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Abstract—In this paper, we formulate a novel hierarchical
controller for walking of torque controlled humanoid robots. Our
method uses an online whole body optimization approach which
generates joint torques, given Cartesian accelerations of different
points on the robot. Over such variable translation, we can plan
our desired foot trajectories in Cartesian space between starting
and ending positions of the foot on the ground. On top level, we
use the simplified Linear Inverted Pendulum Model to predict the
future motion of the robot. With LIPM, we derive a formulation
where the whole system is described by the state of center of
mass and footstep locations serve as discrete inputs to this linear
system. We then use model predictive control to plan optimal
future footsteps which resemble a reference plan, given desired
sagittal and steering velocities determined by the high-end user.
Using simulations on a child-size torque controlled humanoid
robot, the method tolerates various disturbances such as external
pushes, sensor noises, model errors and delayed communication
in the control loop. It can perform robust walking over slopes and
uneven terrains blindly and turn rapidly at the same time. Our
generic dynamics model-based method does not depend on any
off-line optimization, being suitable for typical torque controlled
humanoid robots.

I. INTRODUCTION

Among various kinds of robots, legged robots are difficult
to control as one needs to maintain stability all the time while
performing desired tasks. Although quadruped robots have
some intrinsic stability, the case is more restricted for bipeds or
humanoids since the support region for Center of Mass (CoM)
is smaller comparatively. A traditional way to control the robot
is to keep the CoM inside the support region all the time while
taking steps (statically-stable walking). However this produces
an un-natural motion in terms of high coronal motion, non-
smooth sagittal motion and stepping speed, compared to real
humans. One can use the concept of Zero Moment Points
(ZMP) [20] to allow the CoM to move more freely while
maintaining dynamic stability. Keeping the ZMP inside the
support region will prevent the feet from tilting or rolling when
the COM is outside.

Various methods are introduced to perform locomotion by
modulating ZMPs. Based on Inverted Pendulum Model (IPM)
[7l, one can produce desired motions for the CoM using ankle
joints and controlling ZMP ([2, 3]]). More complicated forms
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of the IPM which assume inertia for the base of the pendulum
are also used in literature to improve walking stability. In [18],
the inertia mass is used to rest after taking a step while in
[24], it compensates swing leg’s dynamics. Inverted pendulum
models are useful for simplifying bipeds in single support
phase, aiming at predicting future motion of the robot with
lower computational cost compared to using a full model of
the system. An example of exploiting such simplification is
[9] where the concept of capture points is introduced. Simple
linear dynamics of capture points let us predict future motion
of CoM and plan the next footstep position which will absorb
the energy in the robot.

Planning locomotion and performing low-level joint control
of the robot are two interleaved topics. Using the Jacobian of
robot’s state vector, one can translate Cartesian variables to
joint variables and vice-versa. Virtual Model Control method
([170]) is an example of translating forces while various meth-
ods translate velocities as well [2] or integrate them to obtain
joint positions. However when we target agile and versatile
locomotion, it becomes helpful to also incorporate the knowl-
edge from dynamics of the robot into the loop. While Jacobian
merely provides information about the geometry of the robot,
dynamics-models can predict required joint torques to realize
the desired motion. Without this knowledge, one should rely
on the performance of individual joint controllers and their
tracking performance specially in case of position controlled
robots. Using high gains for better tracking normally leads
to stiff behavior which could be harmful for the environment
and the robot itself, especially in legged robots which deal
with impacts at each step. Besides, stability, compliance and
accuracy depend on tuning of various parameters, posture
of the robot and speed of the desired motion resulting in a
complicated trade-off problem. Thus, one prefers to use fewer
and weaker feedback gains to reject perturbations and rely
more on dynamics-based information of the robot to avoid
high stiffness and being more compliant.

Inspired from operational space formulation of Khatib [8]
and unified formulation of Aghili 1], inverse-dynamics meth-
ods have been widely used on humanoid robots either using
joint-space trajectories like [[19] or using Cartesian trajectories
like [25} 22]. In such formulation, one optimizes joint torques
and constraint forces, given desired joint space or Cartesian



accelerations. Although the equality constraint of contact
acceleration is considered in closed form solutions [[19], one
can not include inequality constraints like Center of Pressure
(CoP), friction cones or joint torque limits easily. This moti-
vates solving a quadratic constrained problem using fast QP
solvers per time step where one can consider all constraints at
the same time ([6]], [25], [24] and [11]). With such formulation
of the joint controller, we can track desired trajectories at end-
effectors with simple PD controllers while being compliant,
maintaining balance and satisfying all constraints.

In this paper, we propose a hierarchical control architecture
for locomotion of torque controlled humanoids similar to our
previous work [4] but with steering capabilities. The method
is composed of three layers:

1) Whole body optimization: generates joint torques given
Cartesian accelerations of the feet and the CoM.

2) Trajectory pattern generator: produces and tracks task-
space trajectories for feet and CoM, given the next
footstep position and orientation. The outputs of this
layer are Cartesian accelerations, given to the previous
layer.

3) Foot-step planner: produces discrete footstep patterns,
given the desired sagittal, coronal and yaw speeds that
the user determines. The first footstep position is then
given to the previous layer.

The first layer is described in section [[I] where we formulate
the quadratic problem we solve to generate joint torques.
Distinguished features of our formulation and comparison with
other implementations will be then discussed, though the main
contribution of this work is not at this level. Next in section
we describe our smooth Cartesian trajectory generation
and tracking policy in the second layer. These trajectories are
defined between the initial and the final footstep positions at
the end of the current swing phase. The latter is determined by
the third layer introduced in section This layer optimizes
future steps of the robot according to the LIPM and a reference
footstep plan, based on Cartesian velocities that the user deter-
mines with joystick. The optimization in this layer is written
as a linear discrete Model Predictive Control (MPC) problem
[10] over future footsteps. Fig[T] visualizes the different control
layers and the information flow between them.

The novelty of this work is mainly in the third layer where
we plan future footsteps in discrete space. In [[11]], first optimal
trajectories are found off-line by inverse kinematics and a
small QP for the configuration of the robot (based on [16]).
Using these trajectories, the method proposed in [L1] then
finds optimal ZMP trajectories that satisfy robots frictional and
torque limit constraints. Using these trajectories and a linear
Time Variant LQR, the method solves for CoM dynamics over
an arbitrary horizon and then CoM accelerations found are
given to their low level active-set based QP solver to generate
joint torques. The major difference of [[11]] with our method is
the fact that we do not have any off-line optimization. Rather
we optimize the next footstep positions on-line, considering
the aforementioned constraints and a reference footstep pattern
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Fig. 1. In this figure, the hierarchical architecture of the control is shown
together with a picture of the real robot. We have three different layers which
receive simple commands from user and generate joint torques for the robot.

which is defined in a closed form. Moreover, although the
time-variant LQR in [[L1] allows change in CoM height with a
certain policy, keeping the CoM height constant has minimal
practical effect on their robot’s balance performance. Com-
paratively, we make the latter assumption and obtain a simple
closed form discrete linear system describing future steps. In
[[L1]], authors incorporate a simple terrain estimation algorithm
to determine the desired CoM height profile. However we
will show that our blind method with constant CoM height
is notably robust against terrain variations. Overall, we try to
reject such disturbances by taking proper footsteps, rather than
modulating ZMP and relying on ankle torques [11} 3} 23]

While bringing the system to the rest conditions after pushes
exists in literature over a single step [23] or multiple steps [9],
we aim at a more generic scenario, i.e. bringing the system to
a desired non-zero velocity (given by a joystick). Besides, the
idea of capture points in [9]] is similar in terms of formulating
future steps of the robot in closed form by simplifying it into
LIPM. However we consider both the CoM position and speed
rather than a single quantity, i.e. capture point. Our approach
can also be taken by using Spring Loaded Inverted Pendulum
(SLIP) model as a simplified model of running. Hertzmann
et al. in [14] predict up to four future half cycles combining
single support, double support and ballistic motion phases with
nonlinear formulations of the SLIP model. Although it can
perform walking and running on various terrains, the planning
itself takes considerable time, making the robot not responsive
to strong perturbations such as pushes which change the CoM
state rapidly. Our footstep planner instead takes less than
0.2ms to solve the problem.

After the next three introductory sections on controller
layers, we will shortly introduce the simulation platform and
the Coman robot [21]] used to validate our controller in section
[Vl Results of simulations over a wide range of forward and



steering speeds given by joystick is then presented in the
same section. We will also test our method against various
perturbations either internally like noise or model errors or
externally like pushes or terrain variations.

II. FIRST LAYER: WHOLE BODY OPTIMIZATION

In this section, we present our QP problem formulation
used for the low-level joint control. Similar to several pre-
vious works ([25 23| 22| 16]), the objective function has a
quadratic form while constraints consist of the Equation of
Motion (describing dynamics of the robot), and other physical
constraints (such as end-effector constraints, CoP being inside
feet polygon and frictions polyhedrals). The difference of our
implementation however is that, we solve the problem by
including the joint torque limits in the constraints. This is in
contrast to Dynamic Balance Force Control (DBFC) methods
[22) 23] which divide the problem in two levels: (i) finding
optimal contact force distributions and then (II) finding joint
torques via pseudo-inversion and treating the torque limits by
saturation.

To formulate our problem, we first define the state vector
of our robot as g = [pp Ob qﬂT, where pp € R? and
op, € R? represent position and quaternion orientation of the
robot’s reference frame attached to the pelvis in the global
coordinates and q; € R™ represents n = 23 joint angles.
Throughout this paper, we use a convention to show positions
by p, quaternions by o and both of them together with x. We
update the global variables py, and oy, by an internal odometry
based on IMU and joint sensors. We write the Equation of
Motion (EoM) for this rigid body in Eq[l}

M(a)§ +h(a. &) = 7+ J&(a)A
¥c =Je(@)d+I'c(a)q (1)

Where M(q) € R(*T6)x(+6) i5 the inertia matrix, h(q, ¢) €
R"™*6 represents the floating base centrigetal, Coriolis and
gravity forces, 7 = [0 € R® 75 € R"|" is the vector of
actuated joint torques, Jc(q) € RF*("+6) is the Jacobian of
k linearly independent constraints and A € R” is the vector
of k constraint forces. Note that there is no need to consider
the 4th element of the quaternion vector oy in derivations.
The variable X € RX denotes the Cartesian translational
and rotational accelerations of the controlled points on the
robot’s body (namely robot’s end-effectors and COM). Here
k' is the total number of constraint equations introduced by
these points. Note that Jj(q) € R¥ *(+6) corresponds to all
controlled Cartesian points being in contact or moving freely
and thus, J¢(q) is a sub-matrix of J-(q). For the points being
in contact and fixed, the corresponding X¢ is zero while for
the floating points, this reference acceleration is determined
by the second layer of our controller. Thus for walking, &’ is
always 12 (as we have two feet, each introducing 6 constraint
equations). The parameter k£ (number of contacting points) is
either 6 in single support or 12 in double support phase.
Given the Cartesian accelerations (Pcom, Op and Xc), we
use a quadratic program (as formulated in Eq[2) to minimize

d, T and A under various physical constraints.
Lt Vo, (= idy) + Vo, (7)+ Vo,(A) + Vo, (0)
s TjsoNy
Mg+h=7+JEX
Ro = I+ Jeq
Z )\z = mﬁcom +o
AlrT A" <B 2)

Where Vq(v) = vIQuv, the variable m is robot’s mass and
the matrices Q; are diagonal quadratic costs and o induces a
soft constraint on CoM dynamics. We encapsulate coefficients
introduced by physical inequality constraints into A and for
conciseness. The joint torques should fall within a certain
bound determined by our real robot’s actuator specifications.
The CoP limits the torque available at each contact, propor-
tional to the normal force (refer to [25] and [24]]). We also
include the friction polyhedrals at each contact similar to [11].
In Eq q, is zero except for the base rotational acceleration
which is 6y. In fact, we control the base orientation directly,
while the method in [6] controls it by regulation of total
angular momentum rate. Note that the equality constraint for
Pcom in Eq[2]is a simpler alternative of using CoM Jacobian
for relating Pcom to joint accelerations which makes the
optimization slower.

With such problem definition, robot’s dynamics, feet accel-
erations and inequality constraints are defined as hard con-
straints. However, Cartesian accelerations determined by the
second layer of our controller are followed by soft constraints
with large quadratic costs. If the second layer gives infeasible
accelerations in terms of available frictions or torque limits
for example, the solution of this QP lies on the margin
of the constraints so that they are not violated. A similar
approach is taken in [11] where the second equality constraint
(contact accelerations) is soft. In their own formulation, this
soft constraint has the same effects on infeasible Xc. However
in our formulation, the softness on the CoM (Pcom) and the
base orientation (0p) deal with infeasible Cartesian acceler-
ations (Xc) as well. We consider larger quadratic costs for
the CoM compared to the base orientation. As a result, the
Cartesian tracking of feet is more precise with the cost of
small variations mainly on base orientation, which happen in
case of large perturbations and swing dynamics. Note that
this tracking is more important for us compared to the robot’s
posture, since we want our full robot to match with the LIPM
used for planning.

It is worth mentioning that for walking, we keep the upper
body joints of the robot fixed, i.e. assuming zero joint accelera-
tions. A PD position controller keeps them fixed with the aim
of feed-forward gravity compensation torque extracted from
the full dynamics model. The quadratic costs in Eq[2]determine
our weightings for torques vs. contact forces and accelerations.
Our robot in single support phase is fully actuated, considering
6 degrees of freedom in each leg and the number of constraints.
So there exist a unique solution, regarding analysis provided in
[1]] and [[13]. Note however that the robot is under-actuated in



the double support phase and our force distribution weighting
between the two feet in this phase follows similar policy
described in [25]. We give larger weight to the foot closer to
the CoM. Double support phase only happens shortly before
starting rhythmic stepping, described in the next section.

Benefiting from the well known QP solver, CVXGEN, we
are able to solve the whole problem including all joints in less
than 1.2ms (6 iterations on average) on a Core i5 1.7GHz
machine, coded in C++. With fixed upper body assumption
however, there is no point in considering corresponding ele-
ments in the mass matrix and the Jacobians, since accelerations
are zero. Therefore we avoid defining such sparse matrices and
break them into several blocks in CVXGEN which reduce the
problem size drastically. These fixed joints are around 50%
of all joints in most of humanoid robots including Coman.
So we can increase the performance up to around 0.7ms
in total, still being able to calculate gravity compensation
torques for fixed joints. For closed form solutions however, one
needs to reformulate the alternative pseudo-inversion formula
in [13] to make it efficient. Note that the active-set based QP
solver in [11] uses the solution found previously to speed up
convergence and has superior average performance, compared
to the QP solver of the present work.

In this section we presented how we calculate joint torques,
given Cartesian accelerations of controlled points on the
robot, i.e. CoM, base orientation and feet. We also described
strengths of the proposed problem formulation, tailored to
our own objectives we want to achieve in the upper layers
of the controller. In next section, we explain how Cartesian
accelerations are generated in the second layer.

III. SECOND LAYER: TRAJECTORY PATTERN GENERATOR

In this section, we explain the policy we use to generate
gait trajectories as well as the rthythm with which the support
leg is changed. In this layer, a state machine with fixed timing
switches between left and right support. There is only a short
double support phase in the beginning when the robot starts
from normal posture and shifts left or right to start rhythmic
stepping properly. The input to this layer of our controller
is the next footstep position in global coordinates at the end
of each swing phase. This layer is responsible for generating
Cartesian accelerations of the CoM, base orientation and feet.

As will be described later in the third layer, we assume that
the robot follows a simple foot-less LIPM model in left or right
support phase which induces weak ankle assumption. In our
method, ankles mainly serve as controlling posture of the robot
rather than inducing motions on the CoM. This assumption is
the key factor in making our blind robot robust against terrain
variations. However to enhance the accuracy of the model,
we consider the non-flat orientation of the contacting foot in
calculating friction polyhedrals or CoP constraints of Eq[2}
Considering LIPM, the = and y components of the variable
Pcom are determined by:
pbase) (3)

Pcom =

g
7o (pcom

Where z; is the reference constant CoM height and ppase
is the center location of the stance foot. Note that the =z
component of Peom 1S determined by a PD feedback, tracking
constant CoM height reference z.

In order to investigate the coupling of x, y and yaw motions,
from [9] one can write a full IPM equation of motion with
ankles and inertia mass by:

mijcom =f+ mg

JdJ:Thip—wX (JLU) (4)

Where J is the moment of inertia and w is the angular velocity
of the body. The moment balance for the IPM based massless
leg is:

- (pcom - pbase) x f— Thip + Tankle = 0 (5)

Substituting 75, and f from Eqf] to Eq[5| we obtain:

(pcom - pbase) X (mg - mﬁcom) +
Tankle = JW + w X (JW) (6)

Note that = and y components of P.,,, are in proportion to
those components in (Pecom — Pbase), described in Eq So
the left-hand-side cross product has no z component. One can
easily prove that if w and w are zero, Tankie Will also be zero
which is essentially the basic ankle-less and inertia-less LIPM
used in Eq[3]

For the complex model of Eq@ however, we should make
sure that Tankle Will compensate all right-hand-side moments
so that our prediction which is based on simple LIPM stays
valid. It is difficult to find bounds for w since J is time variant
and depends on the posture of the robot. Assuming diagonal
J however, one can write the approximate validity condition
as:

Jralz + (Jzz - Jyy)wzwy wfoot,y/2
| Jyywy + (Jzz - Jzz)wzwz ‘ < u}foot,z/2 ‘mg| (7)
Jzz"’jz + (Jyy - Jxr)wywz Hrot

Where W oot and wyoot,y are the robot’s foot width in 2 and
y directions and o+ is the rotational friction of the feet with
the ground. If x and y components of w are negligible as well
as non-diagonal elements of J, then large yaw acceleration
values will only appear in z component of Tankie Which has
larger bounds. Since p,o¢ is much larger than foot width of
our robot, (in SI units, 0.5 vs. 0.08 respectively) and J,, is
smaller than J,, and J,,, the method can tolerate larger yaw
motions compared to pitch and roll. By increasing steering
speed up to a certain point, the whole body optimization in
the first layer generates torques that completely track reference
orientation. Above that, tracking will not be precise and the
induced motion will be on the margins of constraints.

So far we discussed how we generate CoM accelerations.
At the end of each swing phase, we assume that the base
and swing foot are rotated by wj,, At around z axis where
At is the duration of swing phase and wj., is the reference
steering velocity determined by joystick. The final location
of the swing foot (i.e. the next footstep location) is also



determined by the third layer. Thus, the second layer generates
trajectories between initial and final orientations of the base
and also positions and orientations of the swing foot. We
use Spherical linear interpolation (Slerp) transition function
to generate smooth Cartesian trajectories and use quaternions
to avoid singularities of Euler rotations during steering. For the
purpose of lifting the swing foot and having enough clearance,
we use sinusoids of the form:

Pc,z(t) =1 1 ( -
55 " 8o 2w 6w

za sin(wt)  sin(3wt) o

), YT AL

®)

Where pc ,(t) is the reference height for the swing foot, ¢ is
the time counted from the beginning of each phase and z.; is
the clearance distance between the foot and the ground, when
it is in the apex of foot trajectory arc. Such function ensures
zero position, velocity and acceleration of the beginning and
the end of the arc. The generated reference trajectories are
all tracked by PD controllers in this layer which generate
Op and Xc, given to the first layer together with Peom
described earlier. Note that alternation of stance legs and the
corresponding Jacobians (Jc(q)) in Eq are also based on
the pattern of phases produced in this layer. In section [V} we
will show the performance of such pattern generation policy
over uneven terrains where the assumption of flat ground is
violated. This assumption is in fact used when keeping CoM
height constant and generating arc trajectories of Eq[8]

So far, we have defined the Cartesian trajectory and tracking
of feet, CoM and base orientations. In the next section we will
describe how the next footstep location is determined by the
third layer.

IV. THIRD LAYER: FOOT-STEP PLANNER

In this section, we will formulate a Model Predictive
Control (MPC) problem [10] to find a stabilizing future plan
of footsteps. The inputs to this layer of our controller are
sagittal (v;oy,4), coronal (v, ) and steering velocities (w;oy)
determined by a joystick (assumed to be in robot’s coordinate
frame).

At this level of the controller, the robot is simplified using
a foot-less LIPM. The prismatic actuator in the leg keeps the
CoM height always constant. This model allows us to predict
the future motion of the robot, assuming weak ankles. Our
formulation forms a discrete time model of the robot where
CoM position and velocity are the state of the system and
footsteps locations serve as inputs. Recall Eq[3] where the CoM
acceleration depends on its distance from the stance foot. One
can solve this differential equation and obtain the solution in
time for z and y components of pcom, expressed in Eq9]

Peom = —(Peom — Pbase) ©)
Peom(t) = ae™"" +be"” + ppase
T = /g
a = 0.5(—TPcom(0) + Pcom(0) — Pbase)
b 0.5(TPcom (0) + Peom (0) — Pbase)

We can then predict  and y components of CoM at time At
using their current value.

pcom(At) = pbase(% + 5 + ) +
-1

+Peom(0)(57 + &) + pcom(0>(2h +) 0 10)

Where h = e+ . One can follow the same procedure and
obtain x and y components of Peom(At). We define the
simplified robot’s state § as:

(1)

So using current state of the CoM (§(0)) and the remaining
time of current phase At, we can express the state of CoM at
the end of the current swing phase by:

a(At) = A(A1)§(0) + B(At)Pbase (12)

Where Ppase € R? and A € R4*% and B € R**2 are
matrices containing all the coefficients of Eq@} Since Ppase
and §(0) are already available at each moment, G(At) could
be calculated and we call it g[1] in discrete space. Following
the same procedure, we can predict the future motion by:

13)

~ o . T
q= [pcom,x Pcom,y Pcom,x pcom,y}

él[z + 1] = AQM + prase[i]a 12>1

Assuming fixed phase durations, now A and B are functions
of At and future footsteps are expressed by Duaseli]- It
is straightforward to show that matrices A and B form a
controllable system by checking the rank of [B AB] ([LSID).
Eq[I3]serves as the basis model used in our MPC to plan future
footsteps. The next footstep position given to the second layer
of our controller is therefore ppase[1] determined in this layer.

We aim at guiding the future footsteps so that they induce
the average velocity vector given by the joystick. To this
end, we first define a reference footstep plan. One expects
coronal motions of the CoM to be minimal in natural walking.
Define the variable s = 1 if the robot is in right support or
s = —1 if it is in left support. Assume also that footsteps
normally have distance of 2d in coronal plane during walking.
We define delta-motion for each step by Az = 2vj,y AL,
Ay = 200y yAt and A = wj,,At. If we define the rotation
vector R(n) = [cos(n) sin(n)]T, we can plan a reference
discretized path over N horizon by initializing :

0[0] = o, (14)
Pdes[0] = Phase
m[0] = pqes[0] + d R(O[0] + s7/2)
And defining the steps for 1 <¢ < N as:
0li] = 0fi — 1] + A0
mfi] =mfi — 1] +
+Az R(0[i —1]) + Ay R(0[i — 1] + 7/2)
Paesli] = mli] + d R(O[0] — s(~1)im/2)
Vil = vjoy.» R(O[i]) + vjoy,y R(OU] +7/2)  (15)

In these notations, 6 represents steering angle, m represents
midpoint of the two feet, py.s represents ideal footsteps plan



and v represents ideal CoM speed. The goal of the MPC
controller in the third layer is to track such sequence of
ideal footsteps and CoM desired velocities given by joystick.
Therefore, we define a quadratic optimization problem of the
form:

q{yl]r;nn ’ >V (@pli + 1] + épli] — 2 m[i]) +

Ppasel?
VQaq (Adp[i 4 1,1] — At v[i]) +

VQp (pbase [Z] — Pdes [Z]) +

Vde (Apbase[i + 17 Z] - Apdes [Z + 17 Z])
s.t.

dli + 1] = AQ[i] + Bpbaseli],

Where Vq (v) = VTQV, the matrices Q; are quadratic costs,
Qp[i] denotes position components (z and y) of the state
vector ] and the operator A denotes the difference between
consecutive 7 + 1 and 7 indexes. Such objective function
implicitly minimizes both states and input control variables,
together with their derivatives in discrete space. The first
two quadratic costs are written over two consecutive CoM
positions so that they preserve symmetry of the limit-cycle
and that in normal conditions when the robot is moving solely
in forward direction, the value of objective function becomes
zero. Note that this formulation in fact translates coronal and
sagittal speeds which are defined in robot’s local frame to
global coordinate frame. In practice however, we always give
zero reference coronal speed to the planner. A sample planned
and reference paths are shown in Fig[Z]

1>1 (16)

apli+1]

O

[ ) Phasei]
@®CcoM

m[0] @
Pdes[1]

Pbase|1]

Fig. 2. Sequence of steps planned by MPC during the left support phase.
Ideal sequence planned in Eq@ is shown by filled shapes while the optimal
plan extracted from Eq@ is solid bounded. Note that the difference between
the two plans decreases over time.

In practice, we use higher weights for the matrices Qqp
and Qgq so that the robot does not react aggressively or
take very large steps, when it is perturbed with strong pushes.
Such weighting policy is more robust for maintaining average
speeds, determined by the joystick. One can easily introduce
additional constraints to this problem on individual footsteps.
For example CoM position should not go further than |uzo]
of stance foot position where p is friction coefficient. In this
case, the friction vector will fall out of the friction polyhedral.

We have added this constraint, though it is rarely triggered in
the range of speeds that our method is able to produce. Note
also that the inter-foot distance (2d) is chosen to be large and
we tune foot tracking gains so that self collision between feet
does not happen.

Our MPC controller of this level is implemented by using
CVXGEN [12] up to horizon of N = 5 footsteps and takes
around 0.2ms on average to solve. Once the next footstep
Pbase|1] is optimized, it is transfered to the second layer of
the controller and treated as a target point for the swing leg.
Note that if the CoM is perturbed, the corresponding ppase[1]
will adapt in single time-step while in many methods such
as [14], the corrective response is delayed more. In the next
section, we will briefly introduce the robot we use to validate
our method and analyze its performance.

V. RESULTS

In this section we want to design and perform a set
of experiments to evaluate the performance of our control
approach. The Coman robot [21] which serves as the main
platform for simulating this walking method is a child-sized
torque controlled robot with electric motors and series-elastic
elements in pitch joints. It weights around 30kg and has total
of 23 degrees of freedom, 6 per leg, 4 per arm and 3 between
the pelvis and the torso. For the purpose of this work, we keep
upper body of the robot fixed with the policy described before.
The robot carries usual joint position and velocity sensors as
well as an IMU unit on the pelvis and contact force sensors. In
the proposed controller however we do not use contact sensors,
accelerometers or any perception. Our method is robust against
Coman’s series-elastic elements in simulations, where the
torque tracking performance is ideal. Although the control
loop delay in the real setup is negligible (around 2 — 3ms),
but actuator dynamics are not yet responsive and fast enough
to be suitable for this controller. They are typically slow,
introducing about 50ms of delay with respect to the given
torque profile. As improving the real robot is still ongoing,
we show simulation results in this section (the accompanying
movie is found at http://infoscience.epfl.ch/record/1985127),
using an ODE based simulator software environment.

A. Range of speeds

With the same set of parameters, we are able to cover a wide
range of backward and forward speeds between —0.2m/s to
0.4m/s, shown in Fig However, the tracking of the desired
average speeds given by the joystick depends on various pa-
rameters. This tracking acceptable for forward speeds, however
it deteriorates for backward motions due the ankle asymmetry.

We additionally test the performance of our controller for
the tasks combining steering and forward motions. To this end,
we perform four tests shown in FigH] to find the maximum
reference velocity combinations that can be achieved. High
forward and steering velocities at the same time is highly
challenging. One can clearly see in Fig[Z] that the outer foot
must take larger steps compared to the inner foot and thus,
steering motion limits maximum forward speed.
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Fig. 3. Resulting limit-cycles of CoM speeds plotted for a wide range
of desired forward velocities. The controller tracks the desired velocity,
however the repeatability of limit-cycles is affected by foot trajectory tracking
performance and contact simulation in high speeds.
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Fig. 4. Evolution of the CoM forward (pcom,=) and the base yaw velocities
(Opase,~)- In each test, the reference joystick velocity linearly increases up
to the indicated value and saturates after about 3s. The robot starts from rest
condition and goes to the final limit-cycle. These four tests show maximum
reference speeds that could be given to the robot for stepping stably. We can
see that steering limits the forward velocity as the outer foot must take larger
steps.

The walking performance of our controller on Coman is
comparable in relative terms to real-sized humanoids which are
taller and can walk faster. For example the method presented
in [5] uses on-line trajectory optimization and can perform
up to 1.14m/s on the flat ground by Atlas robot, which is
two times taller than Coman. A restricting assumption for
our method is in fact the full foot contact while Feng in [5]]
uses toes at lift-offs. Including a phase for the toe lift-off is a
possible improvement for our method. So far we characterized
the region of stable functionality for the robot without any
perturbation. In next parts, we will examine its performance
against perturbations, starting from external pushes.

B. External pushes

One important an challenging task for the current hu-
manoids is to stabilizes after being pushed in different direc-
tions while performing walking. Here we consider a scenario
where the robot is going forward with a moderate speed, i.e.
0.2m/s. Our impulsive pushes are applied to the torso of the
robot, each having 3N .s of strength. The robot takes corrective
steps to capture the accumulated energy rather than relying
on ankle torques and maintaining the CoP inside the limited
support polygon. Note that the external pushes perturb the
CoM state and the method simultaneously changes the future

footstep plan, starting from Eq[I2] Since our planning is done
per time-step, the robot is able to react as fast as possible. The
resulting behavior of the robot is shown in Fig[5}A.

C. Model Errors

In model based methods, one needs to make sure that
the internal dynamics model of the robot matches the real
robot as much as possible. The aim is to reduce feedback
gains which correct these errors and thus, making the robot
more compliant. We test our method in some scenarios where
the robot carries additional weight in simulations and the
controller is blind. The aim is to know how robust the method
is against unknown errors. The resulting limit-cycles at the
nominal speed of 0.2m/s and maximum tolerable errors are
shown in Fig[5} B as well as walking on a slope of 15° degrees.
The latter test evaluates the performance if the assumption of
flat-ground used in our second and third layers is violated. This
slope is the maximum that the method can tolerate while being
blind. We observe that the walking is still stable, even though
the limit cycles become skewed, asymmetric or enlarged.

D. Perturbations

Beside biased model errors, we test the robustness against
delayed communication and sensor noises as well. These
scenarios are shown in Fig[5}C together with nominal limit-
cycles. We add Gaussian noise to IMU orientation angles and
joint positions sensors. At maximum tolerable conditions, the
standard deviation (std) of IMU noises could be around 3°
while the std of joint sensors could be 1°. Note that joint
errors accumulated in the kinematic chain of the leg can affect
the end-effector tracking performance severely. Also since
IMU angles determine the whole orientation of the robot, a
small wrong rotation can induce a large motion on the feet.
Stronger perturbations lead to self collision of feet or result
in taking very large steps which are impossible regarding the
friction polyhedrals. In practice, a Kalman filter could be used
to filter out these noises. The robot also tolerates delayed
communications up to 10ms. Although it takes large steps in
different directions and the motion looks less symmetric and
periodic, but it is still able to maintain the dynamic stability.

E. Uneven terrain

Our final test validates the performance over an uneven
terrain, i.e. random external geometric errors. We assume
flat-ground when planning future footsteps and forming arc
trajectories for the swing foot. However they are not often
valid since the swing foot might touch the ground earlier
or later than the expected moment. The intrinsic compliance
of the first layer improves the stability in the sense that
minimal bouncing happens at these moments. However we are
interested to know the effect of such perturbations in footstep
planning and cyclic behavior of the robot. The result of our
test is shown in Fig[5}D where terrain variations are around
+5cm. Although the robot slips at some point due to weakness
of the contact modeling in our simulator, it can recover by
taking proper steps. Our responsive footstep planner enables
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(A) Push recovery: The robot is subject to 10N external pushes applied on its torso to various directions while walking at 0.2m/s. Each push

lasts 0.3s and then, the robot recovers by taking proper steps. (B) Model Errors: Extra weight is added to various parts of the robot. In the “torso backpack”
scenario, we add 1kg to the torso and shift its CoM —1cm back. In the slope scenario, the robot gradually takes larger steps on steeper slopes until it falls.
15¢ is the maximum tolerable degree. (C) Perturbations: In noise scenario, a white Gaussian noise of std=3° is added to the IMU orientation angles as well
as a noise of std=1¢ to the joint position sensors. The robot also tolerates 10ms of delay in communication link, while still being stable. (D) Uneven terrain:
Here, terrain variations are £5cm and the robot still walks robustly. Larger variations could also be tolerated, but our simulator has problems in simulating

contacts on complex meshes.

the robot to recover from fast perturbations like slippage and
external pushes which can happen in the real world as well.

VI. CONCLUSION

In this paper, we presented a hierarchical controller able to
perform walking over a wide range of forward and steering
speeds. Our controller is based on a dynamics model of the
robot without the need to any off-line optimization. Different
levels translate the problem first from the joint torques to
Cartesian accelerations, then to footstep positions and then
only to forward and steering desired speeds, given by a user.
The specific formulation of the first layer makes the robot
compliant and considers most of the physical constraints on the
robot including torque limits, frictions and CoP. Such flexible
low level controller plays the key role in being compliant
and robust, when the robot is exposed to various kinds of
perturbations that make its interaction with the environment
unpredictable. The second layer produces smooth Cartesian
trajectories for the feet and CoM and tracks them with simple
PD controllers. In the third layer, we simplify the robot by a
LIPM which allows us to predict future motion of the robot
in closed form over multiple steps. We can then plan the next
desired step which captures the energy of the robot, while
realizing the desired speed determined by the user.

One of the main difference between our method and a large
group of works is that we react to perturbations by taking
proper footsteps rather than modulating ankle torques. These
torques can only help if the CoP is not violated which is
limited due to small size of the feet. However one can take
larger steps and use the available friction to guide the CoM.
This requires planning over hybrid states, i.e. switching of
the left and right feet. Possible improvement for our method
could be combining its footstep planning with CoP control
policies in our second layer where we feed the open-loop
LIPM accelerations to the CoM. Another future work is adding
constraints to the footstep planner to avoid self collisions
as well which makes the problem non-convex. Furthermore,
one can consider exact-foot placement which needs back-
propagation of constraints over footsteps. Our simple formu-
lation is a flexible basis for adding various constraints that
might not be realizable with other non-linear future planing
methods. Evident by various kinds of robustness tests and
minimal parameter tunings, we can suggest the method for
walking of a wide range of torque controlled bipedal robots.
The accompanying movie shows more scenarios where the
robot performs walking and steering at the same time, as well
as movies of the scenarios presented here.
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