192,987 research outputs found

    Robust distributed H∞ control of electrical power systems

    Get PDF

    Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

    Full text link
    [EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems' view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches.Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483S1291313Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-zKatircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed H2/H{H_2}/{H_\infty } Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed H2/HH_{{2}}/ H_{{{\infty }}} Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-xZhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.htmlExploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-pTeekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency r

    Architecture and control of large power networks with distributed generation

    Get PDF
    The architecture of the UK's passive power network has taken over one hundred years to evolve through a process of demand and technology led development. In the early years of electrical power, distribution systems were islands of distributed generation, often of different voltages and frequencies. Increasing demand for electrical power and the need to reduce distribution costs eventually led to the standardisation of frequency and voltages and to the connection of the island systems into a large network. Today's power networks are characterised by their rigid hierarchical structure and unidirectional power flows. The threat of climate change is driving the demand for the use of more renewable energy. For electricity production, this is achieved through generation using more wind, biomass, tidal and solar energy. This type of generation is often referred to as Distributed Generation (DG) because it is not a centralised facility connected to the high voltage transmission grid but a distributed source connected to the lower voltage distribution network. The connection of DG to the distribution network significantly alters the power flow throughout the network, and costly network reinforcement is often necessary. The advancement in the control of electrical power has largely been facilitated by the development of semiconductor power electronic devices and has led to the application of "Flexible Alternating Current Transmission Systems (FACTS), which include such devices as "Static Var Compensators" (SVC) and Static Compensators (STATCOM), for the control of network voltages and power flows. Providing a secure power network is a demanding task, but as network complexity is expected to grow with the connection of high levels of DG, so the problem of integration, not just connection, of each successive generator becomes more protracted. A fundamental change to the network architecture may eventually become necessary, and a new, more active network architecture, perhaps based on power cells containing local generation, energy storage and loads, has been proposed by some researchers. The results of an historic review of the growth of power networks, largely in the UK, forms the basis of a case to replace the conventional power transformer with an Active Transformer that will provide a more controllable, flexible and robust DG connection and (i) will facilitate greater network management and business opportunities, and new power flow control features. The Active Transformer design is based on an a.c. link system and an a.c.-a.c. highfrequency direct resonant converter. This thesis describes a model of the converter, built in MATLAB and Simulink®, and used to explore control of the converters. The converter model was then used to construct a model of the Active Transformer, consisting of a resonant, supply-side converter, a high frequency transformer and a resonant, load-side converter. This was then used to demonstrate control of bi-directional power flow and power factor control at the Grid and Distribution Network connections. Issues of robustness and sensitivity to parameter change are discussed, both for the uncompensated and compensated converters used in the Active Transformer. The application of robust H∞ control scheme proposed and compared to a current PI control scheme to prove its efficacy.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Power control of a grid-connected PV system during asymmetrical voltage faults

    Full text link
    [EN] Under voltage faults, grid-tied photovoltaic inverters should remain connected to the grid according to fault ride-through requirements. Moreover, it is a desirable characteristic to keep the power injected to grid constant during the fault. This paper explores a control strategy to regulate the active and reactive powers delivered by a single-stage photovoltaic generation system to the grid during asymmetrical voltage faults. The reference for the active power is obtained from a maximum power point tracking algorithm, whereas the reference for the reactive power can be set freely if the zero-sequence voltage is null; otherwise, it will depend on the magnitude of the zero-sequence voltage and the active power reference. The power control loop generates the reference currents to be imposed by the grid-tied power inverter. These currents are regulated by a predictive controller. The proposed approach is simpler than other methods proposed in the literature. The performance of the control strategy presented is verified with an experimental laboratory setup where voltage sags and swells are considered.This work was funded by Conicyt Chile Under Project FONDECYT 11180092. The financial support given by CONICYT/FONDAP/15110019 is also acknowledged.Hunter, G.; Riedemann, J.; Andrade, I.; Blasco-Gimenez, R.; Peña, R. (2019). Power control of a grid-connected PV system during asymmetrical voltage faults. Electrical Engineering. 101(1):239-250. https://doi.org/10.1007/s00202-019-00769-x2392501011Greentech Media Research “By 2023, the world will have 1 trillion Watts of installed solar PV capacity”. https://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaciSubudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98Hong Chih-Ming, Ting-Chia Ou, Kai-Hung Lu (2013) Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50:270–279Ou TC, Hong CM (2014) Dynamic operation and control of microgrid hybrid power systems. Energy 66:314–323Prakash SL, Arutchelvi M, Sharon SS (2015) Simulation and performance analysis of MPPT for single stage PV grid connected system. In: 2015 IEEE 9th international conference on Intelligent systems and control (ISCO), Coimbatore, pp 1–6Moghadasi A, Sargolzaei A, Moghaddami M, Sarwat AI, Yen K (2017) Active and reactive power control method for three-phase PV module-integrated converter based on a single-stage inverter. In: 2017 IEEE applied power electronics conference and exposition (APEC), Tampa, FL, pp 1357–1362L Hi, Xu Y, Adhikari S, Rizy DT, Li F, Irminger P (2012) Real and reactive power control of a three-phase single-stage PV system and PV voltage stability. 2012 IEEE power and energy society general meeting, San Diego, CA, pp 1–8Shao R, Wei R, Chang L (2014) A multi-stage MPPT algorithm for PV systems based on golden section search method. 2014 IEEE applied power electronics conference and exposition—APEC 2014, Fort Worth, TX, pp 676–683Zapata JW, Kouro S, Aguirre M, Meynard T (2015) Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. Industrial Electronics Society, IECON 2015 - 41st annual conference of the IEEE, Yokohama, pp 004311–004316Dousoky GM, Ahmed EM, Shoyama M (2013) “MPPT schemes for single-stage three-phase grid-connected photovoltaic voltage-source inverters. In: 2013 IEEE international conference industrial technology (ICIT), pp 600–605Electricity System Operator (ESO). www.nationalgrideso.comAl-Shetwi A, Sujod M, Blaabjerg F, Yang Y (2019) Fault ride-through control of grid-connected photovoltaic power plants: a review. Sol Energy 180:340–350Almeida P, Monteiro K, Barbosa P, Duarte J, Ribeiro P (2016) Improvement of PV grid-tied inverters operation under asymmetrical fault conditions. Sol Energy 133:363–371Ding G, Gao F, Tian H, Ma C, Chen M, He G, Liang Y (2016) Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation. IEEE Trans Power Electron 31:4182–4194Miret J, Castilla M, Camacho A, Vicuña LGd, Matas J (2012) Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. In: IEEE transactions on power electronics, vol 27, pp 4262–4271Naderi S, Negnevitsky M, Jalilian A, Hagh M (2016) Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter. Renew Energy 92:484–498Merabet A, Labib L, Ghias AMYM (2018) Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability. IEEE Trans Smart Grid 9:5699–5709Ting-Chia Ou (2012) A novel unsymmetrical faults analysis for microgrid distribution systems. Electr Power Energy Syst 43:1017–1024Lin W, Ou T (2011) Unbalanced distribution network fault analysis with hybrid compensation. IET Gener Transm Distrib 5:92–100Ting-Chia Ou (2013) Ground fault current analysis with a direct building algorithm for microgrid distribution. Electr Power Energy Syst 53:867–875Ou T-C, Lu K-H, Huang C-J (2017) Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller). Energies 10:488Sadeghkhani I, Hamedani M, Guerrero J, Mehrizi-Sani Ali (2017) A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids. IEEE Trans Smart Grid 8:2138–2148Junyent-Ferre A, Gomis-Bellmunt O, Green T, Soto-Sanchez D (2011) Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Trans Power Electron 26(12):3744–3753Castilla M, Miret J, Sosa JL, Matas J, de Vicuña LG (2010) Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans Power Electron 25(12):2930–2940Camacho A, Castilla M, Miret J, Vasquez JC, Alarcón-Gallo E (2013) Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Trans Ind Electron 60(4):1429–1441Sosa JL, Castilla M, Miret J, Matas J, Al-Turki YA (2016) Control strategy to maximize the power capability of PV three-phase inverters during voltage sags. IEEE Trans Power Electron 31(4):3314–3323Lin F-J et al (2015) Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control. IEEE Trans Ind Electron 62(9):5516–5528Hunter G, Andrade I, Riedemann J, Blasco-Gimenez R, Peña R (2016) Active and reactive power control during unbalanced grid voltage in PV systems. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp 3012–3017Rodrıguez J, Pontt J, Silva CA, Correa P, Lezana P, Cortes P, Ammann U (2007) Predictive current control of a voltage source inverter. IEEE TransInd Electron 54(1):495–503Shadmand MB, Balog RS, Abu-Rub H (2014) Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control. IEEE Trans Energy Convers 29(4):913–921Lei M et al (2018) An MPC-based ESS control method for PV power smoothing applications. IEEE Trans Power Electron 33(3):2136–2144Hussain I, Singh B (2014) Grid integration of large capacity solar PV plant using multipulse VSC with robust PLL based control. In: Power India International Conference (PIICON), 2014 6th IEEE, Delhi, pp 1–6Bayrak G, Kabalci E, Cebecı M (2014) Real time power flow monitoring in a PLL inverter based PV distributed generation system. In: Power Electronics and Motion Control Conference and Exposition (PEMC), 2014 16th International, Antalya, pp 1035–1040Yagnik UP, Solanki MD (2017) Comparison of L, LC & LCL filter for grid connected converter. In: 2017 International conference on trends in electronics and informatics (ICEI), Tirunelveli, pp 455–458Gupta AK, Saxena R (2016) Review on widely-used MPPT techniques for PV applications. In: 2016 International conference on innovation and challenges in cyber security (ICICCS-INBUSH), Noida, pp 270–273Schmidt H, Burger B, Bussemas U, Elies S (2009) How fast does an MPP tracker really need to be?. In: Proc. of 24th EuPVSEC, pp 3273–3276Abu-Rub H, Malinowski M, Al-Haddad K (2014) Power electronics for renewable energy systems, transportation and industrial applications. Wiley, HobokenRodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives, vol 37. Wiley, HobokenPeng FZ, Lai J-S (1996) Generalized instantaneous reactive power theory for three-phase power systems. IEEE Trans Instrum Meas 45(1):293–297Mitsugi Y, Yokoyama A (2014) Phase angle and voltage stability assessment in multi-machine power system with massive integration of PV considering PV’s FRT requirements and dynamic load characteristics. In: 2014 international conference on power system technology, Chengdu, pp 1112–1119IEEE-SA Standards Board (2018) IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (IEEE Std 1547

    Spring search algorithm for simultaneous placement of distributed generation and capacitors

    Get PDF
    Purpose. In this paper, for simultaneous placement of distributed generation (DG) and capacitors, a new approach based on Spring Search Algorithm (SSA), is presented. This method is contained two stages using two sensitive index Sv and Ss. Sv and Ss are calculated according to nominal voltageand network losses. In the first stage, candidate buses are determined for installation DG and capacitors according to Sv and Ss. Then in the second stage, placement and sizing of distributed generation and capacitors are specified using SSA. The spring search algorithm is among the optimization algorithms developed by the idea of laws of nature and the search factors are a set of objects. The proposed algorithm is tested on 33-bus and 69-bus radial distribution networks. The test results indicate good performance of the proposed methodЦель. В статье для одновременного размещения распределенной генерации и конденсаторов представлен новый подход, основанный на "пружинном" алгоритме поиска (Spring Search Algorithm, SSA). Данный метод состоит из двух этапов с использованием двух показателей чувствительности Sv и Ss. Показатели чувствительности Sv и Ss рассчитываются в соответствии с номинальным напряжением и потерями в сети. На первом этапе определяются шины-кандидаты для установки распределенной генерации и конденсаторов согласно Sv и Ss. Затем, на втором этапе размещение и калибровка распределенной генерации и конденсаторов выполняются с использованием алгоритма SSA. "Пружинный" алгоритм поиска входит в число алгоритмов оптимизации, разработанных на основе идей законов природы, а факторы поиска представляют собой набор объектов. Предлагаемый алгоритм тестируется на радиальных распределительных сетях с 33 и 69 шинами. Результаты тестирования показывают хорошую эффективность предложенного метода

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    corecore