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Modeling robot geometries like molecules,
application to fast multi-contact posture planning

for humanoids
Salman Faraji1, and Auke Jan Ijspeert1

Abstract—Traditional joint-space models used to describe
equations of motion for humanoid robots offer nice properties
linked directly to the way these robots are built. However, from
a computational point of view and convergence properties, these
models are not the fastest when used in planning optimizations.
In this paper, inspired by Cartesian coordinates used to model
molecular structures, we propose a new modeling technique
for humanoid robots. We represent robot segments by vectors
and derive equations of motion for the full body. Using this
methodology in a complex task of multi-contact posture planning
with minimal joint torques, we set up optimization problems
and analyze the performance. We demonstrate that compared to
joint-space models that get trapped in local minima, the proposed
vector-based model offers much faster computational speed and
a suboptimal but unique final solution. The underlying principle
lies in reducing the nonlinearity and exploiting the sparsity in the
problem structure. Apart from the specific case study of posture
optimization, these principles can make the proposed technique a
promising candidate for many other optimization-based complex
tasks in robotics.

Index Terms—Humanoid Robots, Kinematics, Biologically-
Inspired Robots, Task Planning, Gesture, Posture and Facial
Expressions, Optimization and Optimal Control

I. INTRODUCTION

HUMANOID robots normally have many degrees of
freedom, enabling them to perform various complex

tasks ranging from locomotion to manipulation. For cyclic
motions like walking, model-based approaches dominantly
rely on simplifications and periodicity analysis techniques to
stabilize the motion [1]. In a larger scale, however, especially
for locomotion in complex environments, one would require a
plan ahead of time. Dynamics of the robot, contact surface
configurations, inherent geometric and actuation limitations
and finally, the presence of gravity make motion synthesis and
control complicated. In a model predictive control paradigm
[2], handling large perturbations in an online fashion depends
directly on a high planning speed, i.e. the ability to synthe-
size feasible motions in short time spans. A simple model
that captures main effects is favorable since it offers fast
computational capabilities. On the other hand, optimality and
feasibility analysis require dynamic information and indeed
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more geometric details. Therefore, a computationally fast yet
inclusive kino-dynamic model is paramount in multi-contact
motion planning problems.

Apart from motion planning, finding feasible and optimal
postures for manipulation and balancing tasks requires a fast
geometric solver. One popular approach is to find a time
evolution of internal coordinates that converges to the optimal
posture. This can be done via inverse kinematics (IK) [3]
or inverse-dynamics (ID) formulations [1], [4] which offer
compliance as well. In these time-integration controllers, an
optimal posture is found naturally, but with certain dynamics.
This is because only first or second order equations are
solved to find velocities or accelerations, favoring their linear
properties. Although optimization problems are solved as fast
as 1−2 ms in each control tick, it takes time for the robot to
follow trajectories, i.e. to integrate velocities and accelerations.
It typically takes 1−2 s to reach the final goal, depending on
robot capabilities [3].

An alternative to time-integration approaches is to solve for
positions directly in a single control tick. This is more suitable
for planning postures ahead of time, e.g. to check feasibility
or optimality of a multi-contact posture in new environmental
conditions. This is, in fact, the same as solving a nonlinear
inverse-kinematics optimization problem [5]. The nature of
this single-shot optimization is obviously different from time-
integration approaches. However, the role of Hessians and
Jacobians in finding descending search directions seems equiv-
alent to finding accelerations and velocities in time-integration
approaches.

Planning ”optimal” postures with minimal joint torques is,
however, far more complex than simple IK problems due
to inclusion of contact forces and joint torques (which are
complex functions of the geometric configuration and contact
forces) as optimization variables. In these tasks, the inherent
redundancy in the system is solved by optimizing the overall
joint torques while in normal IK methods, a desired position
and orientation is considered for the pelvis, torso or the Center
of Mass (CoM). The task of optimizing postures is well
addressed in the literature, for example in matching a model
with recorded human data in OpenSim [6] or analyzing multi-
contact human postures in car assembly lines [7]. In static
optimal postures, the equations of motion ensure stability of
the humanoid while in normal IK methods, the Zero Moment
Point (ZMP) or CoM is forced to lie within the support
polygon [5].

Reaching real-time performance is important, but yet a
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secondary objective. More fundamental problems are conver-
gence properties and nonlinearity of the equations which often
affect planning problems. Handling the inherent redundancy,
joint limits and of course minimization of joint torques are
major critical factors for optimal posture planning. Apart
from increased computation time, these issues often lead to
local minima which make the final solution very sensitive
to the starting point in optimizations. These issues limit the
application of optimal posture planning in online control.
Besides, sensitivity analysis and convergence properties are
rarely discussed or addressed in motion planning and modeling
papers.

Our goal is to approach geometric optimization problems
differently. Traditional joint space models encapsulate all
geometric complexity inside the robot model and lead to
very nonlinear equations. In this work, we propose writ-
ing mechanical equations in a different way, inspired by
molecules. We unroll the compacted inherent complexity of
the body and distribute it over the external tasks as well. We
demonstrate that formulating kinematic optimization problems
becomes much easier in this way while better speed and
convergence properties are achieved. We limit our focus on
a case study of optimal posture optimization and provide
an insightful comparison with joint-space models. A wider
range of applications, however, including forwards and inverse
dynamics as well as motion planning can be foreseen with this
modeling technique.

II. MOLECULE-INSPIRED MODELING

The proposed modeling technique is based on methodolo-
gies used in molecular mechanics where atoms are represented
by points linked together with certain bonds. A very funda-
mental task in computational chemistry is to determine geo-
metric shapes or conformations of the molecules. Well-known
techniques like Nuclear Magnetic Resonance (NMR) spec-
troscopy or X-ray crystallography reveal information about the
mean position and size of atoms as well as length and type of
bonds in different materials. Then, various optimization tech-
niques are used to find exact positions of atoms in 3D space,
given certain energy functions that determine the optimal
length for the bonds and the angles between them. These opti-
mization problems can have multiple local or global solutions
depending on the level of energy in the molecule. Figure.1.A
shows an example conformation, a member of NanoPutian
series called NanoBalletDancer [8] which is an artificially
synthesized anthropomorphic molecule that resembles human.
This particular shape is indeed engineered by experts knowing
principles of bond geometries. However, a popular molecular
mechanics software (Spartan [9] for example) can also find
this conformation by minimizing energy levels.

In molecular mechanics, there are two dominant coordinates
used to model configurations: natural internal vs. Cartesian
coordinates [10]. In the former, keeping atomic distances fixed,
one would use bond angles to express 3D coordinates of atoms.
This is very similar to traditional joint-space modeling in
robotics. In the latter approach, however, each atom is assigned
a 3D position constrained to have certain distances from neigh-
boring atoms. These holonomic constraints can also describe

A. B.
Fig. 1: A. NanoBalletDancer, a member of NanoPutian artificial molecules
[8] designed with an anthropomorphic shape. B. a typical humanoid robot in
multi-contact interaction with the environment, assigned to pick up something
with the right hand. Geometric similarities between chain structures (shown
in red) make 3D formulations interchangeable. Dynamic interactions are,
however, very different (shown in blue, attractive and repulsive forces in
molecules versus gravitational and contact forces in robots), indicating that
equations of motion might have different properties.

certain angular limitations between the bonds, expressed by
vector operations [10]. A constrained optimization would then
treat these constraints via undetermined Lagrangian multipliers
in Verlet time integration [11]. More formally, imagine a set
of atoms represented by 3D coordinates ri, a potential function
U(rN) where rn = (r1,r2, ...,rN) and a set of constraints:

χ(ri,r j) = |ri− r j|2−b2
i j = 0 (1)

where bi j represents the distance between atoms i and j.
Cartesian equations of motion take the form:

mir̈i =−
∂U(rN)

∂ ri
− ∑

k∈Ki

λk
∂ χk

∂ ri
(2)

where mi is the mass of atom i and the set Ki represents
its neighboring atoms. The Verlet time integration updates
positions iteratively by:

r(t+∆t)
i = r̂(t+∆t)

i + ∑
k∈Ki

λk
∂ χk

∂ ri
∆t2m−1

i (3)

where ∆t is the integration time-step and r̂i
(t+∆t) is the uncon-

strained position of atom i. Putting these update rules into (1)
yields:

χ
t+∆t(ri,r j) = |r(t+∆t)

i − r(t+∆t)
j |2−b2

i j = 0 (4)

which should be satisfied in the next time step. By solv-
ing this nonlinear system of equations, one would obtain
λk, necessary to correct the unconstrained positions during
integration. Verlet integration is very similar to nonlinear
optimization in the sense that Lagrange multipliers are helping
to satisfy constraints. However, in molecular dynamics, one
would assume weak coupling between constraints and use
linear approximations (Gauss-Seidel method) of the non-linear
system to solve for λk iteratively (SHAKE algorithm [11]).
Interior point methods are also popular [12] and provide
faster convergence rates if all couplings are considered [13].
However, solving full-dimensional system of equations might
still be time-consuming, despite their sparse structure.
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Fig. 2: Notations used to model a segment of the robot by vectors in the inertial
frame. The unitary vector ~x represents the segment alignment expressed in the
inertial frame as well as the interaction forces and torques (shown in blue).
Model-specific parameters are also shown in red.

Even though the weak coupling assumption makes the con-
vergence slow, the intrinsic properties of Cartesian coordinates
together with the power of Lagrange multipliers let the atoms
move freely to find better solutions, especially in the case of
having constraints in the system. In unconstrained conditions,
however, natural internal coordinates are more suitable for
finding molecular conformations [10]. We adapt this idea and
use Cartesian coordinates to solve multi-contact posture opti-
mization problems for humanoid robots where a large number
of constraints are involved. We only take inspiration from
geometric similarities of molecules and humanoids. Interaction
forces and ”tasks” have entirely different natures, depicted in
Figure.1. Indeed, the nature of atomic and molecular forces is
very different from gravity. Therefore, we limit our focus on
static conditions in this paper. Exploring dynamic similarities
and motions are left for future work.

A. Vector-Based Equation of Motion

Dynamic equations and the notion of potential fields for
robots are not similar to molecules due to the different nature
of dominant forces. Besides, we are not going to use Verlet
integration to solve the posture optimization problem, although
it might be possible in an inverse-dynamics paradigm. Our
goal is to 1: find an alternative for joint-space coordinates
2: formulate optimization problems and 3: solve them via
interior-point methods, aiming at improving the computation
time and convergence properties.

Similar to Cartesian coordinate systems used for molecules,
we model each segment of the robot body by an approximative
vector expressed in the inertial frame (Figure.2), linking the
parent and child joints together. This vector freely rotates in
3D space while its length is constrained. The inertial frame
Center of Mass (CoM) position for this body segment is:

~r =~b+(uL) ~x (5)

where the vector ~b denotes parent joint position, L represents
the segment length, u quantifies the relative CoM position
across the segment and the unitary vector ~x is the free variable
shown in Figure.2. Writing equations of motion for this system
in Cartesian coordinates is straightforward:

~fp−~fc = m (~̈b+uL ~̈x−g) (6)
~tp−~tc = uL (~x× ~fp)+(1−u)L (~x×~fc)+ I (~x×~̈x)

where × stands for cross product, ~fp and ~tp are incoming
Cartesian forces and torques applied by the parent link, ~fc
and ~tc are outgoing forces and torques applied to the child link
and I is the inertia around any axis orthogonal to ~x (refer to
Figure.2). We call (6) constrained equation of motion, because
of holonomic constraints on ~x:

~xT~x = 1, ~xT~̇x = 0, ~xT~̈x+~̇xT~̇x = 0 (7)

There are two underlying assumptions: the CoM of the seg-
ment is aligned with joint positions, and the rotational inertia
around~x is negligible. These assumptions are realistic for most
humanoid robots. Otherwise, an auxiliary vector ~y subject to
~yT~y = 1 and ~xT~y = 0 should be added, to reconstruct the local
frame to account for the asymmetry incurred. The advantage
of modeling a robot with vectors lies in the ability to express
the tasks (end-effector positions) with a linear combination
of segment vectors. Besides, joint angles and torques are all
expressed with a quadratic combination of variables. Equations
(6) and (7) indeed provide a geometric transformation of the
traditional joint-space equations. Therefore, all translational
and rotational dynamics are still included. Next, we are going
to use these properties and establish a full model for our
humanoid robot, consisting of limbs and a torso.

B. Case Study: Humanoid Robot

The spirit of vector-based equations is based on breaking
the geometry of the robot into individual vectors with certain
quadratic relations. Here, we consider a generic humanoid
robot with a torso and four limbs (indexed by j), described
by the following variables:
• ~b: inertial-frame position of the base (root).
• ~e1, ~e2, ~e3: orthonormal basis for orientation of the torso.
• ~x j

1, ~x j
2: unitary vectors for limb segments.

• ~t j
1 , ~t j

2: Cartesian torques in the knee, elbow, hip and
shoulder joints.

• ~F j: contact forces constrained in a friction polyhedral
with coefficient µ j.

• ~T j: contact torques. The resulting Center of Pressure
(CoP) is limited to a square of size w j.

All these quantities are shown in Figure.3. A dynamic model
indeed includes derivatives of position vectors as well. Note
that parameters s j

1, s j
2 and s j

3 are used to express the hip and
shoulder positions, M and I = [Ix, Iy, Iz] represent mass and in-
ertial properties of the torso and finally, each link segment has
its own geometric and inertial properties shown in Figure.2.
The task parameters are also given by desired contact positions
~P j and contact surface coordinates ~N j. We skip writing full
equations, but principles of (6) are simply applied here to
describe the relation between variables. The inter-segment
interaction forces (formerly ~fp and ~fc) are indeed resolved by
combining equations together. An important property of such
modeling technique is adding vectors together to reach the
desired end-effector point ~P j. This linear constraint potentially
simplifies geometry optimization tasks, discussed in the next
section.

Note that since most of the humanoid robots are constructed
with articulated joints, we need to encode joint limits into
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Fig. 3: A humanoid robot can be represented by a set of vectors in Cartesian
space; all expressed in the inertial frame. Fixed model parameters are shown in
red, given task parameters including desired contact positions, and orientations
are shown in green and free dynamic variables (forces and torques) drawn in
blue. Black arrows are free position variables (Refer to the text for further
information). Green areas denote surfaces that can provide a supporting force
and green circles denote Cartesian points to be reached, without establishing
a contact.
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Fig. 4: Reconstructing local frames on each body segment to encode joint-
space boundaries of articulated joints. These auxiliary orthonormal frames can
be either added as decision variables during the optimization to impose joint
limits, or calculated offline to convert from vector-space to joint-space.

the framework as well. To this end, we can introduce auxil-
iary vectors ~y j and ~z j for each segment and reconstruct the
orthonormal local frame together with ~x j. Joint-limits can
then be directly added by constraining the dot product of
these vectors together or with the given contact frame vectors
~N j. A simple demonstration of these local frames is found
in Figure.4. We do not necessarily need to add derivatives
of these vectors unless explicit bounds on joint velocities
are desired. Note that Cartesian joint torques ~t j can also be
projected onto these vectors to find real actuator torques if
needed.

III. APPLICATION: STATIC POSTURE OPTIMIZATION

In this section, we use models developed earlier to formulate
a task of posture optimization. We consider point contacts
and drop contact torques ~T j to simplify the system, although
adding them is straightforward due to linearity. In this case,
CoP and rotational friction constraints are linear functions of
contact torques and vertical forces [4]. Besides, to give the
robot more freedom, we let it rotate the feet (and the wrists)
around the normal axis of the contact surface (~N j

z vector in
Figure.3). This relaxation makes the system redundant but

helps rotate the body and avoid restricting joint limits, aiming
at finding more optimal postures. The redundancy can be
removed by introducing orientation constraints or other simple
policies explained later. We also limit our focus on static
postures in this paper but consider six tasks that require very
different interactions with the environment. The purpose is to
assess the baseline convergence behavior of a minimal setup
in symmetric and asymmetric postures as well as in starting
from random initial conditions. Joint torque limits can also
be added as described earlier, but practically, we found these
constraints never activated. We use the model of our robot
Coman [4] with an approximate mass of 30kg, a height of 1m
and joint torque limits of 40Nm.

A. Optimization setup

1) Optimization variables: The algorithm has to find po-
sition vectors ~b, ~e1, ~e2, ~e3, ~x j

1 and ~x j
2, contact forces ~F j and

joint torques~t j
1 and~t j

2 for each joint j together with auxiliary
vectors ~y j

1, ~y j
2,~z j

1 and~z j
2 to reconstruct local frames when joint

angle bounds are considered. For the joint-space model in a
similar optimization setup, we consider the generalized state
vector q ∈ R22, joint torques τ ∈ R16 and contact forces ~F j.

2) Objective function: Consists of two dominant terms:
the magnitude of contact forces and joint torques. However,
we observed that both modeling approaches (joint-space and
vector-based) could hardly converge to a unique solution,
starting from random initial conditions. This is mainly due
to the nonlinearity of the cross products and redundancy in
the system. Therefore, we added an auxiliary linear term to
lift the base (root) up as much as possible and to orient the
limbs along the sagittal vector of the contact surface (~N j

x ,
shown in Figure.3). These terms implicitly reduce joint torques
and remove the redundancy mentioned earlier. The objective
function for vector-based model is therefore described as:

f = Qτ(∑ j |~t
j
1|2 + |~t

j
2|2)+QF(∑ j |~F j|2)+ (8)

Qlin(−~αT~b+β ∑ j(~x
j
1−~x

j
2)

T~N j
x )

where the vector ~α =
[
0,0,1

]T denotes upward direction,
β = 0.01 and Qτ , QF and Qlin are 0 or 1, simply enabling
or disabling the terms. The parameter β is used to remove
the redundancy, but it can indeed affect the overall posture as
well, pushing the knees or elbows away from straight postures.
Therefore, we choose a small value to minimize this effect yet
removing the redundancy. Later, we provide a further analysis
and show that the choice of this parameter is not critical.
Besides, adding contact orientations to the tasks relieve the
need to have any β in the objective function. Note that the
same objective function is also used for the joint-space model:

f = Qτ |~τ|2 +QF(∑ j |~F j|2)+ (9)

Qlin(−~αT~b(q)+β ∑ j(~x
j
1(q)−~x

j
2(q))

T~N j
x )

where the base positions and limb vectors are functions of the
generalized state vector q.
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3) Constraints: A set of equality constraints describe the
equations of motion, linking all variables together. In the
vector-based model additionally, linear task constraints are
added for each limb j:

~b+ s j
1~e1 + s j

2~e2 + s j
3~e3 +L j

1~x
j
1 +L j

2~x
j
2−~P j = 0 (10)

while end-effector positions are complex functions of the
generalized state vector ( ~EF

j
(q)) in the joint-space model:

~EF
j
(q)−~P j = 0 (11)

Motion equations in the vector-based model take the form:

∑ j ~F j = Mtot~g (12)

∑ j ~P j×~F j = Mtot(~xCoM×~g)

where Mtot is the overall body mass and ~xCoM represents
the center of mass position as a linear function of decision
variables. Note that for static cases, given that desired task
positions ~P j are fixed, equations in (12) become linear in terms
of optimization variables. These equations in the joint-space
model appear as:

h(q) = τ +∑ j J j(q)T~F j (13)

where h(q) denotes gravitational forces and J j(q) represents
the Jacobian of each end-effector position. We also have
holonomic constraints of the form (7) in the vector-based
model while these constraints are inherent in the joint-space
model. Regarding inequality constraints, we mainly have joint
position bounds and friction polyhedra in both models. The
former constraint takes the form of simple bounds on opti-
mization variables in the joint-space model while it requires
reconstruction of local frames in the vector-based model. In
both models, we define friction polyhedra as:

(~F j)T~N j
z ≥ 0 (14)

µ j(~F j)T~N j
z ≥ |(~F j)T~N j

x |
µ j(~F j)T~N j

z ≥ |(~F j)T~N j
y |

where parameters µ j are friction coefficients of contact sur-
faces. We also introduce constraints of the form:

~x j
2

T~N j
z ≤ 0 (15)

in both models to make sure that the limbs stay in front of
contact surfaces. We also disable contact forces of floating
links simply by multiplying them with constant binary mask
parameters, determined by task requirements.

4) Multi-stage optimization: Despite some linear con-
straints and quadratic terms in the objective, our optimization
setup remains non-convex due to the holonomic quadratic
equality constraints and joint angle boundaries in the vector-
based model. To further simplify the analysis, we consider
three variants of optimization: (I) full formulation as described,
(II) a version without joint boundaries and (III) a version in
which we solve the problem in two stages: once without joint
boundaries and then using the solution as a warm starter in a
second stage where boundaries are added. We further consider
enabling and disabling the torques and will demonstrate that
even the simple linear objective can do the job most of

the time. These strategies will be applied on both joint-
space (equations (9), (11), (13), (14) and (15)) and vector-
based (equations (8), (10), (12), (14) and (15)) optimizations
respectively.

5) Implementation: All optimizations for both models are
implemented using SNOPT [14], with a maximum of 250
iterations, feasibility tolerance of 10−6 and accuracy level of
10−6. Singularities are handled by a constant damping of the
Hessian matrix implemented in this package. We use a dedi-
cated Matlab code to generate vector-based model equations,
implemented in c++. Forces and torques are all normalized by
the body weight (Mtotg) and lengths by the body length in the
objective and constraints. We avoided including these terms
in the equations for the sake of simplicity. Problem sizes are
reported in Table.I

Setup = joint-space vector-based
variant I N = 50,M = 58 N = 93,M = 117
variant II N = 50,M = 58 N = 69,M = 77

variant I w.o. torques N = 34,M = 42 N = 69,M = 93
variant II w.o. torques N = 34,M = 42 N = 45,M = 53

TABLE I: Size of optimization problems in different configurations. Here
N stands for the number of variables and M stands for the total number of
equality and inequality constraints. The variant III optimizer runs variant II
and then variant I optimizers in the first and second stages respectively. Note
also that joint limits are implemented as simple bounds on variables in the
joint-space model, not counted here. Disabling linear terms or contact forces
in the objective does not influence the problem size.

IV. RESULTS

Using the tools and methods explained, we aim at com-
paring the two modeling techniques over the complex task
of posture optimization where computational aspects play an
important role. Our analysis covers convergence behavior, i.e.
finding local or global solutions, perturbation analysis, and
computation time performance.

A. Global convergence

Starting from random initial points, we applied the three
optimization variants to various interesting tasks: symmetric
and asymmetric quadruped postures, normal standing, single
support, picking an object on the ground and stair climbing
with supports from the walls. The results are shown in Figure.5
for both modeling techniques. Although the starting points are
far from desired, both models can lead to meaningful postures.
Considering joint boundaries (variant I) leads to local minima
in both models. Removing these constraints in variant II, how-
ever, results in a different behavior. The vector-based model
converges to the same solution every time while the joint-space
model still gets trapped in local minima. We took advantage of
this property in variant III and reintroduced joint-boundaries in
a second optimization stage which starts from the solution of
the boundary-free optimization. As a result, the vector-based
model can now find a unique solution while the joint-space
model fails. The optimization problems are not convex, and
a formal uniqueness proof for the solution is missing. But
over a large number of random starting points (103 trials), we
found the vector-based model convincingly convergent for the
popular humanoid tasks considered. We defined uniqueness
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A) Starting point

(avg. 209±76 ms) B) Variant I: full problem (avg. 107±44 ms)

(avg. 342±110 ms) C) Variant II: removing joint limits (avg. 21±11 ms)

(avg. 536±161 ms) D) Variant III: resolving joint limits in two stages (avg. 46±13 ms)

Fig. 5: Global convergence analysis for the joint-space (left) and vector-based (right) models with Qτ = 1, Qlin = 1, QF = 0 and β = 0.01 in the objective
function. Each row consists of two batches of six typical tasks for humanoid robots: (from left) symmetric and asymmetric quadruped postures, normal
standing, single support, picking an object on the ground and stair climbing with supports from the walls. A) a typical random starting point. B) Variant I:
considering joint limits in the first run leads to local minima. C) Variant II: removing joint limits still does not solve the problem. D) Variant III: adding joint
limits back in the second stage of optimization can not lead to a global optimum too. In these figures, we plot two trials of each optimization to distinguish
cases which are globally convergent. This is separately verified over 1000 trials, and the average time spent in the optimizer over all tasks is mentioned on
top of batches. The vector-based model performs much faster and is more convergent.

by a threshold (10−3) on the maximum standard deviation of
the final solutions obtained (over different dimensions). More
accuracy levels can be achieved by tightening the stopping
criteria in the optimization.

B. Sensitivity to initial condition

This test could be performed in different ways. Here, we
considered a single normal starting point and perturbed it
randomly by 10%. Thanks to global convergence, the vector-
based formulation behaves in the same way as before while
the joint-space formulation again converges to different local
minima. Figure.6 demonstrates few examples. Perturbation test
can quantify how continuous the model is if used as a basis
in a higher level optimization frameworks. Jumping between
different local minima would be confusing for higher level
planners, and it makes the joint-space formulation less suitable
for planning.

C. Sensitivity to optimization parameters

So far, all optimizations were using both the linear and joint
torque terms in the objective function. It becomes interesting to
test them separately, since many similar posture optimization
methods in literature rely on minimizing joint torques [7], [15].
Enabling contact force terms produce less optimal solutions

A) Perturbed starting point

B) Variant III: two-stage optimizer (421±129 ms)

Fig. 6: Sensitivity of the joint-space model to initial conditions. (A) The
starting points are only slightly different, (B) but the optimization seems very
sensitive, converging to different local minima (two trials per task). Here we
used variant III optimization with same parameters as Figure.5. The vector-
based model converges to the same solution every time, not interesting to
show.

(Figure.7), since they are in conflict with joint torques. When
disabling joint torques however, these terms are necessary to
produce optimal contact forces. In this case, the results are less
optimal, but still meaningful. Without linear terms however,
the vector-based model is not globally convergent anymore
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(Figure.7). A variant II optimizer without joint torques and
bounds is the fastest and produces convincing postures, use-
ful for robots with large range of joint motions (Figure.7).
Remember we chose a small β value to reduce the effect of
preferred limb orientation on other tasks which stretch the
knees and elbows. In Figure.7, we show how increasing β can
flex the knees and elbows. Our choice of β = 0.01 seems less
conservative and thus reasonable. Disabling β however leads
to ambiguities (Figure.7) that could be resolved by introducing
feet/wrist orientation constraints alternatively.

D. Computation time

In both Figure.5 and Figure.7, we have reported the average
timing performance over 103 random trials. Adding joint
bounds slows down the process in the vector-based model,
regardless of joint-torque terms actually. Producing crouched
postures seem less expensive while stretched-limb postures
seem more costly (Figure.7). It is preferred to keep torque
terms for maximum optimality and linear terms to ensure
global convergence, even from very different initial conditions.
Although the first stage in variant III is globally convergent,
we can not still say whether the solution of the second
stage is the global optimum of the full problem (variant
I). The uniqueness of results is very interesting, however,
considering the nonlinear and non-convex properties of multi-
contact posture optimization. Our minimal setup (variant II)
can reach up to 21 ms on average, starting from totally random
initial conditions. This could be further improved to 12 ms
by disabling torque terms and still generating meaningful
postures for some tasks. To the best of our knowledge,
for such randomly initialized non-linear optimizations, this
computation speed was not achieved before. This is due to
unrolling complex equations and the convergence properties
that our formulation offers.

V. CONCLUSION

We proposed a fast algorithm that finds unique, feasible
and sub-optimal solutions in two stages. The idea of using
stages was inspired from the well-known simulated annealing
technique [16] where constraints are tightened gradually to
better guide the solution towards a feasible point. The result
might not be the global minimum of the full problem, but
in our case yet meaningful. The vector-based model offers
faster speeds than joint-space formulations in our case study,
though the core novelty of this paper lies in our molecule-
inspired modeling technique that distributes the complexity
of the robot to improve the convergence behavior. We break
the chain of the robot into multiple segments and link them
together with linear constraints. This makes the Jacobian and
Hessian matrices simpler in the optimization and speeds up the
convergence. The vector-based model has only first and second
order polynomial terms while the joint space model has many
sine and cosine terms multiplied together. Extensive analysis
and comparison demonstrate superior speed and convergence
properties in the proposed vector-based modeling technique,
despite typically larger problem sizes.

A) Normal: Qτ = 1, Qlin = 1, QF = 0, β = 0.01 (48±17 ms)

B) Including forces: Qτ = 1, Qlin = 1, QF = 1, β = 0.01 (49±18 ms)

C) w/o torques: Qτ = 0, Qlin = 1, QF = 1, β = 0.01 (45±18 ms)

D) w/o linear terms: Qτ = 1, Qlin = 0, QF = 0, β = 0.01 (146±86 ms)

E) w/o limb orientation: Qτ = 1, Qlin = 1, QF = 0, β = 0.00 (66±20 ms)

F) Strong limb orientation: Qτ = 1, Qlin = 1, QF = 0, β = 0.05 (32±12 ms)

Fig. 7: Sensitivity of vector-based optimization to the choices of objective
function parameters. A) Normal choice of parameters similar to Figure.5.
B) Including contact forces results in minimal and more uniform contact
forces, often increasing joint torques (e.g. object picking task). C) Excluding
torque terms leads to slightly crouched postures. Note that contact force terms
are needed to avoid arbitrary large forces. Formerly, the torque terms could
indirectly optimize contact forces as well. D) Excluding linear terms can
still generate optimal postures, but without global convergence properties.
E) Disabling β will remove desired limb orientation preference and lead
to optimal and singular postures, but it can cause ambiguities in leg/arm
orientations (e.g. stair climbing task). F) Too large β values result in crouched
postures, but faster convergence.

The proposed modeling technique is fundamentally different
from task-space formulations of Khatib [17], although both
deal with Cartesian variables. We reconstruct the model via
individual vectors that represent body segments while task-
space formulations use Jacobians to convert delta-motions
from joint-space to task-space and vice versa. The goal of
this paper is not to speed up traditional time-integration IK or
ID transformations. Those problems are linear with respect to
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velocities or accelerations where warm-starting or decomposi-
tion techniques [3] can reduce optimization times even below
1 ms. Linearizing our vector-based model can indeed lead to
such performance as well for online control. In this paper,
instead, we directly find final ”optimal” postures which involve
finding positions, joint torques, and contact forces altogether.
This problem is much larger in size and very nonlinear with
respect to optimization variables. We also do not have pre-
calculated solutions to speed the process by warm-starting.
Despite these limitations and starting from totally random
initial conditions, the proposed vector-based approach can find
unique final postures (46 ms, Figure.5) much faster than time-
integration (1−2 s) [3] or direct nonlinear optimizations in the
joint-space (200−500 ms, Figure.5). Despite recent advances
in fast motion planning which typically use abstract variables
(CoM, momentum, contacts etc.) [18], we can not provide
any performance comparison yet. In this paper, we have not
set up any motion planning problem. It remains interesting
for future work to use vector-based modeling techniques in
motion planning too. Due to better convergence properties,
we expect to be able to add more dynamics details without
compromising optimization times.

To prioritize different tasks and deal with over-constrained
cases, we found soft weighting matrices [19] robust against
sensory noises in our torque-based controller using ID for-
mulations [4]. In this work, all end-effector tasks are coded
as equality constraints (assuming feasible tasks). It would
be interesting to incorporate weighting matrices or hierarchi-
cal priorities of time-integration approaches [3], [20] in our
nonlinear optimizations. These policies would better handle
unsolvable or over-constrained situations. In these cases, it
becomes interesting to further analyze optimization times and
final errors to make sure the algorithm offers a constant timing
like [19] in case of infeasible tasks. Compared to joint-space
models, representing the robot by vectors leads to simpler
inequality constraints for collision avoidance. Due to a non-
convex nature [21], however, these constraints further com-
plicate convergence properties in both joint-space and vector-
based optimizations. Since the goal is limited to investigate
model properties in this paper, we consider including them in
future work.

In future, we consider exploiting our particular problem
structure (which consists of few quadratic and many linear
terms) to make efficient use of sparsity and further reduce
optimization times. Apart from this, we aim at deriving full-
body forward and inverse dynamic equations, inspiring from
popular techniques in computational chemistry. The proposed
vector-based technique can also facilitate modeling of simpler
robots like manipulators, bipeds or monopods.
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