9 research outputs found

    Video normals from colored lights

    Get PDF
    We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these 3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple multispectral capture system

    Multi-view Performance Capture of Surface Details

    No full text

    Robust Fusion of Dynamic Shape and Normal Capture for High-quality Reconstruction of Time-varying Geometry

    No full text
    We present a new passive approach to capture time-varying scene geometry in large acquisition volumes from multi-view video. It can be applied to reconstruct complete moving models of human actors that feature even slightest dynamic geometry detail, such as wrinkles and folds in clothing, and that can be viewed from 360 degrees. Starting from multi-view video streams recorded under calibrated lighting, we first perform marker-less human motion capture based on a smooth template with no high-frequency surface detail. Subsequently, surface reflectance and time-varying normal fields are estimated based on the coarse template shape. The main contribution of this work is a new statistical approach to solve the non-trivial problem of transforming the captured normal field that is defined over the smooth non-planar 3D template into true 3D displacements. Our spatio-temporal reconstruction method outputs displaced geometry that is accurate at each time step of video and temporally smooth, even if the input data are affected by noise

    High quality dynamic reflectance and surface reconstruction from video

    Get PDF
    The creation of high quality animations of real-world human actors has long been a challenging problem in computer graphics. It involves the modeling of the shape of the virtual actors, creating their motion, and the reproduction of very fine dynamic details. In order to render the actor under arbitrary lighting, it is required that reflectance properties are modeled for each point on the surface. These steps, that are usually performed manually by professional modelers, are time consuming and cumbersome. In this thesis, we show that algorithmic solutions for some of the problems that arise in the creation of high quality animation of real-world people are possible using multi-view video data. First, we present a novel spatio-temporal approach to create a personalized avatar from multi-view video data of a moving person. Thereafter, we propose two enhancements to a method that captures human shape, motion and reflectance properties of amoving human using eightmulti-view video streams. Afterwards we extend this work, and in order to add very fine dynamic details to the geometric models, such as wrinkles and folds in the clothing, we make use of the multi-view video recordings and present a statistical method that can passively capture the fine-grain details of time-varying scene geometry. Finally, in order to reconstruct structured shape and animation of the subject from video, we present a dense 3D correspondence finding method that enables spatiotemporally coherent reconstruction of surface animations directly frommulti-view video data. These algorithmic solutions can be combined to constitute a complete animation pipeline for acquisition, reconstruction and rendering of high quality virtual actors from multi-view video data. They can also be used individually in a system that require the solution of a specific algorithmic sub-problem. The results demonstrate that using multi-view video data it is possible to find the model description that enables realistic appearance of animated virtual actors under different lighting conditions and exhibits high quality dynamic details in the geometry.Die Entwicklung hochqualitativer Animationen von menschlichen Schauspielern ist seit langem ein schwieriges Problem in der Computergrafik. Es beinhaltet das Modellieren einer dreidimensionaler Abbildung des Akteurs, seiner Bewegung und die Wiedergabe sehr feiner dynamischer Details. Um den Schauspieler unter einer beliebigen Beleuchtung zu rendern, müssen auch die Reflektionseigenschaften jedes einzelnen Punktes modelliert werden. Diese Schritte, die gewöhnlich manuell von Berufsmodellierern durchgeführt werden, sind zeitaufwendig und beschwerlich. In dieser These schlagen wir algorithmische Lösungen für einige der Probleme vor, die in der Entwicklung solch hochqualitativen Animationen entstehen. Erstens präsentieren wir einen neuartigen, räumlich-zeitlichen Ansatz um einen Avatar von Mehransicht-Videodaten einer bewegenden Person zu schaffen. Danach beschreiben wir einen videobasierten Modelierungsansatz mit Hilfe einer animierten Schablone eines menschlichen Körpers. Unter Zuhilfenahme einer handvoll synchronisierter Videoaufnahmen berechnen wir die dreidimensionale Abbildung, seine Bewegung und Reflektionseigenschaften der Oberfläche. Um sehr feine dynamische Details, wie Runzeln und Falten in der Kleidung zu den geometrischen Modellen hinzuzufügen, zeigen wir eine statistische Methode, die feinen Details der zeitlich variierenden Szenegeometrie passiv erfassen kann. Und schließlich zeigen wir eine Methode, die dichte 3D Korrespondenzen findet, um die strukturierte Abbildung und die zugehörige Bewegung aus einem Video zu extrahieren. Dies ermöglicht eine räumlich-zeitlich zusammenhängende Rekonstruktion von Oberflächenanimationen direkt aus Mehransicht-Videodaten. Diese algorithmischen Lösungen können kombiniert eingesetzt werden, um eine Animationspipeline für die Erfassung, die Rekonstruktion und das Rendering von Animationen hoher Qualität aus Mehransicht-Videodaten zu ermöglichen. Sie können auch einzeln in einem System verwendet werden, das nach einer Lösung eines spezifischen algorithmischen Teilproblems verlangt. Das Ergebnis ist eine Modelbeschreibung, das realistisches Erscheinen von animierten virtuellen Schauspielern mit dynamischen Details von hoher Qualität unter verschiedenen Lichtverhältnissen ermöglicht

    Reconstruction and analysis of dynamic shapes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 122-141).Motion capture has revolutionized entertainment and influenced fields as diverse as the arts, sports, and medicine. This is despite the limitation that it tracks only a small set of surface points. On the other hand, 3D scanning techniques digitize complete surfaces of static objects, but are not applicable to moving shapes. I present methods that overcome both limitations, and can obtain the moving geometry of dynamic shapes (such as people and clothes in motion) and analyze it in order to advance computer animation. Further understanding of dynamic shapes will enable various industries to enhance virtual characters, advance robot locomotion, improve sports performance, and aid in medical rehabilitation, thus directly affecting our daily lives. My methods efficiently recover much of the expressiveness of dynamic shapes from the silhouettes alone. Furthermore, the reconstruction quality is greatly improved by including surface orientations (normals). In order to make reconstruction more practical, I strive to capture dynamic shapes in their natural environment, which I do by using hybrid inertial and acoustic sensors. After capture, the reconstructed dynamic shapes are analyzed in order to enhance their utility. My algorithms then allow animators to generate novel motions, such as transferring facial performances from one actor onto another using multi-linear models. The presented research provides some of the first and most accurate reconstructions of complex moving surfaces, and is among the few approaches that establish a relationship between different dynamic shapes.by Daniel Vlasic.Ph.D

    Photometric Reconstruction from Images: New Scenarios and Approaches for Uncontrolled Input Data

    Get PDF
    The changes in surface shading caused by varying illumination constitute an important cue to discern fine details and recognize the shape of textureless objects. Humans perform this task subconsciously, but it is challenging for a computer because several variables are unknown and intermix in the light distribution that actually reaches the eye or camera. In this work, we study algorithms and techniques to automatically recover the surface orientation and reflectance properties from multiple images of a scene. Photometric reconstruction techniques have been investigated for decades but are still restricted to industrial applications and research laboratories. Making these techniques work on more general, uncontrolled input without specialized capture setups has to be the next step but is not yet solved. We explore the current limits of photometric shape recovery in terms of input data and propose ways to overcome some of its restrictions. Many approaches, especially for non-Lambertian surfaces, rely on the illumination and the radiometric response function of the camera to be known. The accuracy such algorithms are able to achieve depends a lot on the quality of an a priori calibration of these parameters. We propose two techniques to estimate the position of a point light source, experimentally compare their performance with the commonly employed method, and draw conclusions which one to use in practice. We also discuss how well an absolute radiometric calibration can be performed on uncontrolled consumer images and show the application of a simple radiometric model to re-create night-time impressions from color images. A focus of this thesis is on Internet images which are an increasingly important source of data for computer vision and graphics applications. Concerning reconstructions in this setting we present novel approaches that are able to recover surface orientation from Internet webcam images. We explore two different strategies to overcome the challenges posed by this kind of input data. One technique exploits orientation consistency and matches appearance profiles on the target with a partial reconstruction of the scene. This avoids an explicit light calibration and works for any reflectance that is observed on the partial reference geometry. The other technique employs an outdoor lighting model and reflectance properties represented as parametric basis materials. It yields a richer scene representation consisting of shape and reflectance. This is very useful for the simulation of new impressions or editing operations, e.g. relighting. The proposed approach is the first that achieves such a reconstruction on webcam data. Both presentations are accompanied by evaluations on synthetic and real-world data showing qualitative and quantitative results. We also present a reconstruction approach for more controlled data in terms of the target scene. It relies on a reference object to relax a constraint common to many photometric stereo approaches: the fixed camera assumption. The proposed technique allows the camera and light source to vary freely in each image. It again avoids a light calibration step and can be applied to non-Lambertian surfaces. In summary, this thesis contributes to the calibration and to the reconstruction aspects of photometric techniques. We overcome challenges in both controlled and uncontrolled settings, with a focus on the latter. All proposed approaches are shown to operate also on non-Lambertian objects
    corecore