25 research outputs found

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Dynamic analysis and QFT-based robust control design of switched-mode power converters

    Get PDF
    The use of switched-mode power converters is continuously growing both in power electronics products and systems, e.g. in Telecom applications, commercial grid systems etc. The switching converters are required to provide robust behavior and to operate without instability under a variety of operation conditions. Hence the converter system may be subject to disturbances due to load, input voltage, and system parameter variations. In the thesis a robust control design procedure based on the QFT method (Quantitative Feedback Theory) is applied successfully for switching-mode DC-DC converters in order to achieve robust output in spite of different uncertainties. Simulation results are presented to demonstrate and validate the control design, showing good dynamic performance of the QFT controller. When designing large-scale systems it is often impractical to analyze and design the system as a whole. Instead, it is desirable to divide the system into manageable subsystems which can then be designed independently. The subsystems may then be connected together to form a complete integrated system. One of the major difficulties in integrated subsystems is the stability performance degradation due to the interaction between the subsystems. A formalism to analyze the interaction between subsystems using the unterminated two-port small-signal representation is derived. Two-port models are first defined as unterminated models, where the effect of load is excluded but may be easily included using the developed reflection rules. The use of the impedance ratio as a minor loop gain, which can be used to check system stability, is outlined. Recently, there has been increasing interest in the parallel operation of DC-DC converters for reasons of increasing system reliability, facilitating system maintenance, allowing for future expansion, and reducing system design cost. However, paralleled DC-DC converters require a systematic modeling methodology and a categorical current-sharing mechanism to improve a performance of the overall system. In order to achieve desirable characteristics when operating converter modules in parallel, a unified systematic approached for modeling of parallel DC-DC converter with current-sharing control, is proposed, developed, and analyzed

    Stability challenges and solutions in current-mode controlled power electronic converters

    Get PDF
    This dissertation focuses on stability issues in single-staged and multi-staged current controlled power electronic converters. Most current-mode control (CMC) approaches suffer from sub-harmonic oscillations. An external ramp is usually added to solve this problem. However, to guarantee stability this ramp has to be designed for the worst possible case which consequently over damps the response. Adaptive slope compensation (ASC) methods are the solution for this problem. In paper 1 of this dissertation, first three ASC methods will be investigated and analyzed through their small signal models. Then, through simulation analyses and experimental test of a variable-input voltage converter the results will be validated. Two of the methods studies in the first paper are peak CMC methods and the last one is called the projected cross point control (PCPC) approach. This method is relatively new. Therefore, a detailed discussion of the principles of operation of PCPC will be presented in paper 2. In addition, the small signal model of PCPC is developed and discussed through simulation and experimental analyses in the second paper of this dissertation. Peak, average, and hysteresis CMC schemes are used for comparison. In paper 3, the stability issues which arise in multistage converters will be addressed. A solid state transformer (SST) as an example of a multistage converter will be studied. A comprehensive small signal modeling will be conducted which helps for stability analysis of SST. Time domain simulations in Computer Aided Design software (PSCAD) are presented which validates the frequency domain analysis --Abstract, page iv

    Grid integration of renewable power generation

    Get PDF
    This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation.This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation

    Control of Distributed Uninterruptible Power Supply Systems

    Get PDF
    In the last years, the use of distributed uninterruptible power supply (UPS) systems has been growing into the market, becoming an alternative to large conventional UPS systems. In addition, with the increasing interest in renewable energy integration and distributed generation, distributed UPS systems can be a suitable solution for storage energy in micro grids. This paper depicts the most important control schemes for the parallel operation of UPS systems. Active load-sharing techniques and droop control approaches are described. The recent improvements and variants of these control techniques are presented

    Novel Control Strategies for Parallel-Connected Inverters in AC Microgrids

    Get PDF

    Study on Digital Peak Current Mode DC-DC Converter

    Get PDF
    長崎大学学位論文 学位記番号:博(工)甲第21号 学位授与年月日:平成28年3月18日Nagasaki University (長崎大学)課程博

    Power Quality Improvement of Distributed Generation Integrated Network with Unified Power Quality Conditioner.

    Get PDF
    With the increased penetration of small scale renewable energy sources in the electrical distribution network, maintenance or improvement of power quality has become more critical than ever where the level of voltage and current harmonics or disturbances can vary widely. For this reason, Custom Power Devices (CPDs) such as the Unified Power Quality Conditioner (UPQC) can be the most appropriate solution for enhancing the dynamic performance of the distribution network, where accurate prior knowledge may not be available. Therefore, the main objective of the present research is to investigate the (i) placement (ii) integration (iii) capacity enhancement and (iv) real time control of the Unified Power Quality Conditioner (UPQC) to improve the power quality (PQ) of a distributed generation (DG) network connected to the grid or microgrid

    Development of an alternative droop strategy for controlling parallel converters in standalone DC microgrid

    Get PDF
    Most of parallel-connected DC-DC converters schemes are based on a high-bandwidth communication network to achieve minimum circulating current, proper load current sharing, and acceptable voltage regulation. However, in DC microgrids, the use of communication network can be costly and unsuitable considering the data reliability and cost investment because the load and renewable energy sources are connected to the point of common coupling. Therefore, the droop control as a decentralized method has gained more attention. However, the challenge for the conventional droop method is to overcome the issue of circulating current, poor load current sharing, and the drop in DC grid voltage due to the droop action. This thesis develops and tests an approach for minimizing the circulating current, as well as improving the voltage regulation and the load current sharing for the droop method. The developed approach is based on the concept of synchronized switching, which is implemented using an alternative droop strategy for controlling different sizes of parallel-connected DC-DC boost converters. In this thesis, synchronous switching, based on an optimized controller, is presented to eliminate the initiation of circulating current and minimize the ripple in the output current for parallel-connected boost converters. Furthermore, a modified droop method, including the cable resistance, is introduced. The modified droop method uses the measurements of the voltage and current at the point of common coupling to estimate the voltage set point for each converter locally. The communication network is eliminated by utilizing the modified droop method because, in the proposed method, there is no current and voltage measurement data transmitted from one converter to the other converter. Additional loop control is also applied for equal current sharing between parallel converters to overcome the issue of mismatch in parameters of the parallel converters. The additional loop control is added to improve the load current sharing in the modified droop control. The modified droop control method with additional loop control is verified using MATLAB/SIMULINK and validated with experimental results. However, the droop action of the modified droop and different cable resistances degrades the voltage regulation and load current sharing. Therefore, an improved droop method, which utilizes the virtual droop gain and voltage droop control gain, is proposed to overcome the problem of load current sharing and voltage regulation. The virtual droop gain compensates the differences in the cable resistances, and the voltage droop control gain regulates the voltage at the point of common coupling. This maintains the common DC bus at its rated value. The effectiveness of the improved droop method is demonstrated by MATLAB/Simulink and Laboratory prototype results. Finally, the proposed method is utilized in a standalone DC microgrid. An example of a DC microgrid of a residential building powered by a PV solar system illustrates the feasibility and the effectiveness of the proposed methods
    corecore