905 research outputs found

    Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle.</p> <p>Results</p> <p>We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams.</p> <p>Conclusions</p> <p>As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.</p

    Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors.

    Get PDF
    Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors

    Automated design of gene circuits with optimal mushroom-bifurcation behavior

    Get PDF
    Recent advances in synthetic biology are enabling exciting technologies, including the next generation of biosensors, the rational design of cell memory, modulated synthetic cell differentiation, and generic multifunctional biocircuits. These novel applications require the design of gene circuits leading to sophisticated behaviors and functionalities. At the same time, designs need to be kept minimal to avoid compromising cell viability. Bifurcation theory addresses such challenges by associating circuit dynamical properties with molecular details of its design. Nevertheless, incorporating bifurcation analysis into automated design processes has not been accomplished yet. This work presents an optimization-based method for the automated design of synthetic gene circuits with specified bifurcation diagrams that employ minimal network topologies. Using this approach, we designed circuits exhibiting the mushroom bifurcation, distilled the most robust topologies, and explored its multifunctional behavior. We then outline potential applications in biosensors, memory devices, and synthetic cell differentiation

    Computational design and designability of gene regulatory networks

    Full text link
    Nuestro conocimiento de las interacciones moleculares nos ha conducido hoy hacia una perspectiva ingenieril, donde diseños e implementaciones de sistemas artificiales de regulación intentan proporcionar instrucciones fundamentales para la reprogramación celular. Nosotros aquí abordamos el diseño de redes de genes como una forma de profundizar en la comprensión de las regulaciones naturales. También abordamos el problema de la diseñabilidad dada una genoteca de elementos compatibles. Con este fin, aplicamos métodos heuríticos de optimización que implementan rutinas para resolver problemas inversos, así como herramientas de análisis matemático para estudiar la dinámica de la expresión genética. Debido a que la ingeniería de redes de transcripción se ha basado principalmente en el ensamblaje de unos pocos elementos regulatorios usando principios de diseño racional, desarrollamos un marco de diseño computacional para explotar este enfoque. Modelos asociados a genotecas fueron examinados para descubrir el espacio genotípico asociado a un cierto fenotipo. Además, desarrollamos un procedimiento completamente automatizado para diseñar moleculas de ARN no codificante con capacidad regulatoria, basándonos en un modelo fisicoquímico y aprovechando la regulación alostérica. Los circuitos de ARN resultantes implementaban un mecanismo de control post-transcripcional para la expresión de proteínas que podía ser combinado con elementos transcripcionales. También aplicamos los métodos heurísticos para analizar la diseñabilidad de rutas metabólicas. Ciertamente, los métodos de diseño computacional pueden al mismo tiempo aprender de los mecanismos naturales con el fin de explotar sus principios fundamentales. Así, los estudios de estos sistemas nos permiten profundizar en la ingeniería genética. De relevancia, el control integral y las regulaciones incoherentes son estrategias generales que los organismos emplean y que aquí analizamos.Rodrigo Tarrega, G. (2011). Computational design and designability of gene regulatory networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1417

    Dynamical modules in metabolism, cell and developmental biology

    Get PDF
    Modularity is an essential feature of any adaptive complex system. Phenotypic traits are modules in the sense that they have a distinguishable structure or function, which can vary (quasi-)independently from its context. Since all phenotypic traits are the product of some underlying regulatory dynamics, the generative processes that constitute the genotype–phenotype map must also be functionally modular. Traditionally, modular processes have been identified as structural modules in regulatory networks. However, structure only constrains, but does not determine, the dynamics of a process. Here, we propose an alternative approach that decomposes the behaviour of a complex regulatory system into elementary activity-functions. Modular activities can occur in networks that show no structural modularity, making dynamical modularity more widely applicable than structural decomposition. Furthermore, the behaviour of a regulatory system closely mirrors its functional contribution to the outcome of a process, which makes dynamical modularity particularly suited for functional decomposition. We illustrate our approach with numerous examples from the study of metabolism, cellular processes, as well as development and pattern formation. We argue that dynamical modules provide a shared conceptual foundation for developmental and evolutionary biology, and serve as the foundation for a new account of process homology, which is presented in a separate contribution by DiFrisco and Jaeger to this focus issue

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Addressing Evolutionary Questions with Synthetic Biology

    Get PDF
    Synthetic biology emerged as an engineering discipline to design and construct artificial biological systems. Synthetic biological designs aim to achieve specific biological behavior, which can be exploited for biotechnological, medical and industrial purposes. In addition, mimicking natural systems using well-characterized biological parts also provides powerful experimental systems to study evolution at the molecular and systems level. A strength of synthetic biology is to go beyond nature’s toolkit, to test alternative versions and to study a particular biological system and its phenotype in isolation and in a quantitative manner. Here, we review recent work that implemented synthetic systems, ranging from simple regulatory circuits, rewired cellular networks to artificial genomes and viruses, to study fundamental evolutionary concepts. In particular, engineering, perturbing or subjecting these synthetic systems to experimental laboratory evolution provides a mechanistic understanding on important evolutionary questions, such as: Why did particular regulatory networks topologies evolve and not others? What happens if we rewire regulatory networks? Could an expanded genetic code provide an evolutionary advantage? How important is the structure of genome and number of chromosomes? Although the field of evolutionary synthetic biology is still in its teens, further advances in synthetic biology provide exciting technologies and novel systems that promise to yield fundamental insights into evolutionary principles in the near future
    corecore