1,138 research outputs found

    Dynamical spectral unmixing of multitemporal hyperspectral images

    Full text link
    In this paper, we consider the problem of unmixing a time series of hyperspectral images. We propose a dynamical model based on linear mixing processes at each time instant. The spectral signatures and fractional abundances of the pure materials in the scene are seen as latent variables, and assumed to follow a general dynamical structure. Based on a simplified version of this model, we derive an efficient spectral unmixing algorithm to estimate the latent variables by performing alternating minimizations. The performance of the proposed approach is demonstrated on synthetic and real multitemporal hyperspectral images.Comment: 13 pages, 10 figure

    Biophotonic Tools in Cell and Tissue Diagnostics.

    Get PDF
    In order to maintain the rapid advance of biophotonics in the U.S. and enhance our competitiveness worldwide, key measurement tools must be in place. As part of a wide-reaching effort to improve the U.S. technology base, the National Institute of Standards and Technology sponsored a workshop titled "Biophotonic tools for cell and tissue diagnostics." The workshop focused on diagnostic techniques involving the interaction between biological systems and photons. Through invited presentations by industry representatives and panel discussion, near- and far-term measurement needs were evaluated. As a result of this workshop, this document has been prepared on the measurement tools needed for biophotonic cell and tissue diagnostics. This will become a part of the larger measurement road-mapping effort to be presented to the Nation as an assessment of the U.S. Measurement System. The information will be used to highlight measurement needs to the community and to facilitate solutions

    Online Graph-Based Change Point Detection in Multiband Image Sequences

    Full text link
    The automatic detection of changes or anomalies between multispectral and hyperspectral images collected at different time instants is an active and challenging research topic. To effectively perform change-point detection in multitemporal images, it is important to devise techniques that are computationally efficient for processing large datasets, and that do not require knowledge about the nature of the changes. In this paper, we introduce a novel online framework for detecting changes in multitemporal remote sensing images. Acting on neighboring spectra as adjacent vertices in a graph, this algorithm focuses on anomalies concurrently activating groups of vertices corresponding to compact, well-connected and spectrally homogeneous image regions. It fully benefits from recent advances in graph signal processing to exploit the characteristics of the data that lie on irregular supports. Moreover, the graph is estimated directly from the images using superpixel decomposition algorithms. The learning algorithm is scalable in the sense that it is efficient and spatially distributed. Experiments illustrate the detection and localization performance of the method

    Advancing fluorescent contrast agent recovery methods for surgical guidance applications

    Get PDF
    Fluorescence-guided surgery (FGS) utilizes fluorescent contrast agents and specialized optical instruments to assist surgeons in intraoperatively identifying tissue-specific characteristics, such as perfusion, malignancy, and molecular function. In doing so, FGS represents a powerful surgical navigation tool for solving clinical challenges not easily addressed by other conventional imaging methods. With growing translational efforts, major hurdles within the FGS field include: insufficient tools for understanding contrast agent uptake behaviors, the inability to image tissue beyond a couple millimeters, and lastly, performance limitations of currently-approved contrast agents in accurately and rapidly labeling disease. The developments presented within this thesis aim to address such shortcomings. Current preclinical fluorescence imaging tools often sacrifice either 3D scale or spatial resolution. To address this gap in high-resolution, whole-body preclinical imaging tools available, the crux of this work lays on the development of a hyperspectral cryo-imaging system and image-processing techniques to accurately recapitulate high-resolution, 3D biodistributions in whole-animal experiments. Specifically, the goal is to correct each cryo-imaging dataset such that it becomes a useful reporter for whole-body biodistributions in relevant disease models. To investigate potential benefits of seeing deeper during FGS, we investigated short-wave infrared imaging (SWIR) for recovering fluorescence beyond the conventional top few millimeters. Through phantom, preclinical, and clinical SWIR imaging, we were able to 1) validate the capability of SWIR imaging with conventional NIR-I fluorophores, 2) demonstrate the translational benefits of SWIR-ICG angiography in a large animal model, and 3) detect micro-dose levels of an EGFR-targeted NIR-I probe during a Phase 0 clinical trial. Lastly, we evaluated contrast agent performances for FGS glioma resection and breast cancer margin assessment. To evaluate glioma-labeling performance of untargeted contrast agents, 3D agent biodistributions were compared voxel-by-voxel to gold-standard Gd-MRI and pathology slides. Finally, building on expertise in dual-probe ratiometric imaging at Dartmouth, a 10-pt clinical pilot study was carried out to assess the technique’s efficacy for rapid margin assessment. In summary, this thesis serves to advance FGS by introducing novel fluorescence imaging devices, techniques, and agents which overcome challenges in understanding whole-body agent biodistributions, recovering agent distributions at greater depths, and verifying agents’ performance for specific FGS applications

    Gaussian mixture model classifiers for detection and tracking in UAV video streams.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Manual visual surveillance systems are subject to a high degree of human-error and operator fatigue. The automation of such systems often employs detectors, trackers and classifiers as fundamental building blocks. Detection, tracking and classification are especially useful and challenging in Unmanned Aerial Vehicle (UAV) based surveillance systems. Previous solutions have addressed challenges via complex classification methods. This dissertation proposes less complex Gaussian Mixture Model (GMM) based classifiers that can simplify the process; where data is represented as a reduced set of model parameters, and classification is performed in the low dimensionality parameter-space. The specification and adoption of GMM based classifiers on the UAV visual tracking feature space formed the principal contribution of the work. This methodology can be generalised to other feature spaces. This dissertation presents two main contributions in the form of submissions to ISI accredited journals. In the first paper, objectives are demonstrated with a vehicle detector incorporating a two stage GMM classifier, applied to a single feature space, namely Histogram of Oriented Gradients (HoG). While the second paper demonstrates objectives with a vehicle tracker using colour histograms (in RGB and HSV), with Gaussian Mixture Model (GMM) classifiers and a Kalman filter. The proposed works are comparable to related works with testing performed on benchmark datasets. In the tracking domain for such platforms, tracking alone is insufficient. Adaptive detection and classification can assist in search space reduction, building of knowledge priors and improved target representations. Results show that the proposed approach improves performance and robustness. Findings also indicate potential further enhancements such as a multi-mode tracker with global and local tracking based on a combination of both papers

    Robust unmixing of tumor states in array comparative genomic hybridization data

    Get PDF
    Motivation: Tumorigenesis is an evolutionary process by which tumor cells acquire sequences of mutations leading to increased growth, invasiveness and eventually metastasis. It is hoped that by identifying the common patterns of mutations underlying major cancer sub-types, we can better understand the molecular basis of tumor development and identify new diagnostics and therapeutic targets. This goal has motivated several attempts to apply evolutionary tree reconstruction methods to assays of tumor state. Inference of tumor evolution is in principle aided by the fact that tumors are heterogeneous, retaining remnant populations of different stages along their development along with contaminating healthy cell populations. In practice, though, this heterogeneity complicates interpretation of tumor data because distinct cell types are conflated by common methods for assaying the tumor state. We previously proposed a method to computationally infer cell populations from measures of tumor-wide gene expression through a geometric interpretation of mixture type separation, but this approach deals poorly with noisy and outlier data

    Analyse hiérarchique d'images multimodales

    Get PDF
    There is a growing interest in the development of adapted processing tools for multimodal images (several images acquired over the same scene with different characteristics). Allowing a more complete description of the scene, multimodal images are of interest in various image processing fields, but their optimal handling and exploitation raise several issues. This thesis extends hierarchical representations, a powerful tool for classical image analysis and processing, to multimodal images in order to better exploit the additional information brought by the multimodality and improve classical image processing techniques. %when applied to real applications. This thesis focuses on three different multimodalities frequently encountered in the remote sensing field. We first investigate the spectral-spatial information of hyperspectral images. Based on an adapted construction and processing of the hierarchical representation, we derive a segmentation which is optimal with respect to the spectral unmixing operation. We then focus on the temporal multimodality and sequences of hyperspectral images. Using the hierarchical representation of the frames in the sequence, we propose a new method to achieve object tracking and apply it to chemical gas plume tracking in thermal infrared hyperspectral video sequences. Finally, we study the sensorial multimodality, being images acquired with different sensors. Relying on the concept of braids of partitions, we propose a novel methodology of image segmentation, based on an energetic minimization framework.Il y a un intérêt grandissant pour le développement d’outils de traitements adaptés aux images multimodales (plusieurs images de la même scène acquises avec différentes caractéristiques). Permettant une représentation plus complète de la scène, ces images multimodales ont de l'intérêt dans plusieurs domaines du traitement d'images, mais les exploiter et les manipuler de manière optimale soulève plusieurs questions. Cette thèse étend les représentations hiérarchiques, outil puissant pour le traitement et l’analyse d’images classiques, aux images multimodales afin de mieux exploiter l’information additionnelle apportée par la multimodalité et améliorer les techniques classiques de traitement d’images. Cette thèse se concentre sur trois différentes multimodalités fréquemment rencontrées dans le domaine de la télédétection. Nous examinons premièrement l’information spectrale-spatiale des images hyperspectrales. Une construction et un traitement adaptés de la représentation hiérarchique nous permettent de produire une carte de segmentation de l'image optimale vis-à-vis de l'opération de démélange spectrale. Nous nous concentrons ensuite sur la multimodalité temporelle, traitant des séquences d’images hyperspectrales. En utilisant les représentations hiérarchiques des différentes images de la séquence, nous proposons une nouvelle méthode pour effectuer du suivi d’objet et l’appliquons au suivi de nuages de gaz chimique dans des séquences d’images hyperspectrales dans le domaine thermique infrarouge. Finalement, nous étudions la multimodalité sensorielle, c’est-à-dire les images acquises par différents capteurs. Nous appuyant sur le concept des tresses de partitions, nous proposons une nouvelle méthodologie de segmentation se basant sur un cadre de minimisation d’énergie
    corecore