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Chapter 1
Introduction

1.1 Background

The electric power is not normally used in the form in which it was produced or distributed.
Practically all electronic systems require some form of power conversion. A device which
transfers electric energy from the source to the load using electronic circuits is called a
Power Supply, although power converter would be a more accurate term for such a device.
A typical application of a power supply is to convert utility AC voltage into regulated DC
voltages required for electronic equipment. Nowadays in most power supplies providing
more than a few watts the energy flow is controlled with power semiconductors that are
continuously switching on and off with high frequency. Such devices are called Switch Mode
Power Supplies or SMPS. In general, SMPS can be classified into four types according to
the form of input and output voltages: AC to DC (off-line power supply or a rectifier);
DC to DC (voltage converter); AC to AC (frequency changer or cycloconverter); DC to AC
(inverter). In this thesis, the modeling, control design challenges and subsystems interaction
issues will be treated only for DC-DC converters.

Switching-mode power-electronic converters are nonlinear dynamical systems. The non-
linearities arise primarily due to switching, power devices, and passive components such as
inductors, capacitors and parasitics. SMPS’s represent different circuit topologies or con-
figurations within each switching cycle. For the continuous conduction mode, there are two
topologies. For the discontinuous conduction mode of operation, a third configuration has
to be added to yield a total of three topologies. In each configuration, the system can be
described by linear state equations. Switching between the different topologies will vary
from cycle to cycle depending on the output of the system, and this complicates the analysis
further.

The static conservation properties of the elementary switching converters (buck, boost,
and buck-boost) have been thoroughly understood since the early 1970s. This is one of the
main reasons of their ever-increasing number of applications in electrical energy conversion.
However, the complete dynamics behavior of switching power converters still has to be
further understood and improved. This is not possible without an in-depth understanding
of the operation of such circuits and without easy-to-use and accurate models.

1.2 Modeling of Switching DC-DC Converters

Modeling and analysis of switching DC-DC converters can be either numerical or analytical.
In numerical techniques, several algorithms or circuit simulators are used to produce quan-
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Chapter 1 Introduction

titative results. These methods are easy to use. They posses accuracy and universality and
they are applicable when no equivalent model is available. However, they are fail to provide
the design insight needed to understand the behavior of switching converters. In contrast
to numerical techniques, analytic techniques provide analytic expressions representing the
operation and performance of the converters.

The most popular continuous-time technique is the small-signal analysis, which uses ei-
ther circuit averaging [1], state-space averaging [2], or PWM switch modeling [3, 4]. In [1]
analytical techniques were developed to represent buck, boost and buck-boost converters
by approximate continuous models. Simple analytical expressions in terms of the circuit
components were derived to characterize the low-frequency response of such systems. In
[2] the above technique was generalized by introducing the state-space averaging method.
The state-space descriptions of each switching mode were replaced by a single state-space
description, hence eliminating the switching process from consideration and representing
the average effect of the switched networks during operation cycle. The system was further
simplified by perturbing the averaged system and then linearizing the resulting perturbed
equations around the steady-state values. After a considerable amount of matrix manipula-
tions, the system characteristics such as input impedance, output impedance, line-to-output
transfer function, and control to-output characteristics, were obtained.

1.3 Control Design of Switching DC-DC Converters

The converters are required to provide robust behavior and to operate without instability
under a variety of operation conditions. Hence the converter system may be subject to the
disturbances of load, input voltage, and system configuration variations.

To improve the dynamic performances of converters, closed-loop control is indispensable.
Generally, the linear small-signal model obtained using state-averaging and linearization
techniques around an operating point is adopted for the controller design. However, since
the model is dependent on the operating conditions and system configuration, the controller
with fixed parameters (e.g., the PI and optimal controllers) which are adequate under the
designed condition may not be so for other operating conditions. It is well known that robust
control technic is one of the most effective techniques for dealing with parameter variations.

Several attempts have been made to apply robust control theory for DC-DC power con-
verters. The linear quadratic Gaussian/loop transfer recovery methodology was used in [5]
to design a controller for a series parallel resonant converter. In [6], a controller for a buck-
boost converter with peak current control was designed using the μ-synthesis procedure. In
[7, 8], H∞ approach was applied to design controllers for boost and buck-boost converters.
Nonlinear H∞-control theory has been applied to regulate a PWM Cuk converter under
parameter uncertainties and exogenous inputs which generate the reference trajectories [9].
In [10], H∞ and μ-synthesis control methods have been applied to Telecom power supplies.
But most of the existing robust control techniques are too complex theoretically for practi-
cal engineers to understand. It follows that optimal performance is generally not achieved,
because traditional control methods design are used in practice.

This thesis proposes the use of robust control techniques to derive a controller for dc-dc
converters, which are able to cope with the parameter variations in the converter’s power
stage. In particular, this thesis proposes the use of ”Quantitative Feedback Theory” or QFT
approach [11] which operates on the frequency domain to design a robust output voltage
controller for switching-mode power converters. It was introduced by Isaac Horowitz in
1960s. This technique takes into account the uncertainty that may be present in the process
and its environment, and establishes a balance between the complexity of controller and
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Chapter 1 Introduction

complexity of design. It also differs in the way in which uncertainty is characterized as
gain-phase variations or templates in the Nichols chart.

1.4 Stability and Subsystems Interactions

Stability is the most important requirement for switching-mode power supply systems. The
issue of stability is closely related to the EMI filter design for subsystems powered through
switching power converters. Improper designs of the input filter for such subsystems may
result in undesirable interactions [12, 13].

Considerable interest is focused on evaluating the stability of subsystem interactions in
distributed power systems. Usually, the impedance ratio stability criterion suggested in [12]
is used to analyze the stability of interactions between two interconnecting subsystems. For
example, the stability of a spacecraft DC distributed power system is addressed in [14].
Stability analysis for a system with a source converter and one or more load converters is
given in [15, 16]. The design rules are usually based on the separation of the impedance
levels at the interface of the subsystems. After [12, 17], many efforts have been taken in
defining less conservative rules, see e.g. [18].

All these examples covered relatively simple system configurations, with an ideal voltage
source, one source converter, and one or more load converters with resistive loads. The
examples represented particular case studies rather than universal analysis tools. The results
were obtained by tedious analytical developments for a particular system configuration rather
than applying computer-aided analysis techniques to easily reconfigurable global system
model.

1.5 Modeling and Dynamics Analysis of Multimodule DC-DC Converters

As a viable solution to demanding power requirements, power supplies for distributed power
applications employ several converter modules in parallel. The resulting multimodule con-
verters offer efficient processing of high current and built-in redundancy [19, 20, 21, 22].
However, standard converter modules may not have identical characteristic, which causes
unbalance of current sharing. Modules delivering large currents will have their life-time
shortened and the system reliability degraded [21]. Many factors contribute to the fact that
modules not being identical, such as component tolerances, non-identical electrical conduc-
tors connected from the converters to current distribution and so on. Therefore, a unified
consistent modeling approach is necessary to understand the dynamic behavior of the power
supply and also to design a controller that regulates the output voltage and achieves balanced
current distribution of the converter.

With current-sharing control, the output current of a multimodule converter is equally
distributed among parallel modules, thereby improving reliability and reducing current stress
on switching devices. Furthermore, the parallel processing of the load current provides fault
tolerance to the system against the failure of a single module.

1.6 Research Objectives

Objectives of this thesis can roughly be divided into the following main categories:

• To give clear physical insight into the concept of switching-mode power converters, and
to present a unified modeling methodology of the buck, boost and buck-boost convert-
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ers operating in continuous-conduction mode (CCM) and discontinuous-conduction
mode (DCM).

• To implement a robust control approaches (i.e. QFT) in synthesizing robust controllers
for DC-DC switching power converters in order to improve their dynamic performance
by minimizing the effects of load disturbances over the specified region of plant uncer-
tainties.

• To study the interaction of the subsystems in a distributed power supply system to
ensure proper overall operation. The aim is to analyze the effect of the input filter
and load on the dynamics of the converter. The main purpose is to develop design
guidelines which prevent instabilities and performance degradations of the converter.

• To improve the performance characteristics of multimodule parallel DC-DC converter
system through modeling, control design and simulation.

1.7 Outline of the Thesis

The thesis is organized as follows: In Chapter 2, an overview of a switched-mode supply
system is given, and the modeling methodology of the system is discussed. In Chapter 3, the
Quantitative Feedback Theory (QFT) is applied successfully to design a robust controller
for DC-DC buck, boost and buck-boost converters operating in continuous conduction mode
(CCM) and discontinuous conduction mode (DCM). In Chapter 4, the use of two-port
unterminated network representation is demonstrated. Subsystem impedance interactions
and stability analysis for distributed power supply systems are analyzed. The guidelines
for how to design an optimal input filter for a switching power supply application, which
prevents instabilities and performance degradations of the converter, are presented.

In Chapter 5, the small-signal model of DC-DC paralleled converters with individual volt-
age loop and Master-Slave Control (MSC) circuit is developed using small-signal equivalent
two-port model. The dynamic characteristics of the current-sharing loop is derived. A robust
current-sharing controller which takes into account the stability and ensures distribution of
currents among the modules is designed.

Conclusions are drawn and some further work considerations are presented in Chapter 6.
Appendix A.1 gives some Simulink/SimPower SystemsTM models which have been used to
generate the results presented in the thesis.

The following notation is adopted: The capital letters denote the DC values of associated
quantities, the“hatted”small letters the ac or perturbed value excluding the switching ripple,
and the small letters denote the total values. In equations the notation for the time variable
t is suppressed, when no confusion is possible, e.g. i instead of i(t) etc. The calculus is
usually done in Laplace domain, which is not expressed explicitly except in the special cases
when there is a chance of confusion.

1.8 Thesis’s Contribution

The main contributions of this thesis can be summarized as follows:

• A new application of QFT to the control design of DC-DC switching-mode power
converters is presented and examined for all basic converters operating in CCM and
DCM in VMC and PCMC configurations.
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Chapter 1 Introduction

• The analysis and simulation results show the practical applicability and performance
of QFT in power converters.

• Subsystem interaction and stability problems for switching-mode power converter sys-
tems are illustrated and analyzed. In general, the interaction problem can be defined
as the interaction between an unterminated component and its terminating subsystem.

• General formulations to determine the necessary conditions for system stability based
on the impedance ratio inequality are derived.

• A unified systematic approach for modeling parallel DC-DC converters is proposed.

• A robust current-sharing controller, which ensures distribution of currents among the
modules and grantees system stability, is designed using the QFT method.
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Chapter 2
DC-DC Switching Converters

Modern electronic systems require high-quality, small, lightweight, reliable, and efficient
power supplies. Linear power converters, whose principle of operation is based on a voltage
or current divider, are inefficient. This is because they are limited to output voltages smaller
than the input voltage, and also because their power density is low due to the low frequency
(50 or 60 Hz) line transformers and filters needed. Linear converters can, however, provide
a very high-quality output voltage. Their main area of application is at low power levels.
Electronic devices in linear converters operate in their active (linear) modes, but at higher
power levels switching converters are used. Switching converters use power electronic semi-
conductor switches in on and off states. Because there is a small power loss in those states
(low voltage across a switch in the on state, zero current through a switch in the off state),
switching converters can achieve high energy conversion efficiencies[23, 24] .

The functions of dc-dc converters are:

• to convert a dc input voltage into a dc output voltage ;

• to regulate the dc output voltage against load and line variations; and

• to provide isolation between the input source and the load (isolation is not always
required);

To power the new information technology equipment, the distributed power architecture
(DPA) has been widely adopted in the industry [25, 26, 27]. In DPA, the load converters
are placed near the loads. Therefore, the conversion from the high or medium voltage to
low voltage is done locally in front of each load. This allows the use of very high switching
frequency and guarantees a fast response to load current transients. Furthermore, the current
ratings in the entire power supply system are not so high. An example of a typical distributed
power system (DPS) telecom power system is shown in Fig. 2.1, [25]. There are two power
processing stages. In the figure, the first stage is the AC-to-DC rectifier that converts the
AC line voltage into a 48V DC bus. This stage consists of two parts. One part is the AC-
to-DC converter that converts the AC line voltage into an intermediate DC voltage (usually
400V). Also the power factor correction (PFC) is often included in this stage. However,
Boost converter is usually used for this stage, because it is easier for input current shaping
and it is suitable for high DC output voltage.

The other part is the DC-to-DC converter that converts the 400V DC to 48V DC. Elec-
trical isolation is provided at this stage. Then the 48V bus is feeding the entire telecom load
system. There is often a battery backup in the dc line, which powers the dc bus when the
mains fails. In this case, the AC-to-DC rectifier should also be able to charge the battery
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Chapter 2 DC-DC Switching Converters

when needed. The second level consists of DC-to-DC power converters that convert the 48V
DC into tightly regulated logic voltage such as 12V, 5V, 3.3V or 2.5V.

DC Bus

 Load 

AC/DC Rectifier Stage

DC/DC ConvertersAC/DC ConvertersThe Mains

DC/DC Converters

220Vac

400Vdc

48Vdc

12V

5V

2.5V

Battery Backup

Figure 2.1: Distributed power system architecture in a telecom application.

In this chapter, the fundamentals and earliest topologies - the buck, boost and buck-boost
converters are analyzed. Their basic operation is described and the modeling methodology
of the system is discussed and explained.

2.1 The Buck DC-DC Converter

The buck converter is one of the simplest and mostly used among power converters: a chop-
per circuit that converts a dc input to a lower dc output voltage. Many switched-mode
power supplies employ circuits closely related to the buck converter [28, 29].

The basic open-loop buck converter connected to the load is shown in Fig. 2.2. The
impedance ZL with constant-current jo represents the non-ideal load system. In practice,
the switch circuit is realized using power semiconductor devices, such as MOSFET S and
diode Di. The switch S opens and closes periodically at the switching frequency fs, with a
duty ratio d (the fraction of time that the switch is on during the whole switching cycle Ts,
d = ton/Ts). When S is closed, the input voltage uin is transferred to the LC low-pass filter.
When S is open, the inductor maintains its current flow, forcing the diode Di to conduct
and grounding the input of the LC filter. Thus the filter sees a square wave between 0 and
uin. The cutoff frequency of the filter is much lower than fs, removing most of the switching
ripple and delivering a relatively smooth output voltage uo to the load. The output voltage
can be varied by changing the duty ratio d (by pulse-width modulation (PWM)).

2.2 The Boost DC-DC Converter

A boost converter is shown in Fig. 2.3. When the switch S is on, the diode is reverse biased,
and the input supplies energy to the inductor. The load receives energy from the capacitor.
When the switch S is off, the output stage receives energy from the inductor as well as
from the input. The output voltage is always larger than the input voltage. Ideally it can
be infinite, but in practice it is constrained to some maximum value. The input current is
triangular waved, which means that the harmonic content of it is not so high as that of a
buck converter.
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Figure 2.2: The open-loop buck converter.
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Figure 2.3: The open-loop boost converter.

2.3 The Buck-Boost DC-DC Converter

A buck-boost is mainly used in regulated DC power supplies, where a negative-polarity
output may be desired with respect to the common terminal of the input voltage, and the
output voltage can be either higher or lower than the input voltage, depending on the duty
ratio [29]. A buck-boost converter is constructed by the cascade connection of the two basic
converters: the buck converter and the boost converter as shown in Fig. 2.4. When the
switch is on, the input provides energy to the inductor and the diode is reverse biased. When
the switch is off, the load receives energy from the inductor. No energy is supplied by the
input in this interval.

C
+

,sf d

ini

inu

Lr

Cr

ouL
i

D

LZ oj

Load
oi

Switch

Figure 2.4: The open-loop buck-boost converter.

2.4 Modes of Operation of the DC-DC Converter

The dc-dc converters can have two distinct modes of operation: (1) continuous conduction
mode (CCM) and (2) discontinuous conduction mode. In practice, a converter may operate
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Chapter 2 DC-DC Switching Converters

in both modes, which have significantly different characteristics. Therefor, a converter and
its control should be designed based on both modes of operation.

2.4.1 Continuous Conduction Mode CCM

If the current through the inductor L never falls to zero during a commutation cycle, the
converter is said to operate in continuous conduction mode (CCM). The inductor current
waveforms in a converter can be seen in Fig. 2.5.

LI
Li

sDT
t

sT

0
sDT

Li

pi

Figure 2.5: Inductor current waveform in CCM.

2.4.2 Discontinuous Conduction Mode DCM

If the inductor current stays at zero level during a part of the off time, the converter is said
to operate in discontinuous conduction mode (DCM).

The discontinuous conduction mode (DCM) of operation is often associated with light
loads. In order to avoid the reverse recovery problem of the diode for low power applications,
the designers usually prefer to operate the converter in DCM even for all loads. The inductor
current waveforms of a converter is shown in Fig. 2.6.

0
Li

sT sT sT

sT

LI Li

p
i

D 1D 2D

Figure 2.6: Inductor current waveform in DCM.

2.5 Control Structures of DC-DC Converter

In a dc-dc converter application, it is desired to obtain a constant output voltage despite
of changes and disturbances in the input voltage or the load current. It is desired that
essentially all of this variation fall within a specified range; however, this is not possible to
achieve without the use of negative feedback. Given an input voltage, the average output
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voltage is controlled by controlling the switch on and off durations. One of the methods for
controlling the output voltage employs switching at a constant frequency and adjusting the
on duration of the switch to control the average output voltage. In this method, called the
pulse-width modulation (PWM) switching, the switch duty ratio d is varied.
The two main control schemes used in practice are the voltage mode control (VMC) and
peak-current mode control (PCMC).

2.5.1 Voltage-Mode Control VMC

The VMC scheme is the most popular and simple PWM control scheme. The basic voltage
mode configuration is shown in Fig. 2.7. In voltage-mode control VMC, the output-voltage
feedback loop tracks the output voltage variations and adjusts the duty cycle accordingly.
The control voltage signal uc is generated by amplifying the error between the output voltage
and the reference voltage. The control voltage is then compared to the sawtooth waveform,
having frequency fs and peak voltage Vst. When the amplified error signal is larger than
the sawtooth waveform, the switch control signal becomes high, causing the switch to turn
ON. Otherwise, the switch is OFF.

The main drawback of voltage-mode control is the fact that, any change in the line or
load must first be sensed as an output change and then compensated by the feedback loop.
There is then an unavoidable delay in the compensation of these disturbances.

Error

Amp

Clock

LATCH

R Q 

S

PWM

Comp

refU

oU

st
V

stV

sT

fs

uc
Controller

Figure 2.7: Voltage-mode control structure.

2.5.2 Peak Current-Mode Control PCMC

Peak current-mode control is a direct extension of voltage-mode control. In PCMC, an
inner inductor-current feedback loop is added to improve the system dynamics. The inner
loop forces the maximum value of the inductor current to track the control current, while
the outer loop regulates the output voltage. The duty cycle is generated by comparing the
inductor current and control current ico.

The main problem in current-mode control is the instability for duty cycles above 50%.
The problem is well known and discussed in the literature, e.g. in [28]. This limitation can
be removed by adding a compensation ramp Mc, to the control current signal, as shown in
Fig. 2.8.

2.6 Modeling of DC-DC Switching Power Converters

The inherent switching operation of power converters results in the circuit components being
connected together in periodically changing configurations, in which each configuration is
described by a separate set of equations. The transient analysis and control design for
converters are therefore difficult since a number of equations must be solved in sequence.
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Figure 2.8: Peak-current-mode control structure.

The technique of averaging provides a solution to this problem. A single equation may be
formed to describe the converter approximately over a number of switching cycles by simply
taking a linearly weighted average of the separate equations for each switched configuration of
the converter. State space averaging [29, 23, 2, 24] is the most common averaging technique,
and is used here to model the switching dc-dc converter.

2.6.1 Continuous Conduction Mode CCM

The state-space averaging technique will be reviewed next to model all basic dc-dc converters
(i.e., Buck, Boost and Buck-Boost converters) operating in continuous conduction mode
CCM.

State-Space Averaging Technique

In state-space averaging (SSA), the switching circuit is divided into two (CCM) different
structures. The derivatives of inductor currents and capacitor voltages are defined based
on circuit theory for every substructure. These currents and voltages are averaged over one
switching cycle. Consider the state space representation for a buck converter shown in Fig.
2.2. The voltage loss of the free-wheeling diode is assumed to be UD.

During the on time, the switch is on, and the diode is off. Therefore, the correspond-
ing subcircuit is as shown in Fig. 2.9(a). Applying Kirchhoff’s Voltage Law (KVL) and
Kirchhoff’s Current Law (KCL) we obtain
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(a) On-time.
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(b) Off-time.

Figure 2.9: On and Off time subcircuits of buck converter.

diL

dt
= −rC + rL

L
· iL − 1

L
· uC +

1

L
· uin +

rC

L
· io (2.1a)

duC

dt
=

1

C
· iL − 1

C
· io (2.1b)
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uo = rC · iL + uC − rC · io (2.1c)

iin = iL (2.1d)

During the off time, the switch is off, and the diode is conducting. Therefore, the cor-
responding subcircuit is as shown in Fig. 2.9(b), Applying (KVL) and (KCL) we get,
correspondingly

diL
dt

= −rC + rL

L
· iL − 1

L
· uC − 1

L
· UD +

rC

L
· io (2.2a)

duC

dt
=

1

C
· iL − 1

C
· io (2.2b)

uo = rC · iL + uC − rC · io (2.2c)

iin = 0 (2.2d)

The averaged state equations can be obtained by weighting the equations in (2.1) and
(2.2) by their proportional time d, and d′ = 1 − d respectively, and the resulting equations
are added together

d〈iL〉
dt

= −rC + rL

L
· 〈iL〉 − 1

L
· 〈uC〉 +

〈d〉
L

· 〈uin〉 − 〈d′〉
L

· UD +
rC

L
· 〈io〉 (2.3a)

d〈uC〉
dt

=
1

C
· 〈iL〉 − 1

C
· 〈io〉 (2.3b)

〈uo〉 = rC〈iL〉 + 〈uC〉 − rC · 〈io〉 (2.3c)

〈iin〉 = 〈d〉〈iL〉 (2.3d)

where the symbol “〈 〉” denote the averaging over an entire switching cycle.

Small Signal Model

The problem with the state equations (2.3) is that they are nonlinear. The nonlinearity is
due to the multiplication of two time-varying components ( i.e. d(t)uin(t) ). This problem
can be solved by linearizing the model in the vicinity of the steady-state operating point.
The small-signal representation can be obtained from (2.3) by applying the linearization
procedure presented in [31]. This procedure gives the linearized state-space representation
as follows

˙̂x = Ax̂ + Bû (2.4a)

ŷ = Cx̂ + Dû (2.4b)

where the symbol ( ∧ ) over the variables means small perturbation around the corresponding
steady-state value. The inductor current iL and the capacitor voltage uC are selected as the
state variables, the input voltage uin, the output current io and duty cycle d as the input
variables, and the input current iin and the output voltage uo as the output variables,

x̂ =
[

îL ûC

]T
, û =

[
ûin îo d̂

]T
, ŷ =

[
îin ûo

]T

After linearization the SSA matrices for a buck converter become
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A =

[ − rL+rC

L
− 1

L

1
C

0

]
, B =

[
D
L

rC

L
Uin+UD

L

0 − 1
C

0

]

C =

[
D 0

rC 1

]
, D =

[
0 0 IL

0 −rC 0

]

Likewise, the SSA matrices for a boost converter are represented by

A =

[ −D′rC+rL

L
−D′

L

D′

C
0

]
, B =

[
1
L

D′rC

L
Uo+UD+rC(IL−Io)

L

0 − 1
C

− IL

C

]

C =

[
1 0

D′rC 1

]
, D =

[
0 0 0

0 −rC −rCIL

]

and for a buck-boost converter

A =

[ −D′rC+rL

L
−D′

L

D′

C
0

]
,B =

[
D
L

D′rC

L

Uin+UD+rC(IL−Io)
L

0 − 1
C

− IL

C

]

C =

[
D 0

D′rC 1

]
,D =

[
0 0 IL

0 −rC −rCIL

]

The steady-state operating point

The steady-state operating point of a buck converter can be obtained from (2.3) letting the
average derivative to be equal to zero and replacing the values of variables with their steady-
state values. The expressions for the state and output variables of all basic converters are
summarized in Table (2.1).

Table 2.1: Steady-state operating point for all basic ideal converters in CCM.

Type IL Iin D Uo

Buck Io DIo
UD+rLIo+Uo

Uin+UD
UC

Boost Io

D′

Io

D′ 1 −
(

1+

√
1+4

rLIo(Uo+UD−rCIo)

(Uin−rCIo)2

)
2(Uo+UD−rCIo)

(Uin−rCIo)

UC

Buck-Boost Io

D′

DIo

D′ 1 −
(

1+

√
1+4

rLIo(Uo+Uin+UD−rCIo)

(Uin−rCIo)2

)
2(Uo+Uin+UD−rCIo)

(Uin−rCIo)

UC
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2.6.2 Discontinuous Conduction Mode DCM

The DCM operation of switching converters differs from CCM operation by an additional
third time interval in each switching cycle during which an inductor current is clamped to
zero. In DCM operation the inductor current rises in the first interval when the switch is
turned on, reaches a peak when the switch is to be turned off, and resets to zero at the end
of the second interval. However, we use d and d1 to denote the duty ratio of the first and
the second interval, respectively (see Fig. 2.10).

0 L
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Li

sT

sT

1
dsT

p
i

Li

d

1m
2m

sT2d

Figure 2.10: Inductor current waveforms within a switching cycle in DCM.

A basic idea in forming the state-space equations for a continuous linear time-invariant
system (LTI) is to describe the derivatives of the state variables as a function of state, in-
put, and control variables. In the conventional SSA method [32, 28] applied to switching
converters, the derivatives are derived using circuit theory and averaged over one switching
cycle. This approach has proved to be efficient in CCM, because the instantaneous inductor
current is continuous, and therefore, the average currents within ON and OFF times are
related directly to the duty ratio and its complement. The situation is different in DCM,
and therefore, the SSA method does not give correct formulation [33, 34]. Alternatively,
those derivatives will be derived based on the physical phenomena associated to the induc-
tor current (i.e., average slope) and the capacitor voltage (i.e., average charge), resulting in
a consistent formulation in DCM for all basic converters.

Based on inductor current waveform shown in Fig. (2.10), the average inductor current
〈iL〉 and its derivative for all basic converters (i.e., buck, boost and buck-boost) can be
expressed as

〈iL〉 =
ip
2

(d + d1) (2.5)

d 〈iL〉
dt

= dm1 − d1m2 − rL

L
〈iL〉 (2.6)

where ip is the peak of the inductor current iL, m1 and m2 are the up and down slopes of
instantaneous inductor current expressed as positive quantities. Their expressions of buck,
boost and buck-boost converters are defined in Table 2.2, [33, 34].

The output circuitry (Fig. 2.11) is the same for all the basic converters with respect to the
formulation for the derivative of average capacitor voltage 〈uC〉, and therefore, the derivative
of average capacitor voltage can be approximated by computing the average charge delivered
into the capacitor as an average change of charge as following
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Table 2.2: Up and down slopes of basic converters.

Type m1 m2

Buck uin−uo

L
uo+UD

L

Boost uin

L
−uin+uo+UD

L

Buck-Boost uin

L
uo+UD

L

ci
+

ou

oi

   Basic 
Converter

ki

+
cu

C

Cr
oi

Figure 2.11: Basic converter.

d 〈uC〉
dt

=
ΔQc

Ts
=

〈ik〉
C

− 〈io〉
C

(2.7)

where ik denotes the current coming through the inductor, for a buck converter

〈ik〉 = 〈iL〉 (2.8)

and for boot and buck-boost converters

〈ik〉 =
d1

d + d1
〈iL〉 (2.9)

Therefore, the derivative of 〈uc〉 in (2.7) is for a buck converter as (2.10) and for boost
and buck-boost converters as (2.11),

d 〈uC〉
dt

=
〈iL〉
C

− 〈io〉
C

(2.10)

d 〈uC〉
dt

=
d1

d + d1

〈iL〉
C

− 〈io〉
C

(2.11)

In order to include the effect of parasitic elements in a converter average model, formulas
for the average output voltage have to be derived. By applying KVL to the circuit shown
in Fig. 2.11 and using the expressions of the current coming from the inductor ik given in
(2.8) and (2.9), the average output voltage 〈uo〉 for a buck converter can be expressed as
(2.12) and for boost and buck-boost converters as (2.13)

〈uo〉 = rC 〈iL〉 + 〈uC〉 − rC 〈io〉 (2.12)
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〈uo〉 =
d1

d + d1
· rC 〈iL〉 + 〈uC〉 − rC 〈io〉 (2.13)

For boost and buck-boost converters, only the average and OFF time values are of interest
[34], therefore (2.13) can be rewritten as

〈uo〉 = rC 〈iL〉 + 〈uC〉 − rC 〈io〉 (2.14)

To complete the averaged state-space models, the average input current of the converter
〈iin〉 has to be introduced. The input current of buck and buck-boost converters is equal to
the inductor during the ON time. Therefore, the average input current can be expressed as

〈iin〉 =
d

d + d1
〈iL〉 (2.15)

The input current of a boost converter equals the inductor current, and therefore, its average
value can be presented as

〈iin〉 = 〈iL〉 (2.16)

We consider again a buck converter shown in Fig. 2.2 and derive the state-space repre-
sentation model.

d〈iL〉
dt

= dm1 − d1m2 − rL

L
〈iL〉

d〈uC〉
dt

= 1
C
〈iL〉 − 1

C
〈io〉

〈uo〉 = rC 〈iL〉 + 〈uC〉 − rC 〈io〉

〈iin〉 = d
d+d1

〈iL〉

(2.17)

It can be seen that the second duty ratio, d1, in (2.17) is not independent, rather algebraically
dependent on state and control variables. For the purposes of an averaged model, it is
convenient to reflect this dependency in terms of the average values of voltage and current.
In this way, d1 can be eliminated, and a model expressed in the averaged state variables
can be obtained. The algebraic function defining this dependency is called the duty-ratio
constraint.

Unlike the conventional state-space averaging method [32] where a volt-second balance
relation of inductor current is used to define d1, a different duty-ration constraint which
includes the effect of parasitic elements will be derived here. For this purpose equation (2.5)
is recalled

〈iL〉 =
ip
2

(d + d1)

When the switch is ON, the inductor peak current ip can be expressed as

ip =
uL

L
· dTs (2.18)

where uL is the voltage across the inductor. The relation (2.18) can be written in terms of
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the up slope m1 as following

ip =
(
m1 − rL

L
〈iL〉

)
· dTs (2.19)

Substituting (2.19) into (2.5) and solving the resulting equation for d1 yields

d1 =
2 〈iL〉(

m1 − rL

L
〈iL〉

) · dTs

− d (2.20)

When d1 is substituted into (2.17), we get

d〈iL〉
dt

= d (m1 + m2) − 2〈iL〉m2

dTs(m1− rL
L

〈iL〉) − rL

L
〈iL〉

d〈uC〉
dt

= 1
C
〈iL〉 − 1

C
〈io〉

〈uo〉 = rC 〈iL〉 + 〈uC〉 − rC 〈io〉

〈iin〉 = d2Ts

2

(
m1 − rL

L
〈iL〉

)
(2.21)

When the up and down slopes (i.e., m1 and m2 in Table 2.2 ) as well as the output voltage
in (2.12) are substituted into (2.21), the corresponding nonlinear state-space representation
for a buck converter can be written as

d 〈iL〉
dt

=
d (〈uin〉 + UD)

L
− 2 〈iL〉 (rC 〈iL〉 + 〈uC〉 − rC 〈io〉 + UD)

dTs (〈uin〉 − (rC + rL) 〈iL〉 − 〈uC〉 + rC 〈io〉) − rL

L
〈iL〉 (2.22a)

d 〈uC〉
dt

=
1

C
〈iL〉 − 1

C
〈io〉 (2.22b)

〈uo〉 = rC 〈iL〉 + 〈uC〉 − rC 〈io〉 (2.22c)

〈iin〉 =
d2Ts

2L
(〈uin〉 − (rC + rL) 〈iL〉 − 〈uC〉 + rc 〈io〉) (2.22d)

Small Signal Model

The small-signal state-space representation for a buck converter can be obtained from (2.22)
by applying the linearizing procedure presented in [31], yielding

d̂iL
dt

= −
(

rL

L
+

2 ((Uin − Uo − rLIo) + Io (rL + rC)) (Uo + UD)

DTs (Uin − Uo − rLIo)
2

)
· îL

−2Io ((Uin − Uo − rLIo) + (Uo + UD))

DTs (Uin − Uo − rLIo)
2 · ûC +

(
D

L
+

2Io (Uo + UD)

DTs (Uin − Uo − rLIo)
2

)
· ûin

+

(
Uin + UD

L
+

2Io (Uo + UD)

D2Ts (Uin − Uo − rLIo)

)
· d̂ (2.23a)

dûC

dt
=

1

C
· îL − 1

C
· îo (2.23b)
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îin = −D2Ts (rC + rL)

2L
· îL−D2Ts

2L
·ûC +

D2Ts

2L
·ûin+

rCD2Ts

2L
· îo+

2DTs (Uin − Uo − rLIo)

2L
· d̂

(2.23c)

ûo = rC îL + uC − rC îo (2.23d)

The states-space representation in (2.23) would be most convenient to be solved when the
numerical values of the corresponding operating points are utilized. The effect of the para-
sitic elements on the converter dynamics is minimal as stated in [33]. Therefore, they may
omitted in (2.23), except the effect of the equivalent series resistor of the output capacitor
rC in(2.23d), and the small-signal stat-space representation can be accordingly expressed in
state-space representation

ˆ̇x = Adcmx̂ + Bdcmû (2.24a)

ŷ = Cdcmx̂ + Ddcmû (2.24b)

where x =
[

iL uC

]T
, u =

[
uin io d

]T
, y =

[
iin uo

]T
, the subscript “dcm” de-

notes the discontinuous-conduction-mode of operation.

It is convenient to present the SSA matrices in terms of voltage conversion ratio M =
Uo/Uin and K, where K = 2L/ReqTs and Req = Uo/Io. As a result the SSA matrices for a
buck converter can be obtained as follows

Adcm =

⎡
⎣ −Req

L

√
K

1−M
− 1

L(1−M)

√
K

1−M

1
C

0

⎤
⎦ Bdcm =

⎡
⎣ (2−M)M

L(1−M)

√
K

1−M
0 2Uin

L

0 − 1
C

0

⎤
⎦

Cdcm =

[
0 − M2

Req(1−M)

rC 1

]
Ddcm =

⎡
⎣ (2−M)M

L(1−M)

√
K

1−M
0 Uo

Req

√
1−M

K

0 − 1
C

0

⎤
⎦

Likewise, the SSA matrices for a boost converter are

Adcm =

⎡
⎣ −Req

L

√
K(1−M)

M
− 1

L

√
KM
M−1

1
C

0

⎤
⎦ Bdcm =

⎡
⎢⎣ M2

L

√
MK
M−1 0 2Uo

L

0 − 1
C

− 2Uo

ReqC

√
M−1
MK

⎤
⎥⎦

Cdcm =

[
1 0

rC 1

]
Ddcm =

[
0 0 0

0 1 0

]

Correspondingly, the SSA matrices for a buck-boost converter are given as follows
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Adcm =

⎡
⎣ −Req

L

√
K −

√
K
L

1
C

0

⎤
⎦ Bdcm =

⎡
⎣ M(M+2)

√
K

L
0 2(Uo+Uin)

L

− M2

ReqC
− 2Uo

ReqC
√

K

⎤
⎦

Cdcm =

[
1 0

rC 1

]
Ddcm =

[
M2

Req
0 2Uo

Req

√
K

0 1 0

]

The expressions for the state and output variables are of all basic converters are summa-
rized in Table 2.3

Table 2.3: Steady-state operating point for all basic converters in DCM.

Type IL Iin D D1 Uo

Buck Io MIo M
√

K
1−M

√
K (1 − M) UC

Boost MIo MIo

√
KM (M − 1) 1

M−1 UC

Buck-Boost MIo (1 + M)Io M
√

K K(M+1)
M

− M
√

K UC

2.7 Modeling of Pulse-Width Modulator

While there are no substantial differences in the modeling of the power stage for all convert-
ers, there are differences in the modeling of converter’s PWM stage, particularly in PCMC.
In voltage-mode control the switching operation is done by comparing the control voltage
to the sawtooth waveform. In PCMC, the inductor current is connected directly to the
pulse-width modulator. It then follows that the duty cycle is not generated independently
by the control current, but also other variables affect the duty cycle. The inductor current
may depend on the input and output voltages. Hence, perturbations in the input and out-
put voltages propagate to the pulse-width modulator also via the inductor-current feedback
loop, and thus affect the duty cycle directly. A small-signal model of the PWM stage is
needed.

2.7.1 Voltage-Mode PWM

A voltage-controlled buck converter is shown in Fig. 2.12. Normally, the duty ratio is
obtained by comparing the error or control signal uc with the sawtooth voltage Vst. When
uc is larger than Vst the switch is turned on and, consequently the diode turns off. When uc

is less than Vst, the switch is turned off, and as a result the diode turns on. In this case the
following expression for the duty cycle can be derived

d =
1

Vst
uc (2.25)

where uc is the control signal. Note that, in the frequency domain, modulator equation is
simply given
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Figure 2.12: VMC buck converter.

d(s) =
1

Vst
uc(s) (2.26)

Open-loop transfer functions of voltage-mode-controlled converter

The open-loop small-signal transfer functions of voltage-mode-controlled converter, which
describing the input and output dynamics at open loop in CCM and DCM will be considered
next.

Continuous conduction mode CCM

The state space equations in (2.4) can be expressed in frequency domain using Laplace
transformation as shown in (2.27).

sx̂(s) = Ax̂(s) + Bû(s) (2.27a)

ŷ(s) = Cx̂(s) + Dû(s) (2.27b)

where x̂(s) =
[

îL(s) ûC(s)
]T

, û(s) =
[

ûin(s) îo(s) d̂(s)
]T

, ŷ(s) =
[

ˆiin(s) ûo(s)
]T

.
Note that the initial conditions have been assumed to be zero.

It is convenient to express the control variable explicitly. For VMC, if the control vari-
able is denoted with c(s), then the open-loop transfer function model of the buck, boost and
buck-boost converters can be obtained by inserting the modulator equation (2.26) into the
power stage (2.27), yields

sx̂(s) = A′x̂(s) + B′û(s) (2.28a)

ŷ(s) = C′x̂(s) + D′û(s) (2.28b)

where a prime is used to denote altered matrices. According to the matrix algebra, we can
solve the system in (2.29) as follows
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x̂(s) =
(
sI− A′)−1

B′ · û(s) (2.29a)

ŷ(s) =
(
C′(sI − A′)−1B′ + D′) · û(s) (2.29b)

As a result, six unterminated transfer functions (denoted using a superscript ‘*’) of voltage-
mode controlled converter are obtained, which characterize the input and output open-loop
operation of a switched-mode power converter in CCM, and shown in (2.30) and (2.31)
respectively.

[
îL
ûC

]
=

[
G∗

iL−o G∗
jL−o G∗

cL

G∗
ic−o G∗

jc−o G∗
cc

]⎡
⎣ ûin

îo
ĉ

⎤
⎦ (2.30)

[
îin
ûo

]
=

[
Y ∗

in−o T ∗
ji−o G∗

ci

G∗
io−o −Z∗

o−o G∗
co

]⎡
⎣ ûin

îo
ĉ

⎤
⎦ (2.31)

Here ĉ is the control signal and the subscript “-o” denotes open-loop operation.

Y ∗
in−o = îin

ûin

∣∣∣̂
io,c=0

input admittance

T ∗
ji−o = îin

îo

∣∣∣
ûin,ĉ=0

reverse (output-to-input) transfer function

G∗
ci = îin

ĉ

∣∣∣
ûin ,̂io=0

control-to-input transfer function

G∗
io−o = ûo

ûin

∣∣∣̂
io,ĉ=0

forward (line-to-output) transfer function

Z∗
o−o = − ûo

îo

∣∣∣
ûin,ĉ=0

output impedance

G∗
co = ûo

ĉ

∣∣
ûin ,̂io=0

control-to-output transfer function

Consequently, the open-loop output dynamics of a converter (i.e.,ûo) can be defined as
(2.32) and the open loop input dynamics (i.e., îin) as (2.33), respectively.

ûo = G∗
io−o · ûin − Z∗

o−o · îo + G∗
co · ĉ (2.32)

îin = Y ∗
in−o · ûin + T ∗

ji−o · îo + G∗
ci · ĉ (2.33)

The output and input dynamics presented in (2.32) and (2.33), respectively, can be presented
also using the control block diagrams shown in Fig. 2.13(a) and 2.13(b). The input variables
ûin and îo are typically known also as disturbance inputs.

Discontinuous conduction mode DCM

Similarly, the open-loop transfer functions of voltage-mode-controlled converter in DCM can
be obtained by expressing the state-space representation in (2.24) in frequency domain, and
then inserting the modulator equation (2.26) into the resulting power stage model.

22



Chapter 2 DC-DC Switching Converters

+

înu ôi

*
co

G

*
io

G
o

*
o

Z
o

Open-loop

+
+
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Figure 2.13: Open-loop voltage-mode control block diagrams.

Closed-loop transfer functions of voltage-mode-controlled converter

The closed loop model of the converter is obtained by combining the open-loop transfer
function model with the output voltage feedback. A controller is designed, and a feedback
from the output voltage is formed. The corresponding closed-loop control block diagrams
are shown in Figs. 2.14(a) and 2.14(b), where Gc is the transfer function of the control
circuit, Hv is the sensor gain ur is the reference voltage, and Ga the gain factor matching
the voltage control signal to the internal control signal [35].

The closed-loop transfer functions can be derived directly from Fig. 2.14, or by substi-
tuting the control law (2.34) to (2.32) and (2.33) as follows:

ĉ = −Hv(s)GcGa · ûo + GcGa · ûr (2.34)

ûo = G∗
io−o · ûin − Z∗

o−o · îo + GcGaG
∗
co · ûr − Hv(s)GcGaG

∗
co · ûo (2.35)

ûo =
G∗

io−o

1 + Hv(s)GcGaG∗
co

· ûin − Z∗
o−o

1 + Hv(s)GcGaG∗
co

· îo +
GcGaG

∗
co

1 + Hv(s)GcGaG∗
co

· ûr (2.36)

The product of the gains along the path starting from the output voltage and ending at it
(i.e., Hv(s)GcGaG

∗
co ) is known as loop gain and denoted as L∗

g(s), where the superscript ‘*’
denotes the unterminated nature of the loop gain. When using the loop gain, the output
dynamics may be expressed as (2.37)

ûo =
G∗

io−o

1 + L∗
g(s)

· ûin − Z∗
o−o

1 + L∗
g(s)

· îo +
L∗

g(s)

1 + L∗
g(s)

· ûr

Hv(s)
(2.37)

where

L∗
g(s) = Hv(s)GcGaG

∗
co (2.38)

The closed-loop input dynamics can be solved from (2.33) and (2.34) as follows:
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Figure 2.14: Closed-loop control block diagrams.

îin =

(
Y ∗

in−o −
G∗

io−oG
∗
ci

G∗
co

· L∗
g(s)

1 + L∗
g(s)

)
· ûin +

(
T ∗

ji−o +
Z∗

o−oG
∗
ci

G∗
co

· L∗
g(s)

1 + L∗
g(s)

)
· îo

+
G∗

ci

Hv(s)G∗
co

· L∗
g(s)

1 + L∗
g(s)

· ûr (2.39)

If the reference signal ûr = 0, then, the closed-loop transfer function matrix is

[
îin
ûo

]
=

⎡
⎣ Y ∗

in−o −
G∗

io−oG∗

ci

G∗

co
· L∗

g(s)

1+L∗

g(s) T ∗
ji−o +

Z∗

o−oG∗

ci

G∗

co
· L∗

g(s)

1+L∗

g(s)

G∗

io−o

1+L∗

g(s) − Z∗

o−o

1+L∗

g(s)

⎤
⎦[

ûin

îo

]
(2.40)

[
îin
ûo

]
=

[
Y ∗

in−c T ∗
ji−c

G∗
io−c −Z∗

o−c

] [
ûin

îo

]
(2.41)

The closed-loop input admittance can be rewritten in terms of feedback as follows:

Y ∗
in−c = Y ∗

in−o ·
1

1 + L∗
g(s)

+ Y ∗
in−∞ · L∗

g(s)

1 + L∗
g(s)

(2.42)

where

Y ∗
in−∞ = Y ∗

in−o −
G∗

ciG
∗
io−o

G∗
co

(2.43)

is equal to closed-loop input admittance under the condition that the feedback controller
operates ideally [28], and it has a negative value.

Y ∗
in−∞ may be given as (2.44), (2.45), and (2.46) for the basic converters (i.e., buck, boost,

and buck-boost) in CCM without considering the effect of the circuit parasitic elements,
respectively.

Y ∗
in−∞ = −DIL

Uin
(2.44)

Y ∗
in−∞ = − IL

Uin
· 1

1 − s · LIL

Uin

(2.45)
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Y ∗
in−∞ = −DIL

Uin
· 1

1 − s · LIL

Uin

(2.46)

Expression (2.42) shows that typically the closed-loop input admittance varies from neg-
ative at low frequencies (i.e. high loop gain) to positive at high frequencies as the loop gain
falls below unity [12].

2.7.2 Peak Current-Mode PWM

The resulting expression of the duty cycle of a PCMC converter shows how the perturbations
in the input voltage, output voltage, inductor current and control current affect the duty
cycle. The expression leads to concept called the duty cycle constraints. The derivation of
these is thoroughly explained in [36].

Continuous Conduction Mode CCM

The principles of the duty-ratio generation under PCM control are shown in Fig. 2.15 using
a buck converter as an example. In CCM, the time-averaged inductor current lies always in
the middle of the inductor current ripple band as shown in Fig. 2.16. The duty ratio under
PCM control is established, when the on-time inductor current reaches the compensated
control current ico. The state variable is the average inductor current 〈iL〉 and the sampling
of inductor current takes place when t = (k + d)Ts and the duty-cycle constraints can,
therefore be written as in (2.47), where ΔiL is the dynamic distance between the peak
inductor current and the average inductor current as shown in Fig. 2.16
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Figure 2.15: PCMC buck converter.

ico − McdTs = 〈iL〉 + ΔiL (2.47)

From Fig. 2.16, ΔiL can be derived by solving the following governing equations:

ΔiL = ip − Δi′L (2.48)

We know that the derivative of the average inductor current 〈iL〉 can be approximated as
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Figure 2.16: The inductor current waveform.

〈iL〉′ = dm1 − (1 − d)m2 (2.49)

It follows that

ΔiL =
1

2
m1dTs − 1

2
dTs

(
dm1 − d′m2

)
=

dd′Ts

2
(m1 + m2) (2.50)

where m1 and m2 are topology-dependent rising and falling slopes of the inductor current.
Their expressions for buck, boost and buck-boost converters after neglecting the parasitic
elements are shown in Table (2.4).

When (2.50) is inserted into (2.47), we obtain the averaged duty-ratio constraints (2.51)
from which the small-signal constraints may be derived by replacing the topology-based up
and down slopes and developing the proper partial derivatives:

ico − McdTs = 〈iL〉 +
dd′Ts

2
(m1 + m2) (2.51)

which is the same conclusion that has been reached in [37, 36, 38].

To derive the ac-small signal model, equation (2.51) must be linearized. Then general
expressions of the small signal of duty-cycle both in time and frequency domain can be
obtained

d̂(t) = Fm

[̂
ico(t) − îL(t) − fg · ûin(t) − fv · ûo(t)

]
(2.52)

d̂(s) = Fm

[̂
ico(s) − îL(s) − fg · ûin(s) − fv · ûo(s)

]
(2.53)

where Fm is the duty-cycle gain, fg is the feedforward gain and fv is the feedback gain The
coefficients are shown in Table (2.4) [36].

It can be noted that the PCMC transfer functions depend strongly on the duty-cycle gain
Fm. Therefore, Fm would tend to infinity when there is no compensation (i.e., Mc = 0) and
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Table 2.4: Duty-cycle constraints coefficients for CCM.

Type m1 m2 Fm fg fv

Buck uin(t)−uo(t)
L

uo(t)
L

1

Ts

[
Mc+

(Uin+UD)(1−2D)

2L

] Ts

2L
DD′ 0

Boost uin(t)
L

−uin(t)−uo(t)
L

1

Ts

[
Mc+

(Uo+UD)(1−2D)

2L

] 0 Ts

2L
DD′

Buck-Boost uin(t)
L

uo(t)
L

1

Ts

[
Mc+

(Uo+Uin+UD)(1−2D)

2L

] Ts

2L
DD′ Ts

2L
DD′

the duty cycle D approaches 50% [36]. In order to obtain the maximum duty-cycle limit
Dmax at which Fm would become infinite, the duty-cycle gain can be expressed in a unified
form as follows

Fm =
1

Ts

[
Mc + (D′−D)(M1+M2)

2

] (2.54)

Equation (2.54) predicts that the duty-cycle gain Fm will tend to infinity at the vicinity of
Dmax defined by

Dmax =
1

2
+

Mc

M1 + M2
(2.55)

It can be obviously noted that, the active operation up to D = 1 may be ensured if the
compensation ramp slope Mc is selected as follows

Mc =
M1 + M2

2
(2.56)

Discontinuous Conduction Mode DCM

The small-signal modeling of PCM controlled converter in DCM is a similar process as in
CCM [39, 36]. The comparator equation (2.47) defined for CCM applies but the dynamic
description of ΔiL differs from the corresponding CCM description of (2.50). The inductor-
current waveform in DCM is shown in Fig. 2.17.

From Fig. 2.17, ΔiL can be presented using the difference between the peak inductor
current and average inductor at t = (k + d)Ts as follows [39]

ΔiL = m1dTs − m1d (d + d1) Ts

2
(2.57)

The portion of duty ratio d1 may be estimated using the relation (2.58) given in [28, 39],

d1 =
m1

m2
.d (2.58)

Inserting (2.58) into (2.57), yields

ΔiL = m1dTs − m1 (m1 + m2) d2Ts

2m2
(2.59)
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Figure 2.17: The inductor current waveform in DCM.

Substituting (2.59) into the comparator equation (2.47), yields (2.60) from which the
coefficients of the duty-cycle constraints of (2.61) can be defined by replacing the inductor-
current up and down slopes with their topology-based values and applying the standard
linearizing approach. These procedures result in the coefficients of small-signal duty-cycle
constraints for a buck, boost and buck-boost converter as given in Table 2.5.

ico − McdTs = 〈iL〉 + m1dTs − m1 (m1 + m2) d2Ts

2m2
(2.60)

d̂(t) = Fm

[̂
ico(t) − îL(t) − fg · ûin(t) − fv · ûo(t)

]
(2.61)

The general expression of the duty-cycle in frequency domain can be obtained as

d̂(s) = Fm

[̂
ico(s) − îL(s) − fg · ûin(s) − fv · ûo(s)

]
(2.62)

Table 2.5: Duty-cycle constraints coefficients for DCM.

Type Fm fg fv

Buck 1

Ts

[
Mc+

Uin(1−M)(M−D)

LM

] Ts

L
D

(
D

2M2 − 1
)

Ts

L
D

(
1 − 2−M

2M
D
)

Boost 1

Ts

[
Mc+

D′Uin(M−
1

D′ )
L(M−1)

] Ts

2L
D2

(M−1)2
Ts

L
D

(
1 − M2

2(M−1)2
D
)

Buck-Boost 1

Ts

[
Mc+

D′Uin(M−
D
D′ )

LM

] Ts

2L
D2

M2
Ts

L
D

(
1 − 2+M

2M
D
)

From the values of the duty-ratio gains Fm given in Table 2.5, it is evident that the duty-
ratio gain tends to infinity without compensation (i.e., Mc = 0), when M approaches CCM
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at the mode limit [28]. Hence, in DCM operation compensation is not necessarily needed.

Open-loop transfer functions of peak-mode-current-controlled converter

The open-loop small-signal transfer functions of peak-current-mode-controlled converter,
describing the input and output dynamics at open-loop in CCM and DCM will be shortly
discussed in the following.

Continuous conduction mode CCM

For PCMC, the duty-cycle constraints (2.53) must be substituted to (2.27), and then the
equations must be manipulated in such a way that the control current is explicitly shown.
If the control variable is denoted with c(s), then it follows that six transfer functions are
obtained, which characterize the open-loop operation of a current-controlled converter.
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Figure 2.18: Unified small-signal peak-current-mode-controlled converter diagram in CCM.

Peak-current-mode control in CCM is a direct extension of voltage-mode control. There-
fore, it is possible to express the PCMC transfer functions as functions of VMC transfer
functions and duty-cycle constraints (2.53). The unified small-signal block diagram for ba-
sic switching converters is shown in Fig. 2.18, [38].

The coefficients q1 and q2 for basic converters are shown in Table 2.6. The VMC basic
transfer functions (denoted by subscript extension “v”) are as follows

G∗
cov

= (q1G
∗
cLv

− q2)Z
∗
Lv

(2.63)

G∗
io−ov

= q1G
∗
iL−ov

Z∗
Lv

(2.64)

Z∗
o−ov

= (q1G
∗
jL−ov

+ 1)Z∗
Lv

(2.65)

where Z∗
Lv

is the parallel connected output capacitor and load impedance. In the case of
unterminated load, we get
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Z∗
Lv

=
1 + srcC

sC
(2.66)

The feedback loop created by current-mode control is referred to as the current loop
and is denoted by L∗

c(s). The voltage loop, created by the output-voltage feedback path, is
denoted by L∗

v(s).
The current and voltage loops can be defined as follows

L∗
c(s) = FmG∗

civ
(2.67)

L∗
v(s) = FmfvG

∗
cov

(2.68)

The PCMC transfer functions (2.69) - (2.74) can be derived from VMC transfer functions
and in terms of the loops gains as shown in Fig. 2.18 by solving inductor current and output
voltage from the corresponding block diagram.

Y ∗
in−oc

= Y ∗
in−ov

−
Fm

((
fv + 1

q1Z∗

Lv

)
G∗

io−ov
+ fg

)
G∗

civ

1 + L∗
c(s) + L∗

v(s)
(2.69)

T ∗
ji−oc

= T ∗
ji−ov

+
Fm

((
fv + 1

q1Z∗

Lv

)
Z∗

o−ov
− 1

q1

)
G∗

civ

1 + L∗
c(s) + L∗

v(s)
(2.70)

G∗
cic

=
FmG∗

civ

1 + L∗
c(s) + L∗

v(s)
(2.71)

G∗
io−oc

=

(
1 + q2Fm

q1

)
G∗

io−ov
− FmfgG

∗
cov

1 + L∗
c(s) + L∗

v(s)
(2.72)

Z∗
o−oc

=

(
1 + q2Fm

q1

)
Z∗

o−ov
+ Fm

q1
G∗

cov

1 + L∗
c(s) + L∗

v(s)
(2.73)

G∗
coc

=
FmG∗

cov

1 + L∗
c(s) + L∗

v(s)
(2.74)

Discontinuous conduction mode DCM

For DCM, the open-loop transfer functions of peak-current-mode-controlled converter can
be obtained by expressing the state-space replantation in (2.24) in frequency domain, and
then inserting the modulator equation (2.62) into the resulting power stage model.

Peak-current-mode control in DCM is a direct extension of voltage-mode control. How-
ever, it is possible to express the PCMC transfer functions in terms of VMC transfer func-
tions. The corresponding unified small-signal block diagram of switching converter is shown
in Fig. 2.19. The coefficients q3 and q4 for basic converters are shown in Table 2.6.

The VMC basic transfer functions (denoted by subscript extension “v”) are as follows

G∗
cov

= (G∗
cLv

− q3)Z
∗
Lv

(2.75)

G∗
io−ov

= (G∗
iL−ov

− q4)Z
∗
Lv

(2.76)
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înu

ôi
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Figure 2.19: Unified small-signal peak-current-mode-controlled converter diagram in DCM.

Table 2.6: The coefficients for basic converters in CCM and DCM.

Type q1 q2 q3 q4

Buck 1 0 0 0

Boost D IL
2Uo

Req

√
M−1
KM

M(M−1)
Req

Buck-Boost D IL
2Uo

Req

√
K

M2

Req

Z∗
o−ov

= (G∗
jL−ov

+ 1)Z∗
Lv

(2.77)

Similarly, the PCMC transfer functions in DCM (2.80) - (2.83) can be derived from VMC
transfer functions and in terms of the loops gains as shown in Fig. 2.19 by solving inductor
current and output voltage from the corresponding block diagram.

Y ∗
in−oc

= Y ∗
in−ov

−
Fm

((
fv + 1

Z∗

Lv

)
G∗

io−ov
+ fg + q4

)
G∗

civ

1 + L∗
c(s) + L∗

v(s)
(2.78)

T ∗
ji−oc

= T ∗
ji−ov

+
Fm

((
fv + 1

Z∗

Lv

)
Z∗

o−ov
− 1

)
G∗

civ

1 + L∗
c(s) + L∗

v(s)
(2.79)

G∗
cic =

FmG∗
civ

1 + L∗
c(s) + L∗

v(s)
(2.80)
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G∗
io−oc

=
(1 + q3Fm)G∗

io−ov
− Fm (q4 + fg) G∗

cov

1 + L∗
c(s) + L∗

v(s)
(2.81)

Z∗
o−oc

=
(1 + q3Fm) Z∗

o−ov
+ FmG∗

cov

1 + L∗
c(s) + L∗

v(s)
(2.82)

G∗
coc

=
FmG∗

cov

1 + L∗
c(s) + L∗

v(s)
(2.83)
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Chapter 3
Robust Control Design for Switching-Mode Power
Converters

Numerous control strategies for designing robust controllers for switching converters have
been proposed to find a successful and practical feedback control method. Many of the pro-
posed control strategies are based on optimal control theory. The linear quadratic Gaussian
(LQG)/loop transfer recovery methodology was used in [5] to design a controller for a series-
parallel resonant converter. In [6], a controller for a buck-boost converter with peak current
control was designed using the μ-synthesis procedure. In [7, 8], H∞ approach was applied
to design controllers for boost and buck-boost converters. Nonlinear H∞-control theory has
been applied to regulate a PWM Cuk converter under parameter uncertainties [9]. In [10],
H∞ and μ-synthesis control methods have been applied to Telecom power supplies. But
such techniques usually need tedious work to find appropriate weighting functions, and they
often result in high order controllers, which are difficult to implement.

Among the robust control techniques that are being currently investigated in power elec-
tronics is the quantitative feedback theory (QFT) approach. It was introduced by Horowitz
[11] in 1960’s. QFT is a frequency domain-based design technique where the controllers can
be designed to achieve a set of performance and stability objectives over a specific range of
plant parameter uncertainty.

Unlike H∞ an LQG control, the QFT approach is based on classical ideas of frequency
domain shaping of the open-loop transfer function. It also differs in the way that uncertainty
is usually characterized, by using gain-phase variations or templates in the Nichols chart.
The QFT method has already been applied in the design of different types of control systems,
for example in flight control [40, 41] and in robot control systems [42, 43].

In this chapter, QFT approach and associated design for Linear-Time-Invariant systems
are presented. A controller adopted to design a robust controller for switching-mode power
converters, maximizing the bandwidth of the control loop with a perfect tracking of the
desired output voltage, and minimizing the effects of load disturbances over the specified
region of plant uncertainties and load disturbances is developed. Consequently, the main
contribution of this chapter is to show how the QFT controller methodology can be success-
fully employed for robust control design of SMPS’s subject to system uncertainties due to
parameter variations. Different design examples are discussed in this chapter to verify the
control design procedures. The effectiveness and robustness of the proposed control system
is confirmed by simulation results, where the MatlabTM QFT Frequency Domain Control
Design Toolbox [44] and MatlabTM/Simulink SimPowerSystems blockset [45] are used as a
setup platform for design and validation.
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3.1 Quantitative Feedback Theory (QFT)

QFT is a robust control design framework that offers a transparent design procedure to the
engineers in order to generate a good response of the system in spite of disturbance signals
and plant uncertainty. Specifically, it employs a two degrees-of-freedom control structure
which uses output feedback, a controller, and a prefilter to reduce the variations of the plant
output due to plant parameter variations and disturbances.

The QFT method takes into account quantitative information on plant’s variability, ro-
bust performance requirements, tracking performance specifications, and expected distur-
bance amplitudes with their attenuation requirements. The controller is designed to ensure
that stability, robustness and disturbance rejection requirements are met. The prefilter is
then used to tailor the reference step response to meet the other control specifications.

The QFT designs are usually performed using the Nichols chart, a plot of phase as
abscissa and log magnitude as ordinate, both parameterized by frequency. Because a whole
set of plants, rather than a single plant is considered, the magnitude and phase of the
plants (at each selected frequency) yields a set of points on the Nichols chart, which form
a connected region, or so-called template. Larger templates indicate larger uncertainty.
These templates are then used to define regions (or so-called bounds) in the frequency
domain where the system open-loop frequency response must lie. The stability bounds are
calculated using these templates. The performance bounds are derived using the templates
and the upper and lower limits on the frequency-domain responses. The upper limit of
the disturbance bounds is derived based on the disturbance rejection specifications. The
controller is determined through the loop shaping process, using a Nichols chart that displays
the stability, performance, and disturbance rejection bounds. The disturbance rejection and
tracking action of the controller are based on keeping the loop gain above the disturbance
and tracking performance within the bounds on the Nichols chart. The stability performance
is achieved by keeping the loop transfer function outside the corresponding stability bounds
at appropriate frequencies [46, 40]. During the loop shaping process, modifying the poles
and zeros of the controller produces immediately visible results, enabling the designer to
examine the tradeoffs between controller complexity and system performance [47]. Finally,
the prefilter design is conducted using a Bode diagram to shape the closed-loop frequency
response, so as to satisfy the tracking performance requirement.

QFT was originally introduced to design robust controllers for highly uncertain, lin-
ear time invariant (LTI), single-input/single-output (SISO) systems. Recent research has
extended the technique to handle multi input/multi output (MIMO) [40], nonlinear and
time varying plants [48]. MIMO systems are mathematically decomposed into their multi
input/single-output (MISO) counterparts, where the coupling between the channels is treated
as a disturbance that needs to be rejected. A beneficial byproduct of MIMO QFT design is
the approximate decoupling of the resulted closed-loop robust control system [40].

3.1.1 Closed-Loop Formulation

The typical two degree of freedom (TDOF) feedback system configuration in QFT is shown
in Fig. 3.1. P (s) is the plant transfer function, Hv(s) is feedback sensor transfer function and
the transfer functions Gc(s) and F (s) denote the controller and prefilter to be synthesized.
The general closed loop specifications of the system in Fig. 3.1 are typically described in
terms inequalities on the systems transfer functions from some inputs to some outputs , as
follows:

(i) Disturbance rejection at plant output: for a given uncertain set of linear time-invariant
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Figure 3.1: Two degree-of-freedom control system.

plants ∀P ∈ {P} the transfer function from the disturbance at the plant output ds to
the plant output y is bounded by

∣∣∣∣ y

ds

∣∣∣∣ = |TD(jω)| ≤ γs(ω) (3.1)

where

TD(jω) =
Gd(jω)

1 + Lg(jω)

Gd(jω) is the disturbance frequency response and Lg(jω) = PHvGc(jω) is the loop frequency
response.

(ii) Disturbance rejection at plant input: for ∀P ∈ {P} the transfer function from the
disturbance at the plant input ud to the plant output y is bounded by

∣∣∣∣ y

ud

∣∣∣∣ =

∣∣∣∣ P (jω)

1 + Lg(jω)

∣∣∣∣ ≤ γp(ω) (3.2)

(iii) Noise rejection: for ∀P ∈ {P} the transfer function from the sensor output un to the
plant output y is bounded by

∣∣∣∣ y

un

∣∣∣∣ =

∣∣∣∣ PGc(jω)

1 + Lg(jω)

∣∣∣∣ ≤ γn(ω) (3.3)

(v) Tracking specification: The tracking specification defines the acceptable range of vari-
ations in the closed loop tracking responses of the system due to uncertainty and dis-
turbances. It is generally defined in the time-domain, but normally transformed into
the frequency domain. For ∀P ∈ {P} the transfer function from the reference ur to the
plant output y is bounded by

TL(jω) ≤ |FT (jω)| ≤ TU (jω) (3.4)

where

T (jω) =
P (jω)Gc(jω)

1 + Lg(jω)
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denotes the closed-loop frequency response without the prefilter, TL(jω) and TU (jω) are
the equivalent frequency responses of the lower and upper tracking bounds. These transfer
functions are systematically derived from the desired step response of the system.

3.1.2 Robust Performance

Due to parametric uncertainty in frequency responses P , and Gd , there exist corresponding
families of transfer functions T , and TD denoted by T =

[
T1 T2 · · · Tk

]
, and TD =[

TD1 TD2 · · · TDk

]
, where k is the number of plants under uncertainty ∀P ∈ {P}.

To proceed with the QFT design, it is necessary to specify the required tolerances on the
acceptable closed loop responses in the frequency domain. The performance specifications
of interest here are:

Robust Stability

To ensure robust stability of the closed-loop system for a unity feedback sensor (i.e., Hv = 1),
the following constraint on the peak magnitude of the closed loop frequency responses is set:∣∣∣∣ Lg

1 + Lg

∣∣∣∣ ≤ γ, ∀P ∈ {P} (3.5)

It corresponds to a minimum gain margin (GM) and phase (PM), [46] as follows:

GM ≥ 20 log

{
γ + 1

γ

}
[dB] (3.6)

PM ≥ 2 sin−1

{
1

2γ

}
[deg] (3.7)

where Lg(jω) denotes the set of the loop gains frequency responses.

Disturbance Rejection

The general problem is how to design the controller Gc and prefilter F in Fig· 3.1 such that
the variation in system output caused by uncertainty and disturbances are reduced. In other
words, it is required to reduce the sensitivity [11],

ST
P =

∂T/T

∂P/P
=

1

1 + Lg
(3.8)

If controller Gc can be designed such that over a sufficiently wide frequency range |Lg| 
 1
then it is possible to make ST

P as small as desired so that T ≈ F despite the parametric
uncertainty. The response due to the output disturbances TD = GdS

T
P , will also be improved

by decreasing ST
P . However, there exists a fundamental constraint on the nature of ST

P in
the context of linear time invariant (LTI) feedback control systems: Bode’s integral theorem
for minimum phase plants [49] states that∫ ∞

0
log

∣∣ST
P (jω)

∣∣dω = 0 (3.9)

Equation (3.9) asserts that if
∣∣ST

P

∣∣ < 1 over some frequency range then there must exist
another frequency range where

∣∣ST
P

∣∣ > 1 to satisfy the integral. In most practical feedback

36



Chapter 3 Robust Control Design for Switching-Mode Power Converters

Figure 3.2: Inverse of performance weight function 1/|Ws(jω)|, [50].

control systems,
∣∣ST

P

∣∣ < 1 up to the crossover frequency, ωc , where |Lg(jωc)| = 1. So,
in order to satisfy (3.9), the sensitivity must be larger than unity for some ω > ωc. In
other words, closing the feedback loop around the plant simply shifts the region of high loop
sensitivity from the low frequencies where |Lg| > 1 to the high frequencies above ωc where
|Lg| < 1 [50].

In general, to fulfill a design specification, such as disturbance attenuation in equation
(3.1), the sensitivity function ST

P is constrained to satisfy∣∣∣∣ 1

1 + Lg(jω)

∣∣∣∣ ≤ |1/Ws(jω)| , ∀P ∈ {P} (3.10)

where Ws(s) is a weighting function related to the desired sensitivity function such that it
must hold

|TD(jω)| < 1 (3.11)

for all frequencies [50].

The sensitivity function ST
P is a very good indicator of closed-loop performance. Typical

specifications of performance in terms of ST
P are

(i) the minimum bandwidth frequency ωB.

(ii) the maximum steady-state tracking error A.

(ii) the maximum peak magnitude Ms of ST
P .

Mathematically, these specifications are captured by an upper bound (performance weight,
1/|Ws|), which can be represented e.g. by

W (s) =
s/Ms + ωB

s + ωBA
(3.12)

An asymptotic plot of a typical upper bound 1/|Ws| is shown in Fig. 3.2, [50].
In some cases, if faster rolloff is desired, then a higher-order weight may be selected as follows
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W (s) =

(
s
/

k
√

Ms + ωB

)k(
s + ωB

k
√

A
)k

(3.13)

for some integer k ≥ 1, [49, 50].

Reference Tracking

The reference tracking specification due to plant uncertainty is then formulated as follows

TL(jω) ≤ |T(jω)| ≤ TU (jω) (3.14)

Note that the constraints set limits on the time domain transient performance [40].

3.1.3 Uncertainty Model and Plant Templates

A control system is said to be robust if it is insensitive to differences or errors between the
actual system and the model of system. These differences or errors are referred to the model
uncertainty. That may have several sources such as the variation in parameters of the linear
model due to nonlinearities or changes in the operating conditions, measurement errors and
high frequency modeling [50].

The various origins of model uncertainty mentioned may be divided into the following
main groups:

(A) - Parametric uncertainty

Parametric uncertainty implies specific knowledge of variations in parameters of the transfer
function. A general procedure to represent the parametric uncertainty is given e.g. in
[50, 51]. The parametric uncertainty can be quantified by assuming that each uncertain
parameter a is bounded within region [amin, amax]. That is, we have parameter sets which
may be expressed as in (3.15). The corresponding plant uncertainty, however, will commonly
have the properties illustrated in Fig. 3.3

ap = ao (1 + σΔ) , − 1 ≤ Δ ≤ 1 (3.15)

where ao is the nominal parameter value, σ is the relative magnitude of the gain uncertainty
and Δ is a real scalar.

(B) - Unparametric uncertainty

The main source of unparametric uncertainty is error in the model because of missing dy-
namics, usually at high frequencies, due to a lack of understanding of the physical process
[50]. Only the case of parametric uncertainty is considered in this thesis.

The essential first step in QFT design process is to represent the uncertainty of the system
as accurately as possible. When the system is not defined by a single model, but rather has
several due to the parametric uncertainty, the frequency responses of the system for a given
frequency are represented by a set of points (most often obtained by forming a grid in the
uncertain parameter space), as many as there are different models. All of these points define
a region of uncertainty on Nichols chart known as template. The resulting plant response
set should be carefully studied. A generic illustration of “good” and “bad” grid choices are

38



Chapter 3 Robust Control Design for Switching-Mode Power Converters

nominal model

actual model

M
ag

ni
tu

de

Frequency [rad/s]

Figure 3.3: Typical behavior of plant uncertainty .

depicted in Fig. 3.4. In general, there are no rules for obtaining a reasonable approximation
of the boundary from the structure of the parametric uncertain plant. However, for specific
cases, such as transfer functions with coefficients belonging to known intervals or with coef-
ficients related to the uncertain parameters in a linear or multi-linear fashion, some useful
results can be found in e.g., [52, 53]. These templates are then used to define regions (or
so-called bounds) in the frequency domain where the system open-loop frequency response
must lie.

In QFT design procedure, the algorithms used for computing bounds require input data
in terms of frequency responses (templates) rather than in terms of numerator/denominator
transfer functions. For simply connected templates, it is necessary and sufficient to work
only with the boundary of these templates [44].

(a) Original template (b) "good" approximation of 

       template's boundary

(c) "bad" approximation of 

       template's boundary

Figure 3.4: “good” and “bad” approximations of a plant template, [44].

3.1.4 QFT Design Procedure

Choice of Frequency Array

In QFT design process, an appropriate frequency band for a computing templates and
bounds has to be selected. An important question arises, for which there is no definite
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global answer, is how to select this array from the possible range between zero and infinity.
Fortunately, for engineering design we need only a small set that can be found with, at
the most, a few repetitions. The basic rule is that for the same specification, the bounds
will change only with changes in the shape of the template. Therefore, a guideline for
selecting the frequency range are to search frequencies where the shape of the template
shows significant variations compared to those at other frequencies [44].

Choice of Nominal Plant

In order to compute bounds, it is necessary to choose a plant from the uncertainty set as the
nominal plant. If there is no uncertainty the fixed plant is the nominal one. This is required
in order to perform QFT design with a single nominal loop. In parametric uncertainty model
any plant in P can be chosen as the nominal plant. It is common practice to select a nominal
plant which we think is most convenient for design. However, the selected nominal plant
must be the same for the rest of the frequencies for which templates are to be obtained.

QFT Bounds Computations

Given the plant templates, QFT converts closed-loop magnitude specifications into magni-
tude and phase constraints on a nominal open-loop function. These constraints are called
QFT bounds. The preferred bound calculation algorithm proposed in [46] (also used by the
QFT MatlabTM toolbox, [44]).

QFT Loop-shaping

The final step in a QFT design involves the design (loop shaping) of a nominal loop function
that meets its bounds. The controller design then proceeds using the Nichols chart and
classical loop-shaping ideas. The objective is to synthesize a controller, Gc(s), which meets
the design specifications and maximizes the controller bandwidth.

QFT Algorithm:

The main steps involved in the QFT design technique can be summarized as

1. Formulating of the closed-loop control performance specifications, i.e., stability margins,
tracking and disturbance rejection

2. Generating templates. For a given uncertain plant P (s) ∈ {P}, select a series of frequency
points ωi, i = 1, 2, · · ·,m according to the plant characteristics and the specifications.
Calculate the value sets of the plant in the complex plane P (jωi), i.e., the so called plant
templates at all frequency point ωi;

3. Computation of QFT bounds. An arbitrary member in the plant set is chosen as the
nominal case. At each selected frequency point, combining the stability and performance
specifications with the plant template yields stability margin and performance bounds in
term of the nominal case. Intersection of all such bounds, i.e., the worst case bound, at
the same frequency point yields a single QFT bound. Compute such a QFT bound for all
frequency points ωi, i = 1, 2, · · ·,m. Hence the specifications of the closed-loop systems
for all P (s) ∈ {P} are translated into that of the open loop nominal case;
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4. Loop shaping for QFT controllers. The design of the QFT controller, Gc(s) is accom-
plished on the Nichols Chart. The phase gain loop shaping technique is employed to
design of the controllers, Gc(s), until the QFT bounds at all frequencies are satisfied and
the closed-loop nominal system is stable;

5. Design of prefilters F (s). The Final step in QFT is to design the prefilter, F (s), such
that the performance specifications are satisfied.

3.1.5 QFT Design for Uncertain Non-minimum Phase Systems

In addition, an underlying requirement of the controller design is to minimize sensitivity to
load changes and attenuate input-output transmission over as large a bandwidth as possible.
A major problem is encountered, however, when the transfer function of the power stage (i.e.
control-to-output transfer function) has a right-half-plane zero (RHPZ). In such cases (e.g.,
boost or buck-boost converters), the presence of the RHPZ contributes additional phase lag
to the system restricting severely the closed-loop bandwidth .

The key idea behind the method used in [54, 55, 40] is to convert a loop-shaping problem
of a non-minimum phase nominal plant to that for a stable minimum phase nominal plant
by shifting robust stability and performance bounds. The reason is that in numerical design
it is more convenient to work with a minimum phase function because the optimal loop
shaping procedures then can be derived [55].

The formulation of the QFT design for non-minimum phase systems used in this Section
is identical to the detailed formulation in [54] and [55].

Consider a non-minimum phase uncertain plant

P (s) =
N(s)N̂(−s)

D(s)
(3.16)

where N̂(−s) denotes the part with right half plane zeros explicitly.

The QFT design problem is to find a controller Gc(s) and a prefilter F (s) such that
conditions (3.5), (3.10) and (3.14) are satisfied and the nominal plant is stabilized. An
arbitrarily chosen nominal plant Po(s) within the plant family is given by

Po(s) =
No(s)N̂o(−s)

Do(s)
(3.17)

Now let

A(s) =
N̂o(−s)

N̂o(s)
(3.18)

where A(s) is all-passing with property

|A(jω)| = 1, for all ω ∈ [0,∞) (3.19)

The new nominal plant is defined as
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P ′
o(s) = Po(s)A(s)−1 =

No(s)N̂o(s)

Do(s)
(3.20)

Obviously P ′
o(s) is a stable minimum phase plant. Furthermore we have

Lg(s) = P (s)Gc(s) = P ′(s)Gc(s)A(s) = L′
g(s)A(s) (3.21)

with

P ′(s) =
N(s)N̂(−s)N̂o(s)

D(s)N̂o(−s)
(3.22)

and

L′
g(s) = P ′(s)Gc(s) (3.23)

Since A(s) defined in (3.19) is all-passing, this implies

|1 + Lg(s)| =
∣∣1 + L′

g(s)A(s)
∣∣ =

∣∣A(s)−1 + L′
g(s)

∣∣ (3.24)

The robust stability margin in (3.5) becomes

∣∣∣∣ Lg(jω)

1 + Lg(jω)

∣∣∣∣ =

∣∣∣∣ L′
g(jω)

A(jω)−1 + L′
g(jω)

∣∣∣∣ ≤ γ (3.25)

L′
g(jω) under the allowable uncertainties must satisfy condition (3.25).

Similar conditions can be found for the bounds of tracking performance and disturbance
rejection, respectively in (3.26) and (3.27).

TL(jω) ≤
∣∣∣∣ L′

g(jω)

A(jω)−1 + L′
g(jω)

∣∣∣∣ ≤ TU (jω) (3.26)

∣∣∣∣ 1

A(jω)−1 + L′
g(jω)

∣∣∣∣ ≤ |1/Ws(jω)| (3.27)

It has been proved in [55] that, the bounds imposing on L′
g(jω) by (3.25), (3.26) and

(3.27) are the same as the bounds imposing on Lg(jω) by (3.5), (3.10) and (3.14) but with
horizontal shift of − arg A(jω). In other words, the bounds for robust stability margin,
tracking and disturbance specifications for the stable minimum phase nominal plant P ′

o(jω)
are therefore the same as that for the non-minimum phase nominal plant Po(jω) but with
a horizontal (in the Nichols plane) shift of phase − arg A(jω) at frequency ωi. That is,
the bounds for the new nominal plant P ′

o(jω) are obtained by shifting the bounds for the
nominal plant Po(jω) by − arg A(jω), [54, 55].
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3.2 QFT-Based Robust Controller Design for Switching-Mode Power Converters

Use of regulated high-frequency DC/DC converters is increasing rapidly in powering all kind
of electronic equipment and systems in industrial and consumer applications. However, the
dc-dc switching converters require a high degree of dynamic regulation. In such cases,
switching regulators have to provide robust behavior in spite of load variations or input
voltage perturbations.

In this section, the problem of designing a QFT controller for switching-mode power
converters that maximizes the bandwidth control loop with a perfect tracking of the desired
output voltage and minimizing the effects of load disturbances will be analyzed. The Matlab
QFT Frequency Domain Control Design Toolbox [44] is used for the design and validation,
since it includes a convenient graphical user interface (GUI) to be used in the interactive
loop-shaping process needed in applying the control method based on QFT.

3.2.1 Voltage-Mode-Controlled Converter

In the following a typical low-power buck converter, shown in Fig· 3.5, is considered, where
uo is the output voltage and uin is the input voltage. The converter load is represented
by impedance ZL with the current source jo, while C and L represent the capacitor and
inductor, whose equivalent series resistances are rC and rL. The MOSFET on-time channel
resistance rds and the dynamic resistance rd associated to the fly-wheeling diode are also
taken into account.

inu
C

oj
sf

+

ou

L

LZ

Buck Converter

L
r

cr

oi Loadini

ruController
VMC
PWM

ouc

dr

dsr

Li

Figure 3.5: Voltage-mode-controlled buck converter.

The control-to-output G∗
co(s), output impedance Z∗

o−o(s) and line-to-output (audio sus-
ceptibility) G∗

io−o(s) are of interest, and these transfer functions are given as follows:
When the converter is operating in CCM, we get

G∗
co =

Vst(Uin+UD+(rd−rds))Io(1+srCC)
LC

s2 + (rL+rc+Drds+(1−D)rd)
L

+ 1
LC

(3.28)

Z∗
o−o = −

(rL+Drds+(1−D)rd+sL)(1+srCC)
LC

s2 + (rL+rc+Drds+(1−D)rd)
L

+ 1
LC

(3.29)

Gio−o =
D(1+srCC)

LC

s2 + (rL+rc+Drds+(1−D)rd)
L

+ 1
LC

(3.30)
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And when the converter is operating in DCM, the corresponding transfer functions are
as follows

Gco =
2VstUin(1+srCC)

LC

s2 + s · Req

L

√
K

1−M
+ 1

LC

√
K

1−M
· 1

1−M

(3.31)

Zo−o =

(sL+Req

√
K

1−M
)(1+srCC)

LC

s2 + s · Req

L

√
K

1−M
+ 1

LC

√
K

1−M
· 1

1−M

(3.32)

Gio−o =

M(2−M)
LC(1−M)

√
K

1−M
·(1+srCC)

LC

s2 + s · Req

L

√
K

1−M
+ 1

LC

√
K

1−M
· 1

1−M

(3.33)

Table 3.1 defines the buck converter model parameters and summarizes the nominal
values of all model parameters and their variations used in controller design (L = 5μF in
DCM) [56]. The modulator gain is Vst = 3 V.

Table 3.1: Nominal model parameters and their ranges

Uncertain parameter Nominal Value Variations

Uo 10V . . .

Uin 50V 20-70V

Pout 30W 10% ∼ 90%

L 105μH ±50%

C 316μF ±20%

rC 33mΩ +90%

rL 0.06mΩ +90%

UD 0.3V ±20%

rds 400mΩ +90%

rd 55mΩ +90%

fs 100kHz . . .

Closed-Loop Analysis

The proposed two degree-of-freedom (TDOF) feedback voltage-mode control structure is
shown in Fig· 3.6. The closed-loop responses due to changes in the reference voltage ûr ,
and disturbance input voltage ûin, and output current îo are given by

T =
ûo

ûr

=
FL∗

g

1 + L∗
g

(3.34)

TD1 =
ûo

ûin

=
G∗

io−o

1 + L∗
g

(3.35)
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Figure 3.6: TDOF control-block diagram for converter output dynamics.

TD2 =
ûo

îo
= − Z∗

o−o

1 + L∗
g

(3.36)

where function L∗
g = GcGaG

∗
co is the output-voltage-loop gain, Gc is the controller and Ga

is the modulator gain (i.e., in VMC, Ga = 1/Vst and in PCMC, Ga = 1/Rs).

Due to parametric uncertainty in transfer functions G∗
co, G∗

io−o and Z∗
o−o, there exist

corresponding families of transfer functions T , TD1 and TD2 denoted by T = [ T1 T2 · · · Tk ],
TD1 = [ TD11 TD12 · · · TD1k

] and TD2 = [ TD21 TD22 · · · TD2k
], where k is the number

of plants under uncertainty. The general problem is how to design the controller Gc and
prefilter F in Fig· 3.6 such that the variation in system output caused by uncertainty and
disturbances are reduced and the closed-loop nominal system is stable.

Template Generation

The creation of templates for uncertain plants is an essential first step in QFT design process.
The most common method of generating the plant template is to grid the parameter set and
calculate the transfer function values on the discrete parameter points.

The plant templates are plotted on the Nichols chart at useful selected frequency array
ω = {9, 15, 25, 45, 90, 150, 300 krad/s} for the CCM and ω = {0.3, 1, 3, 10, 40, 100,
300 krad/s} for the DCM, (i.e. frequency range up to half the switching frequency fs =
100 kHz), by computing Gco(jω) over the set of plants. It is very important that the plant
templates are carefully inspected before proceeding with the design. Viewing templates
verifies that the template boundary approximation is reasonable and that an appropriate
frequency array has been selected. The templates obtained for the family of plants Gco =
{ Gco1 , . . . , Gcok

} and for the set of frequencies for the CCM and DCM are illustrated in
Fig· 3.7, where the nominal plant is indicated by a star in the templates.

Closed-Loop Performance Specifications

To proceed with the QFT design, it is necessary to specify the required tolerances on the ac-
ceptable closed-loop responses T, TD1 and TD2 in the frequency domain. The performance
specifications of interest here are:
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Figure 3.7: Plant templates.

i. Robust Stability

ii. Reference Tracking

iii. Disturbance Rejection.
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These specifications are used to compute the frequency dependent QFT bounds, B(ω), that
guide the shaping of the nominal loop transmission L∗

gnom
= GcG

∗
conom

.

i. Robust Stability

To ensure robust stability of the closed-loop system, the following constraint on the peak
magnitude of the closed loop frequency responses is set:∣∣∣∣ Lg(jω)

1 + Lg(jω)

∣∣∣∣ ≤ γ, ∀ Gco ∈ Gco (3.37)

With specifications γ(CCM) = 1.2 and γ(DCM) = 1.15, the corresponding minimum gain
and phase margins are obtained using equations (3.6) and (3.7), which give 5.26 dB, 5.43
dB, 49◦ and 51.5◦, respectively.

ii. Reference Tracking

An acceptable range of variations in the closed loop tracking responses of the system due to
uncertainty and disturbances is expressed as

|TL(jω)| ≤ |T(jω)| ≤ |TU (jω)| , ∀ Gco ∈ Gco (3.38)

where T(s) denotes the set of the closed-loop transfer functions, and TL(s) and TU (s) are
the equivalent transfer functions of the lower and upper tracking bounds. These transfer
functions are systematically derived from the desired step response of the system with a
settling time of less than 0.1 ms, an overshoot of less 2% and a steady state error of less
than 0.1% in step response. The equivalent bound transfer functions for the CCM are
derived [40] as follows

TU (s) =
3.1 × 104

(
s + 1.5 × 105

)(
s2 + 10.66 × 104s + 4.66 × 109

) , (3.39a)

TL(s) =
2.57 × 1019(

s + 11 × 104
) (

s + 6.83 × 104
) (

s + 5 × 104
) (3.39b)

iii. Disturbance Rejection

In general, to fulfill a design specification, such as disturbance attenuation in equations
(3.35) and (3.36), the sensitivity function ST

Gco
is constrained to satisfy

∣∣ST
Gco

∣∣ =

∣∣∣∣ 1

1 + Lg(jω)

∣∣∣∣ ≤ |1/Ws(jω)| , ∀ Gco ∈ Gco (3.40)

where Ws(s) is a weighting function related to the desired sensitivity function such that it
must hold

|TD1(jω)| < 1, and |TD2(jω)| < 1 (3.41)

at all frequencies.
The weighting function Ws(s) in (3.42) is constructed based on the expression shown in

(3.13). The design specifications for the performance of the buck converter is a minimum
bandwidth frequency of 4.5×104 rad/s (with a minimum cross-over frequency fc = 10 kHz),
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a maximum steady-state tracking error of 0.035 and a maximum peak magnitude of the
sensitivity function of 1.6.

Ws(s) =
0.625

(
s2 + 11.38 × 103s + 3.24 × 109

)(
s2 + 1.684 × 104s + 7.088 × 107

) (3.42)

All performance specifications involved in the QFT controller design for voltage-mode-
controlled buck converter operating in CCM and DCM are summarized in Table 3.2.

Table 3.2: Robust Performance Specifications

Performance specifications CCM DCM

Robust stability γ 1.2 1.15

Upper bound TU (s)
3.1×104(s+1.5×105)

(s2+10.66×104s+4.66×109)

2.91×103(s+0.22×105)
(s2+10.4×103s+6.4×107)

Lower bound TL(s) 2.57×1019

(s+11×104)(s+6.83×104)(s+5×104)
7.9×1015

(s+0.65×104)(s+0.8×104)2(s+1.9×104)

Weighting function Ws(s)
0.625(s

2+11.38×103
s+3.24×109)

(s2+1.684×104s+7.088×107)

0.769(s
2+12.1×103

s+36.53×106)
(s2+250.8s+1.573×104)

The intersection of the important QFT bounds, B(ω), for each inequality (3.5), (3.38) and
(3.10) was computed on the Nichols chart at a number of design frequencies based on plant
templates and the performance specifications of voltage-mode-controlled buck converter op-
erating in CCM and DCM , as depicted in Fig· 3.8(a) and 3.8(b). The vertical curve line
represents the frequency response of the nominal open-loop transfer function Lgnom(s) with
the controller Gc = 1 at several points marked in different colors. These points correspond
to the response of the loop for the various frequencies, following the same color code as in
the bounds. The wavy lines in the upper area represent the worst case of the tracking and
sensitivity reduction bounds at different selected frequencies and the closed round lines in
the central area represent the worst case of the robust stability bounds. The bound plotted
with a solid line implies that Lgnom(s) must lie above or on it in order to meet the perfor-
mance specifications. On the other hand, the bound plotted with a dashed line implies that
Lgnom(s) must lie below or on it in order to meet the performance specifications, [46].

QFT Loop-shaping controller

The controller design then proceeds using the Nichols chart and classical loop-shaping ideas.
The objective is to synthesize a controller, Gc, which satisfies the design specifications so
that the converter is stable and quickly regulates the output voltage against changes in input
voltage or load conditions. Fast response requires that the loop gain cross-over frequency fc

be as high as possible. In general, the controller is designed such that (fs/10) < fc < (fs/5);
where fs is the switching frequency of the converter [58].

This part of the design process is not automatic but depends on the skill of the designer.
Generally speaking, loop shaping involves adding poles and zeros until the nominal loop lies
near its bounds and results in nominal closed-loop stability. Fig· 3.8(a) shows the frequency
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Figure 3.8: Open-loop frequency response and QFT bounds B(ω).

response of the nominal open-loop transfer function, which violates the stability bounds.
The design objective is to apply dynamic compensation to the nominal open-loop transfer
function, so that the performance bounds are satisfied at each frequency. From Fig· 3.8(a),
it is seen that the open-loop frequency response is located below the appropriate tracking
performance bounds at each trial frequency. Thus an appropriate control gain should be

49



Chapter 3 Robust Control Design for Switching-Mode Power Converters

introduced to push the open-loop frequency response upwards. Moreover, the open-loop
frequency response has also crossed the stability bounds. Hence a dynamic compensator is
required to change the shape of the open-loop frequency response. Analysis then shows that
a pole at the origin in addition to two pole-zero pairs should be added.

The pole at the origin provides a very high gain at low frequencies as an integral control
and the pole-zero pairs result in a reduced phase shift between the frequency of the two
zeros and the frequency of two poles as a lead controller.

In this way, once the loop is adjusted, it is simple to obtain the transfer function of the
controller as follows

Gc(s) =
5928 (s/1617 + 1)

(
s
/
1.7 × 104 + 1

)
s
(
s
/
1.766 × 105 + 1

) (
s
/
1.369 × 105 + 1

)
=

5928
(
879.5s + 14.22 × 105

) (
s + 1.7 × 104

)
s (s + 1.766 × 105) (s + 1.369 × 105)

(3.43)

The resulting open-loop frequency response with this controller is illustrated in Fig· 3.9(a).
It is obvious that the open-loop frequency response does not violate the stability performance
requirements. Also the loop gain has a cross-over frequency of 17 kHz and a phase margin
of nearly 60◦ with an infinite gain margin when the converter is operating in CCM.

A similar loop-shaping analysis can be performed when a converter operates in DCM.
From Fig. 3.8(b), analysis shows that a pole at the origin in addition to two pole-zero
pairs are enough to design a controller which meets all the performance requirements. The
transfer function of the controller can be then obtained as follows

Gc(s) =
3608 (s/3141 + 1)

(
s
/
6.814 × 105 + 1

)
s
(
s
/
2.834 × 105 + 1

) (
s
/
9.059 × 104 + 1

)
=

3608
(
12s + 37.69 × 104

) (
s + 6.81 × 105

)
s (s + 2.834 × 105) (s + 9.059 × 104)

(3.44)

The resulting open-loop frequency response with this controller is illustrated in Fig·
3.9(b). It’s obvious that the open-loop frequency response does not violate the stability
performance requirements. Also the loop gain has a cross-over frequency of fc= 9.9 kHz and
a phase margin of 72◦. However the tradeoff between system response and system stability
prevails.

The controllers obtained are robust, that is, they provide good results for all of the family
of plants defined under uncertainty, not only for the nominal plant used in the loop-shaping
stage. The stability performance analysis of the closed-loop system in the next section also
supports this observation, which will later be seen in Fig· 3.14.

Fig· 3.10 shows the Bode magnitude plot of the closed-loop frequency response without
a prefilter, together with the tracking frequency response specifications plotted with dashed
lines. Obviously dynamic prefilter are required to shape the frequency response to be within
the required envelope and attenuate high frequency peaking. They were designed for the
CCM and DCM, respectively as follows

F (s) =
5.514 × 104

s + 5.514 × 104
, (3.45)

F (s) =
3.742 × 103

s + 3.742 × 103
(3.46)

The resulting closed-loop frequency response with these prefilters are shown in Fig· 3.11.
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Figure 3.9: Open-loop frequency response with controller

51



Chapter 3 Robust Control Design for Switching-Mode Power Converters

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−120

−100

−80

−60

−40

−20

0

20

Frequency (rad/sec)

M
a
g

n
it

u
d

e
 (

d
B

)

         Upper and lower bounds
         Closed−loop response

|T
L
(jω)|

|T
U

(jω)|

L
g

1+L
g

(a) CCM.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−120

−100

−80

−60

−40

−20

0

20

Frequency (rad/sec)

M
ag

n
it

u
d

e 
(d

B
)

         Upper and lower bounds
         Closed−loop response

|T
L
(jω)|

|T
U

(jω)|

L
g

1+L
g

(b) DCM.

Figure 3.10: Closed-loop frequency response without prefilter
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Figure 3.11: Closed-loop frequency response with prefilter

Performance Validation and Simulation

To verify the design of QFT controller (3.43)-(3.44), a validation of the obtained results
should be made, graphically checking the specifications in the frequency and time domains.
Moreover, this validation is essential, since the design has been made only for a finite set of
frequencies and hence it cannot be ensured, a priori, that it will be fulfilled for any other
frequency, inside or outside this range.

Analyzes of the closed-loop system performance in the frequency domain show that the
worst closed-loop response magnitude (covering all uncertainty cases) is well below the speci-
fied value (γ = 1.2 = 1.58 dB, dashed line) (refer to (3.37), as illustrated in Fig· 3.14(a). The
maximum variation of the closed-loop system frequency response is well within the specified
range (refer to (3.38)-(3.39b)), as illustrated in Fig· 3.12(a). Thus the closed-loop control
system has met all the design specifications in the voltage-mode control. The time-domain
simulation results, illustrated in Fig· 3.12(b) together with the specified tracking bounds
plotted with dashed lines, further support the above conclusion.

A similar analysis in DCM reveals that the worst closed-loop response magnitude (cover-
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Figure 3.12: Closed-loop responses in CCM: (a) frequency response; (b) unit step response.
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Figure 3.13: Closed-loop responses in DCM: (a) frequency response; (b) unit step response.

ing all uncertainty cases) is well below the specified value (γ = 1.15 = 1.21 dB, dashed line)
as depicted in Fig· 3.14(b). The maximum variation of the closed-loop system frequency and
time responses are well within the specified range as illustrated in Fig· 3.13(a) and 3.13(b),
respectively.
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Figure 3.14: Closed-loop robust stability margins
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Figure 3.15: The nominal sensitivity function
∣∣ST

Gco

∣∣ versus the weighting function

The closed-loop frequency responses to disturbances, TD1 and TD2 will now be analyzed.
As evidenced by Fig· 3.15, the control loop adequately meets the specified disturbance
attenuation tolerance despite the obtained

∣∣ST
Gco

(jω)
∣∣ does not follow exactly the weighting

function.
In Figs· 3.16 and 3.17, the voltage-disturbance attenuation and output impedance of the

closed-loop systems are shown, together with their open-loop frequency responses. It can be
seen that the QFT-controller provides a good disturbance rejection performance, and the
disturbance rejection constraints in (3.41) are adequately fulfilled.

To be consistent, the voltage-mode controlled buck converter shown in Fig· 3.5 has been
examined by simulation using MatlabTM/Simulink SimPowerSystems Toolbox [45]. Figs·
3.18−3.19, show the corresponding simulated time responses of the converter for different
perturbations. Fig· 3.18 shows zero steady-state error in the output-voltage response after
introducing step-changes in output power 10% ∼ 90% at 0.02 s and at 0.05 s. A step
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Figure 3.16: The input-output voltage-disturbance attenuation
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Figure 3.17: The output impedance

perturbation of 2.4 A is introduced at 0.02 s, and a negative step of −2.4 A at 0.05 s over
10% of an average load current 3 A. Similarly, output voltage uo response for step-changes in
input voltage from 20 V to 70 V is illustrated in Fig· 3.19. In this case, a step perturbation
of 50 V is introduced at 0.02 s, and a negative step of -50 V at 0.05 s over 40% of an averaged
nominal input voltage of 50 V.
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Figure 3.18: The output voltage response uo for load perturbations
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Figure 3.19: The output voltage behavior uo for input voltage perturbations.
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3.2.2 Peak-Current-Mode-Controlled Converter

A similar QFT controller design procedure will be now implemented to synthesize a controller
for a peak-current-mode-controlled buck converter operating in CCM and DCM. A typical
low-power peak-current-mode controlled buck converter is shown in Fig. 3.20. Table 3.1
defines the converter model parameters and summarizes the nominal values of all model
parameters and their variations used in controller design. The current-sensing resistor Rs =
0.15 Ω.

inu
C

io

sf

+

ou

L Lr

cr

oiini

sR

ruController
PCMC
PWM

ouc

d
r

ds
r Li

Figure 3.20: Peak-current-mode-controlled-buck converter.

The control-to-output G∗
co(s), output impedance Z∗

o−o(s) and line-to-output (audio sus-
ceptibility) G∗

io−o(s) are of interest, and these transfer functions are given as follows:
When the converter is operating in CCM,

G∗
co =

Fm(Uin+UD+(rd−rrds)Io)(1+srcC)
LC

s2 + s · rL+rC+Drds+(1−D)rd+Fm(Uin+UD)
L

+ 1
LC

(3.47)

Z∗
o−o = −

(rL+Drrds+(1−D)rrd+Fm(Uin+UD)+sL)(1+srcC)
LC

s2 + s · rL+rC+Drds+(1−D)rd+Fm(Uin+UD)
L

+ 1
LC

(3.48)

G∗
io−o =

(D−Fmfg(Uin+UD))(1+srcC)
LC

s2 + s · rL+rC+Drds+(1−D)rd+Fm(Uin+UD)
L

+ 1
LC

(3.49)

where the duty-cycle gain Fm, the feedforward gain fg and the compensation ramp Mc are
as follows

Fm =
2L

Ts (2LMc + (Uin + UD) (1 − 2D))
(3.50)

fg =
D(1 − D)Ts

2L
(3.51)

Mc =
(Uo + UD + (rL + (1 − D)rd + Drds) Io)

2L
(3.52)
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When the converter is operating in DCM, the corresponding transfer functions become

G∗
co =

2FmUin(1+srcC)
LC

s2 + s · Req

L

√
K

1−M
+ 2FmUin

L
+ 1

LC
( 1
1−M

√
K

1−M
+ 2FmUinfv)

(3.53)

Z∗
o−o =

− 1
C

(s +
Req

L

√
K

1−M
+ 2FmUin

L
)(1 + srcC)

s2 + s · Req

L

√
K

1−M
+ 2FmUin

L
+ 1

LC
( 1
1−M

√
K

1−M
+ 2FmUinfv)

(3.54)

G∗
io−o =

1
LC

(M(2−M)
1−M

√
K

1−M
− 2FmUinfg)

s2 + s · Req

L

√
K

1−M
+ 2FmUin

L
+ 1

LC
( 1
1−M

√
K

1−M
+ 2FmUinfv)

(3.55)

Template Generation

The plant templates are plotted on the Nichols chart in Fig. 3.21 at the useful desired
frequency ω = {0.08, 0.4, 1, 3, 10, 40, 300 krad/s} for the CCM, and ω = {0.08, 0.3, 1, 3,
10, 35, 100, 300 krad/s} for the DCM, by computing Gco(jω) over the set of plants.

Closed-Loop Performance Specifications

All performance specifications involved in the QFT controller design for peak-current-mode-
controlled buck converter operating in CCM and DCM are summarized in Table 3.3.

Table 3.3: Robust Performance Specifications

Performance specifications CCM DCM

Robust stability γ 1.05 1.08

Upper bound TU (s)
3.1×104(s+1.5×105)

(s2+10.66×104s+4.66×109)

9.11×103(s+0.2×105)
(s2+1.75×104s+1.82×108)

Lower bound TL(s) 2.56×1019

(s+11×104)(s+6.83×104)2(s+5×104)
7.9×1015

(s+0.65×104)(s+0.8×104)2(s+1.9×104)

Weighting function Ws(s)
0.625(s

2+11.38×103
s+3.24×109)

(s2+1.684×104s+7.088×107)

0.77(s
2+1.78×104

s+6.91×107)
(s2+120.8s+3.65×102)

The union of the performance QFT bounds, B(ω), for each inequality (3.5), (3.38) are
then computed based on the performance specifications and the plant templates in the CCM
and DCM, as depicted in Fig. 3.22(a) and Fig. 3.22(b), respectively.

QFT Loop-shaping controller

Fig. 3.23(a) shows that the frequency response of the nominal open-loop transfer func-
tion Lgnom(s) is located below the appropriate tracking performance bounds at each trial
frequency. Thus an appropriate control gain should be introduced to push the open-loop
frequency response upwards. Moreover, a dynamic compensator is required to change the
shape of the open-loop frequency response.
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Figure 3.21: Plant templates

59



Chapter 3 Robust Control Design for Switching-Mode Power Converters

−360 −315 −270 −225 −180 −135 −90 −45 0

−40

−20

0

20

40

60

80

100

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

L
nom

(jω)

 300

 40

 10

 3
 1

 0.4

ω = 0.08 krad/s

B(ω = 300 krad/s)

B(ω = 0.08 krad/s)

B(ω = 0.4 krad/s)

B(ω = 1 krad/s)

B(ω = 3 krad/s)

B(ω = 10 krad/s)

B(ω = 40 krad/s)

(a) CCM.

−360 −315 −270 −225 −180 −135 −90 −45 0

−20

0

20

40

60

80

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

B(ω = 0.08 krad/s)

B(ω = 0.3 krad/s)

B(ω = 1 krad/s)

B(ω = 3 krad/s)

B(ω = 10 krad/s)

ω = 0.08krad/s

0.3

1

3

10

35
100

300
B(ω = 35 krad/s)

B(ω = 100 krad/s)

B(ω = 300 krad/s) L
g

nom

(jω)

(b) DCM.

Figure 3.22: Open-loop frequency response and QFT bounds B(ω)
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Analysis then shows that a pole at the origin in addition to pole-zero pair should be
added. In this way, once the loop is adjusted, it is simple to obtain the transfer function of
the controller (3.56)

Gc(s) =
4515

(
s
/
3.152 × 103 + 1

)
s
(
s
/
1.108 × 105 + 1

)

=
4515

(
35.15s + 1.108 × 105

)
s (s + 1.108 × 105)

(3.56)

From Fig. 3.22(b), it is obviously seen that the open-loop frequency response violates
the tracking bounds. Thus an appropriate control gain should be introduced to push the
open-loop frequency response upwards. Analysis then shows that a pole at the origin in
addition to two pole-zero pairs should be added. The pole at the origin provides a very high
gain at low frequencies as an integral control and the pole-zero pairs result in a reduced
phase shift between the frequency of the two zeros and the frequency of two poles as a lead
controller.

Gc(s) =
6145 (s/2496 + 1)

(
s
/
1.115 × 106 + 1

)
s
(
s
/
2.033 × 105 + 1

) (
s
/
7.93 × 104 + 1

)

=
5928

(
5.792s + 14.45 × 105

) (
s + 1.115 × 106

)
s (s + 2.033 × 105) (s + 7.93 × 104)

(3.57)

The resulting open-loop frequency responses with these controllers are illustrated in Fig.
3.23. It is clearly seen that the open-loop frequency response does not violate the stability
and performance requirements. Also the loop gain has a cross-over frequency fc ≈ 10 kHz
and a phase margin of nearly 78◦ with an infinite gain margin. However the tradeoff between
system response and system stability prevails. The obtained controllers are robust, that is,
they provide good results for all of the family of plants defined under uncertainty, not only for
the nominal plant used in the loop-shaping stage. The stability performance analysis of the
closed-loop system in the next subsection also supports this observation, as seen in Fig. 3.28.

To place the closed-loop tracking responses within the required envelope and attenuate
high frequency peaking, prefilter F is then designed to achieve the required shape of the
closed-loop frequency response. Fig. 3.24 shows the Bode magnitude plot of the closed-
loop frequency response without a prefilter, together with the tracking frequency response
specifications plotted with dashed lines. Obviously a dynamic prefilter is required to shape
the frequency response to be within the desired range. They were designed for the CCM
and DCM, respectively as follows

F (s) =
1.389 × 104

s + 1.389 × 104
, (3.58)

F (s) =
7.262 × 103

s + 7.262 × 103
(3.59)

The resulting closed-loop frequency responses with these prefilters are shown in Fig. 3.25.
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Figure 3.23: Open-loop frequency response with controller

62



Chapter 3 Robust Control Design for Switching-Mode Power Converters

10
2

10
3

10
4

10
5

10
6

−120

−100

−80

−60

−40

−20

0

20

Frequency (rad/sec)

M
a

g
n

it
u

d
e

 (
d

B
)

            Upper and lower bounds
            Closed−loop response

T
L
(jω)

T
U

(jω)

   L
g

   1+ L
g

(a) CCM.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−120

−100

−80

−60

−40

−20

0

20

Frequency (rad/sec)

M
a

g
n

it
u

d
e

 (
d

B
)

           Upper and lower bounds
          Closed−loop response

|T
L
(jω)|

|T
U

(jω)|

  L
g

1 + L
g

(b) DCM.

Figure 3.24: Closed-loop frequency response without prefilter
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Figure 3.25: Closed-loop frequency response with prefilter

Performance Validation and Simulation

In order to verify the design of QFT controllers (3.56)-(3.57), a validation of the obtained
results should be made, graphically checking the specifications in the frequency and time
domains. Analyzes of the closed-loop system performance in the frequency domain show
that the worst closed-loop response magnitude (covering all uncertainty cases) is well below
the specified values (γ =1.05 = 0.42 dB, dashed line) (refer to (3.37)), as illustrated in Fig.
3.28(a). The maximum variation of the closed-loop system frequency response is well within
the specified range (refer to (3.38)-(3.39b)), as illustrated in Fig· 3.26(a). Thus the closed-
loop control system has met all the design specifications in the peak-current-mode control.
The time-domain simulation results, illustrated in Fig· 3.26(b) together with the specified
tracking bounds plotted with dashed lines, further support the above conclusion.

A similar analysis in DCM reveals that the worst closed-loop response magnitude (cover-
ing all uncertainty cases) is well below the specified value (γ = 1.08 = 0.67 dB, dashed line)
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Figure 3.26: Closed-loop responses in CCM: (a) frequency response; (b) unit step response.
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Figure 3.27: Closed-loop responses in DCM: (a) frequency response; (b) unit step response.

as depicted in Fig· 3.28(b). The maximum variation of the closed-loop system frequency and
time responses are well within the specified range as depicted in Fig· 3.27(a) and 3.27(b),
respectively.

The closed-loop frequency responses to disturbances, TD1 and TD2 is analyzed next. As
shown in Fig. 3.29, the control loop adequately meets the specified disturbance attenuation
tolerance despite that the obtained

∣∣ST
Gco

(jω)
∣∣ does not follow exactly the weighting function.

In Figs. 3.30 and 3.31, the voltage-disturbance attenuation and output impedance of the
closed-loop systems are shown, together with their open-loop frequency responses. It can be
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Figure 3.28: Closed-loop robust stability margins
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Figure 3.29: The nominal sensitivity function
∣∣ST

Gco

∣∣ versus the weighting function

seen that the QFT-controller provides a good disturbance rejection performance, and the
disturbance rejection constraints in (3.41) are adequately fulfilled.

To be coherent, the peak-current-mode-controlled buck converter shown in Fig. 3.20
has been evaluated by simulation. Figs. 3.32-3.33, show the corresponding simulated time
responses of the converter for different perturbations for each operating mode. Fig. 3.32
shows zero steady-state error in the output-voltage response after introducing step-changes
in output power 10% ∼ 90% at 0.02 s and at 0.045 s. A step perturbation of 2.4 A is
introduced at 0.02 s, and a negative step of -2.4 A at 0.045 s over 10% of an average load
current 3 A.

Similarly, output voltage uo response for step-changes in input voltage from 20 V to 70 V
is illustrated in Fig. 3.33. In this case, a step perturbation of 50 V is introduced at 0.025 s,
and a negative step of -50 V at 0.045 s over 40% of an averaged nominal input voltage of 50 V.

65



Chapter 3 Robust Control Design for Switching-Mode Power Converters

10
2

10
3

10
4

10
5

10
6

10
7

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Frequency (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
)

Open−loop line−to−output transfer function
Closed−loop line−to−output transfer

G
io−o

G
io−o

1 + L
g

(a) CCM.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (rad/s) 

M
a

g
n

it
u

d
e

 (
d

B
)

Open−loop line−to−output transfer function
Closed−loop line−to−output transfer

|G
io−o

|

G
io−o

1 + L
g

(b) DCM.

Figure 3.30: The input-output voltage-disturbance attenuation
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Figure 3.31: The output impedance

In all cases, the output response exhibits a fast recovery with zero steady-state error and
is in good agreement with the frequency responses results.

3.3 QFT-Based Robust Controller Design for Non-minimum Phase Converters

The application of the QFT theory to control non-minimum phase dc-to-dc switching con-
verters is investigated in this section based on the design methodology presented in Section
3.1.5. The problem of designing a QFT controller for boost and buck-boost converters that
improves the bandwidth control loop in spite of practical limitations on the achievable closed-
loop performance (i.e., right-half-plane zero) and in the presence of other design constraints
including closed-loop tracking and robust stability is analyzed.

3.3.1 QFT-Based Robust Controller Design for a Boost Converter

The design procedure proposed in Section 3.1.5 will be now implemented to synthesize
controllers for voltage and peak-current-mode-controlled boost converter operating in CCM
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Figure 3.32: The output voltage response uo for load perturbations
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Figure 3.33: The output voltage behavior uo for input voltage perturbations.

shown in Fig. 3.34.
The converter control-to-output transfer G∗

co(s) in VMC can be presented as follows

G∗
co =

(D′(Uo+UD)−(D′rc+
rL
D′

)Io−s LIo
D′ )(1+srC)

LC

s2 + s rL+D′rC

L
+ D′2

LC

(3.60)

An arbitrarily chosen nominal plant G∗
conom

within the plant family is given by

G∗
conom

=

(
D′

o(Uo+UDo)−(D′

orco+
rLo
D′

o
)Io−s LoIo

D′
o

)
(1+srCo )

LoCo

s2 + s
rLo+D′

orCo

Lo
+ D′

o
2

LoCo

(3.61)

If

A(s) =

(
D′

o(Uo + UDo) − (D′
orco +

rLo

D′

o
)Io

)
− sLoIo

D′

o(
D′

o(Uo + UDo) − (D′
orco +

rLo

D′

o
)Io

)
+ sLoIo

D′

o

(3.62)
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Figure 3.34: Voltage and peak-mode-controlled-boost converter.

Then the new nominal plant is defined as

G′
conom

= G∗
conom

(s)A(s)−1 =

(
D′

o(Uo+UDo)−(D′

orco+
rLo
D′

o
)Io+s LoIo

D′
o

)
(1+srCo )

LoCo

s2 + s
rLo+D′

orCo

Lo
+ D′

o
2

LoCo

(3.63)

Obviously G′
conom

is a stable minimum phase plant and the new nominal loop gain L′
gnom

(s)

is defined as

L′
gnom

(s) = G′
conom

(s)GaGc(s) (3.64)

Furthermore we have

L∗
g(s) = G∗

co(s)GaGc(s) = G∗
co

′(s)GaGc(s)A(s) (3.65)

where

G∗
co

′(s) =

(D′(Uo+UD)−(D′rc+
rL
D′

)Io−s LIo
D′ )(1+srC)

LC

s2 + s rL+D′rC

L
+ D′2

LC

·

(
D′

o(Uo + UDo) − (D′
orco +

rLo

D′

o
)Io

)
+ sLoIo

D′

o(
D′

o(Uo + UDo) − (D′
orco +

rLo

D′

o
)Io

)
− sLoIo

D′

o

(3.66)

and the new loop gain transfer function L∗
g
′(s) is defined as

L∗
g
′(s) = G∗

co
′(s)GaGc(s) (3.67)

Similarly, the converter control-to-output transfer function G∗
co(s) in PCMC can be pre-

sented as follows

G∗
co =

D′Fm(Uo+UD)

(
1−s· LIo

D′2(Uo+UD)

)
(1+srCC)

LC

s2 + sFm(Uo+UD)
L

− FmfvIo

D′C
+ D′2

LC

(
1 + Fmfv(Uo+UD)

D′ + FmIo

D′2

) (3.68)

However A(s) is chosen accordingly as follows

68



Chapter 3 Robust Control Design for Switching-Mode Power Converters

A(s) =

(
1 − s · LoIo

D′

o
2(Uo+UDo )

)
(
1 + s · LoIo

D′

o
2(Uo+UDo )

) (3.69)

Template Generation

Table 3.4 defines the boost converter model parameters and the nominal values of all model
parameters and their variations used in controller design. The original and new plant tem-
plates for VMC are plotted on the Nichols chart in Fig. 3.35 at the selected frequency ω =
{1.9, 3, 5, 9, 20, 60, 300 krad/s}, by computing Gco(jω) over the set of plants.

Table 3.4: Nominal model parameters and their ranges

Uncertain parameter Nominal Value Variations

Uo 75V . . .

Uin 50V 20-70V

Pout 100W 10% ∼ 90%

L 350μH ±50%

C 500μF ±20%

rC 50mΩ +90%

rL 20mΩ +90%

UD 1.5V ±20%

fs 100kHz . . .

Closed-Loop Performance Specifications

All performance specifications involved in the QFT controller design for a boost converter
in VMC and PCMC are summarized in Table 3.5.

Table 3.5: Robust Performance Specifications

Performance specifications VMC PCMC

Robust stability γ 1.18 1.05

Upper bound TU (s)
2.812×103(s+2×104)

(s2+8.850×103s+5.625×107)

504.3(s+0.3×104)
(s2+1599s+1.512900×106)

Lower bound TL(s) 2.448×1016

(s+2×104)(s+1.2×104)2(s+0.85×104)
1.15×1013

(s+1.9×103)(s+1.23×103)2(s+4×103)

Weighting function Ws(s)
0.833(s

2+9.422×103
s+2.22×107)

(s2+2.58×103s+1.664×106)

0.8(s
2+2.9075×103

s+2.1125×106)
(s2+48.64s+591.5)
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Figure 3.35: Plant templates.

The intersection of the performance QFT bounds, B(ω), for each inequality (3.25)-(3.27)
are then computed based on the performance specifications and the plant templates in the
VMC and PCMC, as depicted in Fig. 3.36 and Fig. 3.37, respectively.
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Figure 3.36: Open-loop frequency response and QFT bounds B(ω), (VMC).

QFT Loop-Shaping Controller

The loop-shaping is performed with the experience of the designer as usual. Fig. 3.36 shows
the frequency response of the new nominal open-loop transfer function L′

gnom
(s) according

to (3.64) , which violates the stability bounds. The design objective is to apply dynamic
compensation to the nominal open-loop transfer function, so that the performance bounds
are satisfied at each frequency. It can be seen also that, the open-loop frequency response
is located below the appropriate tracking performance bounds at each frequency. Thus an
appropriate control gain should be introduced to push the open-loop frequency response
upwards. Moreover, a dynamic compensator is required to change the shape of the open-
loop frequency response. Analysis then shows that a pole at the origin in addition to two
zeros and three poles should be added. In this way, once the loop is adjusted, it is simple
to obtain the transfer function of the controller (3.70)

Gc(s) =
100 (s/1938 + 1) (s/950.4 + 1)

s (s/3.36 × 105 + 1) (s/4.951 × 104 + 1) (s/1.159 × 105 + 1)
(3.70)

The resulting open-loop frequency responses with this controller shown in Fig. 3.38(a).

It is clearly seen that the open-loop frequency response does not violate the stability and
performance requirements. The loop gain for the original plant is shown in Fig. 3.39(a).
The stability properties have been improved where the loop gain has a cross-over frequency
fc ≈ 1.1 kHz, a phase margin of nearly 60◦ and a gain margin of 21 dB. However the tradeoff
between system response and system stability prevails.

From Fig. 3.37, it is obviously seen that the open-loop frequency response violates the
tracking bounds. Thus an appropriate control gain should be introduced to push the open-
loop frequency response upwards. Analysis then shows that a pole at the origin in addition
to three poles and zero should be added.
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Figure 3.37: Open-loop frequency response and QFT bounds B(ω), (PCMC).

Gc(s) =
502.4 (s/325.4 + 1)

s (s/7.345 × 104 + 1) (s/3.558 × 104 + 1) (s/5.229 × 105 + 1)
(3.71)

The resulting open-loop frequency response with this controller is shown in Fig. 3.38(b).
It’s seen that the open-loop frequency response does not violate the stability and performance
requirements. Also there is a clear improvement in the stability properties with a cross-over
frequency fc ≈ 2.1 kHz, a phase margin of nearly 61◦ and a gain margin of 12.5 dB as shown
in Fig. 3.39(b).

The controllers are robust, that is, they provide good results for all plants defined under
uncertainty, not only for the nominal plant used in the loop-shaping stage. The stability
performance analysis of the closed-loop system in the next subsection also supports this
observation, as it will be seen in Fig. 3.42.

To place the closed-loop tracking responses within the required envelope and attenuate
high frequency peaking, prefilter F is then designed to achieve the required shape of the
closed-loop frequency response. Fig. 3.40 shows the Bode magnitude plot of the closed-
loop frequency response without a prefilter, together with the tracking frequency response
specifications plotted with dashed lines. Obviously a dynamic prefilter is required to shape
the frequency response to be within the desired range. They were designed for the VMC
and PCMC, respectively as follows

F (s) =
5.319 × 103

s + 5.319 × 103
(3.72)

F (s) =
1

(s/2534 + 1) (s/1039 + 1)
(3.73)

The resulting closed-loop frequency responses with these prefilters are shown in Fig. 3.41.
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Figure 3.38: Open-loop frequency response with controller

Performance Validation and Simulation

In order to verify the design of QFT controllers (3.70)-(3.71), a validation of the obtained
results should be made, graphically checking the specifications in the frequency and time
domains. Analyzes of the closed-loop system performance in the frequency domain show

73



Chapter 3 Robust Control Design for Switching-Mode Power Converters

−100

−50

0

50

100

M
ag

n
it

u
d

e 
(d

B
)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−360

−270

−180

−90

0

Frequency (rad/s)

P
h

as
e 

(d
eg

)
VMC: Uin = 54 V,  P = 100 W

GM ≈ 21 dB

PM ≈ 60°

(a) VMC.

−150

−100

−50

0

50

100

M
ag

n
it

u
d

e 
(d

B
)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−450

−360

−270

−180

−90

Frequency (rad/s)

P
h

as
e 

(d
eg

)

PCMC: Uin = 54 V, P = 100 W

GM ≈ 12.5 dB

PM ≈ 61°

(b) PCMC.

Figure 3.39: Original loop-gain

that the worst closed-loop response magnitude (covering all uncertainty cases) is well below
the specified values (γ =1.18 = 1.4376 dB, dashed line) (refer to (3.25)), as illustrated in
Fig. 3.42(a).

A similar analysis in PCMC reveals that the worst closed-loop response magnitude (cov-
ering all uncertainty cases) is well below the specified value (γ = 1.05 = 0.4238 dB, dashed
line) as depicted in Fig· 3.42(b).
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Figure 3.40: Closed-loop frequency response without prefilter
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Figure 3.41: Closed-loop frequency response with prefilter

The closed-loop frequency responses to disturbances, TD1 and TD2 will now be analyzed.
As shown in Fig. 3.43, the control loop adequately meets the specified disturbance attenu-
ation tolerance despite that the obtained

∣∣ST
Gco

(jω)
∣∣ does not follow exactly the weighting

function. In Figs. 3.44 and 3.45, the voltage-disturbance attenuation and output impedance
of the closed-loop systems are shown, together with their open-loop frequency responses. It
can be seen that the QFT-controller provides a good disturbance rejection performance, and
the disturbance rejection constraints in (3.25) are adequately fulfilled.

To be consistent, the boost converter shown in Fig· 3.34 has been examined by simu-
lation. Figs· 3.46−3.47, show the corresponding simulated time responses of the converter
for different perturbations. Fig· 3.46 shows zero steady-state error in the output-voltage
response after introducing step-changes in output power 10% ∼ 90% at 0.035 s and at 0.07
s. A step perturbation of 1.2 A is introduced at 0.035 s, and a negative step of −1.2 A at
0.07 s over 10% of an average load current 1.33 A. Similarly, output voltage uo response for
step-changes in input voltage from 20 V to 70 V is illustrated in Fig· 3.47. In this case, a
step perturbation of 50 V is introduced at 0.04 s, and a negative step of -50 V at 0.075 s
over 40% of an averaged nominal input voltage of 50 V.
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Figure 3.42: Closed-loop robust stability margins
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Figure 3.43: The nominal sensitivity function
∣∣ST

Gco

∣∣ versus the weighting function
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Figure 3.44: The input-output voltage-disturbance attenuation
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Figure 3.45: The output impedance
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Figure 3.46: The output voltage response uo for load perturbations
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Figure 3.47: The output voltage behavior uo for input voltage perturbations
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3.3.2 QFT-Based Robust Controller Design for a Buck-Boost Converter

A similar design analysis can be performed to voltage-mode-controlled buck-boost converter
operating in CCM shown in Fig. 3.48.
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Buck-Boost Converter
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Figure 3.48: Buck-boost converter.

The converter control-to-output transfer function G∗
co(s) in VMC can be presented as

follows

G∗
co =

(D′(Uin+Uo+UD)−(D′rC+
rL
D′

)Io−s LIo
D′

)(1+srCC)

LC

s2 + s rCD′+rL

L
+ D′2

LC

(3.74)

The nominal plant G∗
conom

is chosen within the plant family as follows

G∗
conom

=

(
D′

o(Uo+Uino+UDo)−(D′

orco+
rLo
D′

o
)Io−s LoIo

D′
o

)
(1+srCo )

LoCo

s2 + s
rLo+D′

orCo

Lo
+ D′

o
2

LoCo

(3.75)

However A(s) is chosen accordingly as follows

A(s) =
(D′

o(Uino + Uo + UDo) − (D′
orCo +

rLo

D′

o
)Io − sLIo

D′

o
)

(D′
o(Uino + Uo + UDo) − (D′

orCo +
rLo

D′

o
)Io + sLIo

D′

o
)

(3.76)

Then the new nominal plant is defined as

G′
conom

= G∗
conom

(s)A(s)−1 =

(
D′

o(Uino+Uo+UDo)−(D′

orco+
rLo
D′

o
)Io+s LoIo

D′
o

)
(1+srCo )

LoCo

s2 + s
rLo+D′

orCo

Lo
+ D′

o
2

LoCo

(3.77)

The new nominal loop gain L′
gnom

(s) is defined as

L′
gnom

(s) = G′
conom

(s)GaGc(s) (3.78)

Furthermore the new loop gain transfer function L∗
g
′(s) can be obtained as follows
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L∗
g
′(s) = G∗

co
′(s)GaGc(s) (3.79)

where

G∗
co

′(s) = G∗
co(s)A(s)−1 (3.80)

Template Generation

Table 3.4 defines the buck-boost converter model parameters and summarizes the nominal
values of all model parameters and their variations used in controller design. The new and
old plant templates are plotted on the Nichols chart in Fig. 3.49 at the desired frequency ω
= {1, 1.5, 2.5, 5, 9, 20, 60, 300 krad/s}, by computing Gco(jω) as Gco varies over the set of
plants.
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Figure 3.49: Plant templates.

Closed-Loop Performance Specifications

All performance specifications involved in the QFT controller design for a voltage-mode-
controlled-buck-boost converter operating in CMC and are summarized in Table 3.6.

Table 3.6: Robust Performance Specifications

Performance specifications VMC

Robust stability γ 1.18

Upper bound TU (s)
4.114×103(s+3.5×104)

(s2+1.416×104s+1.44×108)

Lower bound TL(s) 3.042×1016

(s+2×104)(s+1.3×104)2(s+9×103)

Weighting function Ws(s)
0.769(s

2+1.14×104
s+3.25×107)

(s2+1.342×103s+4.5×105)
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The intersection of the performance QFT bounds, B(ω), for each inequality (3.25)-(3.27)
are then computed based on the performance specifications and the plant templates, as
depicted in Fig. 3.50(a).

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

50

60

Open−Loop Phase (deg)

O
p

e
n
−

L
o

o
p

 G
a

in
 (

d
B

)

ω = 1 krad/s

1.5

2.5

5

9

20

60
300

B(ω = 1 krad/s)

B(ω = 1.5 krad/s)

B(ω = 2.5 krad/s)

B(ω = 5 krad/s)

B(ω = 9 krad/s)

B(ω = 20 krad/s)

B(ω = 60 krad/s)
B(ω = 300 krad/s)

L
g

nom

(jω)

(a) Without controller.

−360 −315 −270 −225 −180 −135 −90 −45 0

−60

−40

−20

0

20

40

60

Open−Loop Phase (deg)

O
p

e
n
−

L
o

o
p

 G
a
in

 (
d

B
)

ω = 1 krad/s

1.5

2.5

5
9

20
60

300

L
g

nom

(jω)
B(ω = 300 krad/s)

B(ω = 60 krad/s)

B(ω = 20 krad/s)

B(ω = 1 krad/s)

B(ω = 1.5 krad/s)

B(ω = 2.5 krad/s)

B(ω = 5 krad/s)

B(ω = 9 krad/s)

(b) With controller.

Figure 3.50: Open-loop frequency response and QFT bounds B(ω).

QFT Loop-shaping controller

Finally, the loop-shaping is performed. Fig. 3.50(a) shows the frequency response of the
new nominal open-loop transfer function L′

gnom
(s) according to (3.78), which violates the

stability bounds. The design objective is to apply dynamic compensation to the nominal
open-loop transfer function, so that the performance bounds are satisfied at each frequency.
It can be seen also that, the open-loop frequency response is located below the appropriate
tracking performance bounds at each frequency. Thus an appropriate control gain should
be introduced to push the open-loop frequency response upwards. Moreover, a dynamic
compensator is required to change the shape of the open-loop frequency response. Analysis
then shows that a pole at the origin in addition to two zeros and three poles should be
added. In this way, once the loop is adjusted, it is simple to obtain the transfer function of
the controller (3.81)

Gc(s) =
120 (s/1734 + 1) (s/756.4 + 1)

s (s/3.760 × 105 + 1) (s/4.932 × 104 + 1) (s/3.559 × 105 + 1)
(3.81)

The resulting open-loop frequency responses with this controller shown in Fig. 3.50(b).
It can be seen that the open-loop frequency response does not violate the stability and
performance requirements.

The loop gain for the original plant is shown in Fig. 3.51. As can be seen there is a clear
improvement in the stability properties with a cross-over frequency fc ≈ 1.61 kHz, a phase
margin of nearly 64◦ and a gain margin of 13 dB.

To place the closed-loop tracking responses within the required envelope and attenuate
high frequency peaking, prefilter F is then designed to achieve the required shape of the
closed-loop frequency response. Fig. 3.52(a) shows the Bode magnitude plot of the closed-
loop frequency response without a prefilter, together with the tracking frequency response
specifications plotted with dashed lines. Obviously a dynamic prefilter is required to shape
the frequency response to be within the desired range. It was designed as follows
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Figure 3.51: The original loop-gain
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Figure 3.52: Closed-loop frequency response

F (s) =
7.261 × 103

s + 7.261 × 103
(3.82)

The resulting closed-loop frequency responses with this prefilter is shown in Fig. 3.52(b).

In order to verify the design of QFT controller (3.81), a validation of the obtained results
should be made, graphically checking the specifications in the frequency and time domains.
Analyzes of the closed-loop system performance in the frequency domain show that the worst
closed-loop response magnitude (covering all uncertainty cases) is well below the specified
values (γ = 1.18 = 1.4376 dB, dashed line) (refer to (3.25)), as illustrated in Fig. 3.53(a).

The closed-loop frequency responses to disturbances, TD1 and TD2 will now be analyzed.
As shown in Fig. 3.53(b), the control loop adequately meets the specified disturbance atten-
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Figure 3.53: Closed-loop frequency response

uation tolerance despite that the obtained
∣∣ST

Gco
(jω)

∣∣ does not follow exactly the weighting
function. In Figs. 3.54(a) and 3.54(b), the voltage-disturbance attenuation and output
impedance of the closed-loop systems are shown, together with their open-loop frequency
responses. It can be seen that the QFT-controller provides a good disturbance rejection
performance, and the disturbance rejection constraints in (3.25) are adequately fulfilled.
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Figure 3.54: Input and output disturbances

The buck-boost converter shown in Fig· 3.48 has been examined by simulation. Figs·
3.55−3.56, show the corresponding simulated time responses of the converter for different
perturbations. Fig· 3.55 shows the output-voltage response after introducing step-changes
in output power 10% ∼ 90% at 0.035 s and 0.07 s. Similarly, output voltage uo response for
step-changes in input voltage from 20 V to 70 V is illustrated in Fig· 3.56. In this case, a
step perturbation of 50 V is introduced at 0.04 s, and a negative step of -50 V at 0.075 s
over 40% of an averaged nominal input voltage of 50 V.
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Figure 3.55: The output voltage response uo for load perturbations

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
50

55

60

65

70

Time (s)

In
p

u
t 

vo
lt

ag
e 

U
in

 (
V

)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

74.5

75

75.5

76

Time (s)

O
u

tp
u

t 
vo

lt
ag

e 
U

o
 (

V
)

140% of the nominal input voltage

40% of the nominal
input voltage

Figure 3.56: The output voltage behavior uo for input voltage perturbations

83





Chapter 4
Subsystem Interaction Analysis

Analyzing complex combinations of Distributed Power Supply (DPS) systems becomes very
complicated, when the system topologies get larger. A practical approach is to consider
a system as an interconnection of many smaller subsystems. The unterminated modeling
technique is useful especially in the analysis of large systems, such as DPS systems. Since
the source and the load impedances affect the dynamics of the converter, it is important to
understand how the terminal impedances of the subsystems are reflected to elsewhere in the
system and how they affect the dynamics in general, [12, 17].

Some of the critical issues when integrating subsystems are stability problems, robustness
of the subsystems and degradation resulting from interaction between the subsystems. Even
though each subsystem may be well-designed for stand-alone operation, the interaction can
lead to stability and performance problems after system integration.
The first studies on subsystem interaction in power converters addressed the interaction
between an input filter and a regulated power converter [12, 17]. The methods proposed in
these papers were based on linear techniques that worked on small-signal models of nonlinear
systems linearized around a steady state operating point. The widely used impedance ratio
criterion was generally used together with various control strategies in [61, 62, 63, 64, 65].
The design of input filters for power factor correction circuits was introduced in [66]. The
factors affecting the choice of the filter topology for power factor correction circuits were
outlined.

The stability analysis of distributed power systems was addressed in [67, 68, 69, 70].
In [68], the impedance ratio criterion was used to ensure the local stability of the power
distribution system.

In this chapter, the concept known as unterminated two-port network representation is
presented and used to develop a proper formalism for the terminated models, which may
facilitate the analysis of the effect of different loads on the converter dynamics. First, several
stability criterions and the forbidden region concept, which ensure the system stability,
are briefly surveyed. Then, applying the unterminated technique to study the effect of
load impedance on converter’s dynamics is considered, resulting in the terminated model.
This corresponds to the model that could have been derived initially by including the load
impedance in the model. Finally, the analysis is extended to cover the effect of source
impedance.

An unterminated model is derived for a single-section LC low-pass filter, and a system
consisting of a converter and an input filter is analyzed. The origin of input filter instability
is shown, and the input filter’s influence on the dynamics of the converter is analyzed and
demonstrated.
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4.1 Two-Port Network

A two-port network is characterized by its terminal properties. Both ports of a two-port
network can be characterized by a Thévenin or Norton equivalent circuit, depending on the
choice of the input and output variables. External networks that are connected at the input
and output are called terminations. To make the system modular, filters and converters
must be modeled without terminating impedances. This modeling method is known as
unterminated modeling technique [71, 72]. It has been applied e.g. to analyze the input
filter interactions [73, 74, 65], and to design a controller for a line conditioner with unknown
load [75, 76]. It is an especially useful technique for analysis of large systems, such as DPS
systems. In e.g. [72, 77, 15, 67, 78] the unterminated modeling technique has been applied
to modeling and analysis of distributed power systems.

In order to utilize the modular concept, each component should be modeled as an un-
terminated two-port network first, because the terminal characteristics of both source and
load are unknown until the complete system is configured. The interconnection law should
not only describe accurately the signal flows between the subsystems but it should also be
presented in a standard form [71], to make a general and systematic analysis possible.

4.1.1 Unterminated Modeling Approach

A switched-mode converter can be presented as shown in Fig. 4.1 connected to supplying
system and load. The supply system is characterized using its unterminated Thevenin’s
equivalent circuit (i.e., uins and source impedance Zs). The load system is characterized
using its terminated Norton’s equivalent circuit (i.e., load impedance ZL and current sink
jo) [73].

As it may be concluded from Fig.4.1, the practical model of a converter is its unterminated
model, because the supply system and load depend on the special application, and should
therefore be treated case by case. The transfer functions describing the converter dynamics
are commonly given for resistive load (i.e., ZL = R), as in [28]. The unterminated transfer
functions may be easily derived from the resistor based transfer functions by letting R →
∞, and taking the limiting value of the corresponding terminated transfer function, (4.1),

ini

insu oj

+

ou

+

LZ

oi

cG

ru

Controller

(Hv
s)

inu

+

sZ

c

Supply Load

Figure 4.1: A dc-dc converter with connections to the supply system and the load system.
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Figure 4.2: A circuit theoretical unterminated model with connections to a supply system
and load.

provided that the average inductor current IL in the model is not modified. Otherwise,
the transfer functions can be derived in a normal way assuming the load composed of a
constant-current sink.

G∗(s) = lim
R→∞

GR(s) (4.1)

Generally, the open-loop output dynamics of a converter may be defined as (4.2) and the
open-loop input dynamics as (4.3).

ûo = G∗
io−o · ûin − Z∗

o−o · îo + G∗
co · ĉ (4.2)

îin = Y ∗
in−o · ûin + T ∗

ji−o · îo + G∗
ci · ĉ (4.3)

The unterminated models describe the dynamics of a converter without the external
effect of the supplying system and the load. It is only suitable of evaluating the dynamic
performance when the source impedance of the supplying system is negligible, and the load
composes of pure constant-current type load.

An unterminated circuit theoretical model of a converter connected to a supplying system
and load is shown in Fig. 4.2. The output port parameters (i.e., Thevenin equivalent circuit)
are defined in (4.2), and the input port parameters (i.e., Norton equivalent circuit) are
defined in (4.3).

4.2 System Stability and Performance

Consider a system of two cascaded subsystems shown in Fig. 4.3, the first being the source
subsystem and the second the load subsystem.

The main critical issues when integrating subsystems are usually stability problems, ro-
bustness of the subsystems and degradation of performance. Even though the subsystems
may be well-designed for stand-alone operation, this interaction can lead to stability and
performance problems after system integration. Therfore, the interaction of the subsystems
must be considered to ensure proper operation of the integrated system.

4.2.1 Linear fractional transformations: The matrix star product

Linear fractional transformations (LFT) are a convenient tool to formulate many mathe-
matical objects, as they are currently used in control literature for analysis and design, as
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Source Load 

sZ LY

Figure 4.3: Simple source - load system

explained e.g. in [49, 50]. An important property of LFTs is that any interconnection of
LFTs is again an LFT. This property is by far the most often used and is the heart of
LFT machinery. A generalization of the upper and lower LFT is provided by the so-called
Redheffer’s star product. A system theoretic diagram of the series connection is shown in
Fig. 4.4(a), where the input variables are w and ŵ, output variables z and ẑ, and internal
variables u and y.

The matrices Q and M are interconnected such that the last y outputs from Q are the
first y inputs of M , and the first u outputs from M are the last u inputs of the Q.

ẑ
M

Q
w

ŵ

z

yu

(a) Two cascaded subsystems.

R
z

ẑ

w

ŵ

(b) Input-output model.

Figure 4.4: Star product of Q and M , R = S (Q,M ).

The corresponding partitioned matrices are

Q =

[
q11 q12

q21 q22

]
, M =

[
m11 m12

m21 m22

]

The mapping from the input to intermediate variables can be given by

[
y
u

]
=

[ q21

1−q22m11

q22m12

1−q22m11

m11q21

1−q22m11

m12
1−q22m11

] [
w
ŵ

]
(4.4)

The mapping from the input to output variables can be given by

[
z
ẑ

]
=

⎡
⎣ q11 + q12m11q21

1−q22m11

m12
1−q22m11

m21q21

1−q22m11
m22 + m21q22m12

1−q22m11

⎤
⎦

︸ ︷︷ ︸
R

[
w
ŵ

]
(4.5)
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The input-output model shown in Fig. 4.4(b) and the overall matrix R with these inter-
connections closed is called the star product, S (Q,M ), between Q and M ,

R = S (Q,M) =

⎡
⎣ q11 + q12m11q21

1−q22m11

m12
1−q22m11

m21q21

1−q22m11
m22 + m21q22m12

1−q22m11

⎤
⎦ (4.6)

For practical calculations it is worth mentioning that the overall matrix R can be com-
puted using the Matlab function starp.

4.2.2 Internal Stability

Internal stability is a fundamental requirement for a practical feedback system . It guarantees
that all signals in a system are bounded provided that the injected signals (from anywhere)
are bounded. Since the theorems of internal stability are well-known and understood [49, 50],
it now becomes obvious that they are also equivalent to cascaded connections of canonical
forms [80, 81].

Consider the system in Fig. 4.5 which is usually used to study the internal stability of
system. By regrouping the external input signals into the loop as e1 = q21w and e2 = m12

ŵ, simple calculations show that the equations describing the system lead exactly to the
intermediate equations (4.4), [80, 81].

22q1e
+

+

+
+11m

u

y
2e

Figure 4.5: Internal stability topology.

The series connection of two subsystems represented in canonical forms is internally stable
if

• the transfer functions q21 and m12 are stable (so that the signals e2 and e1 are bounded)

• the transfer functions 1
1−q22m11

, q22

1−q22m11
, m11

1−q22m11
and 1

1−q22m11
are stable

In addition, if no right half plane (RHP) pole-zero cancelations occur in the transfer
functions q22m11, the stability of one the above transfer function implies stability of the
others. Then, it is enough to check the stability of 1/(1 − q22m11), which corresponds to
application of the Nyquist criterion to the quantity -q22m11, [49, 50, 80, 81].

Note that the transfer functions q22 and m11 are the corresponding source output impedance
and load input admittance of the subsystem shown in Fig. 4.3 (i.e. q22 = −Zs and
m11 = YL = 1/ZL). The quantity ZsYL is also known as the minor loop gain which deter-
mines, under the above assumptions, whether the system is internally stable or not.
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4.2.3 Forbidden region concept

The stability analysis of distributed power supply systems is mainly based on the minor loop
gain concept. The minor loop gain is calculated as the ratio of output and input impedances
defined at the interface of source and load systems.

For the purposes of control design, there are numerous methods of ensuring that the
Nyquist contour of Zs YL does not encircle the point (−1, 0), thereby providing a guarantee
of system stability [12, 82, 83, 18]. The result of the analysis is given by defining a certain
forbidden region in the complex plane, out of which the minor loop gain should stay for
stability. The concept of forbidden region is usually based on the use of the gain (GM) and
phase (PM) margins associated to the minor loop gain. Next, two stability criteria will be
briefly discussed.

Middlebrook Criterion:

This is the most straightforward of the impedance/admittance methods [12]. It consists of
a circle of radius 1/GM in the s-plane, where GM denotes the gain margin associated to the
minor loop gain as shown in Fig. 4.6. The shaded region is the forbidden region. Obviously,
if the Nyquist plot of Zs YL is always within the circle, then encirclements of the point
(−1, 0) cannot occur provided that the GM is greater than 1.

Forbidden region

1/GM

Im

Re

Unit circle

Figure 4.6: Middlebrook Stability Criterion.

Although convenient for design and easily visualized, this approach leads to artificially
conservative designs. In particular, much of the region in Nyquist plane which is forbidden
when using this criterion actually may have little influence on stability [18].

Gain Margin and Phase Margin (GMPM) Criterion:

In this criterion, the boundary consists of two line segments at an angle of ±PM from the
negative real axis, which extend from infinity to the circle corresponding to the Middlebrook
criterion; the forbidden region in this case is indicated in Fig. 4.7.

The proposed gain margin is 6 dB and phase margin 60◦. It is stated that if both
subsystems are stable and if the polar plot of the minor loop gain avoids the forbidden
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Im

Re

Forbidden region

PM

PM

Unit circle

1/GM

Figure 4.7: Gain Margin and Phase Margin (GMPM) Stability Criterion.

region, then it is guaranteed that the integrated system is stable and will have minimal
performance degradation.

The main advantage of this method is that, both the gain and phase margins can be
arbitrary specified, allowing the designer to specify the amount of conservatism in a given
design. Moreover, it is also amenable to formulation of design specifications. Assuming that
the source impedance is known, the range of input impedance which would cause the minor
loop gain function to violate the forbidden region, if interaction were to occur at a given
frequency, can be calculated. The condition for stability can then be expressed as [18]

|YL| <
1

|ZL|GM
(4.7)

� YL(s) + � Zs(s) ≤ (180◦ − PM) (4.8)

� YL(s) + � Zs(s) ≤ (−180◦ + PM). (4.9)

The above criterion is used extensively e.g. by the power system of the space station
program [82].

4.3 Load and Supply Interaction Analysis

The operation of the converter is affected by the source impedance and the load impedance,
Fig. 4.3. Load impedances naturally affect all input-to-output transfer functions of the
open-loop converter. It is clear that the loop gain and the closed-loop dynamics of the
converter are affected as well. Source impedance affects the output-port dynamics of the
open-loop converter. Since the control-to-output transfer function is affected, the loop gain
is affected as well. It can be concluded that the performance of the converter can be degraded
by the load or source interactions. When considering distributed power supply systems, it
is therefore of interest to study the source impedance and the load impedance effects on the
converters.

91



Chapter 4 Subsystem Interaction Analysis

4.3.1 Load Interaction Analysis

The loads of switching converters are usually not simple resistive loads, but instead consist
of complex and frequency dependent impedances. Furthermore, for most practical applica-
tions prior information on the ac characteristics of a load is often unavailable, therefore, a
control loop design assuming a specific load may result in an undesirable performance that
was not intended during the design stage, and an analytical interpretation of the results may
be lost.
In order to examine the interactions between a switching converter and its load, the per-
formance parameters of the terminated converter should be derived as a function of the
load terminal characteristics. In the following a formalism to analyze the load interactions
and the effect of each of its impedances on the converter transfer functions is analyzed.
To that end the unterminated two-port small-signal model, Fig. 4.2, and the Linear frac-
tional transformation (LFTs) technique are utilized. The unterminated modeling technique
together with LFTs can most conveniently be used because of the transparency and easy
application of circuit theory and a reflection principle. Similar formalism may be derived us-
ing the extra-element-theorem (EET) method introduced in [28, 84], but it is too theoretical
for practicing engineers to apply.

We can now apply the LFT approach to the unterminated converter and load shown in
Fig. 4.2. The terminated transfer matrix S (Gcon, GL) can be obtained by applying (4.6) as
follows

GCL = S (Gcon, GL) =

⎡
⎢⎢⎢⎣

Y ∗
in−o +

1/ZL·G∗

io−o
T ∗

ji−o

1+
Z∗

o−o
ZL

G∗

ci

1+
Z∗

o−o
ZL

T ∗

ji−o

1+
Z∗

o−o
ZL

G∗

io−o

1+
Z∗

o−o
ZL

G∗

co

1+
Z∗

o−o
ZL

− Z∗

o−o

1+
Z∗

o−o
ZL

⎤
⎥⎥⎥⎦ (4.10)

which can obviously be rewritten as an open-loop terminated two-port model (4.11)

[
îin
ûo

]
=

[
Yin−o Gci Tji−o

Gio−o Gco −Zo−o

]⎡
⎣ ûin

ĉ

ĵo

⎤
⎦ (4.11)

Similarly, the closed-loop terminated two-port model can be given as follows

[
îin
ûo

]
=

[
Yin−c Tji−c

Gio−c −Zo−c

][
ûin

ĵo

]
(4.12)

Terminated converter transfer functions

The open-loop and closed-loop terminated converter equations (4.13) and (4.15) provide an
analytical closed form expression, from which the performance parameters of the converter
can be expressed by well defined quantities, load impedance ZL and closed-loop output
impedance of the unterminated converter Z∗

o−c.

Gio−o =
1

1 +
Z∗

o−o

ZL

· G∗
io−o, Gio−c =

1

1 +
Z∗

o−c

ZL

· G∗
io−c (4.13)
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Zo−o =
1

1 +
Z∗

o−o

ZL

· Z∗
o−o, Zo−c =

1

1 +
Z∗

o−c

ZL

· Z∗
o−c (4.14)

Gco =
1

1 +
Z∗

o−o

ZL

· G∗
co (4.15)

Thus, using Z∗
o−c and ZL, stability of the converter can be determined by applying the

Nyquist criterion to the quantity
Z∗

o−c

ZL
, under the assumption of both Z∗

o−c and ZL being

stable, which implies that
Z∗

o−c

ZL
does not have RHP poles. Thus, from the above assumption,

the sufficient condition for the stability of the converter is simply
∣∣Z∗

o−c

∣∣ � |ZL|.

Loop gain analysis

The load effect on the converter dynamics can be analyzed starting from (assume Hv(s) = 1)
according to (2.38), where L∗

g(s) is the original (unterminated) loop gain, and Lg(s) is the
affected (terminated) loop gain.

Lg(s) = GaGcGco (4.16)

Lg(s) =
G∗

co

1 +
Z∗

o−o

ZL

· GaGc (4.17)

=
1

1 +
Z∗

o−o

ZL

· L∗
g(s)

It is clear that the converter loop gain L∗
g(s) is not substantially affected by load impedance

ZL if the condition ∣∣Z∗
o−o

∣∣ � |ZL| (4.18)

is satisfied.

Define
Z∗

o−c

ZL
as the minor loop gain Lm(s). It is argued that the minor-loop gain contains

similar dynamic performance and stability information as the loop gain of the converter.
However, the terminated loop gain may be defined in terms of minor loop by starting from

(4.17) and noting that Z∗
o−c =

Z∗

o−o

1+L∗

g(s)

Lg(s) =
L∗

g(s)

1 + Lm(s)
(
1 + L∗

g(s)
) (4.19)

In order to minimize the loading effects of prospective loads, it seems that the closed output
impedance

∣∣Z∗
o−c

∣∣ of the unterminated converter can only be minimized using a control
loop design presented in Chapter 3. The stability and performance will be analyzed by
investigating the loop gain, minor loop gain and output impedance of the converter combined
with a variety of typical practical loads.

By examining the terminated system loop gain, Lg(s) it can be seen that if the loading
effect is negligible, meaning that |Lm(s)| � 1 at all frequencies, then Lg(s) is approximately
equal to L∗

g(s). However, if the loading effect is not negligible, then in general there are
two possible cases to consider. These involve the study of interaction below and beyond the
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crossover frequency of the unterminated converter loop gain L∗
g(s). All cases of interaction

in an actual system will be among the combinations of these two cases.

Example 4.1

To investigate the loading effect on the performance of the converter, the VM and PCM con-
trolled buck converter will be analyzed. Analysis of the loading effect on the converter loop
gain will be carried out using the impedance-type load shown in Fig. 4.8. The corresponding
load element values are shown in Table 4.1.

LCr
LL LLr

LC

+

ou
oj

oi

LZ

Figure 4.8: LC -type load .

Table 4.1: Load circuits parameters.

Load LL CL rLL
rCL

A 1 mH 3 mF 50 mΩ 250 mΩ

B 105 μH 316 μF 0.05 mΩ 1 mΩ

C 2 μH 10 μF 2 mΩ 5 mΩ

The unterminated loop gain L∗
g(s), terminated loop gain Lg(s), and minor loop gain,

Lm(s) are analyzed for each of the three load cases. These gains related to VMC and
PCMC control modes are shown in Fig. 4.9 and Fig. 4.10. The differences in the responses
may be explained by the differences in the open-loop output impedances and control band-
widths. It can be seen from Fig. 4.9 and Fig. 4.10 that for load A which does not interact,
the minor loop gain, Lm(s), is always much less than 0 dB at all frequencies, so in this case
the loading effect is negligible.

The first case to be analyzed is the impedance overlap occurring below the loop gain
crossover frequency of the converter. The unterminated L∗

g(s), terminate Lg(s) loop gains
and minor loop gain Lm(s) of the VMC and PCMC converters, when the load resonant
frequency coincides with the converter resonant frequency, as depicted in Figs. 4.11 and
4.12. In this case, the terminated loop gain Lg(s) has three crossovers the 0-dB line.

From Fig. 4.11 and 4.12 it can clearly be seen that in the first two crossover frequencies
the terminated (loaded) loop gain Lg(s) has approximately the same phase margin as the
minor loop gain Lm(s). This means that if the minor loop gain Lm(s) has a high stability
margin at these crossover frequencies, then Lg(s) does also. At the final crossover point,
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Figure 4.9: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load A, VMC.
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Figure 4.10: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load A, PCMC.

Lm(s) is small, so Lg(s) is approximately equal to L∗
g(s), and they have the same stability

margin. Consequently, if both Lm(s) and L∗
g(s) have high stability margins, so does Lg(s).

However, it can also be seen that the bandwidth of Lg(s) is considerably reduced, which
will have an effect on the transient response. This case corresponds to the undesirable
case of low-frequency interaction, which will degrade the transient response of the system
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Figure 4.11: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load B, VMC.
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Figure 4.12: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load B, PCMC.

significantly.

The second case of interaction occurs beyond the loop gain crossover frequency of the
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Figure 4.13: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load C, VMC.
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Figure 4.14: Unterminated loop gain (solid line), terminated loop gain (dotted line), and
minor loop gain ( dashed line) in case of load C, PCMC.

converter; this is shown in Fig. 4.13 and Fig. 4.14. In this case, it can be seen that the
loading effect on the subsystem loop gain occurs in frequencies where the unterminated
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(unloaded) loop gain magnitude L∗
g(s), is less than 0 dB. The terminated loop gain, Lg(s)

differs from L∗
g(s) only at high frequencies when the magnitude is small, and therefore system

performance will be unaffected. The terminated loop gain, Lg(s) has the same phase margin
as L∗

g(s) at the crossover frequency. This is because Lm(s) is small, so Lg(s) is approximately
equal to L∗

g(s) in this range.

The output impedances related to VMC and PCMC modes are shown in Fig. 4.15 and
Fig. 4.16 in relation to the input impedance of three loads. By examining the phase of
Z∗

o−c and ZL in Fig. 4.15 and Fig. 4.16, it can be seen that a low frequencies the phase
of the minor loop gain Lm(s) approaches 180◦, and at high frequencies, the phase of Lm(s)
approaches −180◦. Therefore, interaction at high or low frequencies will cause minor loop
gain, Lm(s), to have a small phase margin. It can be clearly seen that for load A which does
not interact, the minor loop gain, Lm(s), is always less than 0 dB, so in this case the loading
effect is negligible. However, as the degree of impedance overlap increases, the interaction
moves to the low and high frequency range, thus causing the phase of Lm(s) to decrease.

The stability and performance of the terminated converter in VMC can be analyzed from
the Nyquist plot of the minor loop gain Lm(s) as shown in Fig. 4.17. It is obvious for load
A which has no impedance interaction that the minor loop function is in the acceptable
region at all frequencies and the terminated converter is stable retaining the closed-loop
performance of the unterminated converter. The minor loop gain of load B indicates heavy
violations of the forbidden region. Therefore, the performance is clearly deteriorated, but
the terminated converter is still stable. Although load C has noticeable impedance overlap,
it does not violate the forbidden region. However, the terminated converter remains stable.

The minor loop of the PCMC converter is shown in Fig. 4.18. For loads A and C
the minor loop gains have analogous behavior to the VMC case. Load B causes the output
impedance to dip within the frequency range where the condition

∣∣Z∗
o−c

/
ZL

∣∣ � 1 is violated.
It is interesting to note that the minor loop gain does not heavily violate the forbidden region
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Figure 4.17: Nyquist Plots of the minor loop gains at three different loads, VMC.

and the terminated converter retains its stability.

When the transient response is examined (Fig. 4.19), it is obvious that for load A,
which has no impedance interaction, there is no significant change in the output voltage.
However, in the case of load B the load effect causes the terminated loop gain to crossover
at a frequency slightly lower than in the unterminated loop gain. Therefore it is clear that
the output voltage is slower and has a more oscillatory dynamics. In the case of load C,
the loading effect causes the terminated loop gain to crossover at a frequency slightly higher
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Figure 4.18: Nyquist Plots of the minor loop gains at three different loads, PCMC.

than in the case of load B. Since both of the loop gains have the same bandwidth, the system
will respond more faster than in the case of load B.
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Figure 4.19: Transient response of three different loads when the load change from 10% to
90% occurs at 0.035s, VMC.

It is a tedious task to design voltage feedback compensation that provides a minimized
output impedance in which the loading effects become negligible, while retaining good closed-
loop performance for the unterminated converter. The above example shows that the voltage
feedback compensation failed to mitigate the impedances overlap for an ill-conditioned load.
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4.3.2 Source Interaction Analysis

A two-port model with a connection to the source impedance (see e.g. Fig. 4.2) is considered.
It is clear that the source impedance does not affect the input port parameters of the
converter. For that reason it is sufficient to study only the output dynamics. The new
expressions for transfer functions can be derived by another application of the LFT approach[

îin
ûin

]
=

[
0 1

1 −Zs

]
︸ ︷︷ ︸

GS

[
ûins

îin

]
(4.20)

The resulting transfer matrix S (Gs, Gcon) can be obtained by applying (4.6) as follows

Gsc =

⎡
⎢⎣

Y ∗

in−o

1+ZsY ∗

in−o

T ∗

ji−o

1+ZsY ∗

in−o

G∗

ci

1+ZsY ∗

in−o

G∗

io−o

1+ZsY ∗

in−o
−Z∗

o−o −
T ∗

ji−oG∗

io−oZs

1+ZsY ∗

in−o

1+Zs·
(

Y ∗

in−o−
G∗

io−oG∗

ci
G∗

co

)
G∗

co

1+ZsY ∗

in−o

⎤
⎥⎦ (4.21)

which can obviously be rewritten as an open-loop terminated two-port model (4.22)

[
îin

ûo

]
=

[
Y ′

in−o G′
ci T ′

ji−o

G′
io−o −Z ′

o−o G′
co

]⎡
⎢⎣ ûins

îo

ĉ

⎤
⎥⎦ (4.22)

Similarly, the closed-loop terminated two-port model can be given as follows[
îin

ûo

]
=

[
Y ′

in−c T ′
ji−c

G′
io−c −Z ′

o−c

][
ûins

îo

]
(4.23)

The closed-loop terminated converter equations (4.24) and (4.25) provide an analytical
closed from expression, from which the performance parameters of the converter can be
expressed, as well as the defined quantities, source impedance Zs and closed-loop input ad-
mittance of the unterminated converter Y ∗

in−c.

G′
io−c =

1

1 + ZsY ∗
in−c

· G∗
io−c (4.24)

Z ′
o−c =

1 + ZsY
∗
in−sc

1 + ZsY ∗
in−c

· Z∗
o−c (4.25)

where

Y ∗
in−sc = Y ∗

in−c +
T ∗

ji−cG
∗
io−c

Z∗
o−c

Thus, using the Y ∗
in−c and Zs, stability of the converter can be determined by apply-

ing the Nyquist criterion to the quantity Zs

Z∗

in−c
, where Z∗

in−c = 1
Y ∗

in−c
. It is assumed that

Z∗
in−c and Zs are stable, which implies Zs

Z∗

in−c
does not have RHP poles. Thus, from the above

assumption, the sufficient condition for the stability of the converter is simply |Zs| �
∣∣Z∗

in−c

∣∣.
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Loop gain interactions L
∗
g(s)

The effect of the source impedance on the converter dynamics can be considered according
to (2.38) as (4.26), where L∗

g(s) is the original loop gain, and Lg
′(s) is the affected loop gain.

Lg
′(s) =

1 + Zs · (Y ∗
in−o −

G∗

io−oG∗

ci

G∗

co
)

1 + ZsY
∗
in−o

· L∗
g(s) =

1 + ZsY
∗
in−∞

1 + ZsY
∗
in−o

· L∗
g(s) (4.26)

A similar analysis shows that the converter loop gain L∗
g(s) is not substantially affected

by source impedance Zs if the conditions

|Zs| �
∣∣Z∗

in−o

∣∣ (4.27)

|Zs| �
∣∣Z∗

in−∞
∣∣ (4.28)

are satisfied.

The problem of source impedance interaction in this thesis will be addressed and dis-
cussed, in particular, to the EMI input filter in the next section.

4.4 Input Filter Interactions in Switched-Mode Power Converters

In this section, an unterminated model is derived for a single-section LC low-pass filter, and
a system consisting of a converter and an input filter is analyzed. The origin of input filter
instability is shown, and the input filter’s effect on the dynamics of the converter is analyzed
and demonstrated. The analysis is then extended to study the interactions between two
cascaded subsystems. It is assumed that the subsystems have been previously designed to
meet the required specifications.

4.4.1 EMI Filters for Switching-Mode Power Converters

Any electrical or electronic device is a potential noise source to its environment. High-level
electromagnetic disturbances may cause devices and systems to malfunction in a common
electromagnetic environment.

Although it first emerged as a serious issue in telecommunications, electromagnetic in-
terference (EMI) problems are also found in other applications. With the rapid growth and
spread of power semiconductors and power electronics systems, interference levels on power
systems have increased significantly in intensity and frequency of occurrence.

The basic operation of electronic power processing is the switching function to control the
flow of electromagnetic energy through the converters. The switching function, however, is
also the major mechanism of electromagnetic noise generation, which implies that a power
converter is potentially a large noise source to its vicinity.

In order to prevent the input current waveform of the switching converter from interfering
with the source and to maintain the integrity of the source for other equipment that may be
operating from a common input power bus, the switching converter must include appropriate
input electromagnetic interference (EMI) filtering. The input filter is also required to isolate
the source voltage transients so as not to degrade the performance of the switching converter.
Therefore, research on modeling and improving the EMI characteristics of power electronics
converters by using appropriate circuit layout and input filter design is necessary [86, 28, 87].
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Single-Section L-C Filter

The most common simple passive filter is the L-C passive filter shown in Fig. 4.20. The
filter consists of an inductance Lf and a capacitance Cf with their equivalent internal re-
sistances rLF and rCF . For simplicity, the total effective impedance of the source resistance
is neglected. In general, the values of Lf and Cf are large enough to dominate the reactive
impedance of the source. This will adequately attenuate the interference due to the signals
at the switching frequency and its higher harmonics.

inu

fL

fC
  DC-DC 
 Converter

Single-Section LC Filter

ini inci

+

incu

LFr

CFr

Figure 4.20: Single section LC Filter.

The transfer functions of the input filter can be derived as follows:

[
îin
ûinc

]
=

[
Y ∗

in−f T ∗
ji−f

G∗
io−f −Z∗

o−f

][
ûin

îinc

]
(4.29)

Y ∗
in−f =

s · 1
Lf

s2 + s · (rLF +rCF )
Lf

+ 1
LfCf

(4.30)

T ∗
ji−f =

s · CfrCF + 1

s2 + s · (rLF +rCF )
Lf

+ 1
LfCf

(4.31)

G∗
io−f =

s · CfrCF + 1

s2 + s · (rLF +rCF )
Lf

+ 1
LfCf

(4.32)

Z∗
o−f =

s2 · rCF + s · ( 1
Cf

+ rCF rLF

Lf
) + rLF

Lf Cf

s2 + s · (rLF +rCF )
Lf

+ 1
Lf Cf

(4.33)

The quality factor Qf [28] of the filter is as follows

Qf =

√
Lf

Cf

rLF + rCF
(4.34)

The Qf describes the resonance peaking of the filter. In practice, parasitic elements,
such as inductor loss and capacitor equivalent series resistance limit the value of Qf . If the
parasitic elements are set to zero, as in the ideal filter, the Qf tends to infinity. The peaking
causes undesirable effects in switching converters, and therefore a low Qf -value is desirable.
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The single-section LC filter presents a peaking at the resonant frequency fo. The phase
of the output impedance changes rapidly in the vicinity of the resonance frequency fo.

fo =
1

2π
√

LfCf

(4.35)

4.4.2 Nature of the Oscillation Problem

The addition of an input filter to a switching-mode converter can cause the combination to
oscillate or even go unstable due to the fact that switching-mode converters usually have a
negative input resistance at low frequencies. The nature of the problem can be understood
by considering the buck converter with a basic single-section low-pass filter shown in Fig.
4.21.

A dc-dc converter is designed to keep its output voltage constant no matter how its
input voltage varies. Given a constant load current, the power drawn from the input bus
is therefore also constant. If the input voltage increases by some factor, the input current
will decrease by this same factor to maintain the power level constant. In incremental
terms, a positive incremental change in the input voltage results in a negative incremental
change in the input current, causing the converter to look like a negative resistor Rin at its
input terminals. The value of this negative resistance depends on the operating point of the
converter according to:

Control system
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Figure 4.21: Basic Buck converter with single-section LC filter.

Rin = −Uinc

Iinc
= − 1

M2

Uo

Io
= − R

M2
(4.36)

Note that the converter input impedance Zin, appears as a negative resistance only at low
frequencies. At higher frequencies the impedance is affected by the converter’s own internal
filter elements and the limited bandwidth of its feedback loop.

For the conversion ratio for the basic buck converter M = D it then holds

Rin = −R
/
D2 (4.37)

The converter input resistance Rin with the input filter output impedance can under
certain conditions constitute a negative resistance oscillator (NRO), which degrades the
system stability and performance. The input filter output impedance Zo−f is a low (positive)
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resistance at low frequencies, but in the vicinity of the filter cutoff frequency it rises to a
maximum |Zo−f |max, which may be many times the associated ohmic resistances. Therefore
the oscillation will take place when the net circuit resistance becomes negative [12].

4.4.3 Application of Two-Port Representation

The input filter can be also modeled using unterminated G-parameters as shown in Fig.
4.22.
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înci

*
ioG

*
ji

T

înuˆ
inu

în
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Figure 4.22: Switched-mode power converter with input filter.

To study how the input filter affects the output dynamics of a converter, new expressions
for transfer functions can be derived by using LFTs. The resulting system dynamics in terms
of G-parameters may be presented as shown in (4.38) in a matrix form and as a two-port
model shown in Fig. (4.23).
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Figure 4.23: Overall two-port model.

The upper row of the matrix entries (i.e., the input dynamics) is defined in (4.39) - (4.41)
and the bottom row (i.e., the output dynamics) is defined in (4.42) - (4.44), respectively.

[
îin
ûo

]
=

⎡
⎣ Y ′

in−o T ′
ji−o G′

ci

G′
io−o −Z ′

o−o G′
co

⎤
⎦
⎡
⎣ ûin

îo
ĉ

⎤
⎦ (4.38)

Y ′
in−o = Y ∗

in−f +
T ∗

ji−fG∗
io−fY ∗

in−o

1 + Z∗
o−fY ∗

in−o

(4.39)
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T ′
ji−o =

T ∗
ji−fT ∗

ji−o

1 + Z∗
o−fY ∗

in−o

(4.40)

G′
ci =

T ∗
ji−fG∗

ci

1 + Z∗
o−fY ∗

in−o

(4.41)

G′
io−o =

G∗
io−fG∗

io−o

1 + Z∗
o−fY ∗

in−o

(4.42)

Z ′
o−o = Z∗

o−o +
Z∗

o−fT ∗
ji−oG

∗
io−o

1 + Z∗
o−fY ∗

in−o

(4.43)

G′
co = G∗

co −
Z∗

o−fG∗
io−oG

∗
ci

1 + Z∗
o−fY ∗

in−o

(4.44)

In a similar manner as described above the effect of the input filter may be deduced from
the closed-loop converter transfer function as in (4.45)

Y ′
in−c = Y ∗

in−f +
T ∗

ji−f G∗

io−f

1+Z∗

o−f
Y ∗

in−c
· Y ∗

in−c

T ′
ji−c =

T ∗

ji−f

1+Z∗

o−f Y ∗

in−c
· T ∗

ji−c

G′
io−c =

G∗

ji−f

1+Z∗

o−f Y ∗

in−c
· G∗

io−c

Z ′
o−c =

1+Z∗

o−f (Y ∗

in−c+
T∗

ji−cG∗

io−c

Z∗

o−c
)

1+Z∗

o−f Y ∗

in−c
· Z∗

o−c

(4.45)

The output impedance Z ′
o−o and control-to-output transfer function G′

co can be rewritten

as

Z ′
o−o =

1 + Z∗
o−f (Y ∗

in−o +
T ∗

ji−oG∗

io−o

Z∗

o−o
)

1 + Z∗
o−fY ∗

in−o

· Z∗
o−o =

1 + Z∗
o−fY ∗

in−sc

1 + Z∗
o−fY ∗

in−o

· Z∗
o−o (4.46)

where

Y ∗
in−sc = Y ∗

in−o +
T ∗

ji−oG
∗
io−o

Z∗
o−o

is equal to open loop input admittance Y ∗
in−o of the converter under the conditions that the

converter output voltage is nulled [28]

G′
co =

1 + Z∗
o−fY ∗

in−∞
1 + Z∗

o−fY ∗
in−o

· G∗
co (4.47)
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Loop Gain Analysis

The unterminated output voltage loop L∗
g(s) is defined in (4.48). The converter dynamics is

related to the control bandwidth (i.e., the frequency range, where the magnitude of L∗
g(s) ≥

1), and to the phase margin (i.e. how close the phase is to -180◦). Instability occurs when∣∣L∗
g(s)

∣∣ = 1 and � L∗
g(s) = −180◦.

L∗
g(s) = GaGcc(s)G

∗
co(s) (4.48)

It is obvious according to (4.48) that the changes in the control-to-output transfer function
G∗

co would affect directly the dynamical performance through the loop gain. The input filter
effect on the converter dynamics can be considered according to (4.44) and (4.48) as shown
in (4.50), where L∗

g(s) is the original loop gain, and L′
g(s) the affected loop gain.

L′
g(s) = GaGcc(s)G

′
co(s) (4.49)

L′
g(s) =

1 + Z∗
o−fYin−∞

1 + Z∗
o−fY ∗

in−o

· L∗
g(s) (4.50)

It was shown that Y ∗
in−∞ would stay intact even if peak-current or average-current-mode

control are applied, i.e., it may be expressed as a function of the direct-duty ratio or voltage-
mode control transfer functions (4.51) giving naturally the same symbolic values as stated
in [12] and [17], where the subscript “v” denotes the VM nature. These observations may
be obvious due to the nature of Yin−∞. This also means that the observed differences in
dynamical behavior of a converter under different control mode may be addressed to the
behavior of the open-loop input admittance Yin−o [35].

Y ∗
in−∞ = Y ∗

in−ov
− G∗

civ
G∗

io−ov

G∗
cov

(4.51)

If the load is assumed to be purely resistive R and the effect of the circuit parasitic
elements is ignored, then Yin−∞ as defined in (2.44) in Chapter 2 can be expressed as
follows

Yin−∞ = −D2

R
(4.52)

which coincides with the result already obtained in (4.37), (i.e. the DC gain of Yin−∞ is the
inverse of the negative incremental resistor).

Affected Control-to-Output Transfer Function

It has been proved earlier that the changes in the control-to-output function G∗
co affects

directly on the dynamical performance through the loop gain. The interaction theory may
be further developed in the case of the control-to-output transfer function for VMC and
PCMC in order to obtain more unified results for the basic converters.

The analysis of input-filter interactions in a PCM controlled converter has proven to be
difficult [28, 61]. It has been noticed that the same design rules developed to VM controlled
converters may not hold in the case of a PCM controlled converter [61] but no justifications
were given. This turned out later to be the consequence of the behavior of of the line-to-
output transfer function Gio−o [65].
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By studying the set of equations in (4.42) - (4.44) it is easy to conclude that the effect
of input filter may be insignificant if Gio−o is very small as in case of PCM controlled buck
converter [65]. From set of equations in (2.69)-(2.74), and Table (2.4), we can conclude that
Gio−o of a boost converter may not be very small and cannot be either nullified by means
of compensation. Therefore, the result can not be generalized.

If replacing the PCMC transfer functions in (4.42) - (4.44) with the corresponding unified
transfer functions of (2.69)-(2.74), we get the affected PCMC control-to-output transfer
function expressed in (4.53)

G∗
co =

1 + Z∗
o−f · (Yin−ov − Gio−ov Gciv

Gcov
)

1 +
Z∗

o−f

Zin−o

· Gco (4.53)

This expression shows that the numerator of the coefficient altering the original control-to-
output transfer function will remain the same as in VMC. However, the reduction the input
filter interactions may be directed only to the behavior of the open-loop input impedance.
It is well known that the PCMC transfer functions do not exhibit resonant like behavior
because the roots of their characteristic equation are well separated [28, 73]. Therefore, the
input filter designed for a VM controlled converter will have more margins, when the same
filter is used for a PCM controlled converter.

Minor Loop gain

The condition for system stability in presence of the input filter can be determined by the
following argument. In the absence of an input filter, the equation (2.40) shows that two
system properties, G∗

io−c and Z∗
o−c, contain the factor 1

/(
1 + L∗

g(s)
)
. For stability the term

1+L∗
g(s) , must not have any roots in the right half-plane. This is equivalent to saying that

the loop gain L∗
g(s) must satisfy the Nyquist stability criterion.

In presence of an input filter, the equation (4.45) shows that the two modified system

properties, G′
io−c and Z ′

o−c, contain the factor 1/
(
1 + Z∗

o−f/Z∗
in−c

)
. By analogy, however,

the ratio
Z∗

o−f

Z∗

in−c
may be identified as a “minor loop gain” Lm(s), and for system stability

1 + Lm(s) must not have any roots in the right half-plane. This is equivalent to saying that
the minor loop gain Lm(s) must also satisfy the Nyquist stability criterion . From (2.42)
the minor loop gain can be expressed as

Lm(s) ≡ Z∗
o−f

Z∗
in−c

=
Z∗

o−f

Z∗
in−o

· 1

1 + L∗
g(s)

+
Z∗

o−f

Z∗
in−∞

· L∗
g(s)

1 + L∗
g(s)

(4.54)

Even though the formal requirement for system stability is that the minor loop gain
Lm(s) satisfies the Nyquist criterion, a sufficient but usually more than necessary condition
is that

|Lm(s)| =

∣∣∣∣ Z∗
o−f

Z∗
in−c

∣∣∣∣ � 1 (4.55)

We can conclude from (4.54) that if the converter closed-loop input impedance Z∗
in−c were

always positive, as would be the case, for example, for a linear dissipative converter, the
Nyquist stability criterion for minor loop gain Lm(s) would automatically be satisfied, and
instability could not occur as a result of the addition of an input filter. Unfortunately this
is not always the case for switching-mode converters since Z∗

in−c can be negative as already
discussed, the Nyquist stability criterion set forth in (4.55) is not trivial; because the the
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requirement that
∣∣∣Z∗

o−f

∣∣∣ <
∣∣Z∗

in−∞
∣∣, seems to be only a partial requirement for stability

since from (4.54) we can see that |Lm(s)| < 1 is ensured only at low frequencies (i.e. at∣∣L∗
g(s)

∣∣ 
 1 ).

Impedance Inequalities Constraint

Inspection of loop gain in (4.50) and minor loop gain in (4.54) shows that the same factor
involving Z∗

o−f are contained in both equations. However, if Z∗
o−f constrained so that∣∣∣∣ Z∗

o−f

Z∗
in−∞

∣∣∣∣ � 1 (4.56)

and ∣∣∣∣ Z∗
o−f

Z∗
in−o

∣∣∣∣ � 1 (4.57)

these conditions ensure that the loop gain is essentially unaffected by addition of the input
filter, L′

g(s) ≈ L∗
g(s).

Also the same inequalities automatically implies |Lm(s)| =
∣∣∣Z∗

o−f

/
Z∗

in−c

∣∣∣ � 1, by (4.54),

which in turn ensures system stability, and also that the control-to-output transfer function
is essentially unaffected, by (4.47), G′

co ≈ G∗
co.

The line-to-output transfer function in (4.45) is naturally always affected by G∗
io−f but

its behavior is more deterministic if also (4.55) is valid. If the input filter output impedance
Z∗

o−f also satisfies the inequality ∣∣∣∣ Z∗
o−f

Z∗
in−sc

∣∣∣∣ � 1 (4.58)

then the converter closed-loop output impedance will be essentially unaffected by addition
of the input filter, (i.e. Z ′

o−c ≈ Z∗
o−c).

The above statements constitute the essential theoretical results of the investigation, and
lead to the formulation of a procedure for practical application of VM controlled converters.

Example 4.2

To demonstrate the input filter effect on the performance of the converter, the VM and PCM
controlled buck converter will be analyzed. The circuit parameters for buck converters are
given in Table 3.1. Five input filters of a single section type are considered and their
parameters are shown in Table 4.2.

VM Control

The behavior of the open-loop and closed-loop input impedances under VM control is shown
in Fig. 4.24 compared to the LC -filter output impedances. The design criteria presented

in [12] is satisfied in case of Filter 1, i.e.,
∣∣∣Z∗

o−f

∣∣∣ � ∣∣Z∗
in−c

∣∣, but unfortunately it is clearly

violated for the other filters. The reason is, that the resonant frequency of Filter 1 is
placed below the resonant frequency of output averaging filter ff . If the LC -filter resonant
frequency fo would be placed at the frequencies, where the closed-loop input impedance has
phase -180◦, NRO might take place.
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Table 4.2: Filter circuits parameters.

Filter LF CF rLF rCF

F1 600 μH 450 μF 180 mΩ 60 mΩ

F2 540 μH 220 μF 90 mΩ 20 mΩ

F3 500 μH 80 μF 70 mΩ 15 mΩ

F4 440 μH 45 μF 60 mΩ 10 mΩ

F5 200 μH 20 μF 50 mΩ 10 mΩ

−40

−20

0

20

40

60

80

M
ag

n
it

u
d

e 
(d

B
)

10
2

10
3

10
4

10
5

10
6

−180

−90

0

90

180

270

Frequency (rad/s)

P
h

as
e 

(d
eg

)

Z
in−o
* Z

in−c
* Z

in−∞
* Z

in−sc
* Z

o−f
*

Z
o−f

→ F
1

 F
2

 F
3

 F
4

 F
5

Z
o−f

→ F
1

F
5
← Z

o−f

Figure 4.24: Open-loop (dotted line) and closed-loop (dashed line) input impedance under
VM control vs. different LC -filter output impedances.

The practical solution is usually to place the resonant frequency of LC -filter below rather
than above the resonant frequency of output averaging filter, so that the two conditions of
(4.56) and (4.57) reduce simply to the single condition

∣∣Z∗
o−f

∣∣ � ∣∣Z∗
in−o

∣∣ (4.59)

since, it was noticed that
∣∣Z∗

in−o

∣∣ is always equal to or less than
∣∣Z∗

in−∞
∣∣ for frequencies up

to and beyond the chosen fo < ff .

The affected loop gains are shown in Fig. 4.25. Filter 1 alters the loop gain only slightly
and is not a threat when considering the performance or stability of the converter. Although
Filter 2 has noticeable effect on the loop gain, it does not degrade the bandwidth, gain margin
nor the phase margin, and does not cause instability. However, the resonance peak affects
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the closed-loop audio susceptibility and output impedance characteristics. Furthermore,
small changes in the output impedance of the filter can cause serious effects on the loop
gain, and consequently, on the performance of the converter.
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Figure 4.25: The original (solid line) and affected (dashed line) loop gain under CCM-VM
control.

Filter 3 affects the loop gain severely by causing a deep and sharp peak that reduces the
control bandwidth (from 23 kHz to 0.8 kHz) and phase margin (from 60◦ to 42.7◦). The
converter is still stable but its performance is severely deteriorated as shown in Fig. 4.27.

In the cases of filters 4 and 5, special care should be taken because
∣∣∣Z∗

o−f

∣∣∣ >
∣∣Z∗

in−c

∣∣.
When considering Filter 4 and 5, instability can be concluded by noticing that the peaking
causes the phase curve to cross 180◦ at the point where the gain curve is still above 0 dB.

The instability caused by the input filter can be deduced from Nyquist plot of the minor
loop gain Lm(s) as shown in Fig. 4.26. It can be seen that the instability can be concluded
for the case of Filter 4 and 5 by encirclement of the (-1,0) point on Nyquist plot of Lm(s).
In case of Filter 1 and 2, it is obvious that they meet the specification, and therefore the
Nyquist plots of the minor loop gains avoid the forbidden region and the converter is stable
as shown in 4.26. For the Filter 3 the converter is still stable but its performance is severely
deteriorated because the minor loop violates the forbidden region.

The responses of the output voltage (Fig. 4.27; upper) and the filter-capacitor voltage
(Fig. 4.27; lower) in case of Filter 3 for a load change show that the system is stable. A
change of 10% to 90% of the nominal load power of 30 W at the input voltage of 50 V under
VM control were used.

The filter output impedances together with the closed-loop and open-loop input impedances
of VMC-DCM buck converter are also plotted in Fig. 4.28. The output impedances for fil-
ters 1,2 and 3 stay well below the closed-loop input impedance. Filter 4 and 5 are very close
to cause the interaction. The original loop gain and the affected loop gains are shown in
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Figure 4.26: Nyquist Plots of the minor loop gains at different input filters under CCM-VM
control
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Figure 4.27: Output-voltage (upper) and LC-Filter 3 capacitor-voltage (lower) responses
under CCM-VM control to a load step change.

Fig. 4.29. The loop gain reveals the converter is still stable even though the impedances are
close to each other and there is some peaks.

The Nyquist plot of the minor loop gain Lm(s) is shown in Fig. 4.30. The minor loop
gains for all filters do not violate the forbidden region and the converter is stable.
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Figure 4.29: Original and affected loop gains under a DCM-VCM control.
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Figure 4.30: Nyquist Plots of the minor loop gains at different input filters under DCM-VM
control

PCM Control

Similarly to the VMC, the input filter interaction will be investigated for the peak-current-
mode-controlled buck converter, Fig. 3.20.

The open-loop and closed-loop input impedances of the converter and the output impedances
of the filters are shown in Fig. 4.31, and the original loop gain and the affected loop gains
are shown in Fig. 4.32, respectively.

The loop gain stays almost intact even though the impedances are close to each other and
even overlap each other. However, the analysis of minor loop gains in Fig. 4.33 leads to the
conclusion that filters 4 and 5 are unstable, the others are stable. The reason for unchanged
the loop gain is that the line-to-output transfer function or audiosusceptibility G∗

io−o of
a buck converter is small and can be totally nullified when using optimal compensation.
According to this, it is easy to conclude that the effect of the input filter on output dynamics
of the converter is negligible.

It is quite evident that the behavior of the input impedance explains the differences in
the input-filter interactions between VM and PCM control.

The design criteria developed in [12, 17] are valid in both of the control modes but the
lack of resonant peaking in input impedance under PCM control enables the use of somewhat
‘smaller’ input filter compared to VM control.
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Figure 4.33: Nyquist Plots of the minor loop gains at different input filters under PCM
control.
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Chapter 5
Dynamics Analysis of Paralleled DC-DC Converters

Paralleling DC-DC switching converter modules (Fig. 5.1) offers several advantages over
a single centralized power supply, such as expandability of output power, high reliability,
design standardization, and ease of maintenance and repair. Most of the motivations stated
above put more interest in the paralleled operation of DC-DC converter modules [21, 88,
89, 90].

The control objective of a single switched-mode DC-DC converter is to maintain the
output voltage close to the reference. In the case of multimodule system, the control objective
is enriched with the demand of keeping the power distribution between the units close to a
specified pattern. However, paralleled DC-DC converters require an explicit current-sharing
mechanism to ensure even distribution of current and thermal stresses among the modules
and to prevent operation of one or more modules in a current-limiting mode. Without a
current-sharing mechanism, even small imbalances in modules’ output voltages can cause
the output currents to be significantly different [19, 21, 88, 89]. Therefore, it is necessary
to design a controller that can regulate the output voltage and achieve balanced current
distribution.

In the past two decades, numerous approaches for paralleling DC-DC switching convert-
ers, with varying degrees complexity and current-sharing performance, have been proposed
[21, 88, 89, 91]. In general, the paralleling methods are classified either based on their con-
nection styles, current-sharing control structures or feedback functions. In [92, 93], some
forms of classifications and comparisons have been given for paralleling schemes. In [92],
the classification has been made based on the voltage control loop configurations. Three
different paralleling schemes for multimodule converters were proposed. For each paralleling
scheme, merits and limitations were addressed. In [93], a classification has been made based
on the type of current-sharing method, namely, passive method, (i.e., droop method), and
active current-sharing methods, i.e., the democratic scheme and master-slave scheme. The
classification is thus basically a systematic collection of existing schemes.

An interesting work has been presented in [94] describing a classification of paralleling
schemes for DC-DC converters from a circuit theoretic viewpoint. In the proposed classifi-
cation, the converters are seen as current sources or voltage sources, and their connection
possibilities, as constrained by Kirchhoff’s laws, are classified systematically into three basic
types.

Although the benefits and dc characteristics of multimodule DC-DC converters are well
known, issues involved with a systematic derivation of current-sharing loop gain, current-
sharing controller design and the system stability analysis of the paralleling scheme are not
treated consistently in the existing literature.
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Figure 5.1: n paralleled converters.

In this chapter, a systematic modeling of parallelling DC-DC converters based on small-
signal two-port network representation and circuit theory is presented. The small-signal
model of paralleled converters with an individual voltage loop and current-sharing master-
slave control (MSC) is developed. A robust current-sharing controller, which achieves bal-
anced current distribution of the converters and ensures stability and performance of system,
is designed using the QFT approach and verified by MatlabTM/SimulinkTM simulation.

5.1 General Constraints on Paralleling DC-DC Converters

In general, we may simply and generically describe the switching DC-DC converters in terms
of their regulation modes. However, if the output voltage is required to be regulated, the
converters are called Voltage-Output Converters, and if the output current is regulated,
they are called Current-Output Converters [95]. Thus, an appropriate model for a converter
which is seen at output terminals, is either a voltage source or a current source.

An appropriate modeling of paralleling scheme requires a firm understanding of funda-
mental circuit theory constraints which must form the basis for any parallel connection
styles.

From the basic circuit theory, we know that independent sources can be connected in
parallel under only two possible ways as shown in Fig. 5.2. Firstly, only one of them can
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be an independent voltage source, while the others must be current sources, as shown in
Fig. 5.2(a). Secondly, all parallel branches are current sources, as shown in Fig. 5.2(b).
This means that two independent voltage sources are not permitted to be connected in
parallel [96, 94]. Although the equivalent converters i.e., voltage and current sources are not
independent in practice but are control-dependent sources, the aforementioned two basic
parallel constraints still hold.

The scheme with one voltage-output converter connected in parallel with current-output
converters and the associated current-sharing control problem will be the main subjects of
discussion in this chapter.

U
1I oU

+

nI

(a)

2I
oU

+

nI1I

(b)

Figure 5.2: Structures for paralleling ideal independent sources.

5.1.1 Current-Output Converters

In the output-voltage converters the voltage output is regulated and, accordingly, the output
current is regulated in the output-current converters. A main application of these converters
is a DPA system having a back-up battery connected in parallel [95]. The basic configura-
tion of the current-output is shown in Fig. 5.3. Unlike the voltage-output converters, the
load system in the current-output converters is composed of an ideal voltage source eo in
series with the load impedance ZL. The dynamical issues of the current-output converters
have been studied in [95]. It was shown that, the dynamical profile of the current-output
converters can be easily derived from the corresponding voltage-output converter profile by
applying duality. This can be done by changing the Thevenin’s equivalent output port to
the Norton’s port and replacing the current-sink load with a pure voltage source. In voltage-
output converters, the modified g-parameters are used to represent the two-port model, but
we use the modified y-parameters [96, 95]. The general form of y-parameters for current-
output converters used to describe the input and output dynamics of the current-output
converters is

[
îin

îo

]
=

[
Y ∗

in−oi
T ∗

ji−oi
G∗

cii

G∗
io−oi

−Y ∗
o−oi

G∗
coi

]⎡
⎢⎣ ûin

ûo

ĉi

⎤
⎥⎦ (5.1)

where the general control variable is denoted by ci, and the basic open-loop transfer
functions (denoted by “i” ) are as follows

Y ∗
in−oi

= Y ∗
in−o +

G∗
io−oT

∗
ji−o

Z∗
o−o

, T ∗
ji−oi

= −T ∗
ji−o

Z∗
o−o

G∗
cii

= G∗
ci +

G∗
coT

∗
ji−o

Z∗
o−o

, G∗
io−oi

=
G∗

io−o

Z∗
o−o
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Figure 5.3: Basic configuration of current-output converter.

Y ∗
o−oi

=
1

Z∗
o−o

, G∗
coi

=
G∗
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Z∗
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The resulting two-port model is shown in Fig. 5.4. The closed-loop transfer functions of
the current-output converters can be represented as[

îin

îo

]
=

[
Y ∗

in−ci
T ∗

ji−ci

G∗
io−ci

−Y ∗
o−ci

][
ûin

ûo

]
(5.2)

Y ∗
in−ci

= Y ∗
in−oi

− G∗
io−oi

T ∗
ji−oi

G∗
coi

· L∗
co

1 + L∗
co

, T ∗
ji−ci

= T ∗
ji−oi

− Y ∗
o−oi

G∗
cii

G∗
coi

· L∗
co

1 + L∗
co

G∗
io−ci

=
G∗

io−oi

1 + L∗
co

, Y ∗
o−ci

=
Y ∗

o−oi

1 + L∗
co

where the L∗
co is the current-output converter loop gain

L∗
co = HseG

∗
coi

Gci
Gai

(5.3)

Hse is the sensor gain (i.e. typically the current sensing resistor Rs), Gci
is the controller

transfer function and Gai
is the modulator gain.

5.1.2 Equivalent Circuit Models for DC-DC Switching Converters

For control design purposes, a DC-DC converter can be represented in Thévenin equivalent
circuit or Norton equivalent circuit, i.e., a dependent voltage in series with a impedance Z
as shown in Fig. 5.5(a) or a dependent current source in parallel with an admittance Y
as shown in Fig. 5.5(b) [96, 94]. Obviously, the Thévenin equivalent circuit is more suited
for voltage-output converters whose objective is to regulate the output voltage, whereas
the Norton equivalent circuit is suited for current-output converters whose objective is to
regulate the output current. Generally, the voltage feedback is needed for the former case,
and current feedback for the latter.
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Figure 5.5: Equivalent circuits for switching converters.

5.2 Paralleled DC-DC Converters with Master-Slave Control MSC

Due to limited tolerances in the converters’ power stages and control parameters, small
imbalances in modules’ parameters may cause the output currents to be significantly different
if special provisions are not made to distribute the load current equally among paralleled
modules. This current unbalance will result in excessive thermal and device stresses on
specific units and reduces the system’s reliability [21]. Therefore, uniform current sharing
among paralleled modules has become a primary concern.

Generally, the current sharing (CS) can be implemented using two approaches. The first
one, known as a droop method [97], relies on the high output impedance of each converter
to achieve load current sharing. It is simple to implement, and it doesn’t require any
communication between the modules. The major drawback of the droop approach is a
poor load regulation, and it is not suitable for high-performance applications. The second
approach, known as active current-sharing techniques [19, 98, 88, 89], is used to overcome
the disadvantages of the droop method. The Master-Slave Control (MSC) technique belongs
to the latter category, where one module is dedicated to be the master whose output current
becomes the reference for CS loops of the remaining modules (slaves) [99].

5.2.1 Modeling of Multimodule Converters with MSC

Some performance characteristics such as system stability and transient response in the event
of failure of one module are crucial for the analysis of paralleled DC-DC converter modules.
As a result, to design a stable feedback control loop, one should know the exact model of
the paralleled converters under study. Numerous works have been published on modeling

121



Chapter 5 Dynamics Analysis of Paralleled DC-DC Converters

ˆou

+
*
coG

*
oZ

1ôi
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în
i

1̂c

LZ

Master Converter

2ôi
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Figure 5.6: Two-port model of n parallel-buck converters.

of paralleled DC-DC converters proposing a variety of methods [19, 21, 98, 88, 89, 100, 22].
A large number of these works utilized the so-called canonical equivalent circuit. However,
the canonical model cannot easily be applied to other operation modes or control methods.
Unlike the conventional approach, we will use the two-port network representation to model
the parallel converters and to derive the current-sharing loop gain.

To illustrate the basic problem associated to modeling of parallel converters, the small-
signal two-port configuration of the voltage-output converter and n current-output convert-
ers connected in parallel is shown in Fig 5.6.

The equivalent control structure without current-sharing loop is shown in Fig. 5.7(a).
There is a main voltage feedback loop, which acts on the voltage-output converter to regulate
the output voltage. Other converters are current-output converters, whose purpose is to
make all individual output currents share the same load current [94]. The reference current
signal for each current converter is io k, where k = 1/n.

Fig. 5.7(b) shows the equivalent control structure with current-sharing loop. A main
voltage feedback loop is needed to control the voltage-output converter module. The current
control signal for the current-output converters modules will be derived from the voltage
source branch. This control signal is then compared with the individual current of the
n − 1 converters to achieve current sharing. The current-sharing control can be done using
master-slave current-sharing approach, where the voltage-output converter serves as master
and the current-output converters are the slaves whose currents are adjusted to follow the
master.

Note that, the above figures show only two converters, but the analysis is general and
can be applied for n number of converters.
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ĉ

o

LZ

2ôi
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Figure 5.7: Control structures for parallelling converters.

Current-sharing loop gain

The derivations of the module admittances and current-sharing loop gain can be essentially
simplified by applying a voltage or current source excitation to the system output. First, a
current source excitation is applied at the output of master module as shown in Fig. 5.8(a),
and the unterminated output impedance will be derived. Then, a voltage source excitation
is applied at the output of slave module as shown in Fig. 5.8(b), and the unterminated
output impedance and current-sharing loop gain will be derived accordingly.

For a stable system, stability of the each individual module under source disturbance is
required. The individual module stability assessment starts from the master converter. The
master output voltage is

ûo = îo1Z
∗
o−o + G∗

coĉ (5.4)

The control signal ĉ is given as follows

ĉ = (−ûo + ûr)GcGa (5.5)

Inserting (5.5) into (5.4) yields

ûo =
Z∗

o−o

1 + G∗
coGcGa

îo1 +
G∗

coGcGa

1 + G∗
coGcGa

ûr (5.6)
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Figure 5.8: Small-signal model with source disturbances applied.

If the reference signal ûr = 0 , then, the master closed-loop output impedance is

Z∗
o−c =

ûo

îo1

∣∣∣∣
ûr=0

=
Z∗

o−o

1 + L∗
g

(5.7)

where L∗
g = G∗

coGcGa, is unterminated voltage loop gain.
The small-signal block diagram of a slave with the applied disturbance source is shown

in the Fig. 5.8(b). The measured slave output current is compared with the master current
which is represented as:

îo2 = ûoY
∗
o−oi

+ G∗
coi

ĉi (5.8)

The control signal ĉi is given as

ĉi =
(
−îo2Hse + Gcsc(̂io1 − îo2)

)
Gci

Gai
(5.9)

Inserting (5.9) into (5.8) we get

îo2 = ûoY
∗
o−oi

− îo2G
∗
coi

Gci
Gai

Hse + G∗
coi

Gci
Gai

Gcsc(̂io1 − îo2) (5.10)

The master output current îo1 is

îo1 = Y ∗
o−cûo (5.11)

From (5.10) and (5.11), the expression for a slave output admittance can be derived as
follows:

Y ∗
o−csc =

îo2

ûo
=

Y ∗
o−oi

+ Y ∗
o−cL

∗
csc

1 + L∗
co + L∗

csc

(5.12)

where L∗
co = G∗

coi
Gci

Gai
Hse , is the unterminated current loop gain and

L∗
csc = G∗

coi
Gci

GcscGai
(5.13)

is unterminated current-sharing loop gain.
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The term L∗
csc is present in both nominator and denominator of (5.12). This means

that if the master and slave output currents are identical and cancel each other at the CS
loop summing point, then, equation (5.12) will clearly reduced to the closed-loop output
admittance of current-output converter.

The dynamics of current sharing in MSC are determined by studying stability of the
current-share loop gain Lcsc(s). It is obvious from (5.13) that the only transfer function
with the freedom of being designed, to optimize the current share dynamics is the current-
share controller transfer function Gcsc. The controller Gci

is usually designed prior to the
design of the current-sharing controller.

The current share controller is designed so that the current share loop gain Lcsc(s) verifies
the following requirements [88]

(1) limited bandwidth of the path from Master to Slave module;

(2) adequate high gain at low frequency;

(3) sufficient robust stability margins (e.g., GM ≥ 6 dB and PM ≥ 60◦);

5.2.2 QFT-Based Robust Controller Design

The QFT-based robust control methodology will be applied here to design a robust con-
troller for current-output converter Gci

and also for current-sharing controller Gcsc. For
design purposes, a buck converter operating in CCM is considered and the converter circuit
parameters are given in Table 3.1 (Chapter 3). The desired margins for robustness are the
same as in the corresponding voltage-output converters in Chapter 3. The QFT bounds are
then to be used in shaping of the nominal loop transmission Lconom = Gcoinom

Gci
Gai

Hse.

After applying the QFT-loop shaping for voltage-mode control, analysis shows that a
pole at the origin in addition to two pole-zero pairs are able to satisfy these requirements.
The resulting controller transfer function is given in (5.14), and the open-loop frequency
response with this controller is illustrated in Fig. 5.9.

Gci
(s) =

5428 (s/1211 + 1)
(
s
/
1.85 × 104 + 1

)
s
(
s
/
1.786 × 105 + 1

) (
s
/
5.15 × 104 + 1

) (5.14)

Analysis of the closed-loop system performance in the frequency domain shows that
the worst closed-loop response magnitude (covering all uncertainty cases) is well below the
specified value as illustrated in Fig· 5.10. The Lco(s) loop gain is stable and has a bandwidth
of 12.2 kHz, the phase margin of 87◦ with an infinite gain margin.

The current-sharing controller Gcsc(s) will be designed to satisfy robust specifications.
These specifications are used to compute the frequency dependent QFT bounds, B(ω), that
guide the shaping of the nominal loop transmission Lcscnom = Gcoinom

Gci
GcscGai

. The
design specifications are a minimum phase margin of 60◦, a minimum gain margin of 6 dB,
and a minimum bandwidth frequency of 10 kHz.

The QFT-loop shaping analysis shows that gain with a pole-zero pair (i.e., lead com-
pensator) are able to satisfy these requirements; the zero is to cancel out the pole created
by inductor and its parasitic, the pole is required to attenuate a high frequency noise and
the gain gives a suitable cross-over frequency. The resulting controller transfer function is
given in (5.15) and the open-loop frequency response with this controller is illustrated in
Fig. 5.11.
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Figure 5.9: Open-loop frequency response with controller in VMC.
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Figure 5.10: Closed-loop robust stability margins in VMC.

Gcsc(s) =
1181

(
s
/
5.856 × 105 + 1

)(
s
/
1.575 × 108 + 1

) (5.15)

The closed-loop system performance analysis in the frequency domain shows that the
worst closed-loop response magnitude (covering all uncertainty cases) is well below the spec-
ified value as illustrated in Fig · 5.12. The Lcsc(s) loop gain is stable and has a bandwidth
of 16 kHz, the phase margin of 80◦ with an infinite gain margin as shown in Fig. 5.13.
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Figure 5.11: Open-loop frequency response with controller in VMC.
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Figure 5.12: Closed-loop robust stability margins.

The Fig. 5.14 shows the plots of master and slave closed-loop output impedances. Com-
parison of the output impedances plots shows that the desired relationship between master
and slave impedances is maintained within the CS loop bandwidth. However, the system
admittance is dominated by the master admittance. This fact implies that small-signal load
voltage response to the load disturbance remains approximately the same. These consider-
ations will be confirmed by the time-domain system simulation.

127



Chapter 5 Dynamics Analysis of Paralleled DC-DC Converters

−150

−100

−50

0

50

100

M
ag

n
it

u
d

e 
(d

B
)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

−180

−135

−90

−45

Frequency (rad/s)

P
h

as
e 

(d
eg

)

VMC: Uin = 50 V, P = 30 W

PM ≈ 80°

Figure 5.13: CS loop gain Lcsc(s), VMC.
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Figure 5.14: Closed-loop output impedances of VMC converter modules: slave module with-
out current-sharing control (dashed line), master module (dash-dot line) and slave module
with current-sharing control (solid line).

Since CS controller design does not depend on the number of paralleled modules, the
current-sharing controller was implemented with two nonidentical buck converter modules
operating in CCM. The master module has nominal parameters values which are given in
Table 3.1 (Chapter 3), while the slave module deviates from the nominal design: the inductor
L reduces -20% from its nominal value. In the simulations, all models are constructed using
MATLAB/SIMULINK shown in Figs. A.13 - A.15 in Appendix A.1.
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It is obvious from Fig 5.7(a) that the current-sharing accuracy relies on the precision
of the current divider k. However, small variation of the current divider can give large
current-sharing errors between the voltage-output converter and current-output converters.

To verify the proposed controllers, first the system responses (i.e., output voltage and
output currents) to a load step from 90% to 10% at 0.02 s and at 0.05 s without CS control
are demonstrated in Fig. 5.15. The inductor of the slave module L reduces -20% from its
nominal value and the current divider k has been changed from 0.5 to 0.52. 5.15. As shown
in Fig. 5.15, the output currents diverge to significantly different values while the output
voltage is being regulated.
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Figure 5.15: Output voltage and output current responses due to the step load change in
VMC without current-sharing control; when current divider changes.

The simulation result for the system module with master-slave current-sharing control is
shown in Fig. 5.16. As can be seen, satisfactory dynamic response under step load change
is demonstrated. Also, the current-sharing accuracy is improved compared to the module
without current-sharing control.

Similar QFT design analysis is performed in peak-current-mode control. Applying the
QFT-loop shaping shows that a pole at the origin in addition to pole-zero pair should be
added to satisfy the robust closed-loop specifications. The controller transfer function is
given as

Gci
(s) =

4015 (s/2152 + 1)

s
(
s
/
2.5 × 104 + 1

) (5.16)

The resulting open-loop frequency response with this controller is illustrated in Fig· 5.17.
It is obvious that the open-loop frequency response does not violate the stability performance
requirements as depicted in Fig. 5.18.

The Lco(s) loop gain is stable and has a bandwidth of 13.4 kHz, the phase margin of
86.4◦ with an infinite gain margin. However the tradeoff between system response and
system stability prevails.
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Figure 5.16: Output voltage and output current responses due to the step load change in
VMC with MSC control.
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Figure 5.17: Open-loop frequency response with controller PCMC.

The QFT-based robust current-sharing controller has been deigned accordingly (Figs.
5.19 - 5.20), and the corresponding controller transfer function is

Gcsc(s) =
1401

(
s
/
2.76 × 104 + 1

)
(s/14.15 + 1)

(5.17)

130



Chapter 5 Dynamics Analysis of Paralleled DC-DC Converters

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−60

−50

−40

−30

−20

−10

0

10
Weight: −−

M
ag

n
it

u
d

e 
(d

B
)

Frequency (rad/sec)

Robust stability bound
Closed−loop response

Figure 5.18: Closed-loop robust stability margins in PCMC.
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Figure 5.19: Open-loop frequency response with controller in PCMC.

Also the current-sharing loop gain Lcsc(s) is stable as shown in Fig. 5.21, and has a
bandwidth of 10.4 kHz, the phase margin of 72◦ with an infinite gain margin.

To verify the proposed controller, the closed-loop output impedances of master and slave
module with and without current-sharing control are plotted in Fig. 5.22. Comparison of
the output impedances with the voltage-mode control shows that the slave module follows
exactly its master at low frequency. The reason is that, as explained earlier, in VMC
the controller can react only after the disturbance has propagated to the output voltage,
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Figure 5.20: Closed-loop robust stability margins.
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Figure 5.21: CS loop gain Lcsc(s), PCMC.

which then results in an unavoidable delay in the compensation of these disturbances. This
observation will be confirmed by the time-domain system simulation.

Fig. 5.23 shows the system responses (i.e., output voltage and output currents) to a load
step from 90% to 10% at 0.02 s and at 0.05 s without CS control, when the inductor of the
slave module L deviates -20% from its nominal value and the current divider k deviates from
0.5 to 0.52. From Fig. 5.23, we can see that the output currents diverge to significantly
different values while the output voltage is being regulated.

When master-slave current-sharing control circuit is implemented using Simulink model
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Figure 5.22: Closed-loop output impedances of PCMC converter modules: slave module
without current-sharing control (dashed line), master module (dash-dot line) and slave mod-
ule with current-sharing control (solid line).
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Figure 5.23: Output voltage and output current responses due to the step load change in
PCMC without current-sharing control.

shown in Fig. A.15 in Appendix A.1, the difference between output currents is significantly
reduced as shown in Fig. 5.24. Therefore, the time-domain behavior testifies for a proper
CS loop design.
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Figure 5.24: Output voltage and output current responses due to the step load change in
VMC with MSC control.

From the foregoing simulation results, we may summarize the general features of the
proposed parallel configuration.

The scheme is theoretically more viable as there is only one voltage-output converter
paralleling with current-output converters. The dynamics of the voltage regulation thus
depends on the control method being employed by the voltage regulating loop. The other
current-output converters control their currents directly to achieve the desired current shar-
ing. Thus, the current-sharing performance is generally good.

Another merit of this paralleling scheme is the insensitivity to the number of modules.
Thus, once the control design is optimized for a given number of modules, the system can
add or subtract an arbitrary number of modules as necessary, without compromising any
performance criteria. The configuration is well suited for high-power open-ended architecture
that require a flexible number of modules.

For applications where the reliability of the system is of the utmost importance, it is
desirable for each module to have the full features of a complete converter. Therefore, in
practice this paralleling scheme might suffer from the fault tolerance against the failure of
the voltage-output converter.
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Chapter 6
Conclusions

6.1 Summary

This work has addressed the issues of modeling and robust control design of DC-DC switched
converters. The major accomplishments and some conclusions are given below.

The dynamic modeling of switched-mode DC-DC converters were reviewed. The funda-
mentals and earliest topologies-the buck, boost and buck-boost converters were analyzed
and their basic operation were described. The averaged models were used to represent the
dynamics of dc - dc converters. Averaged models are nonlinear and need to be linearized by
using conventional linearizing methods. The model which is obtained in that way is called
the small-signal model of a converter. A set of transfer functions between the inputs and
outputs of the converter have been derived that characterize the dynamics of the converter
in the vicinity of the operating point and up to half the switching frequency. A small-signal
model of the PWM stage was obtained. The resulting expression of the duty cycle of a
PCMC converter shows how the perturbations in the input voltage, output voltage, induc-
tor current and control current affect the duty cycle. The derivation of duty-cycle constraints
for VM and PCMC was thoroughly explained.

A robust control design procedure based on the QFT method has been applied successfully
to design a robust controller for switching-mode dc-dc converters in order to achieve robust
output in spite of different uncertainties.

The QFT approach and associated design for Linear-Time-Invariant systems were pre-
sented. The implementation of the proposed technique for switching converters was divided
into subtasks according to their dynamical structures. The first for the buck converter in
which the transfer function of the power stage does not have a right-half-plane zero (i.e. min-
imum phase converters), and the second for boost and buck-boost converters which present
the right-half-plane zeros in their control-output-transfer functions (i.e. non-minimum phase
converters). The presence of the RHPZ contributes additional phase lag to the system re-
stricting severely the closed-loop bandwidth .

Different design examples for buck converter were carried out to verify the control design
procedures presented in the thesis. A robust controller for each operating mode along with
prefilters were designed, which met the frequency domain tracking specifications, robust
stability, and disturbance rejection requirements. The effectiveness and robustness of the
proposed control system was confirmed by simulation results, where the MatlabTM QFT
Frequency Domain Control Design Toolbox [44] and MatlabTM/Simulink SimPowerSystems
blockset [45] are used as a setup platform for design and validation.
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It was demonstrated that this technique is suitable for application in this case, which
presents uncertainties in the parameters. The bandwidth of the controller is compatible
with the real limitations imposed by the existing continuous models of dc-to-dc switching
converters. The redesign and tradeoffs between the system performance specifications and
the controller complexity can easily be done, which provides the designer with more versatile
solutions. Although QFT loop shaping technique requires design experience, the obtained
QFT controller provides an appropriate and practical solution for the system.

In designing the QFT controller for boost and buck-boost converters, the loop-shaping
problem of a stable non-minimum nominal plant was converted to that for a stable minimum
phase nominal plant by shifting robust stability and performance bounds. The reason is that
in numerical design it is more convenient to work with a minimum phase function, because
the optimal loop shaping procedures can be then used. The bandwidths are restricted due
to their RHPZ. The stability properties have been clearly improved in terms of PM and GM.
From the simulation results, it can be seen that the use of QFT controller provides good
tracking performance and disturbance rejection capability. Also it provides robust stability
and robust performance in the presence of uncertainties.

The concept known as unterminated two-port network representation was introduced
and used to develop a proper formalism for the terminated models, which may facilitate the
analysis of the effect of different loads on the converter dynamics. The effect of input filter
interactions on output dynamics of VM and PCM controlled converter were studied. The
theoretical formulation was based on the use of a two-port modeling approach.

The stability criterion and forbidden region concept which ensure the system stability
were briefly surveyed. Most stability analysis of DPS is based on impednacce/admittance
methods. These are based on the fact that small signal stability at a given operating point
can be determined by examine the Nyquist contour of Zs Yl. The most straightforward
method is the Middelbrook criteria which states that a system will be stable provided that
the Nyquist contour of Zs Yl remains within the unit circle. The key feature of this method
is that it is very design oriented. The primary disadvantage of the Middlebrook criteria is
that it leads to artificially conservative designs. The set of transfer functions describing the
internal dynamics of a regulated module and the effect of load and source on the dynamics
of the module are presented. Basically the load and source impedances may change the
dynamical behavior of the module drastically and lead even to instability. The associated
impedances may be difficult to accurately predict and therefore, the methods, which make
the module invariant to those impedances are of practical importance. It was shown that the
low closed-loop output impedance would make the converter insensitive to load impedances
as well as would improve also the load transient behavior.

The effect of input filter on the output dynamics of the converter was analyzed and
demonstrated. It was shown that in spite of stable input filter the performance of the con-
verter can be severely degraded, and thus it is often not sufficient to study only the input
filter instability. It was shown that, if the LC-filter resonant frequency would be placed at
the frequencies, where the closed-loop input impedance has phase -180◦, NRO might take
place. Voltage-mode controlled converters are susceptible to performance degradation if the
input filter is designed in such a way that the magnitudes of the filter output impedance
and converter input impedance are not well separated at all frequencies. In low frequencies
where the closed-loop input impedance of the converter is a negative resistance, the input
filter instability occurs if the magnitude of the input filter output impedance is equal to
converter closed-loop input impedance. In frequencies, where the phase of the closed-loop
input impedance is not anymore -180◦, impedance overlapping does not necessarily cause
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instability of the filter or the converter. The performance of the converter can, however,
be degraded. Peak-current-mode controlled converters are not prone to performance degra-
dation, even if the magnitudes of the input filter output impedance and converter input
impedance are close to each other. The physical origin of instability is the instability of the
input filter. This coincides with the minor loop gain.

Preliminary contributions to the modeling and characterizing of paralleling DC-DC con-
verters do exist but needs more rigorous analysis and systematic control design approach for
gaining wider acceptance. In this thesis, a systematic modeling of parallelling DC-DC based
on small-signal two-port network representation was presented. The small-signal model
of paralleled converters with an individual voltage loop and current-sharing master-slave
control (MSC) was developed. A robust current share controller which achieves balanced
current distribution of the converters and ensures stability and performance of system was
designed and verified using the developed Simulink/SimPower SystemsTM models. The pro-
posed method provided a facility to analyze the dynamics of multimodule converter and a
unified model applicable to any converter regardless of topology, and the mode of operation
or control.

6.2 Future Prospects

In this thesis, the dynamical modeling, control design and interactions problems have been
extensively analyzed only for the basic converters, i.e., Buck, Boost and Buck-Boost, under
two different control modes. However, there are numerous topologies and control principles
which are used in various applications. Therefore, other converters such as, Cuk converter
and Sepic converter which are typically based on the aforemention three basic converters
should be analyzed.

The QFT method has been successfully applied to design robust controller for switching-
mode power converters. The essential interest must be, however, subject to make practical
the use of the QFT-based controllers and promote its superiorly as a valuable tool in de-
signing robust controller and ensuring performance and stability.

One of the latest new digital signal processor (DSP) application areas is power electron-
ics. Therefore, the opportunities and constraints of utilizing DSP in switched-mode power
converters should be investigated.

More research work should be done in modeling and control design of paralleled DC-DC
converters. In practice, parallel-connected DC-DC converters may be located far apart and
may require unequal lengths of cable connecting them to the load they share. The output
cable resistance might have significant impact on the performance of parallel-connected con-
verters and, therefore, should be taken into account in order to make converter design more
effective. Also, the analysis problem of interactions among converters should be analyzed.
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A.1 MatlabTM/Simulink Simulation Setup

There are a number of commercial software packages possessing necessary capabilities for
modeling and design validation of switching power DC-DC converters. MATLABTM/Simulink
SimPowerSystems package was chosen as a software platform. Simulink/SimPowerSystems,
a toolbox of MATLAB, is a dynamic system simulation software that provides a conve-
nient graphical user interface for building system models based on their equations [45].
However, all basic single converters models used in thesis haven been constructed using
Simulink/SimPowerSystems package are shown in Figs. A.1 - A.12 and the multimodule
parallel-converters models are shown in Figs. A.13 - A.15.

A.1.1 Single Output-Voltage DC-DC Converters
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Figure A.6: Buck with EMI Filter.
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Figure A.7: VM-Controlled Boost Converter.
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Figure A.8: PCM-Controlled Boost Converter.
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Figure A.9: VM-Controlled Buck-Boost Converter.
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Figure A.10: PCM-Controlled Buck-Boost Converter.
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A.1.2 Single Output-Current DC-DC Converters

Continuous

powergui

contduty

VMC PWM v
+ -

Uin

t

Time in seconds

Rs

Uref

Refernce voltage

R_sI_o

u_r
contrl

QFT Controller 

g m 

d s 

Mosfet

Clock

Figure A.11: VCM-Controlled Buck Converter.
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Figure A.12: PCM-Controlled Buck Converter.
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A.1.3 Multimodule DC-DC Parallel Converters with MSC
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Figure A.13: Two parallel VM controlled-buck converters without current-sharing control.
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Figure A.14: Two parallel VM controlled-buck converters with MSC.
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Figure A.15: Two parallel PCM controlled-buck converters with MSC.
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