived from them will be

aggregating values from entire pieces of text to be stored as templates for a user’s typing

behavior.

Table 3.3: Proposed context sensitive features and their brief description.
Feature Description

WordHold Time between the press of first key and the release of last key in the word.
AvgKeyHold Average KeyHold values within a word.
AvgFlight1 Average Flight1 values within a word.
AvgFlight2 Average Flight2 values within a word.
AvgFlight3 Average Flight3 values within a word.
AvgFlight4 Average Flight4 values within a word.
StdKeyHold Standard deviation of KeyHold in a word.
StdFlight1 Standard deviation of Flight1 in a word.
StdFlight2 Standard deviation of Flight2 in a word.
StdFlight3 Standard deviation of Flight3 in a word.
StdFlight4 Standard deviation of Flight4 in a word.
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Table 3.4: Proposed features extracted from the same example string ”this is that”. t1R stands for
release of key t1 (the subscript 1 stands for the first occurrence of ”t”) and t1P stands for press of

key t1 and so on, Avg and Std stand for average and standard deviation respectively.
Feature word: ”this” word: ”that”

WordHold (s1R-t1P ) (t3R-t2P )

AvgKeyHold
Avg[(t1R-t1P ),(h1R-h1P ),

(i1R-i1P ),(s1R-s1P )]
Avg[(t2R-t2P ),(h2R-h2P ),

(a1R-a1P ),(t3R-t3P )]

AvgFlight1
Avg[(h1P -t1R),(i1P -h1R),

(s1P -i1R)]
Avg[(h2P -t2R),(a2P -h2R),

(t1P -a1R)]

AvgFlight2
Avg[(h1R-t1R),(i1R-h1R),

(s1R-i1R)]
Avg[(h2R-t2R),(a2R-h2R),

(t1R-a1R)]

AvgFlight3
Avg[(h1P -t1P ),(i1P -h1P ),

(s1P -i1P )]
Avg[(h2P -t2P ),(a2P -h2P ),

(t1P -a1P )]

AvgFlight4
Avg[(h1R-t1P ),(i1R-h1P ),

(s1R-i1P )]
Avg[(h2R-t2P ),(a2R-h2P ),

(t1R-a1P )]

StdKeyHold
Std[(t1R-t1P ),(h1R-h1P ),

(i1R-i1P ),(s1R-s1P )]
Std[(t2R-t2P ),(h2R-h2P ),

(a1R-a1P ),(t3R-t3P )]

StdFlight1
Std[(h1P -t1R),(i1P -h1R),

(s1P -i1R)]
Std[(h2P -t2R),(a2P -h2R),

(t1P -a1R)]

StdFlight2
Std[(h1R-t1R),(i1R-h1R),

(s1R-i1R)]
Std[(h2R-t2R),(a2R-h2R),

(t1R-a1R)]

StdFlight3
Std[(h1P -t1P ),(i1P -h1P ),

(s1P -i1P )]
Std[(h2P -t2P ),(a2P -h2P ),

(t1P -a1P )]

StdFlight4
Std[(h1R-t1P ),(i1R-h1P ),

(s1R-i1P )]
Std[(h2R-t2P ),(a2R-h2P ),

(t1R-a1P )]

3.4 Proposed context sensitive features

In our approach, we focus on extracting descriptive features from words. For the purpose

of simplicity, we limit our language to English, therefore all characters and words con-

sidered in this research are from English. We define words in the domain of KD as a set

of consecutive keystrokes, preceded and succeeded by ”space” or punctuation (”shift” is

generally used for most punctuation), that form an English word. For example, if a user

intends to type ”the” but after typing ”th” presses ”a” by mistake and uses ”backspace” to

rectify this mistake, the sequence of keystrokes would be ”t”+”h”+”a”+”backspace”+”e”.

Though the text on screen reads ”the”, the actual keystrokes performed were different;
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hence we do not consider this the typing of a word. We use this concept whenever we re-

fer to a ”word” throughout this article.

Proposed features are shown in table 3.3, extracted for each occurrence of a word as op-

posed to Uni-graphs or Di-graphs and are comprised of ”WordHold”: the time taken to

type an entire word (from first press to last release); ”AvgKeyHold”: the average of all

KeyHold values in the word; ”AvgFlight1”, ”AvgFlight2”, ”AvgFlight3” and ”AvgFlight4”:

the average of the respective Flight values for Di-graphs in the word; ”StdKeyHold”: the

standard deviation of all KeyHold values in the word; ”StdFlight1”, ”StdFlight2”, ”Std-

Flight3” and ”StdFlight4”: the standard deviation of the respective Flight values for Di-

graphs in the word. At this point in the discussion we have merely proposed these features

and plan to investigate the efficiency of these proposed and conventional features as the

discussion proceeds. Table 3.4 demonstrates the extraction of these features with the help

of the same example string considered in table 3.2 : ”this is that”. The example string can

be indexed as t1 h1 i1 s1 1 i2 s2 2 t2 h2 a1 t3 (characters indexed per occurrence, repre-

sents ’space’). With our proposed set of features, we take advantage of the context by lo-

calizing the feature extraction to words in the given text. From each occurrence of a word,

as shown in table 3.4, the proposed features do not group based on Uni-graphs and Di-

graphs but rather based on words they appear in. The key takeaways from this section are

that, conventional features do not distinguish where the values occur and most descriptive

features derived from them will be aggregating values from entire pieces of text. Proposed

features factor in the effect of context, by aggregating feature values only within the range

of a word.



56

In following sections, we explain how conventional features are not ideal and overlook the

rich information that lies in context of these features. We present thorough analysis of the

discriminability of both conventional and proposed features and try and gain insights on

why these features offer different levels of precision for user identification.

Desktop Tablet Phone

Tasks
Transcription (Fixed Text)

Browsing (Free Text)
Q & A (Free Text)

Q & A (Free Text) Q & A (Free Text)

Approx. Duration 45 mins. 25 mins. 25 mins.
Approx. Keystrokes

per participant
12,500 9,000 10,000

Fig. 3.2.: Highlights of our Data Collection effort.

3.5 Details of data collection

Figure 3.2 summarizes the data collection process. After IRB approval from our univer-

sity, the data collection exercise was carried out. We use the data from 20 users in this

study. Emails were sent out to all students, faculty and staff to procure the participant

population. All participants were proficient in English. Unlike most other studies, we did

not restrict the type of device or text in our experiments. Each participant performed a

set of common day to day activities on three different devices: a desktop, a tablet and a

phone. Desktop I/O consisted of a standard QWERTY keyboard, optic mouse and 21”

monitor. HTC-Nexus-9 tablets, Samsung-S6 and HTC-One phones were used in the pro-

cess of data collection. The Samsung Galaxy S6 had a screen size of 5.1 inches with body
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dimensions of 143.4 x 70.5 x 6.8 mm and weighing 138 g, whereas the HTC-One had a

screen size of 5.0 inches with body dimensions of 146.4 x 70.6 x 9.4 mm and weighing

160 g. As the default android keyboard does not allow logging of keystrokes, we created

and used an android qwerty keyboard on screen which was similar to the default android

qwerty keyboard. The phones and tablets were locked in portrait orientation and users

were allowed to type on them with any comfortable posture that they preferred. Although,

there were no restrictions on the holding style of the phone and all participants chose

to hold the phone with both hands while typing. For the typing activities both free text

(spontaneous or unscripted typing) and fixed text (predetermined words or sentences to be

typed as is) were used as a real life situation would comprise a mix of them.

For the desktop section of data collection, participants were asked to first type fixed text

that consisted of two sentences, 20 times (Appendix A.5). This was followed by a brief

session on browsing the Internet with tasks that approximated shopping behavior such

as searching for the best prices and simultaneously making notes. The participants were

then asked to type their free text answers to ten questions with varying cognitive loads

[35] as shown in appendices A.2, A.3 and A.4. Keystroke events like press, release and

their corresponding timestamps were recorded using windows keyboard hooks during the

entire activity. For the tablet and phone section of the data collection, participants were

asked to first type the same fixed text, 20 times. This was followed by typing free text an-

swers to a set of ten questions with different cognitive loads. The questions used in each

section were different. Keystroke and touch events with their corresponding timestamps

were logged during the entire duration for both hand-held devices. The participants took

about 45 minutes to complete the tasks on the desktop and 25 minutes each on the tablet
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and phone. Each participant had approximately 12,500 keystrokes on the desktop, 9,000

keystrokes on the tablet and 10,000 keystrokes on the phone.

3.6 Feature discriminability analysis

To analyze the discriminative power of features, we first model an estimate of probabil-

ity density function (PDF), given by the histograms of the values for each feature. We

use fixed bin size of 1 ms for all histograms to match the clock resolution used to record

keystroke events. To determine the discriminative potential of features we find the overlap

between the PDFs using the Bhattacharyya distance as described by Sim and Janakiraman

[163].

DistB(H1, H2) =
nbins∑
x=1

√
H1(x)H2(x). (3.1)

Equation (3.1) defines the Bhattacharyya distance between two PDFs, H1(x) and H2(x),

in which the distance lies between 0 and 1. A DistB value of 0 implies no overlap in

the PDFs, hence maximum discriminability and 1 implies complete overlap in the PDFs,

hence minimum discriminability. As the PDFs we deal with are discretized, to implement

equation 3.1 we simply multiply the probability of the corresponding bins, take the prod-

uct’s positive square root and sum it over all bins of the PDFs. Figure 3.3 shows an exam-

ple of the computation of DistB values, using the PDFs of two random users for KeyHold

values of the character ”t” on different devices. Figure 3.3a shows the PDFs KeyHold

of ”t” for a desktop; the amount of overlap between the two is reflected by the DistB

computed, which is 0.487. Similarly, figures 3.3b and 3.3c show the PDFs on a tablet
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and phone which have DistB of 0.733 and 0.754 respectively. As explained in [163] a

large DistB implies that the Bayes’ error is large and a small DistB value could lead to

small Bayes’ error. We use DistB as a measure to analyze how well a feature separates

the users from each other.

(a) KeyHold of ”t” on desktop (b) KeyHold of ”t” on tablet (c) KeyHold of ”t” on phone
Fig. 3.3.: Example of DistB computation: Histograms representing the probability density

functions of KeyHold values for the character ’t’, for Users A and B on a) desktop , b) tablet and
c) phone along with their corresponding Bhattacharyya distance.

3.7 Analysis of conventional KD features

To analyze the discriminability of conventional KD features, we use the 12 most occur-

ring Uni-graphs and 25 most occurring Di-graphs in our dataset. These Uni-graphs and

Di-graphs are shown in tables 3.5 and 3.6 and include ”space” and ”backspace”. For Uni-

graphs and Di-graphs of each user we extract feature specific PDFs (one for each conven-

tional KD feature in discussion). Once the PDFs are computed on all three devices, we

calculate DistB between corresponding PDFs for each pair of users and use the mean,

standard deviation and median to gain insight into the properties of these features.
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3.7.1 KeyHold

Description : KeyHold is the time duration for which a key is held down for one instance

of the key (one press to one release of the same key).

Table 3.5: The Inter-User DistB values for KeyHold distributions on all devices.
Device Desktop Tablet Phone

Uni-Graph Mean StD Median Mean StD Median Mean StD Median
space 0.785 0.103 0.8 0.792 0.145 0.837 0.7 0.191 0.731

bspace 0.723 0.069 0.728 0.667 0.117 0.687 0.541 0.174 0.553
a 0.71 0.123 0.745 0.688 0.175 0.737 0.6 0.207 0.64
e 0.777 0.128 0.812 0.776 0.162 0.835 0.723 0.156 0.739
h 0.738 0.141 0.777 0.741 0.102 0.761 0.559 0.176 0.562
i 0.73 0.121 0.753 0.81 0.084 0.834 0.626 0.18 0.65
l 0.784 0.091 0.796 0.786 0.094 0.803 0.568 0.188 0.586
n 0.693 0.149 0.729 0.802 0.095 0.832 0.588 0.194 0.6
o 0.711 0.131 0.737 0.809 0.084 0.833 0.602 0.189 0.615
r 0.665 0.139 0.701 0.732 0.132 0.767 0.61 0.171 0.591
s 0.761 0.116 0.789 0.775 0.138 0.832 0.659 0.18 0.673
t 0.75 0.135 0.784 0.792 0.112 0.824 0.682 0.157 0.685

Inference : As values in the table 3.5 show the mean values of DistB for KeyHold are

too high for all devices implying that this is not a very discriminative feature. Most mean

DistB values for desktop lie around 0.7 to 0.78, which are hinting at very high overlap

among the PDFs. The least and highest mean DistB were for ”n” and ”space” with 0.693

and 0.785 respectively. For tablet, the values DistB are very high, in the range of 0.7 to

0.8 for most characters. The least and highest mean DistB were ”backspace”=.667 and

”o”=.809 respectively. In the case of phone, we see a very negligible reduction in mean

DistB values for phone, with most values between 0.58 to 0.72 which are still very high.

The least and highest mean DistB were ”backspace” = 0.54 and ”e”= 0.72 respectively.

By these values, we can infer that KeyHold, is not a discriminable feature on any of these

devices.
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3.7.2 Analysis of conventional feature - Flight1

Description : For a Di-graph, Flight1 is the time duration between release of the first key

and press for the second key.

Table 3.6: The Inter-User DistB values Flight1 distributions on all devices.
Device Desktop Tablet Phone

Di-Graph Mean StD Median Mean StD Median Mean StD Median
(’space’, ’a’) 0.495 0.134 0.505 0.104 0.06 0.098 0.086 0.064 0.071
(’space’, ’i’) 0.427 0.159 0.425 0.093 0.056 0.084 0.071 0.061 0.054
(’space’, ’s’) 0.526 0.12 0.54 0.135 0.064 0.128 0.081 0.056 0.065
(’space’, ’t’) 0.594 0.135 0.614 0.193 0.066 0.186 0.146 0.081 0.133

(’bspace’,’bspace’) 0.576 0.1 0.581 0.51 0.1 0.512 0.417 0.174 0.427
(’e’, ’space’) 0.554 0.194 0.55 0.436 0.165 0.47 0.308 0.16 0.303

(’e’, ’n’) - 0.256 0.137 0.257 0.181 0.121 0.169
(’e’, ’r’) 0.384 0.23 0.37 0.393 0.152 0.409 0.287 0.143 0.278
(’e’, ’s’) 0.555 0.171 0.587 0.429 0.154 0.445 0.331 0.137 0.333

(’n’, ’space’) 0.405 0.211 0.429 0.361 0.136 0.357 0.217 0.139 0.192
(’o’, ’space’) 0.379 0.241 0.345 0.275 0.13 0.264 0.188 0.133 0.168

(’o’, ’n’) 0.412 0.219 0.464 0.353 0.158 0.385 0.269 0.14 0.253
(’r’, ’e’) 0.434 0.27 0.465 0.472 0.145 0.492 0.378 0.154 0.371

(’s’, ’space’) 0.499 0.206 0.501 0.363 0.142 0.378 0.228 0.141 0.227
(’s’, ’e’) 0.531 0.234 0.572 0.59 0.124 0.62 0.39 0.159 0.38

(’t’, ’space’) 0.481 0.223 0.465 0.325 0.113 0.34 0.248 0.127 0.232
(’t’, ’e’) - 0.267 0.132 0.253 0.237 0.135 0.223
(’t’, ’h’) 0.511 0.242 0.523 0.462 0.158 0.5 0.344 0.152 0.357
(’a’, ’r’) 0.399 0.231 0.407 0.261 0.124 0.247 -
(’t’, ’o’) 0.43 0.205 0.392 - -

(’space’, ’w’) 0.351 0.159 0.365 - -
(’h’, ’e’) 0.514 0.229 0.537 - -
(’i’, ’n’) 0.346 0.218 0.361 - -
(’l’, ’e’) 0.478 0.22 0.512 - -
(’l’, ’l’) 0.671 0.216 0.762 - -

Inference : Table 3.6 shows the mean, standard deviation and median of the DistB val-

ues for flight1 on all three devices for the selected 25 most-common Di-graphs. Clearly,

the mean values of DistB for Flight1 are considerably better than those for KeyHold on

all devices. We observe that, most mean DistB values for desktop lie around 0.3 to 0.6,

which is still not desirable for a feature meant to be discriminative. The least and high-

est mean DistB were for the digraphs (i,n)=0.346 and (l,l)=0.671 respectively. The mean
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DistB values for tablet are considerably low for a few Di-graphs, which is very desirable,

but as these are a negligible minority (Space: a,i,s,t), their scope of extraction is largely

reduced. The least and highest mean DistB were for the digraphs (Space,i)=0.093 and

(s,e) =0.59 respectively. We observe the mean DistB values on phone to be Similar to

tablet with a small minority (Space: a,i,s,t) (e,n) of Di-graphs having low DistB values.

(space,i) has the least mean value at 0.071 while has the highest at (Backspace,Backspace)=

0.417. Overall Flight1 does not seem to be a very discriminative feature. As all Di-graphs

have very high values of mean DistB on desktop and very few values in tablet and phone

are at a desirable range this feature is not a good feature for to provide separation in user

keystroke data.

3.7.3 Analysis of conventional feature - Flight2

Description : For a Di-graph, Flight2 is the time duration between release of the first key

and release for the second key.

Inferences : Table 3.7 shows the mean DistB values for flight2 on all three devices for

the selected 25 common Di-graphs. The mean values of DistB for Flight2 are consider-

ably better than those for KeyHold on all devices, but are similar to Flight1. Most mean

DistB values for desktop lie around 0.3 to 0.6. The least and highest mean DistB val-

ues being (Space,w)=0.382 and (space,t)=0.668 respectively. For the tablet, we observe

that the mean DistB values for a few Di-graphs are considerably low, which is very de-

sirable, but again, as these are a negligible minority (Space: a,i,s,t) their scope of extrac-

tion is largely reduced. The least mean DistB being (Space,i)=0.097 and highest being
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Table 3.7: The Inter-User DistB values for Flight2 distributions on all devices.
Device Desktop Tablet Phone

Di-Graph Mean StD Median Mean StD Median Mean StD Median
(’space’, ’a’) 0.511 0.096 0.518 0.097 0.055 0.086 0.083 0.061 0.074
(’space’, ’i’) 0.484 0.125 0.497 0.087 0.057 0.074 0.067 0.05 0.055
(’space’, ’s’) 0.556 0.109 0.563 0.119 0.057 0.107 0.078 0.051 0.071
(’space’, ’t’) 0.668 0.109 0.703 0.181 0.074 0.184 0.141 0.08 0.133

(’bspace’,’bspace’) 0.699 0.094 0.713 0.582 0.164 0.602 0.517 0.186 0.55
(’e’, ’space’) 0.679 0.126 0.695 0.362 0.131 0.38 0.276 0.151 0.27

(’e’, ’n’) - 0.23 0.128 0.246 0.136 0.113 0.108
(’e’, ’r’) 0.502 0.157 0.528 0.341 0.179 0.336 0.275 0.159 0.274
(’e’, ’s’) 0.586 0.144 0.624 0.37 0.159 0.383 0.275 0.139 0.271

(’n’, ’space’) 0.466 0.192 0.49 0.308 0.125 0.317 0.177 0.135 0.162
(’o’, ’space’) 0.475 0.229 0.502 0.235 0.109 0.247 0.176 0.133 0.154

(’o’, ’n’) 0.453 0.156 0.465 0.305 0.146 0.332 0.22 0.144 0.214
(’r’, ’e’) 0.563 0.195 0.621 0.455 0.145 0.472 0.356 0.175 0.342

(’s’, ’space’) 0.59 0.168 0.611 0.293 0.11 0.298 0.211 0.141 0.202
(’s’, ’e’) 0.599 0.185 0.64 0.538 0.153 0.572 0.371 0.176 0.357

(’t’, ’space’) 0.556 0.161 0.576 0.264 0.095 0.271 0.223 0.111 0.204
(’t’, ’e’) - 0.264 0.109 0.254 0.208 0.126 0.187
(’t’, ’h’) 0.615 0.18 0.657 0.439 0.144 0.453 0.294 0.154 0.286
(’a’, ’r’) 0.49 0.179 0.522 0.224 0.114 0.22 -
(’t’, ’o’) 0.548 0.145 0.56 - -

(’space’, ’w’) 0.382 0.143 0.395 - -
(’h’, ’e’) 0.646 0.114 0.661 - -
(’i’, ’n’) 0.411 0.187 0.436 - -
(’l’, ’e’) 0.6 0.109 0.615 - -
(’l’, ’l’) 0.639 0.169 0.692 - -

(backspace,backspace)=0.582. We observe phone to be Similar to tablet with a small

number (Space: a,i,s,t) (e,n) of Di-graphs having low mean DistB values. The least and

highest DistB values being (space,i)=0.067 and (Backspace,Backspace)= 0.517 respec-

tively. Overall we infer that Flight2 is not a discriminative feature. As all Di-graphs have

very high mean DistB values on the desktop and very few values in tablet and phone are

desirable, this feature is not a good feature for separation of users based on keystroke

data.



64

3.7.4 Analysis of conventional feature - Flight3

Description : For a Di-graph, Flight3 is the time duration between press of the first key

and press of the second key.

Table 3.8: The Inter-User DistB values for Flight3 distributions on all devices.
Device Desktop Tablet Phone

Di-Graph Mean StD Median Mean StD Median Mean StD Median
(’space’, ’a’) 0.542 0.092 0.549 0.131 0.08 0.12 0.08 0.057 0.068
(’space’, ’i’) 0.495 0.144 0.515 0.109 0.072 0.089 0.066 0.049 0.056
(’space’, ’s’) 0.58 0.105 0.594 0.15 0.078 0.146 0.078 0.051 0.069
(’space’, ’t’) 0.655 0.113 0.685 0.224 0.099 0.221 0.141 0.077 0.127

(’bspace’,’bspace’) 0.593 0.119 0.586 0.584 0.154 0.613 0.517 0.187 0.558
(’e’, ’space’) 0.708 0.081 0.714 0.431 0.152 0.459 0.296 0.144 0.315

(’e’, ’n’) - 0.251 0.138 0.249 0.146 0.107 0.146
(’e’, ’r’) 0.531 0.165 0.559 0.32 0.166 0.304 0.242 0.142 0.249
(’e’, ’s’) 0.643 0.089 0.654 0.387 0.175 0.396 0.275 0.12 0.272

(’n’, ’space’) 0.508 0.167 0.547 0.35 0.132 0.342 0.154 0.113 0.126
(’o’, ’space’) 0.524 0.211 0.578 0.305 0.146 0.291 0.173 0.121 0.161

(’o’, ’n’) 0.493 0.179 0.532 0.3 0.147 0.306 0.216 0.112 0.221
(’r’, ’e’) 0.652 0.17 0.699 0.457 0.141 0.463 0.352 0.149 0.364

(’s’, ’space’) 0.639 0.113 0.656 0.377 0.133 0.39 0.209 0.134 0.197
(’s’, ’e’) 0.639 0.151 0.659 0.537 0.176 0.563 0.382 0.16 0.382

(’t’, ’space’) 0.604 0.14 0.631 0.321 0.121 0.314 0.232 0.113 0.219
(’t’, ’e’) - 0.259 0.124 0.243 0.178 0.12 0.158
(’t’, ’h’) 0.654 0.151 0.691 0.49 0.122 0.495 0.297 0.141 0.307
(’a’, ’r’) 0.525 0.153 0.558 0.241 0.125 0.221 -
(’t’, ’o’) 0.522 0.159 0.516 - -

(’space’, ’w’) 0.397 0.151 0.414 - -
(’h’, ’e’) 0.618 0.13 0.635 - -
(’i’, ’n’) 0.423 0.191 0.469 - -
(’l’, ’e’) 0.579 0.131 0.592 - -
(’l’, ’l’) 0.633 0.194 0.7 - -

Inference : As shown in table 3.8, mean DistB values for flight3 on all three devices

shown that Flight3 is considerably more discriminative than KeyHold on all devices, but

is similar to Flight1 and Flight2. Most mean DistB values for desktop lie around 0.49

to 0.63, which is still high. The least and highest mean DistB values were for the Di-

Graphs (Space,w)=0.397 and (e,space)=0.708 respectively. For tablet, the mean DistB

values for a few Di-graphs are considerably low, similar to Flight1 and Flight2, which is
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very desirable, but as these are a negligible minority (Space: a,i,s,t) their scope of extrac-

tion is largely reduced. The least and highest values for DistB were (Space,i) = 0.109

and (backspace,backspace) = 0.584 respectively. We observe phone to be Similar to tablet

with a small minority (Space: a,i,s,t) (e,n) of Di-graphs having low DistB values. The

lowest DistB value being (space,i) = 0.066 and highest being (Backspace,Backspace) =

0.517. We infer that, overall Flight3 is not a very discriminative feature. Most Di-Graphs

have very high mean DistB values which implies that this will not be helpful in separa-

tion of the users based on their keystroke data.

3.7.5 Analysis of conventional feature - Flight4

Description : For a Di-graph, Flight4 is the time duration between press of the first key

and release of the second key.

Inference : Table 3.9 presents the mean DistB values for flight4 on all three devices.

These values are similar to those of all other Flight features that we have analyzed so

far. The mean DistB values for Flight4 are better than those of KeyHold but not bet-

ter than those of Flight1, Flight2 and Flight3. On the desktop, we find that most mean

DistB values are in the range of 0.4 to 0.7 the least being (space,w) = 0.4 and highest

being (e,space) = 0.74. On the tablet and on the phone, we see a few Di-Graphs hav-

ing low mean DistB values but these are very few in number, (Space: a,i,s,t) on tablet

and (Space: a,i,s,t) (e,n) on phone. The lowest and highest mean DistB values on tablet

are for (Space,i) = 0.098 and (s,e) = 0.46 respectively while on phone they are (space,i)

= 0.06 and (s,e) = 0.342 respectively. It is also interesting to observe that the digraphs
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Table 3.9: The Inter-User DistB values for Flight4 distributions on all devices.
Device Desktop Tablet Phone

Di-Graph Mean StD Median Mean StD Median Mean StD Median
(’space’, ’a’) 0.514 0.089 0.522 0.106 0.064 0.099 0.083 0.056 0.077
(’space’, ’i’) 0.498 0.12 0.506 0.098 0.059 0.088 0.06 0.043 0.053
(’space’, ’s’) 0.573 0.092 0.58 0.131 0.068 0.122 0.073 0.051 0.063
(’space’, ’t’) 0.671 0.096 0.69 0.199 0.09 0.185 0.137 0.076 0.132

(’bspace’,’bspace’) 0.579 0.1 0.593 0.421 0.138 0.432 0.34 0.178 0.345
(’e’, ’space’) 0.74 0.071 0.75 0.336 0.118 0.355 0.267 0.141 0.268

(’e’, ’n’) - 0.218 0.12 0.214 0.122 0.098 0.105
(’e’, ’r’) 0.576 0.122 0.589 0.285 0.168 0.288 0.215 0.139 0.204
(’e’, ’s’) 0.639 0.091 0.646 0.322 0.149 0.333 0.223 0.126 0.216

(’n’, ’space’) 0.533 0.164 0.561 0.273 0.116 0.278 0.147 0.122 0.121
(’o’, ’space’) 0.56 0.17 0.594 0.217 0.107 0.213 0.155 0.115 0.145

(’o’, ’n’) 0.511 0.121 0.513 0.262 0.125 0.267 0.177 0.121 0.182
(’r’, ’e’) 0.717 0.105 0.734 0.424 0.144 0.438 0.303 0.154 0.324

(’s’, ’space’) 0.652 0.105 0.662 0.272 0.098 0.276 0.184 0.123 0.173
(’s’, ’e’) 0.703 0.103 0.72 0.46 0.165 0.489 0.342 0.178 0.344

(’t’, ’space’) 0.642 0.102 0.647 0.255 0.098 0.252 0.221 0.102 0.218
(’t’, ’e’) - 0.239 0.102 0.235 0.167 0.113 0.148
(’t’, ’h’) 0.671 0.137 0.704 0.451 0.116 0.458 0.257 0.15 0.258
(’a’, ’r’) 0.509 0.161 0.549 0.21 0.116 0.203 -
(’t’, ’o’) 0.572 0.142 0.585 - -

(’space’, ’w’) 0.4 0.145 0.407 - -
(’h’, ’e’) 0.65 0.108 0.679 - -
(’i’, ’n’) 0.477 0.151 0.51 - -
(’l’, ’e’) 0.627 0.107 0.647 - -
(’l’, ’l’) 0.625 0.166 0.67 - -

with lowest and highest mean DistB values are for the same set of Di-Graphs on both the

hand-held devices.

We illustrate the discriminability of the conventional features using CDFs of DistB shown

in Figure 3.4. The CDFs help us compare the Bhattacharyya distances of each conven-

tional feature among devices. Figure 3.4a shows that KeyHold value is not a discrim-

inable feature on any of the devices. Though it has a slightly better curve on phone, it is

still inefficient as a feature. From the Figure 3.4a we can estimate that less than 10% of

the test samples have low (hence desirable) values of DistB of 0.2 or lesser. Around 60%

of the test samples have DistB greater than 0.75 on desktop and tablet, and 0.5 on phone.
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(a) KeyHold (b) Flight1 (c) Flight2

(d) Flight3 (e) Flight4
(f) Legend

Fig. 3.4.: Comparing the Bhattacharyya distances of PDFs for all conventional features on
desktop, tablet and phone.

These imply a very high overlap of the PDFs for this feature which makes it a weak fea-

ture.

For the features Flight1, Flight2, Flight3 and Flight4, figures 3.4b through 3.4e show that

these features have similar distribution of DistB values with minor variations. A clear

observation is that, though these features are clearly better than the KeyHold feature and

that they have poor discriminability on the desktop data. Flight1 has some noticeable im-

provement with about 60% of them having DistB less than 0.5, while Flight2, Flight3 and

Flight4 offer negligible improvements by having 40% with less than 0.5 for DistB.

For tablet and phone, there is improvement in discriminability on all the features, both

have much better discriminability when compared to the desktop. We observe that the

features seem to be slightly more discriminative on phone compared to the tablet. Flight1
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(Figure 3.4b), we see about 60% of the test samples have DistB less than 0.4 on tablet

and less than 0.3 on phone. In the case of Flight2 (Figure 3.4c) we see about 60% of the

test samples have DistB less than 0.3 for tablet and less than 0.25 for phone. With Flight3

(figure 3.4d) we see about 60% of them have DistB less than 0.4 for tablet and less than

0.25 for phone, which is very similar to Flight2. Lastly, Flight4 (Figure 3.4e) shows 60%

of DistB values are less than 0.3 for tablet and less than 0.2 for phone.

Inference - conventional features

Though the Flight features have slightly better DistB values than KeyHold, none of these

conventional features have high discriminative power which can be used to separate user

keystroke data from each other to a high accuracy. We also observe that these conven-

tional features aggregate all the values from the features without considering context,

which might not be optimal, as variations in a feature value may occur due to the con-

text of their appearance. We therefore propose a set of context sensitive features, which

try and take advantage of known information, like the language being typed and the words

of that language.

3.8 Analysis of proposed context sensitive features

The proposed features are mentioned in table 3.3. These features are extracted for each

occurrence of a word as opposed to each occurrence of the Di-graph, we extract ”Word-

Hold”: the time taken to type an entire word (from first press to last release). ”AvgKey-

Hold”: the average of all KeyHold values in the word. ”AvgFlight1”, ”AvgFlight2”, ”AvgFlight3”,
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”AvgFlight4”: the average of the respective flight values for Di-graphs in the word. ”Std-

KeyHold”: the standard deviation of all KeyHold values in the word. ”StdFlight1”, ”Std-

Flight2”, ”StdFlight3”, ”StdFlight4”: the standard deviation of the respective flight values

for Di-graphs in the word.

We analyze the discriminability of our proposed features by using the same methods that

were used to analyze the conventional features. We selected 20 of the highest occurring

words in our dataset, and generated the PDFs for each proposed feature, for every user

on all three devices. We then computed the DistB values for the corresponding PDFs for

every pair of users.

3.8.1 Analysis of proposed feature - WordHold

Description : WordHold is the time duration between the first key pressed to the last key

released in a word. We only consider the sequence of keystrokes as forming a word if it is

done without any deviations, such as backspaces or delete keys being pressed.

Inference : Table 3.10 presents the mean DistB values for WordHold on all three de-

vices. The mean values of DistB for WordHold are considerably better than those of all

the conventional features that were analyzed in the previous section on corresponding

devices. Most mean DistB values for desktop are low and lie around 0.1 to 0.3, implying

very less overlap among the PDFs. The highest mean DistB value being for ”that”=0.397.

For tablet, the mean DistB values for all words were extremely low, which is very desir-

able, this implies that, the feature is good for differentiating between the users. All val-

ues are below 0.25 and majority of them are below 0.1. The highest mean DistB value
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Table 3.10: The Inter-User DistB values for WordHold Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.391 0.175 0.4 0.099 0.092 0.081 0.069 0.073 0.046

carefully 0.072 0.064 0.074 - 0.026 0.04 0
data 0.305 0.135 0.323 0.012 0.027 0 0.034 0.05 0

different 0.153 0.077 0.143 0.01 0.024 0 -
first 0.288 0.085 0.29 0.02 0.037 0 -
have 0.221 0.182 0.239 0.028 0.057 0 0.024 0.042 0
lines 0.238 0.151 0.273 0.03 0.048 0 0.038 0.09 0
not 0.186 0.163 0.158 0.058 0.074 0.026 0.036 0.053 0

overlap 0.091 0.036 0.069 0.012 0.028 0 -
phase 0.167 0.075 0.185 0.128 0.148 0.069 0.031 0.048 0

see 0.344 0.138 0.353 0.232 0.14 0.299 0.106 0.058 0.117
that 0.397 0.168 0.443 0.04 0.063 0 0.041 0.056 0
the 0.52 0.14 0.538 0.074 0.081 0.057 0.042 0.07 0

there 0.221 0.09 0.237 0.156 0.139 0.069 0.041 0.087 0
this 0.235 0.142 0.221 0.058 0.069 0.048 0.045 0.057 0.032
two 0.179 0.148 0.154 0.034 0.035 0.033 0.019 0.03 0
type 0.119 0.155 0.035 0.035 0.054 0 -
will 0.193 0.153 0.192 0.035 0.046 0 0.013 0.027 0
with 0.173 0.146 0.139 0.025 0.041 0 0.022 0.035 0

words 0.133 0.104 0.121 0.069 0.107 0 0.005 0.018 0

was for ”see” = 0.232. We observe phone to be similar to tablet with all words having ex-

tremely low DistB values. The least and highest mean DistB values are for ”words”=0.005

and ”see”= 0.106 respectively.

Overall the discriminability that this feature offers is very high. All three devices have

very low values for mean DistB values. These values are especially low on hand-held

devices and this appears to be a very good feature for user separation tasks like identifica-

tion.
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3.8.2 Analysis of proposed feature - AvgFlight1

Description : AvgFlight1 is the average of all Flight1 values occurring within the con-

text of a word. Flight1 value of all Di-graphs in the word are summed and divided by the

number of Di-graphs.

Table 3.11: The Inter-User DistB for AvgFlight1 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.236 0.216 0.18 0.14 0.104 0.122 0.152 0.105 0.127

carefully 0.024 0.037 0 - 0.128 0.04 0.154
data 0.182 0.222 0.071 0.061 0.053 0.069 0.074 0.088 0.061

different 0.186 0.089 0.244 0.058 0.087 0 -
first 0.181 0.1 0.148 0.039 0.061 0 -
have 0.153 0.192 0.078 0.067 0.071 0.062 0.09 0.106 0.069
lines 0.122 0.153 0.036 0.077 0.064 0.069 0.15 0.105 0.143
not 0.094 0.131 0 0.094 0.087 0.075 0.043 0.054 0

overlap 0.046 0.036 0.069 0.037 0.059 0 -
phase 0.186 0.146 0.215 0.069 0.062 0.069 0.205 0.094 0.196

see 0.277 0.216 0.267 0.205 0.067 0.215 0.102 0.104 0.067
that 0.165 0.152 0.105 0.088 0.091 0.065 0.085 0.094 0.067
the 0.403 0.231 0.442 0.123 0.102 0.104 0.098 0.116 0.06

there 0.101 0.205 0 0.056 0.086 0 0.102 0.151 0
this 0.177 0.148 0.176 0.113 0.085 0.101 0.126 0.107 0.114
two 0.131 0.105 0.101 0.045 0.052 0.033 0.018 0.04 0
type 0.192 0.215 0.17 0.08 0.061 0.101 -
will 0.095 0.16 0.033 0.058 0.079 0 0.072 0.086 0.033
with 0.151 0.136 0.125 0.061 0.074 0.067 0.073 0.081 0.038

words 0.117 0.135 0.077 0.046 0.036 0.069 0.059 0.066 0.065

Inference : Table 3.11 presents the mean DistB values for AvgFlight1 on all three de-

vices. The mean values of DistB for AvgFlight1 are better than those of all the conven-

tional features and are comparable to those of WordHold on corresponding devices. Most

mean DistB values for desktop are low and lie around 0.1 to 0.25, implying less overlap

among the PDFs. This feature is more discriminable than the WordHold feature on desk-

top. For tablet again, the mean DistB values for all words were extremely low, which is

very desirable. All values are below 0.25 and majority of them are below 0.1. We observe
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phone to be similar to tablet with all words having extremely low DistB values. Overall

the discriminability that this feature offers is also very high. All three devices have very

low values for mean DistB values. These values are especially low on hand-held devices.

3.8.3 Analysis of proposed feature - AvgFlight2

Description : AvgFlight2 is the average of all Flight2 values occurring within the con-

text of a word. Flight2 value of all Di-graphs in the word are summed and divided by the

number of Di-graphs.

Table 3.12: The Inter-User Distb values for AvgFlight2 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.415 0.21 0.449 0.159 0.117 0.155 0.126 0.105 0.109

carefully 0.083 0.014 0.074 - 0.164 0.071 0.186
data 0.41 0.161 0.417 0.068 0.072 0.067 0.068 0.115 0

different 0.123 0.045 0.124 0.075 0.119 0.03 -
first 0.28 0.152 0.237 0.063 0.086 0 -
have 0.305 0.21 0.322 0.047 0.076 0 0.103 0.141 0
lines 0.247 0.201 0.273 0.114 0.107 0.069 0.043 0.072 0
not 0.173 0.172 0.148 0.083 0.091 0.066 0.044 0.068 0

overlap 0.124 0.046 0.138 0.045 0.077 0 -
phase 0.281 0.09 0.268 0.231 0.144 0.138 0.03 0.046 0

see 0.34 0.184 0.341 0.261 0.128 0.285 0.119 0.105 0.114
that 0.401 0.235 0.414 0 0 0 0.069 0.093 0.031
the 0.562 0.157 0.595 0.116 0.102 0.104 0.089 0.116 0.046

there 0.308 0.213 0.27 0.23 0.12 0.167 0.099 0.144 0
this 0.261 0.168 0.238 0.128 0.096 0.118 0.109 0.107 0.085
two 0.202 0.183 0.215 0.032 0.05 0 0.021 0.033 0
type 0.182 0.152 0.118 0.076 0.066 0.082 -
will 0.181 0.177 0.169 0.063 0.096 0 0.03 0.05 0
with 0.184 0.158 0.151 0.063 0.057 0.071 0.08 0.092 0.035

words 0.186 0.094 0.191 0.145 0.168 0.077 0.038 0.052 0

Inference : Table 3.12 presents the mean DistB values for AvgFlight2 on all three de-

vices. The mean values of DistB for AvgFlight2 are better than those of all the conven-

tional features and are comparable to those of WordHold and the AvgFlight1 on corre-
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sponding devices. Most mean DistB values for desktop are low and lie around 0.1 to

0.4. The highest mean DistB value was for ”the”= 0.562 which seems to be a rare case

as most values are lesser than 0.3. Again, in the case of hand-held devices we observe

very low mean DistB values. For tablets the mean DistB values for all words were ex-

tremely low, which is very desirable, this implies that, the feature is good for differentiat-

ing between the users. All values being below 0.27 and majority of them lying below 0.1.

It is intriguing that the word ”that” had mean DistB value of 0, StD = 0 and median = 0,

meaning no overlaps between any two user PDFs, theoretically providing 100% separa-

tion. We observe phone to be similar to tablet with all words having extremely low DistB

values. Even the highest value is for the word ”carefully”= 0.164, which is low.

We infer that the Discriminability offered by this feature is high. All three devices have

very low values for mean DistB, especially extremely low values on hand-held devices, it

appears to be a very good feature for authentication/verification purposes.

3.8.4 Analysis of proposed feature - AvgFlight3

Description : AvgFlight3 is the average of all Flight3 values occurring within the con-

text of a word. Flight3 value of all Di-graphs in the word are summed and divided by the

number of Di-graphs.

Inference : Table 3.13 presents the mean DistB values for AvgFlight3 on all three de-

vices. The mean values of DistB for AvgFlight3 are better than those of all the conven-

tional features and are comparable to those of WordHold, AvgFlight1 and AvgFlight2 on

corresponding devices. Most mean DistB values for desktop are low and lie around 0.1
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Table 3.13: The Inter-User DistB values for AvgFlight3 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.407 0.201 0.432 0.153 0.12 0.132 0.121 0.098 0.113

carefully 0.057 0.089 0 - 0.128 0.04 0.154
data 0.476 0.127 0.483 0.054 0.061 0.035 0.051 0.089 0

different 0.186 0.067 0.214 0.053 0.098 0 -
first 0.232 0.166 0.194 0.04 0.075 0 -
have 0.283 0.225 0.291 0.081 0.092 0.069 0.171 0.164 0.138
lines 0.299 0.193 0.311 0.061 0.06 0.069 0.07 0.099 0.037
not 0.174 0.189 0.089 0.109 0.105 0.081 0.049 0.064 0

overlap 0.132 0.029 0.138 0.035 0.037 0.033 -
phase 0.219 0.112 0.225 0.171 0.169 0.138 0.132 0.055 0.126

see 0.453 0.152 0.458 0.346 0.105 0.302 0.078 0.116 0.033
that 0.304 0.196 0.371 0.097 0.104 0.065 0.075 0.093 0.033
the 0.504 0.173 0.54 0.134 0.115 0.116 0.088 0.109 0.051

there 0.281 0.145 0.324 0.253 0.111 0.237 0.089 0.15 0
this 0.294 0.189 0.266 0.131 0.113 0.11 0.106 0.107 0.076
two 0.249 0.199 0.225 0.011 0.026 0 0.032 0.043 0
type 0.159 0.171 0.131 0.092 0.065 0.074 -
will 0.264 0.22 0.181 0.054 0.073 0 0.023 0.047 0
with 0.192 0.169 0.173 0.056 0.064 0.061 0.123 0.15 0.077

words 0.173 0.146 0.139 0.112 0.123 0.069 0.028 0.043 0

to 0.4. The highest mean DistB value was for the word ”the”= 0.504, which is among the

very few words with DistB greater than 0.4 for this feature. For tablets the mean DistB

values for all words were extremely low. All values lie below 0.26 except for ”see” and

majority of them lie below 0.1. Again, we observe phone to be similar to tablet with all

words having extremely low DistB values of less than 0.2.

Overall this feature offers high discriminability. All three devices have very low values

for mean DistB. Once again, the values on hand-held devices are much lower than those

of the desktop.
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3.8.5 Analysis of proposed feature - AvgFlight4

Description : AvgFlight4 is the average of all Flight4 values occurring within the con-

text of a word. Flight3 value of all Di-graphs in the word are summed and divided by the

number of Di-graphs.

Table 3.14: The Inter-User mean DistB values for AvgFlight4 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.354 0.169 0.367 0.127 0.099 0.106 0.11 0.104 0.09

carefully 0.123 0.077 0.074 - 0.166 0.036 0.154
data 0.18 0.186 0.128 0.037 0.059 0 0.064 0.09 0

different 0.024 0.037 0 0.111 0.125 0.065 -
first 0.215 0.124 0.195 0.05 0.057 0 -
have 0.228 0.133 0.182 0.047 0.068 0 0.057 0.076 0
lines 0.31 0.202 0.272 0.085 0.078 0.069 0.047 0.072 0
not 0.213 0.161 0.203 0.076 0.075 0.068 0.045 0.067 0

overlap 0.148 0.136 0.138 0.075 0.111 0 -
phase 0.162 0.135 0.146 0.069 0.107 0 0 0 0

see 0.289 0.157 0.297 0.19 0.119 0.178 0.073 0.073 0.078
that 0.31 0.185 0.267 0.113 0.073 0.067 0.037 0.039 0.031
the 0.506 0.139 0.512 0.099 0.091 0.072 0.069 0.099 0

there 0.287 0.166 0.244 0.023 0.036 0 0.1 0.11 0.061
this 0.322 0.117 0.331 0.098 0.076 0.098 0.089 0.091 0.061
two 0.191 0.136 0.194 0.057 0.087 0 0.032 0.034 0.03
type 0.269 0.176 0.281 0.069 0.085 0 -
will 0.293 0.112 0.281 0.053 0.059 0.033 0.055 0.08 0
with 0.212 0.132 0.202 0.073 0.061 0.074 0.097 0.093 0.076

words 0.142 0.076 0.113 0.095 0.034 0.077 0.025 0.036 0

Inference : Table 3.14 presents the mean DistB values for AvgFlight4 on all three de-

vices. The mean values of DistB for AvgFlight4 are better than those of all the con-

ventional features and are comparable to those of WordHold, AvgFlight1, AvgFlight2,

AvgFlight3 on corresponding devices. For desktop most mean DistB values are low and

lie around 0.1 to 0.4. For tablet and phone, the mean DistB values for all words were ex-

tremely low, which is very desirable. For tablet, all values lie below 0.2 and majority of

them lie below 0.1. For phone all words have extremely low DistB values of less than
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0.17. We again came across a peculiar case on phone, where for the word phase, theoret-

ically mean of 0, StD = 0 and median = 0 implies no overlap between PDFs of any two

users.

We infer that the feature, AvgFlight4, has high discriminability. All devices have very low

values for mean DistB and extremely low values on hand-held devices.

3.8.6 Analysis of proposed feature - AvgKeyHold

Description : AvgKeyHold is the average of all KeyHold values occurring within the con-

text of a word. KeyHold value of all Uni-graphs in the word are summed and divided by

the number of Uni-graphs.

Table 3.15: The Inter-User DistB values for AvgKeyHold Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.281 0.247 0.233 0.31 0.17 0.316 0.25 0.182 0.247

carefully 0 0 0 - 0.382 0.209 0.371
data 0.143 0.159 0.128 0.145 0.155 0.096 0.259 0.153 0.242

different 0.234 0.179 0.172 0.181 0.21 0.101 -
first 0.252 0.177 0.253 0.264 0.189 0.253 -
have 0.231 0.192 0.176 0.182 0.17 0.139 0.198 0.146 0.211
lines 0.203 0.217 0.139 0.233 0.11 0.265 0.164 0.172 0.074
not 0.238 0.172 0.214 0.291 0.178 0.296 0.138 0.153 0.072

overlap 0.208 0.116 0.228 0.136 0.116 0.151 -
phase 0.224 0.197 0.283 0.209 0.167 0.264 0.179 0.23 0.063

see 0.3 0.223 0.296 0.255 0.132 0.273 0.207 0.081 0.209
that 0.218 0.272 0.074 0.167 0.079 0.207 0.212 0.091 0.229
the 0.44 0.243 0.439 0.244 0.161 0.251 0.242 0.179 0.242

there 0.118 0.192 0.044 0.075 0.069 0.069 0.359 0.169 0.409
this 0.29 0.195 0.282 0.29 0.159 0.292 0.256 0.182 0.262
two 0.264 0.308 0.077 0.122 0.137 0.067 0.198 0.083 0.217
type 0.159 0.15 0.135 0.166 0.084 0.162 -
will 0.248 0.238 0.211 0.161 0.111 0.143 0.268 0.137 0.27
with 0.277 0.218 0.259 0.165 0.172 0.105 0.272 0.095 0.242

words 0.146 0.134 0.126 0.026 0.04 0 0.228 0.186 0.2
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Inference : Table 3.15 presents the mean DistB values for AvgKeyHold. The mean val-

ues of DistB for AvgKeyHold are better than those of all the conventional features but

are inferior to those of WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4

on corresponding devices, except for desktop where they are similar to them. Most mean

DistB values for desktop are low and lie around 0.1 to 0.3, implying less overlap among

the PDFs. The word ”carefully” has a mean, std and median DistB value of 0, there-

fore theoretically this feature should provide 100% separation among users. For tablet

the mean DistB values are low but are slightly higher than their corresponding values in

WordHold, AvgFlight1 through AvgFlight4. All values lie below 0.32 and majority of

them are below 0.2. The least and the highest mean DistB value are for ”there”=0.075

and ”are” = 0.31 respectively. With phone we make similar observations as that of tablet

DistB values and all values are less than 0.39. The least and highest values were for the

words ”not”=0.138 and ”carefully”= 0.382 respectively. Overall, AvgKeyHold is not as

discriminable as WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4 and

does not provide much improvement from the conventional features.

3.8.7 Analysis of proposed feature - StdFlight1

Description : StdFlight1 is the standard deviation of all Flight1 values occurring within

the context of a word.

Inference : Table 3.16 presents the mean DistB values for StdFlight1 on all three de-

vices. Similar to the AvgKeyHold mean values of DistB for Std-Word-Flight1 are better

than those of all the conventional features but are inferior to those of WordHold, AvgFlight1,
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Table 3.16: The Inter-User DistB values for StdFlight1 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.511 0.217 0.531 0.3 0.127 0.297 0.205 0.112 0.213

carefully 0.049 0.038 0.074 - 0.179 0.04 0.154
data 0.195 0.187 0.101 0.095 0.059 0.091 0.126 0.136 0.077

different 0.143 0 0.143 0.134 0.114 0.154 -
first 0.171 0.121 0.164 0.094 0.103 0.074 -
have 0.288 0.187 0.312 0.115 0.108 0.072 0.129 0.088 0.113
lines 0.112 0.12 0.073 0.13 0.103 0.139 0.197 0.074 0.199
not 0.405 0.289 0.475 0.229 0.137 0.215 0.138 0.116 0.108

overlap 0.023 0.036 0 0.024 0.035 0 -
phase 0.059 0.065 0.068 0.218 0.073 0.207 0.232 0.175 0.148

see 0.448 0.203 0.499 0.465 0.154 0.476 0.226 0.089 0.199
that 0.268 0.123 0.257 0.268 0.124 0.194 0.147 0.123 0.146
the 0.585 0.17 0.615 0.233 0.143 0.22 0.227 0.127 0.224

there 0.168 0.161 0.148 0.069 0.062 0.069 0.172 0.113 0.198
this 0.332 0.142 0.367 0.186 0.109 0.177 0.198 0.126 0.184
two 0.349 0.175 0.414 0.183 0.092 0.201 0.116 0.092 0.088
type 0.177 0.101 0.175 0.075 0.067 0.07 -
will 0.146 0.118 0.152 0.065 0.07 0.072 0.179 0.138 0.154
with 0.158 0.127 0.137 0.095 0.08 0.074 0.118 0.145 0.087

words 0.052 0.057 0.036 0.023 0.036 0 0.082 0.076 0.072

AvgFlight2, AvgFlight3 and AvgFlight4 on corresponding devices, except for desktop

where they are similar to them. Most mean DistB values for desktop lie around 0.1 to

0.6, implying considerable overlap among the PDFs. For tablet the mean DistB values

are low but are slightly higher than their corresponding values in WordHold, AvgFlight1

through AvgFlight4. All values are below 0.30 except for ”see”, and majority of them lie

below 0.25. With phone we make similar observations as that of tablet DistB values, all

values are less than 0.25. We can infer that StdFlight1 is not as discriminable as Word-

Hold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4.
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3.8.8 Analysis of proposed feature - StdFlight2

Description : StdFlight2 is the standard deviation of all Flight2 values occurring within

the context of a word.

Table 3.17: The Inter-User DistB values for StdFlight2 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.454 0.187 0.471 0.258 0.11 0.26 0.23 0.128 0.218

carefully 0.049 0.077 0 - 0.051 0.04 0.077
data 0.195 0.163 0.161 0.102 0.172 0 0.145 0.134 0.154

different 0.095 0.037 0.071 0.155 0.094 0.201 -
first 0.221 0.127 0.181 0.09 0.105 0.064 -
have 0.184 0.141 0.181 0.13 0.081 0.129 0.117 0.102 0.072
lines 0.115 0.123 0.088 0.093 0.079 0.077 0.133 0.096 0.129
not 0.362 0.249 0.358 0.189 0.121 0.171 0.125 0.101 0.113

overlap 0.045 0.035 0.067 0.067 0.06 0.07 -
phase 0.049 0.056 0.033 0.158 0.074 0.167 0.223 0.082 0.222

see 0.475 0.218 0.507 0.242 0.084 0.22 0.115 0.089 0.105
that 0.288 0.106 0.253 0.118 0.085 0.065 0.15 0.119 0.161
the 0.608 0.14 0.624 0.23 0.125 0.228 0.215 0.14 0.195

there 0.213 0.081 0.231 0.164 0.082 0.139 0.199 0.121 0.189
this 0.297 0.113 0.28 0.179 0.098 0.176 0.186 0.115 0.184
two 0.33 0.155 0.327 0.074 0.051 0.069 0.084 0.124 0
type 0.144 0.107 0.139 0.063 0.057 0.07 -
will 0.215 0.108 0.23 0.085 0.08 0.069 0.159 0.17 0.072
with 0.202 0.113 0.196 0.115 0.091 0.134 0.125 0.13 0.086

words 0.1 0.091 0.088 0.118 0.032 0.139 0.117 0.108 0.077

Inference : Table 3.17 presents the mean DistB values for StdFlight2 on all three de-

vices. The mean values of DistB for Std-Word-Flight2 are better than those of all the

conventional features but are inferior to those of WordHold, AvgFlight1, AvgFlight2,

AvgFlight3 and AvgFlight4 on corresponding devices, but for desktop they are similar to

them. Most mean DistB values for desktop lie around 0.1 to 0.48, implying considerable

overlap among the PDFs. For tablet the mean DistB values are low but are slightly higher

than their corresponding values in WordHold, AvgFlight1 through AvgFlightt4. All values

are below 0.26, and majority of them lying below 0.2. With phone we make similar obser-
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vations as that of tablet DistB values all of which are less than 0.24. Discriminability is

not as high as WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4 using this

feature. This feature also does not provide an improvement over conventional features.

3.8.9 Analysis of proposed feature - StdFlight3

Description : StdFlight3 is the standard deviation of all Flight3 values occurring within

the context of a word.

Table 3.18: The Inter-User DistB values for StdFlight3 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.59 0.135 0.577 0.287 0.115 0.287 0.194 0.101 0.193

carefully 0.074 0.066 0.074 - 0.149 0.121 0.186
data 0.282 0.141 0.295 0.068 0.118 0 0.108 0.096 0.109

different 0.071 0.064 0.071 0.185 0.087 0.164 -
first 0.221 0.055 0.216 0.104 0.078 0.081 -
have 0.269 0.168 0.226 0.149 0.071 0.153 0.111 0.101 0.082
lines 0.236 0.114 0.206 0.116 0.097 0.098 0.179 0.04 0.175
not 0.373 0.174 0.356 0.213 0.121 0.214 0.109 0.089 0.109

overlap 0.023 0.036 0 0.087 0.095 0.067 -
phase 0.104 0.074 0.109 0.093 0.035 0.071 0.133 0.103 0.189

see 0.544 0.104 0.554 0.322 0.095 0.297 0.157 0.105 0.155
that 0.277 0.11 0.253 0.166 0.079 0.2 0.145 0.123 0.139
the 0.613 0.138 0.633 0.285 0.123 0.283 0.236 0.118 0.218

there 0.166 0.063 0.166 0.141 0.057 0.167 0.159 0.115 0.141
this 0.371 0.123 0.384 0.191 0.11 0.182 0.22 0.128 0.217
two 0.323 0.156 0.322 0.186 0.062 0.161 0.086 0.099 0.073
type 0.08 0.048 0.07 0.127 0.052 0.121 -
will 0.185 0.135 0.152 0.061 0.158 0 0.23 0.173 0.182
with 0.198 0.115 0.173 0.136 0.123 0.092 0.104 0.094 0.077

words 0.082 0.071 0.074 0.195 0.087 0.139 0.078 0.095 0.065

Inference : Table 3.18 presents the mean DistB values for StdFlight3 on all three de-

vices. The mean values of DistB for Std-Word-Flight3 are better than those of all the

conventional features but are inferior to those of WordHold, AvgFlight1, AvgFlight2,

AvgFlight3 and AvgFlight4 on corresponding devices, but again for desktop they are sim-
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ilar. Most mean DistB values for desktop lie around 0.1 to 0.4, implying considerable

overlap among the PDFs. For tablet the mean DistB values are low but are slightly higher

than their corresponding values in WordHold, AvgFlight1 through AvgFlight4. All val-

ues lie below 0.35, and majority of them are below 0.3, The least and the highest mean

DistB values were for ”will”=0.061 and ”see” = 0.322 respectively. The values for mean

DistB are also low for phone. All values lie below 0.24 The least mean DistB value was

for ”words”=0.078 and highest for ”the”= 0.236. Overall discriminability is not as high as

WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4 using this feature. Does

not provide desirable improvement from the conventional features.

3.8.10 Analysis of proposed feature - StdFlight4

Description : StdFlight4 is the standard deviation of all Flight4 values occurring within

the context of a word.

Inference : Table 3.19 presents the mean DistB values for StdFlight4. The mean val-

ues of DistB for Std-Word-Flight4 are also better than those of all the conventional fea-

tures but are inferior to those of WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and

AvgFlight4 on corresponding devices, but again for desktop they are similar. Most mean

DistB values for desktop lie around 0.1 to 0.5, implying considerable overlap among

the PDFs. The least and the highest mean DistB values are for ”carefully”=0.025 and

”the”=0.67 respectively. For tablet the mean DistB values are low, but are slightly higher

than their corresponding values in WordHold, AvgFlight1 through AvgFlight4. All val-

ues being below 0.35, and majority of them lying below 0.3, least value for ”data”=0.05
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Table 3.19: The Inter-User DistB values for StdFlight4 Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.594 0.13 0.623 0.285 0.131 0.269 0.218 0.113 0.196

carefully 0.025 0.038 0 - 0.205 0.04 0.231
data 0.202 0.099 0.202 0.05 0.086 0 0.139 0.132 0.101

different 0.129 0.046 0.143 0.208 0.149 0.181 -
first 0.179 0.095 0.151 0.087 0.074 0.077 -
have 0.223 0.15 0.191 0.145 0.078 0.143 0.136 0.105 0.148
lines 0.111 0.086 0.103 0.115 0.104 0.098 0.153 0.128 0.111
not 0.437 0.143 0.42 0.237 0.143 0.227 0.123 0.102 0.099

overlap 0.033 0.05 0 0.091 0.09 0.068 -
phase 0.066 0.071 0.069 0.103 0.053 0.069 0.146 0.113 0.215

see 0.573 0.102 0.569 0.292 0.129 0.274 0.139 0.09 0.147
that 0.364 0.137 0.316 0.15 0.122 0.182 0.131 0.072 0.14
the 0.67 0.131 0.685 0.236 0.147 0.224 0.27 0.135 0.275

there 0.135 0.044 0.137 0.182 0.045 0.171 0.223 0.147 0.206
this 0.331 0.132 0.308 0.183 0.107 0.175 0.211 0.129 0.206
two 0.354 0.146 0.319 0.249 0.078 0.252 0.131 0.083 0.136
type 0.294 0.104 0.27 0.098 0.098 0.088 -
will 0.208 0.127 0.192 0.066 0.123 0 0.202 0.125 0.214
with 0.2 0.126 0.161 0.137 0.106 0.117 0.089 0.092 0.076

words 0.096 0.061 0.073 0.117 0.029 0.098 0.085 0.075 0.072

and highest for ”are” = 0.285. With phone we make similar observations as that of tablet

DistB values. All DistB values are less than 0.28. The least and highest mean values

are for ”words”=0.085 and ”the”= 0.27 respectively. We infer that StdFlight4 is not as

discriminable as WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4. This

feature does not provide improvement over the conventional features.

3.8.11 Analysis of proposed feature - StdKeyHold

Description : StdKeyHold is the standard deviation of all KeyHold values occurring within

the context of a word.

Inference : Table 3.20 presents the mean DistB values for StdKeyHold on the three de-

vices. The mean values of DistB for StdKeyHold are similar to those of all the conven-
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Table 3.20: The Inter-User DistB values for StdKeyHold Distributions across all devices.
Device Desktop Tablet Phone
Word Mean StD Median Mean StD Median Mean StD Median
are 0.497 0.183 0.495 0.507 0.152 0.508 0.454 0.165 0.479

carefully 0.225 0.062 0.244 - 0.245 0.283 0.133
data 0.289 0.143 0.283 0.501 0.133 0.524 0.398 0.156 0.397

different 0.291 0.267 0.172 0.355 0.185 0.367 -
first 0.455 0.086 0.428 0.517 0.121 0.499 -
have 0.277 0.121 0.286 0.31 0.183 0.319 0.394 0.223 0.452
lines 0.19 0.131 0.212 0.413 0.116 0.416 0.265 0.185 0.3
not 0.344 0.235 0.405 0.501 0.165 0.529 0.381 0.109 0.399

overlap 0.371 0.141 0.345 0.331 0.255 0.273 -
phase 0.312 0.206 0.369 0.266 0.154 0.338 0.477 0.086 0.456

see 0.564 0.17 0.596 0.376 0.134 0.347 0.478 0.103 0.465
that 0.427 0.138 0.448 0.308 0.126 0.378 0.494 0.116 0.497
the 0.635 0.124 0.634 0.477 0.147 0.485 0.412 0.135 0.425

there 0.283 0.103 0.271 0.193 0.081 0.237 0.509 0.094 0.521
this 0.426 0.122 0.436 0.509 0.125 0.527 0.464 0.186 0.494
two 0.632 0.166 0.644 0.46 0.155 0.481 0.367 0.068 0.372
type 0.262 0.124 0.241 0.356 0.16 0.346 -
will 0.222 0.215 0.085 0.378 0.147 0.324 0.323 0.179 0.335
with 0.335 0.176 0.351 0.394 0.137 0.387 0.307 0.234 0.329

words 0.255 0.095 0.26 0.371 0.061 0.392 0.435 0.119 0.445

tional features and are much inferior to those of all other proposed features on corre-

sponding devices, but again for desktop they are similar to conventional feature values.

Most mean DistB values for desktop lie around 0.2 to 0.5, which implies lesser separa-

bility. For tablet the mean DistB values are high, all values are above 0.26, and majority

of them lying above 0.4. The least mean DistB value was for ”phase” = 0.26 and high-

est for ”first” = 0.517. This implies that this feature offers very less discriminability. With

phone we make similar observations as that of tablet DistB values, all values lie above

0.24. The least mean DistB value is for ”carefully”=0.245. Overall, discriminability is

low using this feature. All values on all devices suggest high overlaps in the PDFs, users

are least separable using this among all the proposed features. Very few values on any de-
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vice are desirable, and majority are high, therefore this feature is not a good feature for

authentication/verification purposes.

We illustrate the discriminability of our proposed features using CDFs of DistB values as

shown in Figure 3.5. The CDFs help us compare the separability of users, by each feature

on all devices. These are the observations for each feature in comparison to conventional

features and other proposed features. Figure 3.5a shows the CDF for WordHold. It ap-

pears to have higher discriminability in desktop about 60% of the samples having less

than 0.4 DistB and about 90% of them being less than 0.6 DistB. On phone and tablet

this feature is very good as almost 50% and 40% samples have 0 DistB on phone and

tablet respectively. 100% of the samples have below 0.35 DistB which implies very good

separation. We consider this feature to be evaluated in the next phase. Figure 3.5b shows

the CDF for AvgFlight1. This shows an improved discriminability in desktop 60% of the

samples have less than 0.3 DistB and around 25% at 0. We also observe that DistB of

0.6 covers 90% of the samples. On phone and tablet this feature appears to be very good,

as almost 35% and 25% of the samples have 0 DistB on phone and tablet respectively

and 100% below 0.4 which implies very good separation. This feature is considered for

evaluation in the next phase.

Figure 3.5c shows the CDF for AvgFlight2. We observe that it is slightly less discrimi-

native than WordHold in desktop, approximately 50% of the samples have less than 0.4

DistB and 80% have less than 0.6. On phone and tablet this feature is very good, as al-

most 40% and 30% samples have 0 DistB on phone and tablet respectively. Approxi-

mately 100% are below 0.4 DistB which implies very good separation. We considered

this feature for evaluation in the next phase. Figure 3.5d shows the CDF for AvgFlight3.
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(a) WordHold (b) AvgFlight1 (c) AvgFlight2

(d) AvgFlight3 (e) AvgFlight4 (f) StdFlight1

(g) StdFlight2 (h) StdFlight3 (i) StdFlight4

(j) AvgKeyHold (k) StdKeyHold (l) Legend
Fig. 3.5.: Comparing the Bhattacharyya distances of PDFs for all proposed context-sensitive

features on desktop, tablet and phone.

Again, this feature is slightly less discriminative than WordHold in desktop approximately

50% of all samples have less than 0.4 DistB and about 80% have less than 0.6. On phone

and tablet this feature is very good, as almost 40% and 30% of samples have 0 DistB on
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phone and tablet respectively. Approximately 100% below 0.4 DistB which implies very

good separation. Feature is considered for evaluation in the next phase. Figure 3.5e shows

that the CDF for AvgFlight4 is slightly more discriminative than AvgFlight3 with approx-

imately 60% samples having less than 0.4 DistB and 80% less than 0.6. On phone and

tablet this feature has almost 40% and 30% of samples with 0 DistB on phone and tablet

respectively and 100% below 0.4 DistB which implies very good separation. We will be

considering this feature for evaluation in the next phase. Figure 3.5f shows the CDF for

StdFlight1, For desktop about 60% samples have less than 0.5 DistB and 80% less than

0.7 shows the feature is not very discriminative. On phone and tablet this feature is bet-

ter than desktop, but not better than the other features discussed for phone and desktop.

About 60% samples have below 0.3 and 90% have below 0.4 DistB, not as good as 3.5a

to 3.5e. We discard this proposed feature on grounds of not being discriminative enough.

Figure 3.5g shows the CDF for StdFlight2 very similar to StdFlight1, for desktop about

60% of the values for DistB being less than 0.5 and about 80% of them being less than

0.7, implies that the feature is not very discriminative. On phone and tablet this feature is

better than desktop, but not better than the other features discussed for phone and desk-

top. About 60% of the samples have below 0.3 DistB and 90% have below 0.4 which is

again not as good as 3.5a to 3.5e. We discard this feature too, as not being discriminative

enough. Figure 3.5h shows the CDF for StdFlight3. We observe that for desktop, 60% of

the samples have less than 0.6 DistB and 80% have less than 0.7, which is not very dis-

criminative. On phone and tablet this feature is better than desktop, but still have 60% of

the DistB values below 0.3 and 90% below 0.4, which is not as good as 3.5a to 3.5e. We

discard this feature as it does not offer improvement over conventional features. Figure
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3.5i shows the CDF for StdFlight4 very similar to StdFlight3 , For desktop 60% values

for DistB are less than 0.6 DistB and 80% less than 0.7, not very discriminative. On

phone and tablet this feature is better than desktop, but not better than the other features

discussed for phone and desktop. 60% DistB values below 0.3 and 90% below 0.4, which

is not as good as 3.5a to 3.5e. Feature is not considered for evaluation.

Figure 3.5j shows the CDF for AvgKeyHold slightly better values for desktop as about

60% of the samples have less than 0.4 DistB and about 80% have less than 0.55. There

seems to be marginal improvement compared to other proposed features. On phone and

tablet this feature slightly better than desktop, but not better than the features we already

discussed for phone and desktop. About 60% of the DistB values are below 0.3 and 90%

are below 0.5 which is not as good as 3.5a to 3.5e. Feature is not considered for eval-

uation. Figure 3.5k shows the CDF for StdKeyHold and we observe that it is the least

discriminative among proposed features. For desktop, about 60% of the DistB values

are less than 0.6 and covers only 80% of the samples at a high DistB value of 0.7. This

clearly implies that it is not very discriminative. Even in case of phone and tablet, 60%

of. samples have values below 0.6 and 90% have DistB values below 0.7, which is not

discriminative. This feature is not considered for evaluation.

Inference - Proposed Features

We find that these features separate user keystroke data better than the conventional fea-

tures. We also eliminate 6 of the proposed 11 features. Among the 11 proposed features:

WordHold, AvgFlight1, AvgFlight2, AvgFlight3, AvgFlight4, StdFlight1, StdFlight2, Std-
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Flight3, StdFlight4, AvgKeyHold and StdKeyHold. We find the most discriminative fea-

tures to be: WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4. We use this

subset of features for further evaluation, to build classifiers and see if these features can

provide competitive accuracies for user identification, which is discussed in the next sec-

tion.

3.9 Evaluation of proposed features

From the analysis on the user separability of both classes of features (Conventional and

Proposed). It is clear that the proposed features offered higher separability. We further

selected a subset of the proposed features which clearly had higher discriminative power

like WordHold, AvgFlight1, AvgFlight2, AvgFlight3 and AvgFlight4 and discarded the

rest of our proposed features. We tested these features by building classifiers based on

them. We are using similar methodology as used by Sim and Janakiraman [163], [79].

To evaluate our proposed features and to measure the improvement in user identification

achieved with them, we build classifiers with both, conventional features and proposed

features. We then compare their results for the task of user identification. The underly-

ing principle of the classifier is same for both the cases, the known histograms Hk of each

person is compared to the histograms built from the input text Hi , We again use Bhat-

tacharyya distance as described before, but this time we are looking for maximum overlap

(max value between 0 to 1) between the two histograms. We take the average histogram

overlap from all the features and identify the person as the one with the highest overlap.

For conventional features we built classifiers for each of the digraphs discussed earlier.
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For a digraph with characters di and di+1 we use the argument maximize classifier repre-

sented by equation 3.2, as our classifier to identify the user.

Argument maximize classifier using conventional features for a digraph di di+1:

argmax
u

Avg(DistB(Hk diKeyHold, Hi diKeyHold),

DistB(Hk di+1KeyHold, Hi di+1KeyHold),

DistB(Hk didi+1Flight1, Hi didi+1Flight1),

DistB(Hk didi+1Flight2, Hi didi+1Flight2),

DistB(Hk didi+1Flight3, Hi didi+1Flight3),

DistB(Hk didi+1Flight4, Hi didi+1Flight4)).

(3.2)

Argument maximize classifier using proposed features for a word X:

argmax
u

Avg(DistB(Hk XWordHold, Hi XWordHold),

DistB(Hk XAvg−Flight1, Hi XAvgF light1),

DistB(Hk XAvg−Flight2, Hi XAvg−Flight2),

DistB(Hk XAvg−Flight3, Hi XAvg−Flight3),

DistB(Hk XAvg−Flight4, Hi XAvg−Flight4)).

(3.3)

For the proposed features we used a argument maximize classifier represented by equa-

tion 3.3 as our classifier for a word X . Using the most common unigraphs and digraphs

discussed in the previous sections, we built 11 classifiers that used the conventional fea-

tures and 20 classifiers, one for each word considered in previous section which used our
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proposed features. We used a Synthetic Minority Over-sampling Technique (SMOTE),

as described in Chawla et al. [40], to balance and oversample our data when needed, and

use 10-fold cross validation and report the mean and standard deviation of the accuracies

of our classifiers. As our data was balanced and we had 20 users, the chance of random

guess identification was 0.05. Tables 3.21 and 3.22 present the accuracies of all the clas-

sifiers. In case of the conventional features, we can observe low accuracies in most cases.

Except for a few digraphs in case of hand held devices ((space,i), (space,a), (space,s)), ac-

curacies range from 45% to 75%, which is not very desirable. The accuracy of classifiers

are extremely low in case of the desktop with conventional features, with the highest ac-

curacy being 68% for the digraph (space,i). Whereas, while using the classifiers with pro-

posed subset of features we see that most accuracies lie in the range of 87% to 97%. With

desktop we found that classifiers for the words: ”data”, ”first”, ”have”, ”that” had accu-

racies of over 90%, while many others performed fairly well with accuracies above 85%,

even the worst performer: ”type” was 73.2% accurate. Both hand-held devices have high

accuracies for a majority of the words selected. On tablet the classifiers built for words:

”see”, ”that”, ”there”, ”with” had accuracies of 95% and above, lowest accuracies was for

the word ”two” at 75.3%. On phone the classifiers built for words: ”data”, ”have”, ”see”,

”this”, ”with” had accuracies of above 93%. The lowest accuracy on phone was for the

classifier of the word ”phase” at 85%.
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Table 3.21: Classifier accuracies for the conventional feature based classifiers in our experiment.
Device Desktop Tablet Phone
Digraph Mean Std. dev. Mean Std. dev. Mean Std. dev.

(’space’, ’a’) 0.63 0.04 0.76 0.12 0.8 0.097
(’space’, ’i’) 0.68 0.04 0.81 0.163 0.83 0.08
(’space’, ’s’) 0.58 0.053 0.79 0.091 0.8 0.105
(’space’, ’t’) 0.42 0.07 0.69 0.053 0.76 0.093
(’e’, ’space’) 0.44 0.032 0.59 0.06 0.67 0.075

(’e’, ’r’) 0.55 0.035 0.66 0.055 0.7 0.064
(’e’, ’s’) 0.52 0.071 0.62 0.087 0.68 0.077
(’o’, ’n’) 0.69 0.045 0.67 0.044 0.72 0.069
(’r’, ’e’) 0.53 0.06 0.58 0.053 0.59 0.062

(’t’, ’space’) 0.56 0.063 0.62 0.08 0.71 0.092
(’t’, ’h’) 0.49 0.03 0.58 0.035 0.66 0.056

Table 3.22: Classifier accuracies for the proposed feature based classifiers in our experiment.
Device Desktop Tablet Phone
Word Mean Std. dev. Mean Std. dev. Mean Std. dev.
are 0.85 0.071 0.87 0.056 0.91 0.054

carefully 0.86 0.063 - - 0.89 0.051
data 0.93 0.056 0.915 0.055 0.975 0.034

different 0.88 0.046 0.875 0.06 - -
first 0.93 0.033 0.84 0.073 - -
have 0.905 0.035 0.91 0.07 0.963 0.034
lines 0.875 0.046 0.85 0.036 0.91 0.044
not 0.895 0.057 0.91 0.049 0.915 0.05

overlap 0.875 0.06 0.868 0.049 - -
phase 0.875 0.068 0.84 0.03 0.859 0.06
see 0.895 0.035 0.96 0.037 0.935 0.039
that 0.905 0.072 0.95 0.039 0.911 0.053
the 0.785 0.045 0.865 0.055 0.932 0.041

there 0.895 0.052 0.963 0.034 0.911 0.075
this 0.889 0.05 0.875 0.068 0.945 0.042
two 0.86 0.037 0.753 0.058 0.865 0.059
type 0.732 0.055 0.821 0.042 - -
will 0.885 0.071 0.87 0.046 0.889 0.064
with 0.89 0.07 0.95 0.039 0.935 0.055

words 0.868 0.063 0.86 0.062 0.863 0.059
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3.10 Insights drawn from the analysis on proposed features

We show that the conventional features have lower discriminative power between users

when compared to the proposed context sensitive features, this leads to many more impor-

tant and intriguing questions;

3.10.1 Insight 1: Why do the proposed features perform better than the conven-

tional features?

To answer this question, we use the analysis of Entropy, as a measure of disorder in data,

and explain why proposed features tend to perform better than the conventional features.

To be more precise, the information gain, which is a measure of the decrease in disorder

that is achieved by partitioning the data is the key concept being exploited with the help

of our proposed features. Let x be a unigraph or a digraph. In the conventional approach,

features values associated with x (Keyhold if x is a unigraph, flight1 through flight4

if x is a digraph) are grouped together irrespective of context. Let ~dx represent vector of

feature values extracted for x from text sample. The entropy of ~dx can be expressed as:

E( ~dx) = −
k∑

i=1

pi log2 (pi), (3.4)

Where i = 1 to k are the number of bins into which ~dx is split and pi is the probabil-

ity of the feature value of x being in bin i. Practically, the values forming ~dx come from

different contexts or words as described in previous sections. Let ~w represent the vector

of different words from which the values of ~dx are extracted. Therefore, if ~dx were to be
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partitioned based on the context from which its values come from, the entropy of such

partition can be expressed as:

E( ~dx, ~w) =
m∑
j=1

(
nj

n
x E( ~dxj

)

)
, (3.5)

Where j = 1 to m are the number of different words that values of x are extracted from.

Essentially, equation (3.5) gives us the sum of the weighted average of the entropy from

all the partitions. The information gained by performing this partition or in other words,

the reduction in disorder achieved by the partitioning can be expressed as:

I( ~dx, ~w) = E( ~dx) − E( ~dx, ~w). (3.6)

Therefore, theoretically, I( ~dx, ~w) ≥ 0, but, practically, the cases where I( ~dx, ~w) = 0

can only occur if ~w partitions ~dx into partitions with the same probabilities as ~dx. Since

~w inherently consists of only high frequency words, the chances of E( ~dx) = E( ~dx, ~w)

are not practical and hence I( ~dx, ~w) = 0 is highly unlikely. Therefore, however small

the difference between E( ~dx) and E( ~dx, ~w) maybe, it is highly likely to lead to a positive

information gain, or reduction of disorder in data, which in our case are the feature values.

Reduction in disorder means the partitions have much more homogeneous values than

when taken without the partition, which intuitively should be better for classification or

identification. We observed that entropy of the feature values when extracted with context

restrictions, were much lower than a global extraction approach. Because I( ~dx, ~w) ≥ 0,
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and the case of I( ~dx, ~w) = 0 is impractical, this answers our question about why the

proposed features work better than the conventional features.

Table 3.23: Example from our desktop dataset: average feature values for a randomly chosen user
shows the variations in the average feature values for the character ”h” and digraph ”ha”

depending on the context in which they appear. All values are in milliseconds.
Avg. KeyHold

time of ”h”
Avg. [Flight1, Flight2, Flight3, Flight4]

time of ”ha”
Over the entire sample 183.45 [46.6, 270.2, 241.2, 470.0]

Over all occurrences of ”that” 167.20 [12.4 , 230.0, 201.3, 389.5]
Over all occurrences of ”have” 189.15 [44.7, 279.6, 252.0, 461.8]

An example of how the feature values vary with respect to context is shown in Table 3.23

where we chose a random user from our dataset and calculated the average feature values

for character ”h” and digraph ”ha”, first, over all occurrences, then, only over all occur-

rences in the words ”that” and ”have” separately. When computed overall occurrences,

the average key-hold time for ”h” was about183.5ms which is much higher than key-hold

time 167.2ms, in all occurrences of ”that”. The average flight1 values of ”ha” for all oc-

currences of ”that” and ”have” were 12.4ms and 44.7ms respectively. Similar distinction

can be found in all feature values as shown in Table 3.23, it is representative of a majority

of the dataset for all users. From this example, it is clear that context affects the feature

values.

3.10.2 Insight 2: Why are the results and the performance of proposed features

better in case of hand-held devices when compared to the desktop?

To help answer this question we look for inherent differences between the devices, their

usage and the data collected on them. There are several reasons that we suspect, might
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lead to the difference in the efficiency of the features. First, the very nature of the usage

of these devices are different. As shown in Figure 3.6a, a typical keyboard when used on

a table allows only two degrees of freedom, forward/backward and left/right. In compari-

son, a mobile phone offers six degrees of freedom; forward/backward, left/right, upward/-

downward, yaw, pitch and roll as shown in Figure 3.6b. This can affect the style of using

a keyboard and hence bring in some differences in data collected from these families of

devices.

Another reason for this difference in effectiveness of features, we suspect, is the consis-

tency in the typing speeds. We found that a majority of the users had larger standard devi-

ations in the time required to type a complete word on the desktop when compared to the

hand-held devices. In particular, our proposed feature ”WordHold” reflected this behav-

ior for most of the users. The standard deviation for WordHold of a word on the hand-

held devices was about 3/4th that of the standard deviation of WordHold of the same

word on desktop typed by the same user. We also observed that the KeyHold duration for

”space” between words and the Flight1 duration from ”space” to the first letter of words,

were more densely clustered in case of the desktop when compared to the hand-held de-

vices. On hand-held devices, this behavior gave the impression of small uniform bursts of

typing activity(word) followed by nonuniform pauses(space). In contrast typing behav-

ior on desktops appeared to be nonuniform throughout. As all users in our study owned
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(a) Degrees of freedom while typing on a desktop. (b) Degrees of freedom while typing on a phone.

Fig. 3.6.: Typically, a desktop keyboard offers only two degrees of freedom; forward/backward
and left/right. As a typical phone can be held by its user in any comfortable posture, it offers six

degrees of freedom; forward/backward, left/right, upward/downward, yaw, pitch and roll as shown
in these figures.

smart-phones and indicated that their usage of phones was much higher than their usage

of desktops, we posit that it leads to these typing patterns on different devices.

3.10.3 Insight 3: What word-based factors might impact the user identification

performance of proposed features?

(a) (b) (c)
Fig. 3.7.: Impact of three word-based factors on the performance of proposed features for user
identification. The three factors are: Word length (Fig. 3.7a): number of characters in a word;

Vowel Percentage (Fig. 3.7b): percentage of vowels in a word; and Oxford English Corpus (OEC)
frequency ranking (Fig. 3.7c): the frequency ranking of the words in our study according to OEC

(Top 100). The words in order of rank (Fig. 3.7c, y-axis) are: (1, the), (8, that), (9, have), (13, not),
(15, with), (21, this), (33, will), (38, there), (69, see), (84, two) and (88, first).
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Figure 3.7 shows the impact of three word-based factors: (1) word length; (2) percent-

age of vowels in the word; and (3) Oxford English Corpus (OEC) frequency ranking

(top 100)[141], on the performance of the proposed features for user identification (Ta-

ble 3.22). Short words (3 to 4 characters) performed slightly better on hand-held devices

whereas medium length words (5 to 7 characters) performed slightly better on the desk-

top as shown in Figure 3.7a. For the percentage of vowels in a word we observe a gradual

improvement in accuracy until 50% of the word is comprised of vowels (Figure 3.7b). For

all 3 types of devices, the identification accuracy peaks when the words to extract features

have 50% vowels. The ranking (Figure 3.7c) consists of words in our study which are also

most frequent (top 100) in Oxford English Corpus (OEC)[141] and the Corpus of Con-

temporary American English (COCA)[51]. The medium length words (4 to 5 characters),

words with about 50% vowel composition, and those that are ranked higher in frequency

give the best results for user identification using the proposed features. The word ”the” is

an exception to these observations because it performs poorly on the desktop and tablet

even though it is the most used word in the corpora.

3.10.4 Discussion: Attacks and limitations

The most common types of attacks on text in literature are: (1) for inferring typed text

(generally PIN and Password through side channel attacks) or (2) for inferring keystroke

timings (generally impersonation attacks). We discuss both in the following paragraphs.

Inferring typed text. Side channel attacks, such as video ([41], [161]), smartwatch [109],

acoustic signals ([107], vibrations in video [80] and Channel State Information ([6],[57])
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use some form of eavesdropping to obtain the victim’s typed text rather than impersonat-

ing their typing behavior. The domain of these attacks does not address keystroke timings

so they are not applicable to our scenarios.

Inferring keystroke timings. Attacks to mimic the keystroke timings of a victim are

forms presentation attacks, where typically the attacker formulates an imposter text sam-

ple (including the keystroke timings) from data drawn from the statistics of acquired sam-

ples ([142], [155]), either stolen or from publicly available databases. Typically, these

attacks use conventional features and assume the latencies to be similar across the entire

keystroke data; however, our analysis and examples (Table 3.23) show that keystroke la-

tencies vary depending on the context that the keys appear in. Though similar methods

could be applied to attack our proposed features, the obstacles to factor in the context of

keys would be significant. Additionally, Stefan and Yao [166] and Huang et al. [77] also

provide measures to defend against such attacks. Another attack presented by Khan et al.

[86] explored Augmented Reality (AR) to mimic a user’s typing with assistance from the

AR system. Apart from using conventional features, the attack made several non-trivial

assumptions regarding the availability of victim’s device and keystroke timings. The set-

tings of this attack are complex and difficult in real life scenarios; however, applicability,

although unlikely to our proposed features, needs exploration. The viability of an attack
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when an attacker obtains both, the typed text and the keystroke timings, is an open prob-

lem that needs exploration.

3.10.5 Conclusion and future work

We show that proposed word-specific features perform much better at user identification

on all devices. Conventional features, especially KeyHold does not provide user separa-

tion to a desired level. We considered the subset of proposed features that offered higher

discriminability, like WordHold, AvgFlight1, AvgFlight2, AvgFlight3, AvgFlight4, evalu-

ated them with classifiers and drew comparisons with conventional features (Section 3.9).

These classifiers show competitive accuracies on all devices. Mathematical insights for

this improvement in performance are drawn (Section 3.10.1). We also note that these fea-

tures in general perform much better on hand-held devices. We speculate that user’s style

of holding devices and patterns such as, short bursts of typing followed by pauses be-

tween words might be some of the reasons (Section 3.10.2). Analysis of the word-based

impact factors reveal that four or five character words, words with about 50% vowels, and

those that are ranked higher on the frequency lists might give better results for the extrac-

tion and use of the proposed features (Section 3.10.3) for user identification.

The results of our experiment call for a shift from conventional features to word specific

features for continuous authentication using KD. We are of the opinion that factoring in

the knowledge of context can be beneficial to KD. We hope this article provides direc-

tion to researchers of optimum KD features. As part of our future work, we are exploring

inter-device relationships in KD, to see how a user’s behavior on a device is linked to their

behavior on another.
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4. BEHAVIORAL BIOMETRICS : THE FAILURE OF

NORMALITY ASSUMPTION

A common assumption in behavioral biometrics, is that feature values follow a normal

distribution. This assumption impacts key facets of research such as; decisions of sam-

pling techniques and authentication models; and performance and results from the result-

ing systems. Our work raises the questions, ”Should the assumption of normality be the

norm in behavioral biometrics?” and ”How normal is the assumption of normality?”. We

posit that our results will change how classification is approached by emphasizing the va-

lidity of assumptions about the underlying data. This work has the potential to impact a

large body of work in behavioral biometrics.

Behavioral biometrics are ideal for continuous authentication on devices as the data for

authentication can be acquired from user’s regular activity without interrupting them to

provide separate test samples. Many researchers assume the underlying distribution of

features from these behavioral biometrics to be normal ([164, 167]). Such assumptions

are made for theoretical or calculational simplicity discussed in later sections. But, the

effects of assuming an underlying normal distribution in data when it is not, have been

explored in various fields. This misassumption can be a source of error in classifications,

when it influences the decision rules in the classifier, and in an adversarial approach lead

to inefficient attacks if the generative model depends only on the mean and standard devi-

ation.
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We use our benchmark SU-AIS BB-MAS [26] dataset, with the data from 117 users pro-

viding keystrokes data on desktop, phone and tablet; accelerometer and gyroscope data

while walking, upstairs and downstairs while carrying phone and tablet; and touch screen

swiping data on phone and tablet; for our experiments. We performed a large number of

Lilliefors test and Shapiro-Wilk’s test on all modalities in our dataset. To summarize re-

sults, we categorize the features into four different categories such as; a) less than 25%

of samples with p-value >0.05; b) 25% to 50% of samples with p-value >0.05; c) 50%

to 75% of samples with p-value >0.05; and, d) above 75% samples with p-value >0.05.

We find that except for the features from samples taken from climbing upstairs and down-

stairs data, almost all features from samples of all other activities were in the category

where less than 25% of samples warranted the null hypothesis be not discarded.

Although many other fields have witnessed research work cautioning the naivety in the

assumption of normality, in behavioral biometrics, this assumption has hardly been ex-

amined. Lesser so in the case of multiple activities that span multiple devices. We present

related literature, briefly explore the reasons why researchers assume normality in data,

describe the SU-AIS BB-MAS dataset and various extracted features, explain our experi-

ments in detail and conclude with the impacts of our findings.

4.1 Key contributions of the chapter

• Experiment on a large dataset with 117 users providing; 3.5 million keystroke events;

57.1 million data-points for accelerometer and gyroscope each; and 1.7 million

data-points for swipes. Each data session is between 2 to 2.5 hours each, consist-
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ing multiple activities such as: typing (free and fixed text), gait (walking, upstairs

and downstairs) and swiping activities while using desktop, phone and tablet. Thus,

making our experiments and insights encompassing for most common behavioral

biometrics

• Most features that are commonly described in literature, for data from all activities

in the dataset have been extracted and examined for an underlying normal distribu-

tion using suitable non-parametric tests.

• Discuss alternate approaches that researchers may explore to mitigate or avoid the

effects of assuming a non-existent normal distribution in data.

• Present implications of our findings for future work, such as the considerations for

modelling distributions and classifier choices.

4.2 Related work

Behavioral biometrics includes a broad spectrum of modalities involving human behav-

ior while performing day-to-day tasks. Keystrokes, Gait and Swiping Patterns are the

most explored behavioral biometrics in recent times. Researchers have focused on uti-

lizing various aspects of these behavioral biometrics for authentication ([15, 90]), verifi-

cation [122], continuous authentication [117], gender detection ([36, 177]), age detection

[138], fatigue detection [178], mood disturbance detection [198], lie detection [115] and

detection of various health conditions. In many of these works, researchers have either

purposefully or inadvertently, assumed a underlying normal distribution in the features
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extracted from the data, reflected in their methods of analysis or in their choice of classi-

fiers. Although assuming a normal distribution helps in simplifying the problem, it may

not always lead to the best results.

The adverse effects of assuming a normal distribution has been studied greatly in differ-

ent fields. In the field of Constraint Satisfaction Problems (CSP), [92] proves that in the

results produced by many heuristic combinations on random binary CSPs and 3-colouring

problems, the benchmarks for CSP, the assumption of normality does not hold. The au-

thors also appeal for statistics that do not rely on the normality assumption to analyze em-

pirical results for CSP. In processes involving classification of remotely sensed data from

different spectral bands (image classification is a subset of this problem family), Olson

[133] showed that the brightness values distributions did not follow a normal distribution.

They further remarked and this fallacy was a major source of error in land cover classi-

fication when decision rules employed in the classifier assumed an underlying normal

distribution. In Dunning’s [55] work on the statistical analysis of text, they pointed out

that the assumption of normal distribution limits the ability to analyze rare events and that

those rare events were a large fraction of real text.

When dealing with the solution space for economic design of X-bar control charts, [38]

shows that non-normality assumption also has a more significant effect on the Type II er-

ror probability than the Type I error probability. In the research of human cancer genomes,

wrongly assuming a normally distributed Gene expression was shown to affect multiple

facets, including identification of expression patterns, annotation and classification [110].

They also concluded that small departures from normality were not analytically insignifi-

cant. Limpert and Stahel [102], questioned the adequacy of characterization of data using
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normal distributions and argue that an asymmetric view will increase, recognition of data

distributions and also the quality of interpretation.

4.2.1 The Central Limit Theorem and Cràmer-Rao Lower Bound

We found two main concepts that many researchers use to justify their assumption of

normality in most datasets; the Central Limit Theorem (CLT) [91] and the Cràmer-Rao

Lower Bound (CRLB) [49].

The popularity in the assumption of normality can be attributed to the fact that noise

in many systems has been represented well using a normal distribution. Gaussian as-

sumption is a good conservative choice when not much is known about the data, which

is also supported by CLT stating that the distribution of sample means tends to form a

normal distribution as the sample size gets larger. A Gaussian distribution also minimizes

the Fisher Information, which is the inverse of CRLB. In other words, the CRLB under

the Gaussian distribution works for the worst-case scenario, maximizing the CRLB (see

[170]). Therefore, minimizing the largest CRLB is interpreted as min-max optimal [135].

Central Limit Theorem

If X1, X2,...,Xn is a random sample of size n taken from a population with mean µ and

finite variance σ2, and if X̄ is the sample mean, the limiting form of the distribution of

Z =
X̄ − µ
σ/
√
n

(4.1)

as n→∞, is the standard normal distribution (see Theorem 7.2 in [123]).
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Researchers often assume that estimated population mean and variance are independent

for simplicity, implying sample variance means and variance are independent, which is

true only for normal distribution.

Many research works inadvertently fall back on CLT for their modelling choices. A good

example of this scenario is the use of Gaussian Mixture models for keystroke analysis (

[30, 74, 199]) and touchscreen swipe analysis ([60, 140]). A Gaussian Mixture model

assumes the data to follow a mixture of individual multivariate Gaussians or Gaussian

Mixture distribution. Which is only a good choice if the data is a mixture of Gaussians

and has large enough number of samples, implicitly invoking CLT.

Fisher Information and Cràmer-Rao Lower Bound

Fisher information for a random sample from f(x|θ), where θ is an unknown parameter

and n→∞, is expressed as

I(θ) = −E
[
∂2

∂θ2
log f(X|θ)

]
(4.2)

(see Theorem 5.8 [96])

If θ̂ is an unbiased estimator of θ, and the Cràmer-Rao Lower Bound [49] states that the

variance of θ̂ is bounded by the reciprocal of Fisher Information, i.e.

var(θ̂) ≥ 1

nI(θ)
(4.3)
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using CLT, it follows that as sample size tends to infinity, the maximum likelihood esti-

mator is asymptotically unbiased and asymptotic distribution of θ̂ is normal. i.e. for a true

value θ0 for θ √
nI(θ0)(θ̂ − θ0) ∼ N(0, 1) (4.4)

The Gaussian assumption is often applied in modelling of keystroke latencies. For ex-

ample, Song et al., in [164], modelled the latencies of 142 pairs of characters under the

assumption that, ”probability of the latency y between two keystrokes of a character pair

forms a univariate Gaussian distribution” and thereby deriving the µ and σ parameters for

each character pair, to be used further down for information gain estimation. Similarly,

Stefan et al., in [167], begin their bot simulations under the assumption that the keystroke

duration of a character in a word is modeled as a random variable which is Gaussian or

a constant with additive uniform noise. Thus, their typing event injections for synthetic

forgeries or the bot attacks are already under assumptions that should not be made casu-

ally.

4.2.2 Related work in keystroke dynamics

In [154], the authors examined keystroke features such as, Key Interval Times and Key

Hold Times extracted from keystroke data recorded on desktops, to test if they followed a

normal distribution. The authors performed Lilliefors [100] and Cramer-von Mises [168]

tests and established that Key Hold Times and the Key Interval Times from desktop typ-

ing did not follow a Gaussian distribution for all Unigraphs and Digraphs. As research in

keystrokes dynamics is a popular component of behavioral biometrics, this can be con-
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sidered as a pioneering step towards questioning the normality assumption in behavioral

biometrics.

How our work differs from related work discussed

Although many other fields have questioned the naivety of the assumption of normality,

the field of behavioral biometrics has been lagging in this aspect. We found that a sec-

tion (5.1) of the research in [154], was the only exploration in this direction for keystroke

dynamics on desktops. Behavioral biometrics is an emerging area with many different

modalities, devices and activities. For example; typing is no more limited to a desktop,

keystroke dynamics have been studied separately on phones and tablets and other touch

devices; gait as a behavioral biometric has been studied with different sensor placements,

different sub-activities and different devices; and, swiping patterns for behavioral biomet-

rics have been studied on different smart-screens or touch surfaces.

We examine the assumption of normality, in a large dataset consisting of a wide range

of activities and devices. By performing a large number of statistical tests, we show the

following:

• Keystroke features such as keyhold and flight times, do not follow normal distribu-

tion on desktops, tablets and phones. Our experiments reaffirm the findings in [154]

that showed the non-normal nature of keystroke features on desktop. We observe

the same occurrence in keystroke features from phone and tablets, which have not

been examined in literature.
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• Features extracted from accelerometers and gyroscopes of tablets and phones (in

pocket and in hand), do not follow a Gaussian distribution while walking. However,

in a large number of samples from activities of climbing up and down the stairs, the

null hypothesis that the data comes from normal distribution cannot be discarded.

• Swipe features extracted from swipe trajectories, pressure, acceleration and touch

area data do not follow normal distribution on smart-phone and tablet surfaces.

• We also discuss the implications and alternate approaches for non-normal distribu-

tions in data.

4.3 Data and features

In this section, we briefly describe the dataset and the features that we have analyzed. We

have considered the most popularly used features from each of the modalities.

4.3.1 Details of the dataset

For all the experiments and analysis described in this article, we use our open-access

benchmark dataset SU-AIS BB-MAS [26]. In [25], we describe all aspects of the dataset

in great detail. Therefore, we only provide a gist of it in this section. A total of 117 users

participated in the voluntary data collection which was carried out after the IRB approval

from our university. The dataset consists a total of about: 3.5 million keystroke events;

57.1 million data-points for accelerometer and gyroscope each; 1.7 million data-points for
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swipes; and enables future research to explore previously unexplored directions in inter-

device and inter-modality biometrics.

Table 4.1: The different types of data, from SU-AIS BB-MAS [26], that we analyzed from
multiple devices and activities. The gait activity consists of three sub-activities, walking, climbing

upstairs and downstairs.

Activity Devices Data/Sensor
Desktop

Keystroke TimingsTyping Phone
Tablet
Phone in Pocket

Accelerometer
Gyroscope

Gait Phone in Hand
Tablet in Hand

Swipes Phone
Touchscreen

Tablet

Table 4.2: List of features extracted and examined in our experiments for an underlying normal
distribution.

Data Features Details

Typing
•Keyhold
•Flight 1 to Flight 4

−Keyhold times were extracted from twelve most occurring unigraphs
−Flight times were extracted from eighteen most occurring digraphs

Gait

•Mean
•Standard Deviation
•Band Power
•Energy
•Median
•Inter Quartile Range
•Range
•Signal to Noise Ratio
•Dynamic Time Warp Distance
•Mutual Information
•Correlation

−Features were extracted from x, y, z and m where (m=
√
x2 + y2 + z2) signals from both the

accelerometer and gyroscope.
−All features were extracted from each of the directional signals except for DTW distance,
Mutual Information and Correlation which were extracted between pairs of these signals
i.e., x-y, x-z, x-m, y-z, y-m and z-m.

Swipe

•Minimum x and y coordinates
•Maximum x and y coordinates
•Euclidean Distance
•Angle of the swipe
•Time
•Velocity Mean and Std.
•Velocity Quartiles
•Acceleration Mean and Std.
•Acceleration Quartiles
•Pressure Mean and Std.
•Pressure Quartiles
•Area Mean and Std.
•Area Quartiles
•Direction

−Features were extracted from a variety of information making up a swipe.

−Features such as coordinates, angles and direction are dependent on the touch points on the
screen and the end points of a swipe.
−Velocity, Pressure, Acceleration and Area are calculated with the data from corresponding
sensors on the touch surface of the devices.
−The Direction feature was only used to group the swipes into vertical and horizontal swipes
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4.3.2 Details of the features

We extracted popular features that have been used in literature for each modality. The

feature extraction for our dataset can be grouped into three parts, namely keystroke, gait

and swipe features. We briefly describe the features and their storage below. A summary

of the features is presented in the Table 4.2.

• Keystroke Features: We select the most occurring twelve unigraphs (single key) and

eighteen digraphs (pair of consecutive keys) that occurred the most number of times in

all user’s keystroke data. The unigraphs are : ”BACKSPACE”, ”SPACE”, ”a”, ”e”, ”h”,

”i”, ”l”, ”n”, ”r”, ”S” and ”t”. The digraphs are: (’BACKSPACE’, ’BACKSPACE’),

(’SPACE’, ’a’), (’SPACE’, ’i’), (’SPACE’, ’s’), (’SPACE’, ’t’), (’e’, ’SPACE’), (’e’,

’n’), (’e’, ’r’), (’e’, ’s’), (’n’, ’SPACE’), (’o’, ’SPACE’), (’o’, ’n’), (’r’, ’e’), (’s’, ’SPACE’),

(’s’, ’e’), (’t’, ’SPACE’), (’t’, ’e’) and (’t’, ’h’). For a unigraph Ki we extract the Keyhold

time of the key as a feature:

– KeyholdKi
: KiRelease - KiPress

For a digraph Ki and Ki+1 the following temporal features are extracted:

– Flight1KiKi+1
: Ki+1Press - KiRelease

– Flight2KiKi+1
: Ki+1Release - KiRelease

– Flight3KiKi+1
: Ki+1Press - KiPress

– Flight4KiKi+1
: Ki+1Release - KiPress

Outlier removal for Keystroke Features: We use a simple filter to remove any in-

stances of keys that were held down for two seconds or more. We also remove instances
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of the inter-key pauses that are greater than two seconds. We assume that these were

caused by pauses, where the user is either thinking or receiving instructions during the

data collection.

(a) Typing (b) Swiping (c) Upstairs

(d) Walking (e) Downstairs (f) Legend

Fig. 4.1.: Illustration summarizing the amount of features in each activity and percentage of their
samples with p > 0.05, or in other words, where the null hypothesis H0, that the samples came
from a normal distribution could not be discarded. The categories and their corresponding color
codes are; red- less than 25% of samples with p-value >0.05; orange- 25% to 50% of samples

with p-value >0.05; yellow- 50% to 75% of samples with p-value >0.05; and, green- above 75%
samples with p-value >0.05. A full doughnut in the doughnut chart represents all the features for

an activity on the labelled device. For example, the outer most doughnut in Figure 4.1a, represents
all the features examined for keystrokes latencies on desktop, the second doughnut for tablet and

innermost doughnut for phone respectively. The area covered by each color/category on a
doughnut represents the amount of features that fall in the color/category as described above.

• Gait Features: As the raw data for the gait is a pair of signals from the accelerometer

and gyroscope we extract features from both. The gait data is further subdivided into

three activities; ”Walking” (on a flat corridor); ”Downstairs” (going down the stair-

case); and, ”Upstairs” (going up the staircase). We use a window size of two seconds

with a one second overlap between two consecutive windows. For each two second
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window we extract a host of features from the accelerometer and the gyroscope for x, y,

z and m (m=
√
x2 + y2 + z2). The list of features extracted is given in Table 4.2. While

Mean, Standard deviation, Band power, Energy, Median frequency, Inter quartile range,

Range, Signal to noise ratio are extracted for x, y, z and m, Dynamic time warping dis-

tance is calculated only between pairs of signals x-y, y-z and x-z, Mutual information

is calculated between pairs of signals x-y, x-z, x-m, y-z, y-m and z-m, and Correlation

coefficients are calculated between pairs of signals x-y, y-z and x-z.

• Swipe Features: For each swipe performed by users on tablet and phone, various fea-

tures related to the speed and trajectory of the swipes are extracted. The last row of

Table 4.2 summarizes them. The features include; the minimum and the maximum x

and y coordinates; the Euclidean distance between the start and stop points; the tangent

angle of the swipe; the total time taken to for the swipe; the mean and standard devia-

tion and the quartiles of velocity, acceleration, pressure and area; and the direction of

the swipe used to group them into horizontal or vertical swipes.

4.4 Experimentation and analysis

In this section, we describe the tests and the procedure we use to examine the hypothesis

that a sample comes from normal distribution.

Non-parametric tests: To test if the feature values have an underlying normal distribu-

tion, we use two non-parametric tests of normality namely; a) Lilliefors test [100], which

is a modified form of Kolmogorov–Smirnov test [111] suitable for large datasets for non-

parametric testing of the null hypothesis that the data comes from a normally distributed



113

population; and b) Shapiro-Wilk test [159] which is also a non-parametric test and is

more suitable for testing the null hypothesis on smaller data (n < 50).

Hypothesis testing: For all tests we begin with the null hypothesis H0, that the sample

came from a normal distribution. H0 can be discarded if the p-value from the test is below

the critical value of 0.05.

Sampling and Testing Procedure: In our tests, we draw random samples consisting of

75% of the feature set for each modality and for each user. We then perform a suitable

normality test (Lilliefors test if number of samples > 50 or Shapiro-Wilk test otherwise)

and store the p-values with corresponding annotations. We repeat the process ten times

for all features, modalities and users to arrive at more accurate conclusions for evidence

of normality in the underlying distribution. This form of random sampling is inspired

from many other statistical research ([22, 93, 154]) that show that it is hard for goodness-

of-fit tests to provide meaningful results on large datasets due to their loosely fitting statis-

tical descriptions.

Grouping of Features: As the tests help us to discard H0, based on the percentage of

samples that had p-value >0.05 we categorize features into four broad categories; a) less

than 25% of samples with p-value >0.05; b) 25% to 50% of samples with p-value >0.05;

c) 50% to 75% of samples with p-value >0.05; and, d) above 75% samples with p-value

>0.05. The values have been color coded based on these categories for visual clarity.
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4.5 Results and discussion

For a majority of the test samples for features in behavioral biometrics, we found that H0

could be discarded, implying the samples did not belong to a Gaussian distribution. In the

case of keystroke features we found that all but one feature were in the first category with

less than 25% samples where H0 could not be rejected. The detailed results for each fea-

ture and device are shown in Table 4.3 to Table 4.6. While Table 4.3 shows the percentage

of tests with p > 0.5 for unigraphs on desktop, tablet and phone, Table 4.4 to 4.6 show

the results for digraphs. Figure 4.1a summarizes all the features for typing activity with

respect to their categories. In table 4.3, we observe that the highest percentage of sam-

ples where H0 could not be rejected was for unigraph ”n”, with about 27%, which is still

a very low number of tests when compared to the total number in our experiments, and

thus can be ignored. As the case with desktop was an expected result following the lines

of work in [154], these results reaffirm the findings and extend it further to hand-held de-

vices such as phone and tablet.

In the case of swiping activity, we first separated the samples into vertical and horizontal

swipes before testing the features for normality. We found a negligible amount of them

belonged to the fourth category (above 75% samples where p > 0.05) on phone. While

most of the features belonged to the first and second category of; less than 25%; and, 25%

to 50% of samples with p >0.05 respectively. Table 4.7, shows the results for individ-

ual features and Figure 4.1b summarizes the categorical distribution for both tablet and

phone.
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Samples from gait activity were further divided into walking (on flat corridor), downstairs

and upstairs samples before testing each for normality. We found that upstairs and down-

stairs samples had considerable number of features in the third and fourth categories; 50%

to 75%; and, above 75% samples where the H0 could not be rejected respectively. This

was observed on all three devices used for these tasks: Hand-Phone, Pocket-Phone and

Hand-Tablet. However, for the walking tasks majority of the features belonged to the first

category and had less than 25% samples with p > 0.05. Individual values for the features

of walking, downstairs and upstairs are shown, in Tables 4.10, 4.9 and 4.8 respectively.

Their summary is illustrated in Figures 4.1d, 4.1e and 4.1c respectively. It is intriguing

why data from upstairs and downstairs activities behaved so differently, we discuss this in

the following section. From our results it is clear that features extracted from the behav-

ioral biometrics data for typing, gait and swiping activities on desktop, tablet and phone

do not follow a normal distribution. Elaborate discussion on the implications of our re-

sults and alternate approaches of non-normality follow.

4.6 Conclusion and alternate approaches

The implications of assuming a normal distribution in data when the data is actually from

a different distribution have been studied across various domains ([1, 37, 101, 128, 181]).

If methods wrongly assume a normal distribution the findings may be misleading or wrong.

In the past, several studies in behavioral biometrics have assumed a normal distribution in

data ([164, 167]) and could improve results by either extracting features that followed nor-

mal distribution or by implementing methods more suitable for non-normal distributions
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[99]. Our experiments show that, in the case of keystrokes, gait and swipes using desktop,

tablet and phone, it would be wrong to assume an underlying normal distribution. Low

values of p from our non-parametric normality tests across activities and devices show

that researchers in behavioral biometrics must not assume the data to be from a Gaussian

distribution to get better and more accurate insights. However, upstairs and downstairs

activity data, showing higher percentages of samples where an underlying normal distri-

bution cannot be discarded is intriguing and further research is needed to establish why

this occurs. Knowing that the data does not follow normal distribution leaves the discus-

sion incomplete, which can only be completed by learning alternate ways to handle a non-

normal dataset.

Alternate approaches and solutions: One should first test for conditions of normality in

data before making such an assumption. If the conditions are not met, there are numerous

ways to work around the absence of normal distribution. We discuss concepts that have

been successfully applied in related fields and other intuitive methods that researchers

can use to perform more accurate analysis on behavioral biometric data. With respect to

analysis and modelling of the data itself, there are several techniques found in literature.

Different types of distributions like Weibull, Gamma, Exponential or Pareto distributions

have been used, with theoretical and empirical justifications ([2, 105]), however, a good-

ness of fit test beforehand is advised. Methods like Heteroscedastic Corrected Covariance

Matrix, Bootstrapping are forms of altering the estimator to better describe non-normal

data. Winsorizing and trimming of data is an intermediate technique that replace the pa-

rameters of the original data by virtue of replacing extremities in a sample. Data transfor-

mation methods like Johnson Transformation [192], Box-Cox Transformations [191] and
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other forms of algorithmic and parametric transformations [137] have shown good results

in other data intensive researches.

Apart from data modelling and transformation, in research involving identification, verifi-

cation or classification tasks, attention to the choice of classifiers can greatly improve per-

formance. It is common for researchers to use Gaussian Naive Bayes classifiers or Liner

classifiers with Linear Discriminant Analysis, which are very popular tools for baseline

metrics. However, these classifiers assume that the data has an underlying normal distri-

bution and lack of such a distribution can cause their performance to deteriorate heavily.

Modified, non-parametric versions of Gaussian Naive Bayes classifier described in [165],

have shown to perform well. Standard classifiers, that are not designed with the assump-

tion of normality in data, like Support Vector Machines, K Nearest Neighbor Classifiers

or Neural Networks are intuitively a better choice for researchers in behavioral biomet-

rics.

Our results question the common assumption that the data in behavioral biometrics fol-

lows a normal distribution. We have discussed the implications and alternate approaches

for such a scenario. We hope that, insights from our work help future researchers to make

the right choices in terms of data models, transformations and classifiers to achieve better

results and make correct interpretations. We come full circle to the question that we began

with, ”Should the assumption of normality be the norm in behavioral biometrics?”, and

equipped with the knowledge from our experiments discussed above, we answer, ”no”,

with a caveat that careful examination of the validity of assumptions about underlying

distributions is a must.
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To maintain clarity in presentation we use symbols d1 through d18 to denote the digraphs

(d1: (’BACKSPACE’, ’BACKSPACE’), d2: (’SPACE’, ’a’), d3: (’SPACE’, ’i’), d4: (’SPACE’,

’s’), d5: (’SPACE’, ’t’), d6: (’e’, ’SPACE’), d7: (’e’, ’n’), d8: (’e’, ’r’), d9: (’e’, ’s’), d10:

(’n’, ’SPACE’), d11: (’o’, ’SPACE’), d12: (’o’, ’n’), d13: (’r’, ’e’), d14: (’s’, ’SPACE’),

d15: (’s’, ’e’), d16: (’t’, ’SPACE’), d17: (’t’, ’e’) and d18: (’t’, ’h’))

Table 4.3: Percentage of test samples with p > 0.05 for keyhold feature from unigraphs on
desktop, tablet and phone.

Unigraph Desktop Tablet Phone
SPACE 0% 1% 11%
BACKSPACE 0% 0% 2%
a 0% 15% 20%
e 0% 0% 5%
h 0% 9% 18%
i 0% 2% 9%
l 0% 9% 15%
n 0% 2% 27%
o 0% 5% 22%
r 0% 7% 22%
s 0% 4% 16%
t 0% 1% 9%

Table 4.4: Percentage of test samples with p > 0.05 for flight1-flight4 features from digraphs on
desktop.

Desktop
Digraph Flight1 Flight2 Flight3 Flight4
d1 0% 0% 0% 0%
d2 0% 0% 0% 0%
d3 1% 2% 1% 1%
d4 0% 0% 0% 0%
d5 0% 0% 0% 0%
d6 0% 0% 0% 0%
d7 2% 3% 3% 2%
d8 0% 2% 2% 3%
d9 0% 1% 3% 4%
d10 0% 0% 1% 0%
d11 1% 1% 1% 1%
d12 3% 2% 2% 4%
d13 0% 2% 1% 3%
d14 0% 0% 0% 1%
d15 0% 1% 0% 0%
d16 0% 0% 0% 0%
d17 2% 5% 4% 6%
d18 0% 2% 0% 0%
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Table 4.5: Percentage of test samples with p > 0.05 for flight1-flight4 features from digraphs on
tablet.

Tablet
Digraph Flight1 Flight2 Flight3 Flight4
d1 0% 0% 0% 0%
d2 0% 0% 0% 0%
d3 2% 1% 1% 1%
d4 1% 1% 2% 1%
d5 0% 0% 0% 0%
d6 1% 1% 1% 1%
d7 5% 7% 6% 9%
d8 9% 7% 13% 11%
d9 5% 3% 4% 4%
d10 3% 1% 2% 3%
d11 0% 1% 0% 1%
d12 8% 6% 3% 9%
d13 5% 4% 5% 5%
d14 0% 0% 0% 1%
d15 4% 3% 3% 4%
d16 0% 0% 0% 0%
d17 18% 17% 16% 19%
d18 8% 6% 3% 3%

Table 4.6: Percentage of test samples with p > 0.05 for flight1-flight4 features from digraphs on
phone.

Phone
Digraph Flight1 Flight2 Flight3 Flight4
d1 0% 0% 0% 0%
d2 1% 0% 2% 0%
d3 0% 0% 1% 1%
d4 1% 1% 0% 0%
d5 0% 0% 0% 0%
d6 0% 1% 1% 1%
d7 6% 5% 8% 8%
d8 15% 17% 22% 23%
d9 5% 8% 6% 11%
d10 0% 2% 1% 1%
d11 1% 3% 2% 4%
d12 14% 16% 15% 17%
d13 7% 5% 9% 12%
d14 0% 3% 1% 3%
d15 0% 6% 2% 8%
d16 1% 1% 1% 1%
d17 18% 20% 19% 17%
d18 6% 4% 6% 6%

Table 4.7: Percentage of test samples with p > 0.05 for features from Swiping activity on phone
and tablet.

Features Phone Tablet Features Phone Tablet
minx 2% 3% aquarts 0 1% 7%
miny 21% 32% aquarts 1 0% 0%
maxx 5% 2% aquarts 2 0% 0%
maxy 6% 16% pmean 72% 26%
eucliddist 40% 26% pstd 76% 33%
tanangle 0% 1% pquarts 0 65% 29%
tottime 0% 0% pquarts 1 65% 26%
vmean 2% 9% pquarts 2 66% 21%
vstd 6% 14% areamean 56% 33%
vquarts 0 0% 1% areastd 46% 37%
vquarts 1 0% 5% areaquarts 0 9% 1%
vquarts 2 2% 14% areaquarts 1 4% 0%
amean 0% 0% areaquarts 2 4% 0%
astd 0% 0%
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Table 4.8: Percentage of test samples with p > 0.05 for features from Upstairs activity with phone
in hand, phone in pocket and tablet in hand.

Hand Phone Pocket Phone Hand Tablet
Feature Acc Gyr Acc Gyr Acc Gyr
xmean 79% 76% 62% 67% 74% 78%
ymean 83% 60% 77% 20% 79% 56%
zmean 89% 16% 56% 51% 80% 11%
mmean 89% 63% 75% 60% 91% 44%
xstd 68% 79% 67% 60% 72% 83%
ystd 75% 76% 69% 64% 72% 79%
zstd 79% 85% 66% 62% 88% 85%
mstd 85% 63% 65% 57% 91% 61%
xbp 67% 72% 67% 62% 61% 68%
ybp 74% 49% 77% 45% 64% 59%
zbp 85% 21% 69% 56% 80% 19%
mbp 85% 44% 74% 56% 86% 28%
xenergy 68% 71% 68% 62% 62% 67%
yenergy 74% 49% 76% 45% 60% 59%
zenergy 85% 21% 69% 56% 76% 19%
menergy 85% 46% 76% 56% 71% 28%
xmfreq 31% 11% 61% 44% 4% 19%
ymfreq 25% 16% 63% 43% 16% 11%
zmfreq 36% 16% 52% 26% 3% 5%
mmfreq 86% 81% 76% 79% 96% 91%
xiqr 74% 80% 74% 60% 74% 86%
yiqr 71% 79% 74% 74% 70% 79%
ziqr 79% 83% 76% 69% 85% 83%
miqr 87% 67% 70% 70% 85% 52%
xrange 70% 68% 50% 58% 65% 74%
yrange 68% 70% 51% 62% 69% 75%
zrange 73% 80% 60% 56% 72% 73%
mrange 72% 60% 53% 53% 70% 71%
xsnr 78% 74% 61% 68% 74% 80%
ysnr 81% 62% 44% 27% 85% 59%
zsnr 72% 19% 63% 66% 63% 12%
msnr 71% 78% 53% 74% 59% 85%
xydtw 69% 79% 74% 73% 62% 77%
yzdtw 86% 46% 71% 55% 78% 38%
xzdtw 81% 30% 74% 69% 76% 20%
xymi 86% 88% 74% 78% 90% 86%
xzmi 89% 85% 79% 77% 87% 85%
xmmi 87% 80% 79% 74% 87% 90%
yzmi 87% 90% 79% 74% 88% 85%
ymmi 89% 84% 67% 75% 91% 89%
zmmi 88% 83% 76% 79% 81% 82%
xycorr 88% 92% 67% 61% 86% 91%
yzcorr 85% 91% 63% 56% 87% 85%
xzcorr 91% 85% 69% 46% 88% 91%
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Table 4.9: Percentage of test samples with p > 0.05 for features from Downstairs activity phone in
hand, phone in pocket and tablet in hand.

Hand Phone Pocket Phone Hand Tablet
Feature Acc Gyr Acc Gyr Acc Gyr
xmean 84% 85% 74% 72% 74% 85%
ymean 85% 61% 81% 14% 83% 61%
zmean 88% 24% 57% 76% 84% 21%
mmean 90% 78% 90% 72% 91% 56%
xstd 81% 87% 79% 80% 74% 87%
ystd 86% 74% 83% 75% 78% 87%
zstd 89% 85% 82% 76% 89% 83%
mstd 91% 83% 80% 74% 87% 68%
xbp 77% 72% 80% 77% 60% 79%
ybp 82% 59% 85% 50% 67% 70%
zbp 86% 32% 85% 76% 81% 14%
mbp 91% 62% 90% 67% 89% 48%
xenergy 77% 71% 80% 75% 60% 77%
yenergy 81% 61% 87% 48% 68% 70%
zenergy 87% 31% 85% 76% 81% 15%
menergy 89% 62% 88% 68% 88% 44%
xmfreq 24% 20% 68% 50% 6% 8%
ymfreq 27% 21% 68% 40% 16% 19%
zmfreq 48% 15% 72% 33% 1% 12%
mmfreq 91% 91% 83% 88% 98% 92%
xiqr 86% 91% 83% 82% 70% 90%
yiqr 82% 85% 84% 79% 73% 89%
ziqr 85% 85% 85% 84% 89% 78%
miqr 90% 74% 82% 78% 88% 59%
xrange 79% 74% 67% 64% 70% 74%
yrange 77% 65% 64% 71% 70% 79%
zrange 72% 82% 69% 70% 76% 79%
mrange 77% 72% 71% 56% 74% 76%
xsnr 90% 76% 72% 72% 79% 72%
ysnr 78% 57% 50% 19% 81% 61%
zsnr 56% 29% 74% 77% 56% 32%
msnr 53% 84% 54% 74% 55% 79%
xydtw 81% 76% 85% 73% 71% 87%
yzdtw 84% 73% 79% 67% 84% 44%
xzdtw 85% 60% 82% 78% 78% 27%
xymi 85% 84% 79% 78% 85% 85%
xzmi 89% 85% 80% 76% 85% 80%
xmmi 90% 83% 80% 74% 91% 75%
yzmi 83% 85% 80% 75% 78% 85%
ymmi 87% 89% 75% 80% 88% 88%
zmmi 89% 84% 79% 78% 71% 84%
xycorr 86% 93% 78% 79% 88% 91%
yzcorr 87% 93% 77% 79% 82% 89%
xzcorr 91% 85% 84% 76% 89% 92%
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Table 4.10: Percentage of test samples with p > 0.05 for features from Walking activity phone in
hand, phone in pocket and tablet in hand.

Hand Phone Pocket Phone Hand Tablet
Feature Acc Gyr Acc Gyr Acc Gyr
xmean 36% 25% 21% 6% 32% 28%
ymean 39% 9% 28% 6% 38% 11%
zmean 32% 4% 16% 12% 25% 2%
mmean 33% 18% 28% 8% 34% 10%
xstd 35% 41% 9% 3% 37% 44%
ystd 21% 15% 9% 13% 31% 32%
zstd 37% 25% 8% 7% 38% 19%
mstd 38% 16% 5% 9% 40% 4%
xbp 3% 9% 35% 11% 4% 12%
ybp 15% 2% 31% 15% 11% 2%
zbp 37% 3% 27% 26% 25% 0%
mbp 31% 5% 24% 13% 36% 3%
xenergy 7% 18% 15% 3% 11% 27%
yenergy 26% 3% 3% 12% 23% 4%
zenergy 0% 2% 15% 21% 0% 0%
menergy 0% 8% 0% 2% 0% 3%
xmfreq 3% 0% 14% 8% 0% 0%
ymfreq 1% 0% 17% 6% 0% 0%
zmfreq 6% 1% 11% 3% 0% 0%
mmfreq 65% 58% 62% 68% 98% 74%
xiqr 26% 38% 26% 10% 35% 52%
yiqr 29% 16% 14% 22% 38% 37%
ziqr 50% 24% 30% 17% 50% 27%
miqr 53% 11% 12% 15% 54% 4%
xrange 29% 36% 9% 3% 36% 38%
yrange 26% 17% 10% 9% 26% 28%
zrange 30% 23% 9% 11% 27% 25%
mrange 32% 20% 7% 4% 23% 13%
xsnr 17% 10% 5% 1% 15% 12%
ysnr 12% 13% 3% 3% 11% 3%
zsnr 7% 8% 3% 4% 5% 12%
msnr 7% 31% 1% 9% 3% 32%
xydtw 17% 24% 3% 15% 17% 28%
yzdtw 18% 16% 3% 8% 4% 15%
xzdtw 3% 5% 9% 13% 2% 2%
xymi 0% 12% 0% 1% 9% 23%
xzmi 0% 5% 2% 1% 3% 17%
xmmi 0% 0% 2% 2% 0% 2%
yzmi 0% 9% 2% 1% 3% 11%
ymmi 0% 0% 0% 2% 1% 1%
zmmi 0% 0% 2% 1% 0% 2%
xycorr 55% 50% 19% 8% 65% 60%
yzcorr 45% 56% 12% 11% 59% 53%
xzcorr 46% 16% 12% 9% 57% 42%
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5. CLASSIFICATION OF THREAT LEVEL IN TYPING ACTIVITY

THROUGH KEYSTROKE DYNAMICS

System intrusion is a major issue in today’s data-driven world. Discovering adversarial

activities before or as they happen, through any modality, makes a system more secure. A

straight forward approach to determine threat level from typing data would be to analyze

the text directly. However, natural language processing is hard to implement on complex

real life data, therefore we explore how far keystroke dynamics can go in terms of classi-

fying threat levels correctly.

User interactions with modern day systems occur through various modalities. Keyboards

are the most popular choice of user input on desktops. The typing behavior of a user

also called Keystroke Dynamics (KD) has been of great interest among researchers in

the recent past. Studies have shown that KD can be used as a means of user authenti-

cation [13, 175]. KD has gained the attention of researchers as a popular behavioral-

biometric due to the popularity and ease of use of keyboards. One can see the contribution

of keystroke dynamics in diverse fields such as continuous authentication, user identifica-

tion, and verification[5, 13, 50, 78, 125, 147, 149]. A user can accomplish various tasks

through keystroke inputs. Intuitively some activities are benign in nature while others are

malicious. Common day-to-day activities like writing emails, documents or browsing the

internet can possess a lesser threat to the system from the user, whereas activities involv-

ing terminal commands may possess greater threats.
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System intrusion detection has been explored by many researchers [31, 150] who have

proposed solutions at various levels of system interaction, ranging from system calls to

data mining techniques [3, 189]. But the possibility of using behavioral biometrics, in

general, or typing behavior, in particular, to detect malicious activity has not been ex-

plored.

We show that a user’s typing behavior can reveal important information to help secure

a system. We classifying the nature of the typing activity into two broad categories; be-

nign or adversarial. The shortcomings of conventional keystroke features for this task are

analyzed and 14 features that are more suitable for this classification are proposed and

evaluated. Results are presented from experiments on the typing data from over a hun-

dred users (in each activity category) performing benign and malicious tasks in separate

sessions.

5.1 Key contributions of the chapter

Our key contributions are;

• Classify type of keystroke activity: We show that a user’s typing behavior can be

used to classify the origin of a text sample as benign or adversarial. We use a mix-

ture of keystroke timings and content related features to achieve good classification

performance.

• Propose and evaluate new features for threat level classification: Results from

conventional features show that they are inefficient for the problem we attempt to

solve. Therefore, we propose 14 new features designed specifically for our prob-
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lem and evaluate them with three different classifiers and four different text sample

sizes. We find our proposed feature to work well in all cases.

5.2 Related work

Use of KD has been explored in various applications [45, 56, 175]. It has been effective in

the identification and verification of users [14, 78]. A list of common key strings is used

for identification of each user. The authors found that non-English sequence of characters

was more accurate than the English sequence. Karnan and Krishnaraj [85], discuss using

keystroke dynamics in mobile authentication by analyzing habitual rhythm patterns in

the way users type. Keystroke Dynamics was also shown to be effective in continuous

authentication and well adapted for desktop devices [39].

A study on keystroke biometric Identification on Long-Text [175], shows that a user iden-

tification was highly accurate in long text inputs (copy and free text) with the same key-

word used for both enrolment and testing. There was an insignificant decrease in the ac-

curacy of free text when compared to copied text. In a study on free texts based on fea-

tures such as left-hand keys, right-hand keys, flight time, and percentage of special key

characters, they discovered that the accuracy of copy task was higher compared to free

text typing. This also purports that the type of text and the situation affects the user typing

behavior[13].

Gunetti and Picardi[69] remark that one can analyze the typing rhythms of an individual

in free text. In another work on anomaly intrusion detection based on biometrics, an intru-

sion detection system was built using keystroke biometrics and mouse dynamics. Dwell
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time and flight time were chosen as their feature sets. These feature sets were later ren-

dered into digraphs and trigraphs for interpretation. The legitimate users were validated

by the algorithm successfully [5].

Researchers have been exploring new methods to address the issue of system intrusion. A

work by Yampolskiy[189] employs indirect human-computer interaction based biometrics

such as audit logs, call stack data, network traffic, system calls, GUI interaction, registry

access data, storage activity in their work. They have explained how network traffic data

can be analyzed to build an intrusion detection system[189]. In another work, authors use

two different mining methods, an apriori algorithm and sequence mining, for intrusion

detection [3].

Zamonsky Pendernera et al.[194] used keystroke dynamics for intruder classification. The

detection of intruders was done using clustering methods on the keystroke data, which

falls into the umbrella of verification. Our work, in contrast, aims at classifying if the ac-

tivity performed is itself malicious in nature irrespective of the user. Another study [184]

on Detecting intrusions using system calls examined diverse approaches such as Enu-

merating Sequences, Frequency-based methods, Data mining approaches and Finite State

Machines for distinguishing normal behavior from the intrusions utilizing system calls as

a feature. The authors opined that the choice of the data stream is critical. Though the in-

tent of the authors in this work is similar to ours, detection of malicious activity through

behavioral biometrics has not been explored.

Our work stands apart from other works explored in our literature survey in that we focus

on the typing behavior of a user to classify if the typing activity is benign or adversarial.
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5.3 Dataset and experimentation methods

In this section we elaborate our data collection, experiments with conventional features

and our proposed features. The collected data will be made publicly available soon for the

benefit of the research community.

5.3.1 Details of the data collection

Two separate data collection efforts were carried out at our university after the IRB ap-

proval. The focus of both efforts was to capture keystroke data from two different cat-

egories of activity that a user can indulge in on a desktop. The first collection effort in-

volved benign activities that most users carry out on any regular day, whereas the second

collection effort involved adversarial activities generally performed with malicious intent.

In both cases, the participants were allotted unique user IDs for their sessions and were

asked to fill out a brief demographic survey form. A summary of the data collection and

key statistics are described in Table 5.1.

The first category of keystroke data from benign-activity was collected from 102 users

who performed various day to day tasks on a desktop such as; a) Transcription of fixed

text, b) Shopping online for a list of items, c) Note taking and d) Writing short free-text

answers to a list of questions with varying cognitive loads. The desktop had standard in-

put and output components such as a full-size QWERTY keyboard, an optical mouse and

a 21-inch monitor. On an average, each user performed about 12,210 keystroke events

(key-press and key-release) in their session which lasted about 55 minutes. All keystroke

and mouse events were logged using simple windows interrupt hooks. The participant
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population consisted of 65 males and 37 females, of which 30 and 72 participants iden-

tified themselves as touch typists and visual typists respectively. The participants were

from the age group of 19 to 35 years and the data collection was completed over a span of

3 months. This is a subset of SU-AIS BBMAS dataset [83].

The second data collection effort to capture keystroke data from adversarial activity had

103 users. 15 users from the first data collection also participated in the second data col-

lection. However, we do not separate their data and process them without any special

identifiers. The users performed various adversarial activities aided by some assistance in

the form of web pages that provided directions and hints when needed. A virtual environ-

ment was setup to mimic virtual systems on a network. The users had to perform attacks

by acquiring credentials to systems in the network logging into them and stealing any im-

portant files from the compromised systems. The key tasks involved were; a) Browsing:

the users were allowed to browse the internet for any information to help complete the

tasks in the session, b) Network discovery: identifying systems and services on the net-

work, c) Target identification: identifying a target with vulnerabilities, d) Password dic-

tionary attack: carrying out a password dictionary attack to find the username-password

combination and logging on to the target. e) Privilege escalation: escalating privileges

on the target system to root and f) Data exfiltration : extract any personal data from the

victim on to the host. The input and output components were similar to the first data col-

lection except for the addition of a second monitor. The users were instructed to browse

read instructions on one monitor and carry out the attack on the secondary monitor. On

an average, each user made about 6,866 keystrokes in their session which last approxi-

mately for an hour and a half. 82 participants were male and 21 were female. 37 partici-
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pants identified themselves to be touch typists while the rest marked themselves as visual

typists. This entire data collection effort spanned for about 4 months.

For the scope of this work, the entire dataset collected from benign activities (hereinafter

referred to as benign-dataset) is considered as one class of data, whereas dataset collected

from adversarial activities (hereinafter referred to as adversarial-dataset) is considered to

be the other class. Text samples of varying lengths drawn from these datasets are called

benign-sample and adversarial-sample respectively. All together, our datasets consist of

more than 1.9 million keystrokes from more than 200 individual sessions making it one of

the richest datasets on keystrokes.

Outlier Removal: For the detection and removal of outliers, we use a simple filter to re-

move any instances of keys that were held down for two seconds or more. We also re-

move instances of the inter-key pauses that are greater than two seconds. We assume that

these were caused by pauses, where the user is either thinking or receiving instructions

during the data collection.

5.3.2 Context recognition with conventional features

Figure 2.4 illustrates the temporal features. We select the ten most commonly occurring

unigraphs and five digraphs in all text samples from our dataset. The unigraphs are : ’a’ ,

’t’, ’h’, ’s’ , ’space’, ’i’, ’n’, ’r’, ’e’ and ’l’ and the digraphs are: ’e,r’, ’s,s’, ’t,h’,’s,space

’, ’space,a’ and extract their conventional features. We also use four different sizes for

the text samples extracted from both the datasets. The text samples sizes are varied from

small text samples of 100 characters (200 keystrokes) to large text samples of 1000 char-
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acters (2000 keystrokes). From each of the samples, the shortlisted unigraphs and di-

graphs are considered, the Keyhold values are extracted from unigraphs and the Flight

values are extracted from the digraphs. For each of the unigraphs and digraphs, their

mean, standard deviation and median of the corresponding values are used to form a fea-

ture vector that represents the text sample. The feature vector has a total of 45 columns

([10 unigraphs + 5 digraphs] * [mean, standard deviation, median]) excluding the class

and sample length labels. The origin of the text sample (benign or adversarial) is then

marked as its class label. After extracting all the text samples for text lengths: 100, 250,

500 and 1000, forming the feature vectors for each of them and assigning their respective

class labels, we carry out simple two-class classification experiments. The experiments

for different text sample sizes are conducted separately. The classifiers were trained to

detect adversarial samples, therefore classification of a benign sample as adversarial is a

False Positive and the opposite is considered False Negative.

Fig. 5.1.: The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM, RF and
MLP classifiers trained and tested using the conventional keystroke features.
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Using 70% of samples for training and rest 30% of them for testing, we train 3 different

classifiers; Support Vector Machine (SVM), Random Forest (RF) and Multilayer Percep-

tron(MLP). SVM classifier was set with a linear kernel and a penalty parameter C =1. The

RF classifier was restricted to 5 decision trees with maxim depths of 5 and a maximum

of 2 leaves per node. The split criterion was set to Gini Impurity and only one feature

was used for the split at each node. The MLP classifier had a single hidden layer with

10 nodes and ’relu’ activation function with ’adam’ optimizer was used. The batch size

was set to 200 and the MLP was trained for 1000 iterations with a learning rate of 0.001.

Using SMOTE [40] to balance the test and training sets, we use approximately 3000 sam-

ples training and 900 samples for testing from each class in case of sample length equal

to 100 characters. In the case of sample length equal to 200, we use about 1230 samples

for training and 370 samples for testing from each class. For sample lengths of 500, we

use 550 samples to train and 165 samples to test from each class. For samples with length

equal to 1000 we use about 300 samples to train and 90 to test from each class.

Observations: With the conventional features we observe very low accuracies in classifi-

cation and high Type 1 errors (False Positives: when a text sample is classified as adver-

sarial but it is actually benign) and Type 2 errors (False Negatives: when a text sample is

classified as benign but it is actually adversarial). Figure 5.1 shows the performance mea-

sures for various lengths of text samples. In all cases, the accuracies were close to random

(50%) and in most cases, the errors were high in the range of 35% to 50%. It is clear that

features that have performed well for user identification and verification are not suitable

for the task of classifying keystroke behavior into benign or adversarial.
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Fig. 5.2.: The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM, RF and
MLP classifiers trained and tested using our proposed keystroke features.

Fig. 5.3.: Heat-maps showing the correlation between feature pairs in the proposed feature set for
different sizes of text samples. F1 to F14 on the x-axis and y-axis represent the features
AvgEnterHold, StdEnterHold, AvgSpaceInFlight, StdSpaceInFlight, AvgSpaceOutFlight,

StdSpaceOutFlight, SpaceRatio, EnterRatio, ErrorCount, TotalTime, IQRHold, IQRFlight,
PunctuationRatio and SpeedDelta, respectively

5.3.3 Proposed features

We propose a set of 14 features that were heuristically evaluated on our datasets for clas-

sifying text samples into benign or adversarial samples. The features are a mixture of

temporal and content based features and reflect the change in typing behavior and content

being typed between benign and adversarial activity.
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Our proposed features are described below, followed by their category (temporal or con-

tent based):

a. AvgEnterHold: The average of Keyhold values of all Enter keys in the text sam-

ple. (Temporal)

b. StdEnterHold: The standard deviation of Keyhold values of all Enter keys in

the text sample. (Temporal)

c. AvgSpaceInF light: The average of Flight1 values of any key followed by space.

(Temporal)

d. StdSpaceInF light: The standard deviation of Flight1 values of any key followed

by space. (Temporal)

e. AvgSpaceOutF light: The average of Flight1 values when space precedes any

key. (Temporal)

f. StdSpaceOutF light: The standard deviation of Flight1 values when space pre-

cedes any key. (Temporal)

g. SpaceRatio: The number of times space occurs / length of the text sample. (Con-

tent)

h. EnterRatio: The number of times Enter occurs / length of the text sample. (Con-

tent)

i. ErrorCount: The number of times Backspace or Delete occurs in the text sam-

ple. (Content)
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j. TotalT ime: Sum of all Keyhold and Flight1 values in the text sample. (Tempo-

ral)

k. IQRHold: The Inter-Quartile-Range of all the Keyhold values in the text sample.

(Temporal)

l. IQRFlight: The Inter-Quartile-Range of all the Flight1 values in the text sample.

(Temporal)

m. PunctuationRatio: The number times punctuation occur / length of the text sam-

ple. (Content)

n. SpeedDelta: The total time taken for the second half of the text sample - The total

time taken for first half of the text sample. (Temporal)

5.3.4 Context recognition with proposed features

The classification experiments were rerun using our proposed features. The main goal

of these experiments was to correctly classify the origin of a text sample either benign

activity (Dataset 1) or adversarial activity (Dataset 2). A benign sample being classified

as an adversarial sample is considered a False Positive (Type 1 error) and the opposite

misclassification is a False Negative (Type 2 error).

For each size of the text sample, three different classifiers were trained using 70% of the

text samples of the respective size (100, 250, 500 or 1000). The parameters of all three

classifiers and the number of samples for training and testing are set to the same values as

in previous experiments described in Section 5.3.2.
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Observations: With our proposed features we observe high accuracies in classification

and very low Type 1 errors (False Positives: when a text sample is classified as adversarial

but it is actually benign) and Type 2 errors (False Negatives: when a text sample is classi-

fied as benign but it is actually adversarial). Figure 5.2 shows the performance measures

for various lengths of text samples. In all cases the accuracies were very high with most

values lying between 85% to 97%. We also observe that the RF classifier performed the

poorest among the three classifiers, but even then had better results than the conventional

features. The increase in the size of the text sample seems to help decrease the Type 1 and

Type 2 errors in classification. In most cases, the errors were less than 15%. It is clear that

our proposed features were suitable for detecting if a particular keystroke behavior origi-

nated out of benign or adversarial activity.

Fig. 5.4.: The accuracies, FPRs (Type 1 error) and FNRs (Type 2 error) from the SVM, RF and
MLP classifiers using eight least correlated features from our proposed set.
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5.3.5 Correlation analysis of feature pairs

To reduce our proposed feature set and analyze its trade-off we perform pairwise correla-

tion of the proposed features. We use simple Pearson correlation value to depict how two

features are linearly related. The pair-wise correlation analysis of features is done sepa-

rately for each different size of the text sample. Figure 5.3 shows the heat-maps generated

from our analysis. We retain the eight least correlated features which are AvgEnterHold,

AvgSpaceInFlight, AvgSpaceOutFlight, SpaceRatio, EnterRatio, ErrorCount, IQRFlight

and PunctuationRatio. The trade-off of eliminating the other six features is analyzed by

training and testing the classifiers using only the eight selected features.

Figure 5.4 shows the accuracies and Type 1 and Type 2 error rates from the classifiers that

used only the eight least correlated features for training and testing. All other parameters

of the classifiers were unchanged. We observe that the classifiers performed very well and

the reduction of six features does not seem to affect its performance drastically. Type 1

and Type 2 errors increase by a marginal amount which can be overlooked. On an aver-

age, the Type 1 errors increased in the range of 4% to 7% and Type 2 errors increased in

the range of 3% to 6%. As a result the accuracies decreased but not to a noticeable extent.

This clearly shows that even with a smaller set of eight features the text samples can be

classified accurately to their activity of origin.

5.4 Conclusion and future work

We raised an intriguing question: ”Can the typing behavior of a user reveal if the typ-

ing activity is malicious or benign?”. We conclude that the typing behavior of a user can
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reveal if the typing activity being done is benign or malicious. Although, the keystroke

features that have been popularly used for user identification or verification are not suit-

able for this task. We proposed a different set of features using which the origin of a text

sample (whether malicious or benign) could be determined with high levels of accuracies.

We observe that behavior of keystroke timings and frequencies of certain keys like Space,

Enter and Punctuation keys can be used to reveal the nature of typing activity. Using

our proposed features we could achieve accuracies as high as 97% and Type 1 and Type 2

error rates of less than 3%. Our findings are based on the data that we collected from 102

users performing benign activity and 103 users performing malicious activity respectively.

In total, our dataset has over 1.9 million keystroke events making it most suitable for such

a study.

We show that keystroke analysis can be used to determine the nature of typing activity,

thereby assessing the threat levels of a system. However, we understand that keystroke

analysis would have to be used in conjunction with other technologies to obtain a more

robust and secure system. A separate analysis on the 15 users who were common for both

the data collection efforts might lead to interesting insights, we are exploring this direc-

tion. The future course of our research work would be to explore other input modalities

which can reveal similar threats and to formulate a fusion of such modalities for a more

secure system.
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6. EXPLORATORY WORK

In this chapter we provide the details of our exploratory work carried out in two direc-

tions; a) Authentication of users through musical notes generated by mapping keystoke

latencies to music and b) Authentication of users using the relationship between their

keystroke latencies on different devices.

6.1 Authentication by Mapping Keystrokes to Music: The Melody of Typing

Expressing Keystroke Dynamics (KD) in form of sound opens new avenues to apply

sound analysis techniques on KD. However this mapping is not straight-forward as var-

ied feature space, differences in magnitudes of features and human interpretability of the

music bring in complexities. We present a musical interface to KD by mapping keystroke

features to music features. Music elements like melody, harmony, rhythm, pitch and tempo

are varied with respect to the magnitude of their corresponding keystroke features. A

pitch embedding technique makes the music discernible among users. Using the data

from 30 users, who typed fixed strings multiple times on a desktop, shows that these audi-

tory signals are distinguishable between users by both standard classifiers (SVM, Random

Forests and Naive Bayes) and humans alike.

Behavioral biometrics has seen an upsurge in research and applications in the recent past.

Behavioral biometrics such as keystrokes [20, 121, 158], touch and swipe [59, 116, 157],
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gait patterns [64, 65, 183] and wrist movement patterns [97, 190] have been shown to be

good second-factor authentication techniques. As humans have well developed auditory

sense, representation of visual information in sound and vice versa has been of great inter-

est to researchers [89, 112, 113, 144]. But such alternative interfaces to convey biometric

information have not been explored. Mapping of information to sound can lead to deeper

interpretations of user biometrics which motivates our work. But various issues like var-

ied feature space, keystroke latency timings and human interpretability of the music com-

plicate this mapping.

6.1.1 Key contributions of the section

Our key contributions are;

• Develop method to convert keystroke signature to musical signature: We present

a method to map keystroke features to music notes which can be used as a musical

signature. Using two modified functions to compute a note’s duration and pitch,

we are able to derive the musical equivalent of a keystroke signature. Our designed

procedure to map keystroke features to musical signatures for a user is portable to

other forms of behavioral biometrics, such as gait, swipes and wrist movements,

with some modifications.

• Analyze inter-user and intra-user distances between music samples: We analyze

the efficiency of music files for user verification using inter-user and intra-user dis-

tances between two key vectors; note-pitch and note-duration.
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• Present human discretion results: Results from human subjects with little to no

formal background in music, performing verification based on the music files of

user are presented. Human classifiers were trained by listening to music files to ver-

ify users. User-wise accuracies, Type 1 errors (false rejects) and Type 2 errors (false

accepts) are presented.

6.1.2 Related work

The benefits of transforming information between the visual and aural senses has been

studied in various contexts other than biometrics. Meijer [113] designed and evaluated a

system that represented image information in form of sound. Inverse mapping (sound-to-

image) mapping experiments showed convincing evidence for the preservation of visual

information through the transformation. Kim [89] explored the other direction of informa-

tion mapping by presenting techniques to represent sound in form of visual images. A few

studies use such mapping techniques and extend existing systems to be more accessible to

the visually impaired. Matta et al. [112] proposed a theoretical system that provided au-

ditory image representations as an approximate substitute for vision, whereas Rigas and

Memery [144] used both audio-visual stimuli to communicate information in browsing e-

mail data. Both studies found auditory representation of data to be useful not only for the

blind but also to maximize the volume of information communicated.

A host of other studies propose addition of audio cues to authentication systems. Saxena

and Watt [152] explore various challenges and possible solutions for user authentication

and device authentication in case of blind users. Goodrich et al. [68] investigate the use of
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audio for human-assisted authentication of un-associated devices, their system, Loud-and-

Clear, couples vocalization on one device and visualization on another for secure device

pairing. Audio cues have also been used in systems to communicate a predetermined mes-

sage to the visually impaired user. These audio cues can have various meanings, Wong et

al. [185] use audio cues to signal the quality of the acquired image for face recognition

when used by visually impaired users. Their study showed shorter acquisition times and

improved rate of face detection for non-sighted users. Namin et al. [162] use a similar

concept of audio cues to alert users about internet security threats with threat-sound pairs

like; phishing-casting a fishing reel, malvertising-dropping a bomb, form filling-typing on

keyboard.

The association of keystrokes to sound has been explored by few researchers, only in con-

text of the acoustic emanations that occur while a user is typing. Zhuang et al. [197] show

how keyboard acoustic emanations from 10 minute recordings can be used to attack and

recover up to 96% of typed characters. Roth et al. [146] proposed keystroke sound as a

modality of authentication of users in a continuous authentication scenario and discuss

the shortcomings and possibility of better features in their work. In another attack fo-

cused work by Zhu et al. [196], off-the-shelf smartphones are used to record keystroke

emanations. The authors use Time Difference of Arrival (TDoA) method and show that

more than 72% of keystrokes can be recovered without any context-based information. A

similar study by Liu et al. [103] performed better by recovering 94% of keystrokes with

acoustic emanations and discrimination of mm-level position differences that help locate

origin of keys on a keyboard. Another work by Roth et al. [148] investigated the discrimi-

native power of these keystroke emanations, with an EER of 11% they conclude that there
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is promising discriminative information in the keystroke sound to be further explored.

These works primarily focus on acquiring sound at the point of typing, which might not

be audible or easily understandable to make meaningful interpretations by humans.

In a similar musical mapping work by Paul et al. [136] proposed a method to generate

personalized music from DeoxyriboNucleic Acid (DNA) signatures of users. The number

of Short Tandem Repeats (STRs) and the STR sequences were used as the units mapped

to musical elements.

6.1.3 Details of the data collection

The typing data was collected from 30 participants at our University after the IRB ap-

proval. The participants consisted of 13 females and 17 males, aged from 19 to 28. All

participants were right-hand dominant and fluent in English. Twelve participants indi-

cated that they were touch typists while the rest indicated to be visual typists. The partic-

ipants performed the following activities on a desktop, with a standard QWERTY key-

board: multiple brief and interleaved sections of transcription, free-text typing, browsing

and online shopping. This is a subset of SU-AIS BB-MAS dataset [83].

We focus on the transcription activities and only extract the data generated from the users

while typing the phrase ”this is a test” (hereinafter referred to as ”test-phrase”). All users

typed the test-phrase at many different points in their session, a minimum of 30 occur-

rences for each user were extracted from the data. We consider each occurrence of the

test-phrase as one sample from the user.
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Fig. 6.1.: Music notes and their placement, generated from a digraph Ki,Ki+1 using functions
T (v) and P (v) for duration and pitch respectively.

6.1.4 Music features

Keystroke data consists of keyhold times and inter-key (flight) latencies grouped by their

keys of origin whereas music is generated from notes of different pitch and duration played

in a certain pattern. Mapping data between these two very different modes of information

is complicated as the magnitudes of the keystroke features, information of their differ-

ent keys of origin, repeating key presses and many other such peculiarities cannot be ex-

pressed with simple equivalencies in the music domain.

Therefore, we shortlist the elements of music [187] that can be manipulated to create mu-

sic from the keystroke features. We chose the following; Melody: the tune generated due

to successive single notes affected by pitch and rhythm. Harmony: sound produced by

two or more notes played simultaneously. Rhythm: combinations of sounds of varied

length. Pitch: sound varied with the frequency of vibrations. Tempo: speed at which the

music is played. By controlling the pitch and duration of musical notes, we can manipu-

late these five elements of music.
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The MIDI protocol is a message-based communication between computer and equip-

ment. The MIDI protocol was initially made to create polyphonic sound by using mul-

tiple musical devices once, linked with cable, in the music industry [61]. To create music

that complies with MIDI standard we use Ken Schutte MIDI Matlab Toolbox [75]. The

matrix2midi module takes a N ∗ 6 matrix and converts it to MIDI format which is

then written to a MIDI file using the writemidi module. N rows of the matrix represent

the notes (one for each note) and the 6 columns represent the track number, channel

number, note number (midi encoding of pitch), velocity (volume), start time (sec-

onds), end time (seconds) respectively. For simplicity, we set track number = 1, channel

number = 1(piano), and volume = 75 to be constants. By varying the pitch of a note and

its duration we generate MIDI files Mus for each Dus.

Mapping keystroke features to music

To generate Mus we compute their MIDI matrices of shape N ∗ 6, we can denote Mus as:

Mus = [ ~tnus, ~cnus, ~pus, ~vus, ~stus, ~etus] (6.1)

Where ~tnus is track number, ~cnus is channel number, ~pus is pitch, ~vus is volume, ~stus is

start time, and ~etus is end time and all the vectors are of the same length N (number of

notes). As explained earlier, ~tnus = ~1, ~cnus = ~1 and ~vus = ~75. ~pus, ~stus and ~etus are

mapped from Dus using our embedding technique to enhance the user-specific informa-

tion held in Dus.
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Each digraph < Ki , Ki+1 > in Dus (in alphabetic order) is mapped to music notes

by converting its six associated keystroke values ( Keyhold of Ki, Ki+1 and their four

flight values) with duration function T (v) and pitch function P (v). T (v) is a simple

scaling function, to scale the keystroke feature (in milliseconds) to practical music note

duration (in seconds). P (v) is a modified form of MIDI Tuning Standard (MTS) which is

specified in the MIDI protocol [17]. The two functions are shown below:

T (v) = v/100 (6.2)

P (v) = 69 + 12log2

(
v

440

)
(6.3)

Fig. 6.2.: Examples of the piano roll plots that are obtained after mapping the keystroke features to
the music features. We illustrate the piano roll plots of two test-phrase samples from two random
users from our data-set, Figures 6.2(a) and 6.2(b) are from samples of user A and Figures 6.2(c)

and 6.2(d) are from user B.

where v is the value from the Xf : v pairs in Dus. We substitute v in place of the fre-

quency in the standard MTS equation. Since 440 Hz is a widely used standard concert A

(musical note), equation (6.3) uses the term log2 (v/440) to compute the number of oc-

taves above or below the concert A. This term is multiplied by 12 to compute the semi-
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tones above the concert A. MIDI represents the concert A with integer 69 which is added

for a MIDI compliant pitch number.

After computing duration and pitch of the notes, the notes are arranged similar to their oc-

currences over the duration of a digraph to obtain the vectors ~pus, ~stus and ~etus. As Fli

−ght4 translates to the longest duration, all other notes overlap with it at different points.

~etus is computed as ~stus + T (v), notes corresponding to KeyholdKi
, Flight3KiKi+1

,

Flight4KiKi+1
, have the same values in ~stus (same start time). Flight1KiKi+1

and Flight2

KiKi+1
have the same values in ~stus equal to ~etus values of KeyholdKi

. KeyholdKi+1
has

its ~stus value equal to the ~etus value from Flight1KiKi+1
.

Figure 6.1 illustrates the mapping, start time and end time of music notes generated us-

ing digraphs from Dus. These notes (from all digraphs in alphabetical order) when played

in a sequence produce a musical tune. Figure 6.2 shows a collection of piano roll plots

which were generated for different samples of test-phrase using our procedure. The high-

lighted sections represent a played note. We can observe that plots 6.2a and 6.2b appear

to be similar (similar sounding music) to each other. Both were generated from different

samples by the same user. Figures 6.2c and 6.2d show the same for a different user. This

example is representative of observations on our entire dataset.

6.1.5 Analysis on music from keystrokes

We performed inter-user and intra-user distance analysis and user-music verification us-

ing random forests, naive bayes and SVM. But as standard classifiers do not differentiate
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between musical notes and other forms of data, we also preform verification experiments

with three human-classifiers detailed below.

6.1.6 Inter-user and intra-user analysis

In each music file Mus, vectors ~tnus = ~1, ~cnus = ~1 and ~vus = ~75 are constant. Therefore

we perform the inter-user and intra-user analysis using only the ~pus, ~stus and ~etus vectors.

As order of the notes in all music files are same, vectors ~stus and ~etus can be simplified

to a single vector ~dus = ~etus - ~stus. ~pus denotes the pitch of the notes and ~dus denotes their

duration. We chose Canberra distance as it is most suitable when dealing with vectors.

The Canberra distance between two vectors ~a and~b is given by:

c(~a,~b) =
n∑

i=1

|ai − bi|
ai + bi

(6.4)

Figure 6.3 shows the density functions of the inter-user and intra-user distances from all

music files. Figure 6.3a is plotted with distances using ~pus while figure 6.3b is using ~dus

from all the music files respectively. We observe that the density curves for intra-user dis-

tance falls majorly towards the left, implying lesser intra-user differences in music, for

both cases. In contrast, the density curves for inter-user distances are fall towards the right

with higher distance values. We can also observe the overlapping regions between the

intra-user and inter-user density curves is small. Small intra-user distances, large inter-

user distances and small overlap among these curves are all desirable qualities for user
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(a) Distances using note-pitch vectors ~pus.

(b) Distances using note-duration vectors ~dus.

Fig. 6.3.: Plot of density functions for inter-user and intra-user Canberra distances of the
note-pitch vectors (6.3a) and note-duration vectors (6.3b) between all music files.

verification. These qualities imply that music files of a user are fairly separable from other

users.
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Verification experiments with standard classifiers

Even though We use the note-pitch vector ( ~pus) and the note-duration vector ( ~dus) as

feature vectors for the music files. For the verification experiments, we use three different

classifiers; Random Forests, Naive Bayes and SVM. Due to our dataset consisting of 30

music files for each user, we run the experiments with two different configurations; two-

fold and three-fold cross validation. For each session 30 imposter samples are sampled

randomly from users other than the genuine user.

Random forest classifier with five trees, maximum depth was restricted to five and num-

ber of child nodes was restricted to two. GINI impurity was used for the split criterion.

In SVM classifier we use a RBF kernel, penalty parameter = 1 and gamma = 0.01. The

Gaussian Naive Bayes (GNB) classifier implements the Gaussian Naive Bayes algorithm

as shown by the following equations:

ŷ = argmax
y

P (y)
n∏

i=1

P (xi|y) (6.5)

P (xi|y) =
1√

2πσ2
y

exp

(
− (xi − µy)

2

2σ2
y

)
(6.6)

where, y is the class, ŷ is the predicted class, x1, x2, ...,xn are the features, σy and µy are

the standard deviation and mean estimated using maximum likelihood. Table 6.1 presents

the results of our verification experiments. We observe that the Naive Bayes and SVM

classifiers perform slightly better with more number of training instances. However, all

three classifiers performed similarly with high accuracy between 89% to 96%. The False
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(a) False rejection rates or Type-1 error.

(b) False acceptance rates or Type-2 error.

(c) User-wise accuracies for verification.

Fig. 6.4.: Results from the Human-Classifier (HC) based verification experiments.

Rejection Rates (FRR) and False Acceptance Rates (FAR) were low (≤ 10%) in all cases

except for two-fold experiments with Naive Bayes and SVM.
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As these classifiers do not differentiate between music and other numerical data, these

results do not highlight the merits of converting a user’s keystroke data into music. There-

fore, a human classifier based experiments were carried out, detailed below.

Verification experiments with human classifiers

The true test and application of our work is to see if an average human can differentiate

between the music generated from one user’s typing sample to another. We recruited three

volunteers (hereinafter referred to as human-classifier or HC) with little to no formal ed-

ucation in music. Each experiment session had a training phase and a testing phase. A

user number was selected for each session and all the samples from that user were la-

beled ”genuine” for the session. In the training phase the HC was made to listen to 15

music files from the genuine user. In the following testing phase a set of 30 music files,

consisting of 15 genuine (not used in training) and 15 imposter (randomly selected from

other users) files were played one after the other. At the end of each file HC classified it

as either genuine user or as an imposter. The classification decisions were recorded and

analyzed.

Figure 6.4 and Table 6.1 summarize the results of our verification experiments carried out

with three HCs. Figures 6.4a and 6.4b show the Type-1 and Type-2 errors committed by

the HCs respectively. Type-1 error is the case where a HC falsely rejected a genuine mu-

sic sample (rejection of a true null hypothesis). Whereas, Type-2 error is the case where a

HC falsely accepted an imposter’s music sample (failure to reject a false null hypothesis).

Figure 6.4c shows the user-wise accuracy of the HCs in the verification task. We observe
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that verifying a few users was challenging for all three HCs, especially users 6,12 and 25,

reflected in the high FAR and FRR for these users. For all other users, the FAR and FRR

values are low, within range of 10% to 15% in most cases. In a few cases the FAR and

FRR values are 0, indicating a perfect classification by the HC. The accuracies shown in

the figure 6.4c reflect similarly with most being in the range of 75% to 85% while being

low on users 6, 12 and 25. Overall, all three HCs could easily verify the music files of

users with high accuracies for most users.

6.1.7 Conclusion and future work

Our work shows that information from keystroke dynamics can be translated to other rep-

resentations that maintain or enhance the human interpretability of the data. A theoretical

system to convert keystroke features to the aural sense has been proposed. Information

on KD is conveyed through auditory music files. We show that user-specific music files

exhibit high inter-user distance and low intra-user distance which is a desired quality in a

feature vector to be used for authentication. Verification experiments with standard classi-

fiers (Random Forests, Naive Bayes and SVM) show that these music files can be verified

with high accuracies despite treating music as any other numerical data. Experiments with

different devices, types of text and music fluency of the human classifiers are part of our

future research direction.

Results from human-classifiers reveal that a user’s keystroke behavior can be converted to

music which is humanly verifiable. The musical melody created from each user’s keystroke

data using our approach has a clearly distinguishable tune unique to a user. The approach
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and findings of this work can be used in a variety of ways such as; a new mode of second-

factor user authentication, a complementary form of data presentation for audible user

specific keystroke signatures. The concept of mapping biometrics features to music can

be reused with some modifications to suit other forms of biometrics such as gait, touch,

swipe and fingerprints to name a few.

6.2 DoubleType: Authentication Using Relationship Between Typing Behavior on

Multiple Devices

Authentication using Keystroke Dynamics (KD), has customarily focused on one device

at a time, either desktop or phone. It is imperative that authentication systems adapt to an

environment where the users consistently switch between multiple devices. We use the

typing behavior of users on different devices, extract the relationship between them and

show that these relationships can be used to authenticate users in a multi-device environ-

ment when a user switches between devices. We design an authentication system for three

scenarios, using the relationship between typing behaviors on a) desktop and phone, b)

desktop and tablet, and c) tablet and phone. We find that these are highly separable for

individuals with data form 70 users. With Gaussian Naive Bayes (GNB) and Random

Forests (RF) classifiers, we found the accuracies for verification to be very high. Using

GNB we achieved mean accuracies of 99.15%, 99.23% and 98.72% for relationships be-

tween desktop-phone, desktop-tablet and tablet-phone respectively. RF classifiers per-

formed similarly with mean accuracies of 99.31%, 99.33% and 99.12% for relationships

between desktop-phone, desktop-tablet and tablet-phone respectively.
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User authentication has always been a challenging domain. Authentication mechanisms

have evolved gradually with introduction and popularity of new devices into the con-

sumer market. While, Personal Identification Number (PIN) and passwords are some

of the classical authentication methods, behavioral biometrics brings a variety of au-

thentication mechanisms to the table [10, 34, 134]. Keystroke Dynamics (KD) is a form

of behavioral biometrics which uses a user’s typing behavior to perform identification

or verification. KD has shown promising results as a security measure throughout its

research [54, 120, 179]. KD based authentication has been extensively studied in two

main categories of devices, devices with physical keyboards like desktops or laptops

[29, 33, 70, 81], and touchscreen devices like smart-phones [62, 84, 108].

As more and more people are getting accustomed to multi-device environments, it would

be a step in the right direction to adapt the field of KD to this inevitable future. It is not

a rare occurrence for a person of this generation, to work or use multiple devices in an

interleaving fashion.

In this work we explore how the typing behavior of a user on one device can be related

to the typing behavior of the same user on another device and if it is unique enough from

different users using those devices. We also describe an approach to use this relationship

as means of verification. As multi-device multi-user environments become the norm, it

is critical for future authenticating systems to have provisions to check such multi-device

behavior relationships. Verification using relationships involving multiple devices also

adds a protective layer if one of those devices are compromised.
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6.2.1 Key contributions of the section

Our key contributions are;

• Develop and extract multi-device typing behavior relationship: We show that the

relationship between a user’s typing behavior on two devices is fairly unique and

can be used for authentication in multi-device environments. We posit that, because

typing samples from two different devices are used in our authentication system,

this system would be harder to spoof in comparison to systems that use typing sam-

ples form a single device. In this section cover all three scenarios of user’s typing

behavior relationships, a) desktop-phone; b) desktop-tablet; and c) tablet-phone.

• Present results with scaling number of users: We show that the proposed system is

accurate and scalable. We vary the number of users 10 users and increment up to 70

users and all vital metrics such as, Precision, Accuracy, Specificity and Sensitivity

stay consistent in the range of 95% to 99.5%, implying highly scalable approach.

6.2.2 Related work

Authentication using KD has been studied from various perspectives for quite sometime

now. From early works of Gaines [66], the primary focus of KD has been on the way an

individual uses a keyboard interface. A majority of research in authentication using KD is

based around a typical desktop setup, where a user is using a standard keyboard, pressing

and releasing a sequence of keys. Some of the early works [33, 81, 129, 131] provided in-

sights of how keystroke dynamics could be used in an authentication system. Though the
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Fig. 6.5.: An overview of the authentication system.

number of participants in early studies were very small, often between ten and twenty, and

the type of text was usually fixed text of small lengths, their findings had a huge impact

nonetheless. Various features like key-hold durations, inter-key latencies [81] between

digraphs [95], trigraphs, and their effects on classification systems were studied. In Obai-

dat and Sadoun’s [129] work it was shown that a combination of key-hold time and flight

time features resulted in better classification of users.

A detailed study, with a considerable user population, on free text in authentication by

KD was carried out by Gunetti and Pacardi[70]. In their earlier work by Bergandano [29],

the authors used the same sampling text for all individuals and allowed typing errors.

However, in a study by them later [70], use of free text in KD research assured higher

usability as compared to using only fixed text.

As mobile phones and smart-phones became more popular, authentication systems have

also been proposed using the KD on these devices. Clarke [46] in their feasibility study
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of KD on mobile handsets, found KD to be promising as part of a larger hybrid authenti-

cation algorithm. Rodrigues [145] proposed a KD based access control for devices with

numerical keyboards, which was the case of early mobile phones. Clarke and Furnell, in

their successive works [44, 48], described detailed frameworks and presented analysis on

using KD for authenticating mobile phone users. In their works, the authors focused on

three scenarios; entry of 11-digit phone numbers, entry of 4-digit PINs and entry of text

messages.

How our work is different?

Most KD based authentication systems limit their focus to a particular device, either a

desktop or a phone. Researchers use the typing behavior of a user on either one of these

devices to authenticate the user on the same device. We look at a multi-device environ-

ment and focus on the typing behavior of users on multiple devices to design out authenti-

cation system. We find that the relationship of typing behavior of a person on two devices

is quite unique and can be used for authentication. We chose the three most popular de-

vices; desktop, phone and tablet. Our dataset consists of a considerable number of users,

performing tasks on all of these devices. The richness of this collected dataset itself en-

ables us to pursue different paths of analysis which sets our work apart from the rest. Ef-

forts are underway to make our dataset available publicly to benefit all researchers.

We relate the typing behavior of same user on different devices and test the separability of

this relationship from different users typing on these devices. As we have seen researchers

combine different modalities in our literature search, our work can be viewed as an at-
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tempt to combine the same modality (typing behavior or KD) from different devices for

authentication, which has not been explored in KD base authentication.

6.2.3 Overview of the authentication system

Figure 6.5 presents an overview of our method. It is applicable in environments where a

user switches between two or more devices while going about their tasks. Our authenti-

cation system can be deployed either separately or as a second layer, in conjunction with

other authentication systems on the individual devices. During the enrollment phase, mul-

tiple typing samples from the users typing activity on each pair of device (Desktop-Phone,

Desktop-Tablet, Tablet-Phone) is used to extract the relationship − features (detailed

in section IV). These relationships act as signatures for the typing behavior of a user on

these pairs of devices. Only the relationship between the samples need to be stored on

the server. When a user switches to another device, verification samples from both the

devices are used to build a relationship (see Section IV) which is then input as a feature

vector to a classifier to verify the identity on the switched device.

Our conjecture is that even if any device is compromised or both devices simultaneously

are compromised, it will be difficult to compromise the relationship between the devices

for the specific individual because the relationship-signatures build on dictionary values

containing statistics of unigraphs and digraphs, whereas the individual verifiers on devices

will use standard set of features, which will require reverse engineering raw values from

features. Thus this method provides an important security layer.
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6.2.4 Details of the data collection

As, at the time of this study, keystroke data of the same person typing on different devices

was not publicly available, we had to make our own data collection effort. Data collec-

tion was carried out after the IRB approval from our university. The data from 70 users

is used in this study. The population consisted of 38 male and 32 female participants.

They were aged between 19 and 35 years. The data collection was designed to emulate

common activities on three devices; a desktop, a tablet and a phone. The interfaces for

keystroke input on the devices were: a standard QWERTY keyboard for the desktop, the

touchscreen QWERTY keypad of HTC-Nexus-9 for tablet, the touchscreen QWERTY

keypad of Samsung-S6 or HTC-One for phone. The typing activities required to user to

type a mix of both, free text and fixed text, which closely mimics the text typed in a real-

life scenario.

The participants completed activities in the following order: a) desktop, b) tablet and c)

phone. All keystroke events and their timestamps were logged during these activities.The

users took about 55 minutes to complete the tasks on desktop and 30 minutes each on

tablet and phone. Each participant made approximately 12,500 keystrokes on the desktop,

9,000 keystrokes on the tablet and 10,000 keystrokes on the phone. The data collection

took around 2 months to complete. The data is a subset of SU-AIS BB-MAS dataset [83]

that is shared publicly for the benefit of the research community. A summary of our data

collection efforts are presented in table 6.2.
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Fig. 6.6.: Data preprocessing and formation of datasets from the relationship between typing
behavior on two devices.

6.2.5 Methodology and experiments

Outlier Removal: For the detection and removal of outliers, we use a simple filter to re-

move any instances of features which have a value of two seconds or more. We assume

that these were caused by pauses, where the user was either thinking or receiving instruc-

tions during the data collection.

Fig. 6.7.: Illustration of the feature values from two random users selected from our dataset for
scenario 1: relationship− features for Desktop and Phone.

Data preprocessing and relationship extraction

The data preprocessing procedure is outlined in Figure 6.6. In the first step of our data

preprocessing, we extract 40 random samples from each user’s data from each device.

Each sample is made from the keystroke events of approximately 300 characters (we
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chose samples with 300 characters as it is approximately equal to the character limit of

a tweet: 280 characters (Twitter is a popular social platform where people express their

thoughts within the said character limit). The extracted groups of samples can be de-

noted as Dui,sj , Pum,sn and Tup,sq, where D , P , T are samples from desktop, phone

and tablet respectively. ui, um and up are the user, i, m and p respectively, which range

from 1 through 70. sj , sn and sq are the sample number, where j, n and q ranges from

1 through 40. For example, Du5,s10 represents the keystroke sample from desktop for

user number: 5 and sample number: 10. We then extract the keystroke features that were

discussed above, to form the feature template for each sample, which can be denoted as

FDui,sj , FPum,sn and FTup,sq, where FD , FP , FT are feature templates from desk-

top, phone and tablet samples respectively. All other aspects of the denotations are same

as explained above. Each feature template is comprised of five dictionaries, one for each

feature. These dictionaries can be denoted by DKH , DF1, DF2, DF3 and DF4 for the fea-

tures keyhold, flight1, flight2, flight3 and flight4 respectively. Each dictionary is made of

multiple key : value pairs. The keys are Uni-graphs, as in the case of DKH , or Di-graphs,

as in the case of DF1, DF2, DF3 and DF4. The value is average of the feature for the key

occurring within the corresponding keystroke sample. Therefore, continuing our previ-

ous example, the feature template of the keystroke sample Du5,s10, would be FDu5,s10 =

[DKH , DF1, DF2, DF3, DF4]
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Relationship extraction

To use relationship of a user’s typing behavior on different devices as an authentication

criteria, for two feature templates say FX and FY , from two different devices (such that

FX and FY are both not from same group FD, FP or FT ), we extract the following

relationship− features from them:

a. Avg.KH, Std.KH : The average and standard deviation, of absolute difference

between corresponding key : value pairs in DKH .

b. Avg.F1, Std.F1 : The average and standard deviation, of absolute differences be-

tween corresponding key : value pairs in DF1.

c. Avg.F2, Std.F2 : The average and standard deviation, of absolute differences be-

tween corresponding key : value pairs in DF2.

d. Avg.F3, Std.F3 : The average and standard deviation, of absolute differences be-

tween corresponding key : value pairs in DF3.

e. Avg.F4, Std.F4 : The average and standard deviation, of absolute differences be-

tween corresponding key : value pairs in DF4.

Our final dataset consists of the following 10 feature columns: Avg.KH , Std.KH , Avg.F1,

Std.F1, Avg.F2, Std.F2, Avg.F3, Std.F3, Avg.F4 and Std.F4. Apart from these fea-

ture columns, the columns UserIDs, who typed the text samples are used to dynamically

create a class label column.
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(a) Scenario 1 : GNB classifier. (b) Scenario 1 : RF classifier.

(c) Scenario 2 : GNB classifier. (d) Scenario 2 : RF classifier.

(e) Scenario 3 : GNB classifier. (f) Scenario 3 : RF classifier.

Fig. 6.8.: Performance of the two classifiers for all three scenarios, Desktop-Phone (6.8a and
6.8b); Desktop-Tablet (6.8c and 6.8d); and Tablet-Phone (6.8e and 6.8f) relationship.

• Scenario 1; Desktop-Phone relationship: We extract the relationship − features

between FDui,sj and FPun,sm where i and n range from 1 to 70 (user number) and

j and m range from 1 to 40 (sample number).

• Scenario 2; Desktop-Tablet relationship: Similar to scenario 1, but, with FDui,sj

and FTup,sq.

• Scenario 3; Tablet-Phone relationship: Similar to scenario 1, but, with FTup,sq and

FPun,sm.

Figure 6.7, illustrates the relationship − features extracted between two random users

from our dataset with the help of scatter plots for scenario 1. In this illustration we can
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see different clusters of feature values. The different clusters signify if the same user was

using both the devices in the given scenario, or if different users were using the devices.

Experiments and classifiers

We perform verification experiments for the three scenarios using their corresponding

datasets. We assign a class label to each instance in the dataset depending on the user

number being verified. If the genuine user for a verification round is user G then, only

the instances that have both user1 and user2 as G are assigned the class label of ”1” (gen-

uine); the rest are assigned ”0”. This implies that the relationships coming from the same

user G, typing on both devices is considered a genuine instance for that round. The fields

user1 and user2 are dropped and only the relationship − features are used to train

and test the classifiers. We use two classifiers to perform verification from the scikit-learn

library using python for programming. The first classifier, is a Gaussian Naive Bayes

(GNB) classifier and Random Forest (RF) classifier. We use 10 trees in the RF with the

Gini impurity for the split criterion. We also limit the maximum depth of the trees to be

five. For both the classifiers we balance the genuine and impostor classes to have approx-

imately equal instances and use a 70% of the data for training and the remaining 30% of

the data for testing. To analyze the scalability of the approach, for all three scenarios, we

start with the data from only 10 users, gradually incrementing the size in 10s until we fi-

nally include the data from all 70 users. The results of our experiments are discussed in

the following section.
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6.2.6 Results and discussion

We use Accuracy and Precision as the key metrics to measure the performance of both the

classifiers. The mean performance values for verification in Scenario 1: Desktop-Phone

relationship, are presented in Figures 6.8a and 6.8b. Both the classifiers perform con-

sistently well. Even as the number of users in the system is increased gradually from 10

through 70, we observe that all the mean values for the metrics remain stable. Accuracies

on both the classifiers are very high with above 99% accuracy throughout. Precision of

the RF classifier is better than the precision of the GNB classifier within a range of 1%,

but are still satisfactorily high on both classifiers nonetheless.The plots reaffirm our obser-

vation that all the performance metrics stay stable even with the increase in the number of

users for both the GNB classifier (6.8a) and the RF classifier (6.8b). Figures 6.8c and 6.8d

summarizes the results verification in Scenario 2: Desktop-Tablet relationship, both the

classifiers perform similar to Scenario 1. With high Accuracy and Precision rates for all

sizes of the user population that were considered. Even at the maximum user population

of 70, we see that the average accuracy and precision values are 99.23% and 98.64% for

the GNB classifier and 99.33% and 99.38% for the RF classifier respectively. The sum-

marized results for Scenario 3: Tablet-Phone relationship, is shown in Figures 6.8e and

6.8f, similar to the previous two scenarios discussed, the values for Accuracy and Preci-

sion are very high for all sizes of user population in our experiments. For the final user

population of 70, both the classifiers perform satisfactorily. We also observe that in case

of the GNB classifier, the average accuracy and precision values are marginally smaller

than the values for the RF classifier within a range of 1.0%.
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6.2.7 Conclusion and future work

We conclude that the relationship between the typing behavior of users on different de-

vices is fairly unique to an individual. We find from our study on 70 users and 3 devices

(desktop, phone and tablet), that the relationship between the typing behaviors preform

outstandingly for verification. Previous research in KD based authentication has focused

exclusively on single device environments. Our results show that, KD based authentica-

tion from relationships between the typing behavior of users on multiple devices can be

considered in a multi-devices environment. Some of the applications of this work could

be authentication of users in online courses or exams and employee authentication in an

office environment, or as a second layer of authentication.

We speculate that a user’s typing behavior on individual devices may be easier to mimic

and breach when compared to breaching the relationship of the typing behavior on two

devices. This approach can be likened to a two-factor authentication approach, where the

user has to type on two different devices and the relationship between these typing sam-

ples is tested.

This study leads to many other intriguing questions, such as: are there other relationships

between the typing behaviors on different devices which may improve the results of au-

thentication? What other activities on multiple devices, other than typing, can be used to

form a multi-device authentication system? Can text samples with smaller character limit

yield similar results? These are areas we plan to explore in future research.
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7. SUMMARY

We share and provide the details of our large behavioral biometrics dataset for typing,

gait and swiping activities of the same user on desktop, tablet and phone. The availability

of the data on different devices for the same person makes our dataset unique; and with

data from 117 participants, also one of the largest. With this dataset researchers can try to

explore questions that were not possible with previously available datasets such as; ”Does

the typing of an individual on desktop reveal their typing on a tablet or phone? and vice

versa” ; ”Can a person’s demographics like age, height, etc., be predicted from the data

of typing, gait or swiping activity on any of the devices?”; to name a few.

Our experiments show that, in the case of keystrokes, gait and swipes using desktop,

tablet and phone, it would be wrong to assume an underlying normal distribution. Low

values of p from our non-parametric normality tests across activities and devices show

that researchers in behavioral biometrics must not assume the data to be from a Gaussian

distribution to get better and more accurate insights. However, upstairs and downstairs

activity data, showing higher percentages of samples where an underlying normal distri-

bution cannot be discarded is intriguing and further research is needed to establish why

this occurs. Knowing that the data does not follow normal distribution leaves the dis-

cussion incomplete, which can only be completed by learning alternate ways to handle

a non-normal dataset. Our results question the common assumption that the data in be-

havioral biometrics follows a normal distribution. We have discussed the implications and
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alternate approaches for such a scenario. We hope that, insights from our work help fu-

ture researchers to make the right choices in terms of data models, transformations and

classifiers to achieve better results and make correct interpretations.

The proposed word-specific features perform much better at user identification on all de-

vices. Conventional features, especially KeyHold does not provide user separation to a

desired level. We considered the subset of proposed features that offered higher discrim-

inability, like WordHold, AvgFlight1, AvgFlight2, AvgFlight3, AvgFlight4, evaluated

them with classifiers and drew comparisons with conventional features (Section 3.9).

These classifiers show competitive accuracies on all devices. Mathematical insights for

this improvement in performance are drawn (Section 3.10.1). We also note that these fea-

tures in general perform much better on hand-held devices. We speculate that user’s style

of holding devices and patterns such as, short bursts of typing followed by pauses be-

tween words might be some of the reasons (Section 3.10.2). Analysis of the word-based

impact factors reveal that four or five character words, words with about 50% vowels, and

those that are ranked higher on the frequency lists might give better results for the extrac-

tion and use of the proposed features (Section 3.10.3) for user identification.

We raised an intriguing question: ”Can the typing behavior of a user reveal if the typ-

ing activity is malicious or benign?”. We conclude that the typing behavior of a user can

reveal if the typing activity being done is benign or malicious. Although, the keystroke

features that have been popularly used for user identification or verification are not suit-

able for this task. We proposed a different set of features using which the origin of a text

sample (whether malicious or benign) could be determined with high levels of accuracies.

We observe that behavior of keystroke timings and frequencies of certain keys like Space,
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Enter and Punctuation keys can be used to reveal the nature of typing activity. Using

our proposed features we could achieve accuracies as high as 97% and Type 1 and Type

2 error rates of less than 3%.We show that keystroke analysis can be used to determine

the nature of typing activity, thereby assessing the threat levels of a system. However, we

understand that keystroke analysis would have to be used in conjunction with other tech-

nologies to obtain a more robust and secure system.
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A. ADDITIONAL DETAILS OF DATA COLLECTION
A.1 Cognitive Loads[35]

Task Level Required activity
Remember 1 Retrieve knowledge from long-term memory to explain
Understand 2 Explain, summarize or interpret
Apply 3 Apply, execute or implement
Analyze 4 Organize or break material into constituent parts
Evaluate 5 Critique or make judgments based on criteria
Create 6 Generate, plan or put elements together

A.2 Examples of Free text questions on desktop

• List some of the things that you like about Syracuse University.

• Which internet browser do you typically use (e.g, Google Chrome, Internet Explorer, Mozilla Fire-
fox, etc.)?

• What improvements would you like to see in that browser?

• If you were to draw a picture of Syracuse University, what objects would you include in it?

• What is your favorite vacation spot? Why do you like to visit there?

• Give step-by-step driving directions to your favorite restaurant in the Syracuse Area, starting from
your dorm room/ home.

• Discuss step-by-step instructions for making your favorite type of sandwich. Write them so that the
person who has never done this before can follow your instructions.

A.3 Examples of Free text questions on tablet

• What is your ideal job after graduation? Why?

• Why did you decide to attend Syracuse University?

• Re-read Question #2 (from the Multiple Choice Questions section) and the responses. Which re-
sponse do you feel is least applicable to you and why?

• Review Question #6 (from the Multiple-Choice Questions section) and the answer that you chose.
Why did you select your answer?

• If Question #6 (from the Multiple-Choice Questions section) was changed to read ”If some mangoes
are golden in color and no golden-colored things are cheap”, which answer would be correct and
why?
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A.4 Examples of Free text Questions on phone

• Of the courses you’ve taken in college, which was your favorite and why?

• Think about a class that you did not enjoy. What improvements would you like to see to make the
course better?

• Re-read Question #2 (from the Multiple Choice Questions section) and the responses. Which re-
sponse do you feel is least applicable to you and why?

• Do you intend to pursue an advanced degree (e.g., Master’s or Ph.D. )? Why or why not?

• Review Question #7 (from the Multiple-Choice Questions section) and the answer that you chose.
Why was the rule you found/why did you select your answer?

A.5 Transcription Sentences

• ”this is a test to see if the words that i type are unique to me. there are two sen-
tences in this data sample.”1

• ”second session will have different set of lines. carefully selected not to overlap
with the first collection phase.” 1

1The transcription sentences were selected based on two criteria: (1) inclusion of many frequently used
words in the Oxford English Corpus, and (2) encouraging typing activity on both hands (on both sides on
the keyboard). Transcription sentences were typed in lower case.
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Keystrokes to Music: The Melody of Typing”. In:2020 International Conference on
Artificial Intelligence and Signal Processing (AISP), 2020.

• Mingtao Wu, Vir V. Phoha, Young B. Moon, and Amith K. Belman, “Detecting Mali-
cious Defects in 3D Printing Process Using Machine Learning and Image Classification”.
In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and
Exposition, Volume 14. Phoenix, Arizona, USA. (Nov. 2016).

• J. Majumdar, G. M. Venkatesh, Amith K. Belman, “Video Shot detection using Cor-
ner detectors and Optical flow”. In: International Conference on Emerging Research
in Computing, Information, Communication and Applications (ERCICA-2013), (Aug.
2013).

Accepted/In first look evaluation

• Li Wang, Sitharama Iyengar, Amith K. Belman, Paweł Śniatała, Vir V Phoha, Chang-
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