17 research outputs found

    Robust and Agile 3D Biped Walking With Steering Capability Using a Footstep Predictive Approach

    Get PDF
    In this paper, we formulate a novel hierarchical controller for walking of torque controlled humanoid robots. Our method uses a whole body optimization approach which generates joint torques, given Cartesian accelerations of different points on the robot. Over such variable translation, we can plan our desired foot trajectories in Cartesian space between starting and ending positions of the foot on the ground. On top level, we use the simplified Linear Inverted Pendulum Model to predict the future motion of the robot. With LIPM, we derive a formulation where the whole system is described by the state of center of mass and footstep locations serve as discrete inputs to this linear system. We then use model predictive control to plan optimal future footsteps which resemble a reference plan, given desired sagittal and steering velocities determined by the high-end user. Using simulations on a kid-size torque controlled humanoid robot, the method tolerates various disturbances such as external pushes, sensor noises, model errors and delayed communication in the control loop. It can perform robust walking over slopes and uneven terrains blindly and turn rapidly at the same time. Our generic dynamics model-based method does not depend on any off-line optimization, being suitable for typical torque controlled humanoid robots

    Pattern Generation for Walking on Slippery Terrains

    Full text link
    In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this formulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.Comment: 6 pages, 7 figure

    Orbit Characterization, Stabilization and Composition on 3D Underactuated Bipedal Walking via Hybrid Passive Linear Inverted Pendulum Model

    Get PDF
    A Hybrid passive Linear Inverted Pendulum (H-LIP) model is proposed for characterizing, stabilizing and composing periodic orbits for 3D underactuated bipedal walking. Specifically, Period-l (P1) and Period -2 (P2) orbits are geometrically characterized in the state space of the H-LIP. Stepping controllers are designed for global stabilization of the orbits. Valid ranges of the gains and their optimality are derived. The optimal stepping controller is used to create and stabilize the walking of bipedal robots. An actuated Spring-loaded Inverted Pendulum (aSLIP) model and the underactuated robot Cassie are used for illustration. Both the aSLIP walking with PI or P2 orbits and the Cassie walking with all 3D compositions of the PI and P2 orbits can be smoothly generated and stabilized from a stepping-in-place motion. This approach provides a perspective and a methodology towards continuous gait generation and stabilization for 3D underactuated walking robots

    Designing a virtual whole body tactile sensor suit for a simulated humanoid robot using inverse dynamics

    Get PDF
    In this paper, we propose a novel architecture to estimate external forces applied to a compliantly controlled balancing robot in simulations. We use similar dynamics equations used in the controller to find mismatches in the available sensory data and associate them to an unknown external force. Then by decomposing Jacobians, we search over the surface of all body links in the robot to find the force application point. By approximating link geometries with ellipsoids, we can derive analytic solutions to solve the search problem very fast in real time. The proposed approach is tested on a complex humanoid robot in simulations where it outperforms static estimators over fast dynamic motions. We foresee a lot of applications for this method especially in human-robot interactions where it can serve as a whole body virtual suit of tactile sensors. It can also be very useful in identifying the inertial properties of objects being manipulated or mounted on the robot like a backpack

    Modeling robot geometries like molecules, application to fast multi-contact posture planning for humanoids

    Get PDF
    Traditional joint-space models used to describe equations of motion for humanoid robots offer nice properties linked directly to the way these robots are built. However, from a computational point of view and convergence properties, these models are not the fastest when used in planning optimizations. In this paper, inspired by Cartesian coordinates used to model molecular structures, we propose a new modeling technique for humanoid robots. We represent robot segments by vectors and derive equations of motion for the full body. Using this methodology in a complex task of multi-contact posture planning with minimal joint torques, we set up optimization problems and analyze the performance. We demonstrate that compared to joint-space models that get trapped in local minima, the proposed vector-based model offers much faster computational speed and a suboptimal but unique final solution. The underlying principle lies in reducing the nonlinearity and exploiting the sparsity in the problem structure. Apart from the specific case study of posture optimization, these principles can make the proposed technique a promising candidate for many other optimization-based complex tasks in robotics

    Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI.

    Get PDF
    Clinical gait analysis attempts to provide, in a pathological context, an objective record that quantifies the magnitude of deviations from normal gait. However, the identification of deviations is highly dependent with the characteristics of the normative database used. In particular, a mismatch between patient characteristics and an asymptomatic population database in terms of walking speed, demographic and anthropometric parameters may lead to misinterpretation during the clinical process. Rather than developing a new normative data repository that may require considerable of resources and time, this study aims to assess a method for predicting lower limb sagittal kinematics using multiple regression models based on walking speed, gender, age and BMI as predictors. With this approach, we were able to predict kinematics with an error within 1 standard deviation of the mean of the original waveforms recorded on fifty-four participants. Furthermore, the proposed approach allowed us to estimate the relative contribution to angular variations of each predictor, independently from the others. It appeared that a mismatch in walking speed, but also age, sex and BMI may lead to errors higher than 5° on lower limb sagittal kinematics and should thus be taken into account before any clinical interpretation

    Practical considerations in using inverse dynamics on a humanoid robot: torque tracking, sensor fusion and Cartesian control laws

    Get PDF
    Although considering dynamics in the control of humanoid robots can improve tracking and compliance in agile tasks, it requires local and global states of the system, precise torque control and proper modeling. In this paper we discuss practical issues to implement inverse dynamics on a torque controlled robot. By modeling electrical actuators off-line, inverting such model and estimating the friction on-line, a high bandwidth torque controller is implemented. In addition, a cascade of optimization problems to fuse all the sensory data coming from IMU, joint encoders and contact force sensors estimate the robot's global state robustly. Our estimation builds the kinematic chain of the legs from the center of pressure which is more robust in case of slight slippage, tilting or rolling of the feet. Thanks to precise and fast torque control, robust state estimation and optimization-based whole body inverse dynamics, the real robot can keep balance with very small stiffness and damping in Cartesian space. It can also recover from strong pushes and perform dexterous tasks. The highly compliant and stable performance is based on pure torque control, without any joint damping or position/velocity tracking

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie
    corecore