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ABSTRACT 

Fluorescence-guided surgery (FGS) utilizes fluorescent contrast agents and specialized optical 

instruments to assist surgeons in intraoperatively identifying tissue-specific characteristics, such 

as perfusion, malignancy, and molecular function. In doing so, FGS represents a powerful 

surgical navigation tool for solving clinical challenges not easily addressed by other conventional 

imaging methods. With growing translational efforts, major hurdles within the FGS field include: 

insufficient tools for understanding contrast agent uptake behaviors, the inability to image tissue 

beyond a couple millimeters, and lastly, performance limitations of currently-approved contrast 

agents in accurately and rapidly labeling disease. The developments presented within this thesis 

aim to address such shortcomings. 

Current preclinical fluorescence imaging tools often sacrifice either 3D scale or spatial 

resolution. To address this gap in high-resolution, whole-body preclinical imaging tools 

available, the crux of this work lays on the development of a hyperspectral cryo-imaging system 

and image-processing techniques to accurately recapitulate high-resolution, 3D biodistributions 

in whole-animal experiments. Specifically, the goal is to correct each cryo-imaging dataset such 

that it becomes a useful reporter for whole-body biodistributions in relevant disease models.  

To investigate potential benefits of seeing deeper during FGS, we investigated short-

wave infrared imaging (SWIR) for recovering fluorescence beyond the conventional top few 

millimeters. Through phantom, preclinical, and clinical SWIR imaging, we were able to 1) 

validate the capability of SWIR imaging with conventional NIR-I fluorophores, 2) demonstrate 

the translational benefits of SWIR-ICG angiography in a large animal model, and 3) detect 

micro-dose levels of an EGFR-targeted NIR-I probe during a Phase 0 clinical trial. 
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Lastly, we evaluated contrast agent performances for FGS glioma resection and breast 

cancer margin assessment. To evaluate glioma-labeling performance of untargeted contrast 

agents, 3D agent biodistributions were compared voxel-by-voxel to gold-standard Gd-MRI and 

pathology slides. Finally, building on expertise in dual-probe ratiometric imaging at Dartmouth, 

a 10-pt clinical pilot study was carried out to assess the technique’s efficacy for rapid margin 

assessment. 

In summary, this thesis serves to advance FGS by introducing novel fluorescence 

imaging devices, techniques, and agents which overcome challenges in understanding whole-

body agent biodistributions, recovering agent distributions at greater depths, and verifying 

agents’ performance for specific FGS applications. 
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1  INTRODUCTION 

1.1 MOLECULAR IMAGING REVEALS FUNCTIONAL INFORMATION OF BIOLOGICAL 

PROCESSES. 

Molecular imaging refers to the in vivo characterization and measurements of biological 

processes occurring at the cellular and molecular level.1,2 To acquire cellular and molecular 

information within a living system, molecular probes (or contrast agents) are typically employed 

and tracked throughout the body, using a variety of ionizing or non-ionizing imaging modalities. 

Unlike conventional imaging methods which provide anatomic information (e.g. X-ray, CT, and 

MRI), molecular imaging modalities provide physiological information, which is particularly 

useful in understanding molecular abnormalities and cellular pathways of disease.  

 Molecular imaging modalities can be classified as ionizing (nuclear medicine3–5 and 

CT6,7), or non-ionizing (MRI,8–13 US,14,15 and optical). The majority of this thesis will focus on 

optical molecular imaging techniques (discussed in Section 1.2), and specifically, fluorescence 

imaging (as discussed in Section 1.3). 

Although non-ionizing modalities have the clear advantage of eliminating radiation 

exposure to the patient, nuclear medicine is the molecular imaging workhorse in clinical 

practice,3–5 offering non-invasive, functional imaging. Positron emission tomography (PET) and 

single photon emission computed tomography (SPECT) imaging systems are widely used to 

report on molecular abnormalities associated with cancer and other major diseases.1,11,16 In this 

space, targeted radiopharmaceuticals have been developed to report on tumor cell proliferation,17 



 

2 
 

therapy response,18 and cancer biomarkers (e.g. programmed-death ligand 1 (PD-L1), CD8, 

cancer-associated fibroblasts).19  

As a rapidly growing field, molecular imaging has facilitated remarkable advances 

including the discovery of new drug targets,20 drug efficacy studies,21 and molecularly-guided 

interventions.22  Such advances have changed the way we practice medicine today. By reporting 

on intracellular and extracellular features of disease, molecular imaging represents a significant 

shift away from the structural or anatomical imaging approach of conventional medical imaging. 

This fundamental change has the potential for better disease visualization, characterization, 

diagnosis, treatment-selection and progression monitoring at the molecular level.  Moving 

forward, molecular imaging applications are predicted to improve early detection and personalize 

treatment selection within the next 5-15 years.1 

1.2 OVERVIEW OF OPTICAL MOLECULAR IMAGING  

Biomedical optical imaging broadly refers to the use of ultraviolet, visible, and infrared light to 

obtain spatial information of biological systems. As a non-ionizing option, optical imaging has 

emerged as a promising technique with the trade-off of lower depth sensitivity compared to 

nuclear imaging. Nonetheless, when applied to superficial tissues, optical imaging enables high-

resolution recovery of optical reporters or endogenous chromophore expression. Optical imaging 

systems are also typically less expensive, portable, and faster compared to other conventional 

imaging modalities; making optical imaging an ideal point-of-care tool. 

For the purposes of this thesis, we will focus on optical molecular imaging where a 

molecular-specific source of signal is detected by an optical system. Typically, optical molecular 

imaging requires an extrinsic contrast agent, but there are a few examples of endogenous (label-

free) molecular imaging where reflected light spectroscopy, tissue autofluorescence, or Raman 
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scattering can be used to image molecular features and provide subcellular information. 

Examples of such endogenous optical molecular imaging applications include utilizing oral 

cavity autofluorescence to better visualize neoplasias,23 using laser-induced fluorescence 

spectroscopy to identify mucosal abnormalities at endoscopy,24 and applying light-scattering 

spectroscopy (LSS) to diagnose Barrett’s esophagus patients.25 Such label-free imaging has 

successfully been shown to improve early detection of neoplasia by differentiating between 

healthy and neoplastic lesions,25 yet limitations exist in terms of the ability of label-free agents to 

distinguish specific cancer biomarkers. 

Unlike label-free endogenous imaging, extrinsic contrast imaging requires an agent to be 

administered prior to or during the intervention.  Introducing extrinsic contrast agents to human 

patients inevitably brings along toxicity risks and a need for efficacy testing; however, extrinsic 

agents also offer considerable benefits, including the ability to target specific molecular 

pathways.26  

By imaging fluorescence, a much lower probe concentration can be used compared to 

contrast agents used for other imaging modalities such as CT, MRI, and PET. Techniques for 

imaging extrinsic fluorescence include probe measurements,27 endomicroscopy,28 two-photon 

spectroscopy,29 fluorescence microscopy,30 and widefield fluorescence imaging.31,32  This thesis 

focuses on conventional, widefield fluorescence imaging of extrinsic contrast agents in both 

clinical and preclinical settings. Specifications on these customized imaging systems will be 

further discussed in Chapter 2. 

1.3 BASICS OF FLUORESCENCE 

Fluorescence is a non-ionizing source of radiative decay which can be measured in the visible 

and NIR regimes. By using a specific excitation wavelength, valence electrons of a fluorophore 

https://www.zotero.org/google-docs/?krUwWO
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are temporarily excited to a higher energy level and emit a secondary photon with a longer 

wavelength as the electrons decay to lower energy levels (as shown in Figure 1.1(A)). A wide 

range of photon energies associated with absorption and emission transitions can create broad 

absorption and emission spectra (as shown in Figure 1.1 (B)). These spectra can be viewed at as 

probability distributions that photons of a given wavelength will be absorbed or emit a second 

photon of a particular quantum energy, respectively.33  

 

Figure 1.1: (A) Jablonski diagram demonstrating energy state transition to higher energy states (excitation), 

then energy state relaxation to lower energy states (fluorescence emission). (B) The resulting spectra from energy 

state probabilities of photon excitation (blue) and Stokes-shifted fluorescence emission of lower energy photons 

(red). 

 

Due to the loss of energy through vibrational relaxation, the fluorescence photon emitted as an 

electron travels back to the ground state is always lower in energy compared to the excitation 

photons. This shift in excitation and emission photons is called the Stoke’s shift, and allows for 

the separability of emitted fluorescence from the excitation source, through proper use of optical 

filtering. Through optimized filtering, the emitted photons are separated from the incoming 

excitation light and collected through an optical path. After traveling through the optical 
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pathway, photons are collected onto a detector field and converted into electrical counts in order 

to form an image. 

1.4 WIDEFIELD FLUORESCENCE IMAGING PHYSICS 

The performance efficiency of widefield imaging systems is dictated by the radiation transport 

equation (RTE) and approximated solutions. More specifically, the RTE for the diffuse regime 

can be approximated as: 

Equation 1.1  

 

Where c is the speed of light in tissue (m/s) , 𝑆(𝑟, 𝑡) describes the superposition of point sources 

(W/m3sr), 𝜇𝑎 is the absorption coefficient (m-1), and 𝚽(𝑟, 𝑡) represents the fluence rate (W/m2sr) 

or intensity at a specific location, and D represents the diffusion coefficient in a given medium 

(m). In the diffuse regime, the diffusion coefficient (D) can be approximated as:  

𝑫 =  
𝟏

𝟑(𝝁𝒂 + 𝝁′𝒔 )
                                     Equation 1.2 

The effective scattering coefficient, 𝜇′𝑠, is equal to (1-g) × 𝜇𝑠 where g is the unitless anisotropy 

factor and 𝜇𝑠 represents the tissue scattering coefficient (m-1) is a function of wavelength, and 

includes contributions from both Mie scattering and Rayleigh scattering. Conventionally, 

Rayleigh scattering refers to scattering by objects which are much smaller than the given 

wavelength; while, Mie scattering refers to scattering by objects which are comparable size to 

the given wavelength.34  

  This diffusion equation approximation also relies on observed measurement being greater 

than the mean free path (MFP) distance of the source in a given medium, and the reduced 

scattering coefficient (𝜇′𝑠) being much greater than the absorption coefficient (𝜇𝑎), which 
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describes a photons probability of absorption within a given medium. The accepted rule of 

thumb is that (𝜇′𝑠/𝜇𝑎  > 10) is necessary to ensure ‘random-walk’ conditions between the source 

and image detector.  For widefield imaging, the diffuse regime can largely be assumed due to 

sufficient source-to-detector separation and the high scattering properties inherent to most 

tissues.  

However, endogenous absorbers and scatterers present within tissue can affect the 

fluence/intensity measured at the tissue surface. The largest absorber is often hemoglobin, which 

can decrease the measured signal at the tissue surface due to increased photon absorption. 

Specifically, deoxygenated and oxygenated hemoglobin absorb around ~410 nm and ~580 nm, 

with significantly lower absorption after 600nm.  These absorption peaks are known to affect the 

measured spectra of exogenous fluorophores which emit in this range.35,36 

Water also has absorbance peaks which must be considered including peaks around 970 

nm, 1200 nm, 1450 nm, and 2000 nm.37 Conventionally, wavelengths of high tissue absorption 

have been avoided due to the loss of probe signal which may never reach the detector. On the 

contrary, multiple studies have suggested that imaging at absorption peaks can increase image 

contrast, by suppressing highly scattering photons, while still detecting ballistic photons at the 

tissue surface.37,38 

Nonetheless, the loss in signal intensity due to absorption and scattering events will affect 

the measured intensity in any widefield imaging set-up. In many cases, accurate estimations of 

the tissue optical properties are necessary in order to collect reliable widefield fluorescence data. 

Tissue-mimicking phantoms are often used to calibrate a system with known fluorophore 

concentrations and realistic 𝜇′𝑠 and 𝜇𝑎 properties. 
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1.5 FLUORESCENCE-GUIDED SURGERY WITH WIDEFIELD IMAGING SYSTEMS 

Fluorescence-guided surgery (FGS) is a surgical guidance tool, which can provide real-time, in-

field intraoperative guidance cues based on collected fluorescent reporters of molecular and/or 

vascular information. For visualization purposes, fluorescence image data are often overlaid onto 

the white-light illuminated surgical field, to assist the surgeon in navigating the dynamic surgical 

field.22 The two main fluorescence-guided surgery techniques used clinically are widefield 

imaging systems and probe systems.  

Widefield FGS techniques refer to the illumination of the whole field or specimen, and 

collection of emitted fluorescence from the field-of-view using optical filtering and a detection 

system. While FGS probe systems generally have greater sensitivity to fluorophore 

concentration, the field sizes of widefield FGS systems eliminate the sparse sampling challenges 

of probe measurements.39   

This thesis focuses on a couple customized widefield fluorescence imaging systems 

whose specifications will be further discussed in Chapter 2. The basic components of a widefield 

fluorescence imaging system are 1) an excitation source, 2) excitation and/or emission filters, 3) 

light-collection optics, 4) camera detectors, and 5) image acquisition and display 

instrumentation.40  Figure 1.2 demonstrates the principle components of a FGS widefield 

imaging system with the possibility of collecting emission signal in both the visible and NIR-I 

channels.  
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Figure 1.2: The principle components of widefield fluorescence imaging system systems including an 

excitation source, excitation and/or emission filters, light-collection optics, and camera detectors. Created with 

BioRender.com. 

1.5.1 Excitation Sources  

Excitation sources are commonly either filtered broadband lamps, laser diodes, or light-emitting 

diodes (LEDs). The choice of excitation source is often dictated by the spectral bandwidth, 

output efficiency, and regulations around power output.41 In the space of fluorescence imaging, 

laser diodes have the sharpest spectral peak and thus have an advantage in minimizing bleed-

through. Beam expanders are often used in conjunction with laser diodes to ensure large enough 

illumination fields. Due to the coherent light source, safety considerations for eye and skin 

exposures must be addressed in the regulatory pathway. Compared to laser diodes, LEDs are 

generally less expensive, but come with a broader bandwidth compared to LEDs. An excitation 

filter is usually necessary to use in conjunction with an LED to limit the excitation bandwidth. If 

the fluorophore of interest has a small Stokes shift, it can be challenging to use an excitation 

filter and emission filter in a confined bandwidth region. Nonetheless, for the reduced cost and 

https://biorender.com/
https://biorender.com/
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greater range of available wavelengths, LED-based excitation is commonly used in clinical 

fluorescence-guided surgery systems.41 

1.5.2 Optical filters 

Choice of optical filters will dictate the signal to background (SBR) readout of a system. The 

emission filter (typically bandpass or longpass) has the purpose of limiting background light 

while maximizing detection sensitivity to a given fluorescence emission signal. In the case of a 

broad excitation source, an excitation filter (typically bandpass or shortpass) is typically used 

which confines the light excitation band to limit potential overlap of the excitation spectra into 

the emission bandwidths (bleed-through). Filter leakage through rejection zones can contribute to 

the noise floor. Thus, it is optimal to place the excitation source and excitation filter as spectrally 

far away from the emission bandwidths as possible. Fluorophores with small Stokes shifts such 

as ICG are prone to excitation source leakage, which can result in reduced sensitivity. 

Light collection optics are responsible for focusing detected signals onto a camera sensor. 

Numerical aperture (NA) characterizes the light gathering capability of collection optics. A lens 

with a higher NA has a greater resolving power, will collect more light, but has a more shallow 

depth of field. Conversely, lenses with lower NAs will have better depth of field with the 

tradeoff of less light collection and lower resolving power.  

1.5.3 Camera devices 

The method for signal readout varies by different camera types. Historically, charge-coupled 

device (CCD) cameras have been used for fluorescence imaging systems. In CCD cameras, 

electrons are stored in electron storage wells, passed along into serial registers, then amplified 

and converted to digital signal one pixel at a time. The biggest limitation to this method is 

limited frame rate and slow read-out time. When cooled properly, CCD-based detectors can 
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achieve low read-out noise. Improvements in CCD sensitivity are achievable by using electron-

multiplying CCD (EMCCD) and intensified-CCDs (ICCD).42  

In 2009, the next-generation scientific Complementary Metal Oxide Semiconductors 

(sCMOS) camera was developed which superseded CCD-technology in multiple performance 

categories including field of view and frame-rate.43 At its core, sCMOS cameras differ from 

CCD-based cameras in that each pixel has its own amplifier, allowing for much faster frame rate. 

The sCMOS cameras also have a specific advantage in that they are generally lighter, with larger 

field sizes, and high quantum efficiency.43  To reduce costs, sCMOS cameras without cooling 

systems have recently been introduced. For longer exposures, cooled sCMOS cameras are still 

ideal for reducing dark current noise. Most recently, back-illuminated sCMOS cameras have 

come to market in 2014 and shown remarkable improvements in sensitivity and quantum 

efficiency compared to previous sCMOS models.44,45  In comparison, EMCCD has been shown 

to outperform sCMOS in extremely low light conditions (<20 photons/pixel).46 

In conclusion, the accelerated development of high performing cameras in the last few 

decades give way to improved FGS imaging system capabilities. 

1.6 FLUORESCENT CONTRAST AGENTS FOR FLUORESCENCE-GUIDED SURGERY 

APPLICATIONS 

Contrast agents refer to pharmaceuticals which are either administered systemically or applied 

topically prior to the commencement of fluorescence imaging. Such contrast agents are used to 

improve contrast visualization of particular features of interest. This section is dedicated to 

outlining the considerations for contrast agent selection, as well as providing a brief description 

of different types of contrast agents (i.e. tissue perfusion agents, targeted probes, activatable 

probes, and paired-agent imaging probes). 
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1.6.1 Considerations for fluorescent contrast agent selection  

Selection of a fluorescent contrast agent is dependent on the application of interest, e.g. labeling 

a protein, targeting a specific receptor, or reporting on tissue perfusion. In general, it is 

advantageous for a fluorescent contrast agent to be small, fluorescently stable, and bright (i.e. a 

high quantum yield).47 Since contrast agents have the sole purpose of serving as a visualization 

tool and there is no therapeutic effect, there should be no perturbation and minimal toxicity to the 

biological system.47 Desired agent clearance rate again varies on the application, but in general, 

rapid agent uptake followed by persistent agent contrast over a timeframe well-suited for surgery 

is considered the ideal clearance profile. Unfortunately, fulfilling all the criteria listed above (i.e. 

small, stable and bright, with minimal toxicity, rapid uptake, and persistent contrast) is often not 

achievable and compromises must be made when selecting a contrast agent. For example, 

receptor-targeted agents typically require a longer incubation time to achieve optimal contrast 

during the course of FGS. 

 In order for a candidate contrast agent to become clinically available, efficacy and 

toxicity risks must be evaluated through clinical trials. As a result, there are only a few FDA-

approved fluorescent contrast agents on the market amongst the vast number of fluorophores 

currently in development (39 novel FGS contrast agents are currently undergoing clinical 

trials).48 The list of currently FDA-approved fluorescent contrast agents includes: fluorescein 

(NaFl), methylene blue (MB), indocyanine green (ICG), 5-aminolevulinic acid (5-ALA)-induced 

protoporphyrin IX (PpIX), and most recently, Pafolacianine (also referred to as Cytalux or 

OTL38). However, multiple fluorescent contrast agents (including Illuminare-1, ASP5354, and 

LUM015) have recently received the FDA’s Fast Track approval status. Historically, ICG and 

NaFl have both received FDA approval since the 1950’s, and interestingly, the majority of 

widefield imaging systems target the fluorescein or ICG channels. The most frequently 
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employed fluorophore for FGS is indocyanine green (ICG), with the FDA-approved indication 

for angiography. In clinical investigations, ICG has also been utilized for sentinel lymph node 

(SLN) mapping,49–51 and tumor imaging,52,53 just to name a few. However, ICG and other blood 

pool agents have no inherent specificity, giving way to non-specific normal tissue uptake.22 

When selecting a fluorophore, the commercially available imaging systems configured 

for fluorescein, PpIX, or ICG, significantly limit the wavelength selection. Another consideration 

when imaging in tissue is fluorophores may interact with endogenous absorbers such as 

oxygenated and deoxygenated hemoglobin, which may distort a fluorophore’s measured 

emission spectra. In addition, autofluorescing endogenous chromophores can contaminate 

exogenous agent signals if the emission spectra overlap.54 Particular organs, with high amounts 

of compounds such as porphyrins, lipids, vitamins, and collagen, are known to produce signature 

autofluorescence spectra.54,55 For example, strong autofluorescence with a peak around 680 nm 

has been observed in the gastric tract of mice, due to the presence of chlorophyll and other 

metabolites in the intestine.56 Such strong autofluorescing signals can interfere with the ability to 

image exogenous fluorophores in a biological tissue sample. Methods to overcome this include 

hyperspectral unmixing31,57 and minimizing the potential sources of autofluorescence, i.e. a 

chlorophyll-free diet.56  In general, selecting fluorophores in the farther NIR regime allows one 

to avoid such endogenous absorbers and chromophores. Multiple Cyanine-based fluorophores 

and LI-COR Biosciences IRDyes are available in the 800 nm NIR-I channel, a regime which is 

less prone to tissue autofluorescence. 

The concept of using multiple molecular probes to image multiple biomarkers as a multi-

channel fluorescence imaging approach has gained momentum in recent years.26,58–60 The prime 

example of this is visualizing nerve structures and the primary tumor in different channels to 

enable pseudo color visualizations of structural and tumoral information in the same field of 
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view.59,61,62  Tian et al. have even used multiple time points of the same fluorophore (ICG) to 

distinguish between vein, arteries, and tumor regions.63 By visualizing critical structures next to 

tumor boundaries, a surgeon is able to make real-time navigational decisions in efforts to reach 

maximal extent of resection. 

1.6.2 Tissue perfusion agents 

Non-specific contrast agents are often employed to look at tissue kinetics and blood flow patterns 

within a region of interest at the time of surgery. The advantage of these non-specific agents is 

that they can be rapidly administered and visualized at the time of surgery. ICG was the first 

agent approved for neurosurgery vascular imaging in 2006, in conjugation with the Lieca FL800 

imaging system. 64 In 2017, fluorescein was approved for the same indication of neurosurgery 

vascular imaging, in conjugation with the Zeiss Yellow imaging system.64 

One disadvantage of using non-specific perfusion agents is that the agents can perfuse 

into normal tissue regions, and become unusable markers of blood flow. This is the case with 

FITC which nonspecifically crosses into white matter 2-3 hours after administration as noted by 

Stummer (2016)65 and Folaron et al. (2018).66  

1.6.3 Targeted probes 

Systemic approaches for detecting and treating cancers, such as chemotherapy, are non-selective 

and thus can lead to systemic toxicity as well as requiring a higher dose level. To better optimize 

the therapeutic ratio, a major shift towards targeted agents and therapeutics has been underway. 

Typically, the targeting mechanism is receptor-specific ligands which bind to specific cancer-

associated receptors. By targeting signaling pathways known to regulate cancer cell proliferation 

and survival (e.g. EGFR, HER2, and CEA receptors), targeted probes are able to be 

preferentially delivered to cancerous regions. Receptor-targeted antibodies, proteins, affibodies, 
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peptides, and other small molecules are conjugated to a fluorescent probe and preferentially 

accumulate in areas of high receptor expression within a system.   

Utilizing such targeting technology, an influx of fluorescence contrast agents have been 

recently developed with great translational potential. The first targeted contrast agent to receive 

FDA-approval is OTL38 or Cytalux, which received FDA approval for the detection of ovarian 

cancer in 2021, and the detection of lung cancer later in 2022. OTL38 is a folate receptor-α-

targeted probe which is internalized upon binding to a folate receptor, and emits FITC signal 

from the cell cytoplasm.67 OTL38 is particularly well-suited for detecting ovarian cancer, 

because the folate receptor-α is expressed in 90-95% of all epithelial ovarian cancers.67 

The majority of targeted probes rely on the overexpression of targeted receptors in 

cancerous regions of the tissue, which may not always be the case, especially in highly 

heterogeneous tumor phenotypes. In addition, different types of normal tissue may also highly 

express a targeted receptor type, leading to a loss in tumor-to-normal contrast. Another challenge 

with targeted probes is the delivery efficiency of the targeted agent to the tumor site of interest. 

Receptor-specific active targeting typically relies on efficient passive targeting, where leaky 

vasculature allows the agent to locally accumulate and penetrate into tumors (i.e. the EPR 

effect).68 Lastly, these targeted agents generally require a longer incubation period than non-

specific probes, which is non-ideal in the clinical workflow context.  

1.6.4 Activatable probes 

Compared to ‘always on’ contrast agents, activatable probes remain nonfluorescent until being 

activated by molecular targets, which may be overexpressed within the cancerous region.  

Typically, an excited fluorophore is quenched by a donor electron until the donor electron is 

cleaved or inactivated by pH or other environmental factors.69 Upon enzymatic cleavage of the 

substrate, the fluorophore and quencher are separated and fluorescence emission is restored. In 
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this case, fluorescence signal is directly correlated with enzymatic activity and much greater 

specificity is able to be achieved. As an example, LUM-015 is an activatable probe which relies 

on cathepsin cleavage to activate the fluorescent probe and is currently in the clinical pipeline.70 

Similar to targeted probes, activatable probes may not perform as robustly in different tumor 

phenotypes.  

1.6.5 Paired-agent imaging probes 

While targeted probes can preferentially accumulate in cancerous regions, non-specific uptake of 

targeted probes in normal tissue remains an issue which limits the achievable specificity of 

targeted probes. An approach to account for such non-specific targeted probe uptake is to 

introduce a second non-specific untargeted probe, which is an isotype to the targeted probe, but 

does not possess receptor-specific affinity. The differences between the targeted and untargeted 

probe uptake patterns can be attributed to the receptor-specific binding affinity of the targeted 

probe.  

With targeted and untargeted distributions, a simple quantification of receptor-specific 

binding of the targeted agent can be calculated as (targeted - untargeted)/untargeted images. This 

technique has been shown to be successful in increasing tumor contrast when the dual-agents are 

administered either intravenously71,72 or topically.73–78 

This dual-probe imaging approach can be applied to freshly excised tissue staining, 

where non-specific agent uptake becomes a challenge, because in vivo physiological tissue 

kinetics are no longer at play once the tissue is removed. By utilizing a multiplexed cocktail 

consisting of targeted and untargeted probes, the receptor-specific binding is able to be recovered 

with non-specific uptake canceling out.73,78 A clinically relevant 10-min. ex vivo staining 

protocol has been developed to fit the clinical demands of back table specimen imaging.75 Prior 

preclinical studies within our group have shown HER2-targeted dual-probe difference specimen 
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imaging (DDSI) to successfully identify HER2(+) tissue with 91% sensitivity and 84% 

specificity in varying HER2-expression level tumors.73 Thus, this paired-agent imaging approach 

appears to have great translational potential for fast and precise back table margin assessment. 

 

1.7 NIR-II (SWIR) FLUORESCENCE IMAGING 

Recent interest has grown in imaging within the short-wave infrared (SWIR) regime, also known 

as the near-infrared II (NIR-II) window, for the main advantage of reduced background scatter 

and improved depth sensitivity.79–81 Fluorescence imaging in this regime, generally considered to 

extend from 1000 to 2000 nm, is characterized by reduced photon scatter, minimal tissue 

autofluorescence, and wavelength-dependent absorption around the water absorption peaks. 

Between NIR-NIR-II windows, the most striking difference is the scattering coefficient. 

Literature has reported the scattering coefficient (μs) in brain tissue at 800 nm to be ~74.9 cm-1, 

compared to ~25.4 cm-1 at 1,350 nm.82 Reduced scatter within the SWIR regime improves signal 

recovery at depth. As another factor, anisotropy (g) does not greatly change between NIR-NIR-

II/SWIR regimes, with most literature citing g to be between 0.70 and 0.95, with no large 

variation in g as a function of wavelength.34 

Unlike the NIR-I window, tissue absorption in SWIR is largely dominated by three local 

water absorption peaks near 970 nm, 1,200 nm, and 1,450 nm.83 Although dominated by the 

tissue’s composition, tissue absorption coefficients (μa) generally range 0.01-0.1 cm-1 in the NIR-

I window, and can range 0.2-10 cm-1 in the SWIR window with rapid increases around the water 

absorption peaks.34,84  Such properties can be exploited to optimize image resolution and depth 

sensitivity.37,85 
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 While specific NIR-II agents have been developed,86 multiple groups have successfully 

imaged conventional NIR-I agents  in the SWIR regime with benefits including improved image 

resolution and depth sensitivity.87–89 In particular, indocyanine green (ICG) is a conventional 

NIR-I agent that is already approved for a wide range of applications.  Therefore, the only hurdle 

to overcome for SWIR-ICG imaging was the NIR-II capable instrumentation. SWIR-ICG 

imaging may be beneficial for imaging vasculature in open surgical fields due to the reduced 

hemoglobin absorption and sharper image contrast found in the SWIR regime, compared to the 

NIR-I window.88  

The first-in-human SWIR-ICG fluorescence-guidance imaging study was published in 

2020.90 After intravenously injecting ICG, a novel NIR-I/NIR-II imaging system was used to 

assist in the surgical resection of primary and metastatic liver tumors in a 23-patient study. Hu et 

al. found NIR-II imaging to provide advantages in image performance such as improved depth 

resolution and tumor-to-normal contrast when directly compared to conventional NIR-I 

imaging.90  

Even more recently, a 2022 study used multispectral NIR-I/II/IIa/IIb imaging to assess 

glioma boundary margins in a 7-patient study.63 Utilizing an intraoperative image fusion method, 

the group was successfully able to delineate main tumor, arteries, and vein structures at the time 

of excision. In order to differentiate between specific brain ICG uptake and non-specific blood 

flow, two separate ICG injections took place, the first 48 hours prior to surgery, and the second 

within 10 seconds of imaging arterial and vein structures (each at different time points).63 These 

early results show great promise for enabling more precise surgical navigation.90,63 



 

18 
 

1.8 THE CURRENT STATE OF WIDEFIELD FLUORESCENCE-GUIDANCE IMAGING 

SYSTEMS 

There are currently 20 or more FDA-approved fluorescence-guidance imaging systems available 

on the market,48 the majority configured to image the ICG channel, with a few systems 

configured for the fluorescein and PpIX-targeted channels.   

As an emerging technology, the regulatory field is still evolving with professional 

guidelines and standards for comparing FGS systems to a global standard. FGS systems fall 

under the category of “combination products” involving both an imaging device and a drug, thus 

requiring a unique set of regulations compared to other imaging modalities.91 Currently, the FDA 

regulatory process focuses on preclinical safety, performance testing, efficacy, clinical trial 

results, software, human factors, and quality assurance procedures.91 However, there are unique 

and specific safety issues associated with which must be part of the technological development 

process. Pogue et al.91 stated that “objective, quantitative testing to evaluate essential 

performance characteristics could facilitate device development and regulatory assessment.” A 

recent AAPM blue-paper report suggested a list of characteristics which should be tested for 

rigorous performance assessment across all FGS systems.91 These performance characteristics 

included conventional imaging quality factors, such as spatial resolution & contrast resolution, 

but also included factors specific to fluorescence imaging performance, such as depth sensitivity, 

field homogeneity, and relevant tissue properties. 

As discussed in D’Souza et al.’s 2016 review of multiple fluorescence guided surgery 

systems, the sensitivity and linear response of each imaging system varies from one another. 

Amongst the FDA-approved systems, Medtronic’s Visionsense was demonstrated to have the 

highest sensitivity (50 pM), while Fluobeam, Novadaq SPY Elite, PDE Neo, and Quest 
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Spectrum all demonstrated lower detection limits between 5-15 nM.41 Ruiz (2020) expanded on 

this global FGS system comparison by also including depth sensitivity and contrast resolution on 

two widefield imaging systems (Solaris and SPY Elite) based on an ICG-printed 3D phantom.92   

By adopting standardized performance assessment methods similar to Ruiz and D’Souza 

at the regulatory, academic, and laboratory level, the rapid development of fluorescence 

guidance imaging systems and contrast agents can be carried out safely and effectively.91 

In addition to lacking standardizations, a major translational challenge that exists within 

FGS is not having a fully detailed understanding of agent biodistributions overtime within the 

body. Understanding the spatial uptake patterns with cancerous tissues and clearance organs is 

essential for crossing regulatory hurdles and successfully translating any contrast agent into the 

clinical FGS setting. While whole-body macroscopic imaging and tissue sample microscopy can 

provide clues as to an agent’s biodistribution, these methods are limited by 3D resolution and 

sampling size, respectively. To that end, preclinical cryo-imaging represents a powerful tool for 

understanding agent biodistributions on a 3D whole-body scale with relatively high-resolution in 

a biologically relevant model. A large part of this thesis is dedicated to the development of a 

whole-body cryo-macrotome which aims to provide high-resolution, 3D biodistributions of FGS 

contrast agents. In doing so, contrast agents are able to be screened with a better understanding 

of the spatial uptake and clearance behaviors; thus providing higher fidelity for clinical 

translation. 

1.9 PROJECT RATIONALE 

Within the rapidly developing field of fluorescence guided surgery (FGS), this thesis aims to 

address three central questions:  
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1) Do we have all the tools to understand how FGS contrast agents accumulate in tumors 

and organs? And what additional information can 3D agent biodistributions provide? 

2) Does imaging deeper during FGS carry additional clinical benefits? And how can we 

overcome barriers to clinical translation to do so? 

3) Are current agents meeting the characteristics of an ideal agent for specific 

applications? 

Successful translation of the fluorescent contrast agents from drug discovery to FDA-approved 

FGS indications hinges on reaching certain preclinical milestones, including drug efficacy, target 

validation, and toxicology studies. Yet, the currently available preclinical fluorescence imaging 

techniques often compromise 3D scale for spatial resolution, or vice versa. To address this void 

in preclinical imaging technologies where high-resolution and whole-body imaging capabilities 

fail to co-exist, we developed a multi-channel, hyperspectral, whole-body cryo-imaging system 

and image-processing techniques to accurately recapitulate high-resolution, 3D biodistributions 

in preclinical experiments. Specifically, the goal is to correct each cryo-imaging dataset such that 

it becomes a useful reporter for full-body uptake distributions in relevant disease models. 

Moving forward, the multi-modal, hyperspectral cryo-imaging platform developed within this 

thesis represents a major step towards rigorously understanding contrast agent behavior and drug 

biodistributions in whole-body disease models. 

To answer the question on whether or not seeing deeper during FGS carries clinical 

advantages, we investigated short-wave infrared imaging (SWIR/NIR-II) as a method to recover 

fluorescence signal beyond the conventional top few millimeters. In order to overcome 

translational hurdles related to introducing novel SWIR-specific contrast agents into the clinic, 

we explored SWIR imaging with conventional fluorophores which were either FDA-approved or 
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within the clinical trial pipeline. Finally, we tested the feasibility and potential benefits of SWIR 

imaging of conventional NIR-I fluorophores in large animal and human studies. 

For the third question, we focused on evaluating if contrast agents are meeting the ideal 

performance characteristics for specific indications, including fluorescence-guided glioma 

resection and breast cancer margin assessment. With such data-rich, 3D information available 

from cryo-imaging, and the capability to co-register cryo, MRI, and pathology data, we were 

able to better illuminate the performance of different fluorescent contrast agents, drug delivery 

mechanisms, and numerous other biological phenomena for translational benefit. A specific 

focus is placed on evaluating untargeted contrast agents for glioma resection guidance by 

comparing cryo-fluorescence volumes with gold-standard Gd-MRI datasets on a direct voxel-to-

voxel basis. Lastly, we examined the application of a novel dual-probe staining technique for 

rapid breast cancer margin assessment. Building off a decade of dual-probe difference specimen 

imaging (DDSI) research and developments at Dartmouth, we employed this DDSI technique for 

rapid breast cancer margin assessment during a 10-pt clinical pilot study. Such clinical results 

provide insight as to how successful a HER2-targeted DDSI approach can be for breast cancer 

margin assessment within a heterogeneous patient population.  

In conclusion, this thesis aims to answer three central questions within the field of FGS 

by introducing novel fluorescence imaging devices, techniques, and agents which overcome 

challenges in understanding whole-body agent biodistributions, visualizing such agent 

distributions at greater depths, and verifying agents’ performance for specific FGS applications. 

1.10   THESIS OVERVIEW 

Chapter 2 provides a brief survey of the imaging and data acquisition systems used in this 

thesis.  
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Chapter 3 documents the manuscript entitled “Characterizing short-wave infrared fluorescence 

of conventional near-infrared fluorophore” by Byrd et al. which describes the potential of using 

FDA approved and common preclinical NIR-I probes for imaging in the SWIR regime.  

Chapter 4 documents the manuscript entitled “First experience imaging short-wave infrared 

fluorescence in a large animal: indocyanine green angiography of a pig brain.” by Byrd et al. 

where ICG angiography is imaged in the SWIR and NIR-I regime during a large animal 

craniotomy.  

Chapter 5 presents the work of the manuscript entitled “First in-human SWIR imaging of a 

targeted agent” (in preparation). As part of a larger ABY-029 clinical trial, SWIR images of head 

and neck cancers are reported alongside ex vivo SWIR and NIR-I images of patient specimens. 

Chapter 6 presents the work of the manuscript entitled “Dual-stain difference imaging for 

targeted breast cancer margin assessment” by Byrd et al. The results from a dual-stain difference 

specimen imaging (DDS) clinical pilot study are presented from eleven mastectomy specimens 

and correlating pathology.  

Chapter 7 documents the manuscript entitled “Hyperspectral imaging and spectral unmixing for 

improving whole-body fluorescence cryo-imaging” by Wirth & Byrd et al. in which the 

instrumentation and main cryo-image processing methods are published.  

Chapter 8 reviews the toolbox developed for multi-modal cryo-imaging registration with MR, 

cryo-, and H&E imaging registration methods. Such developments serve as the backbone for Gd-

MRI vs. cryo-fluorescence agent comparison studies in Chapter 9 and other published works. 

Chapter 9 presents the development of agent performance metrics, including metric robustness 

testing, and examines spatial similarities between Gd-based agent enhancement and candidate 

fluorophore uptake in preclinical models.  
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Chapter 10 discusses additional applications for whole-body multi-channel hyperspectral 

fluorescent cryo-imaging, including the work from three co-authored manuscripts.  

Chapter 11 concludes with the key findings of this thesis and summarizes the potential impacts. 

The limitations and future directions are also discussed.  
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2 IMAGING INSTRUMENTATION AND ACQUISITION SYSTEMS 

This chapter briefly introduces the imaging instruments used in this thesis. A more in-depth 

description of each system provided in each chapter. Table 2.1 lists the basic specifications of the 

three main imaging devices used throughout the context of this thesis. 

Table 2.1: Imaging System Specifications

 

 

2.1 SWIR IMAGING SYSTEMS 

2.1.1 SWIR spectroscopy 

A diagram of the SWIR spectroscopy system used to quantify SWIR fluorescence is shown in 

Figure 2.1. An array of lasers (635, 730, 760, 785, and 670 nm) were routed through a 200 μm 

illumination fiber, and tuned to 21 mW/cm2 to ensure comparable fluorescence intensity values. 

Directly interfacing the illumination fiber, standard spectroscopy cuvettes were positioned such 

that the illumination and collection fiber bundle were perpendicular to one another. The 

collection fiber bundle terminated in a linear array at the entrance of the spectrograph.  
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Figure 2.1: SWIR spectroscopy diagram for collection of sample SWIR fluorescence spectra 

The detection system consisted of a Spectra Pro SP2150 (Princeton Instruments, Acton, 

Massachusetts) spectrograph with a 300-g/mm grating blazed at 1200 nm, coupled to an 

InstaSpec IR spectroscopy camera (InstaSpec, Newport, Irvine, California). This camera is a 

1024×256-pixel InGaAs transferred-electron electron-bombarded charged-coupled device cooled 

to −50°C. The detected light passed through an 1100-nm dichroic longpass filter (Thorlabs, Inc., 

Newton, New Jersey) positioned in a filter wheel at the entrance of the spectrometer. All 

measurements were acquired with a camera gain setting of 800- and 40-ms exposure time.  

After collecting 10 frames and performing dark-image subtraction, the median images 

were binned vertically in order to construct a fluorescence emission spectrum for each 

fluorophore-excitation source pairing. By recovering the median-filtered emission spectra, it was 

also possible to integrate across specific wavelengths to get a sense of integrated intensity 

expected for each excitation source-fluorophore pairing. This technique was the basis for 

comparison of NIR-I fluorophores that is reported in Byrd et al. (2019, J. Biomed. Opt.).93 In 

future scopes, SWIR spectroscopy may be deployed as a probe for sensing low concentrations of 

far-red fluorophores during fluorescence-guided surgery. 
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2.1.2 Newport SWIR imaging system 

The initial SWIR imaging system utilized the same Newport InstaSpec InGaAs SWIR camera 

(InstaSpec, Newport, Irvine, California) mounted to a modified Zeiss S1 surgical microscope 

stand (Carl Zeiss AG, Oberkochen, Germany) to allow for intraoperative SWIR imaging. This 

SWIR camera was a transferred-electron electron-bombarded charged-coupled device with an 

asymmetric sensor cooled down to -50°C. For exciting conventional far red probes, the 

excitation source used in this system was a 760-nm laser (CrystaLaser LC, Reno, Nevada).  

Fluorescence filtering was provided by an 1100-nm longpass dichroic filter (ThorLabs, Newton, 

New Jersey) positioned in front of the objective lens. Imaging rates for this system were 

relatively slow at 2 fps in order to accumulate enough SWIR signal from conventional NIR-I 

fluorophores.  

  

Figure 2.2: Newport SWIR camera system with a Zeiss S1 microscope stand 
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2.1.3 A NIR-I/SWIR clinical imaging system 

A dual-channel fluorescence imaging system was designed and constructed to be used within a 

clinical Phase 0 trial, the ABY-029 microdose study (ClinicalTrials.gov, #NCT03282461).94 

With the goal of comparing SWIR vs. NIR-I imaging in a clinical FGS case, we configured the 

system to use the same optical channel for both NIR-I and NIR-II imaging. Illumination was 

provided by a 760 nm laser expanded to accommodate the surgical field with a power density of 

28 mW/cm2, which is well below the maximum exposure of skin to optical illumination (~300 

mW/cm2). 

Emitted photons were initially focused with an adjustable relay lens, then either 

transmitted to the InGaAs SWIR camera or reflected to a sCMOS NIR-I camera using a 950 nm 

LP dichroic mirror as shown in Figure 2.3 below. The SWIR signal was further filtered using an 

1100 nm LP filter before SWIR photons were detected by the NIRvana 640 InGaAs camera, 

using a 4 sec. exposure rate. NIR-I signal was reflected off the 950 LP dichroic mirror and 

further filtered using an 800 LP filter.  A PCO Edge 4.2 sCMOS camera (PCO Inc., Kelheim, 

Germany) was used to collect NIR-I signals.  SWIR and NIR-I images from this configuration 

could be directly compared in phantom, in vivo, and ex vivo specimen imaging. 



 

28 
 

 

Figure 2.3: Clinical NIR-I/SWIR camera system with dichroic mirror splitting signal into NIR-I and SWIR 

pathways. 

2.2 DUAL-PROBE DIFFERENCE STAIN IMAGING (DDSI)  

As part of the paired-imaging development, an optimized 6-min DDSI procedure has been 

developed to fit within the clinical time demands for intraoperative BCS margin assessment. As 

part of this workflow, the DDSI imaging process must be fast with high spatial resolution for 

sensitive surface detection. After examining widefield (Solaris) and point-based imaging 

approaches, we settled on point-based imaging with the Odyssey CLx machine (LI-COR 

Biosciences, Lincoln, Nebraska) because of the superior spatial resolution and surface-based 

weighting of reported fluorescence signals.  

The Odyssey CLx system is a point-scanning microscope which has a 700 and 800 nm 

channel. Within the Odyssey CLx system, beams from solid-state 700 nm and 800 nm lasers are 

focused to form an excitation point on the scanning surface. A microscope objective focused on 

the excitation point, collects light from both NIR channels, and filters the incoming focused light 



 

29 
 

into two separate optical paths using a custom dichroic mirror. Focused photons reach separate 

silicon avalanche photodiodes for detection. The focal height and resolution can be preselected, 

with pixel resolution ranging between 21-337 μm. During the pilot DDSI trial, typical 

mastectomy specimen scans lasted between 6-12 min at 169 μm resolution.  

A newer LI-COR machine, the Odyssey M imaging system95 was used with follow-up 

pre-clinical DDSI studies. The Odyssey M has four fluorescent channels (488 nm, 520 nm, 686 

nm, and 786 nm lasers) and an RGB channel to allow for fluorescence overlays, with pixel 

resolution spanning between 5-100 μm on a 25x18 cm scanning surface. As a line-scanner, the 

image acquisition rate of the Odyssey M imaging system is notably faster than the Odyssey CLx 

model, making it an ideal candidate for future DDSI pathology studies and other high-resolution 

preclinical imaging applications. 

2.3 CRYO-MACROTOME HARDWARE AND INSTRUMENTATION 

The Dartmouth whole-body, cryo-imaging system consists of a modified Leica CM3600 whole-

animal cryo-macrotome system with custom-built optical configurations that allow for multi-

channel, hyperspectral fluorescence and reflective imaging.57 While cryo-imaging systems have 

previously been developed for whole-body fluorescence imaging, the novel technical 

development of this particular system is the ability to sample tissue at very high spectral 

resolution which enables custom image filtering and spectral uncoupling within highly 

heterogeneous whole-body tissue. Sections 8.3 and 8.4 provide an in-depth report of such 

hyperspectral imaging instrumentation and image processing techniques. 

 As a brief overview of the system, the cryostat/macrotome unit is retrofitted with new 

motors, encoders and customized software control, and is capable of automatically sectioning 

specimens as large as 10 cm x 10 cm x 5 cm (depth) in sections down to 5-μm.  
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The imaging system is mounted to the top of the cryo-macrotome cabinet, and positioned 

to image the cut surface in a slice-and-imaging cryo-imaging sequence. A thick mounting plate 

can accommodate up to six LED’s surrounding the central objective lens. Remitted fluorescence 

is collected through an objective lens and split into visible and NIR-I channels using a 

dichromatic mirror. Signal is then focused on one of two sCMOS cameras (Edge 4.2, PCO Inc., 

Kelheim, Germany), which is the same NIR-I camera described in Section 2.1.3 and Table 2.1. 

  

 

Figure 2.4: (A) Dartmouth Cryo-Macrotome imaging system with (B) multichannel, hyperspectral imaging 

system diagram 

For tissue preparation, all tissue specimens must be submerged in optimal cutting temperature 

(OCT) compound and frozen down to -20 ˚C in preparation for cryo-slicing. The frozen OCT-

submerged specimen block then gets attached to a mounting stage and locked into the cryostat’s 

mechanically-controlled sledge. This moving sledge moves the animal specimen across a cutting 
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blade at a precisely controlled depth, which controls slice cutting thickness. After a single slice is 

removed, a preprogrammed LabVIEW imaging sequence automatically runs, sequentially 

acquiring multiple channels of data by controlling the filter wheel, excitation sources, and 

camera acquisition settings. During the automated slice-and-image acquisition sequence, all 

acquired images are uploaded to a shared cloud storage system for easy access. The majority of 

cryo-imaging experiments last between 7-24 hours depending on the number of optical channels 

used during the image sequence.  

 

3 CHARACTERIZING SHORT-WAVE INFRARED FLUORESCENCE 

OF NIR-I PROBES 

This chapter covers the work published in the following manuscript:  

Byrd, B. K., Folaron, M. R., Leonor, J. P., Strawbridge, R. R., Cao, X., Brůža, P., & Davis, S. C. 

(2019). Characterizing short-wave infrared fluorescence of conventional near-infrared 

fluorophores. Journal of biomedical optics, 24(3), 035004. 

DOI: 10.1117/1.JBO.24.3.035004 

3.1 INTRODUCTION 

Early reports of fluorescence imaging in the short-wave infrared (SWIR) regime,79,81,96 also 

known as the near-infrared II (NIR-II) window, have generated substantial interest in the 

biomedical optics community. Fluorescence imaging in this regime, generally considered to 

extend from 1000 to 2000 nm, is characterized by reduced photon scatter, minimal tissue 

autofluorescence, and wavelength-dependent absorption, which can be exploited to optimize 
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image resolution and depth sensitivity.37,85 Broad efforts to leverage these favorable properties 

for in vivo imaging have facilitated the development of a wide array of SWIR-specific molecular 

probes used for imaging tumor biomarkers97,98 and vascular dynamics81,96,97,99 in preclinical 

models. Although a complete understanding of these properties and their potential implications 

for biomedical imaging applications has yet to be fully realized, these early studies suggest that 

SWIR imaging may be highly advantageous for visualizing subsurface structures during 

fluorescence-guided surgery (FGS), noninvasive monitoring of disease, as well as a wide array 

of preclinical applications requiring information from molecular reporters. 

Until recently, two characteristics of SWIR imaging presented significant barriers to 

accelerating translational research efforts in the field. First, the high price point of specialized 

SWIR cameras remains a significant, though not insurmountable, barrier for many research labs. 

A more significant barrier arose from the conventional assumption that specialized molecular 

constructs were required for SWIR fluorescence imaging. These molecular probes can be 

difficult to obtain, usually manufactured in individual research labs (with a few commercial 

exceptions), and, importantly, do not yet have pharmacokinetic and safety profiles necessary for 

mid-to-late-stage translational research. These barriers have generally limited SWIR imaging to 

animal research in labs with appropriate expertise. 

In this context, recent investigations showing robust fluorescence emission signals in the 

SWIR regime from a handful of conventional NIR-I dyes [indocyanine green (ICG), LI-COR 

IRDye 800CW, and IR-12N3] represent a major development for the field.87,100,101 ICG is an 

extensively studied fluorophore approved for human use in several clinical indications, and 

IRDye 800CW has been used widely in preclinical models and is under clinical investigation for 

a variety of indications.102 The observation that the tails of the fluorescence emission peaks of 

these fluorophores are readily detectable well into the SWIR window suggests that other 
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common NIR fluorophores likely produce measurable fluorescence emission in this regime. The 

availability of SWIR reporters that are accessible, well-characterized, and have historic use in 

biological and human systems could further accelerate development and evaluation of this 

promising new imaging modality. 

To that end, this study aims to characterize and compare the fluorescence emission 

profiles in the SWIR regime of eight commercially available red/NIR fluorophores as well as a 

SWIR-specific fluorophore. Several of these fluorophores are either approved for clinical use or 

currently in clinical trials, whereas others are commonly used for preclinical in vivo studies. 

Using a SWIR spectrometer, fluorescence emission spectra for each fluorophore were examined 

to establish a comparative reference of SWIR fluorescence efficiency for different excitation 

wavelengths. Additionally, a widefield imaging system was used to report SWIR fluorescence as 

a function of concentration in tissue-simulating phantoms. These data will be valuable in guiding 

the development of SWIR fluorescence imaging strategies for biomedical applications. 

3.2 METHODS AND MATERIALS 

The red/NIR-I fluorophores under investigation in this study were selected for their general 

accessibility and historical use in preclinical and/or clinical studies. ICG (Chem-Impex Int’l. 

Inc., Wood Dale, Illinois) and methylene blue (Sigma-Aldrich, St Louis, Missouri) are both 

approved for human use, LI-COR’s IRDye 800CW and IRDye 700DX (LI-COR Biosciences, 

Inc., Lincoln, Nebraska) have undergone clinical investigation in multiple tumor sites,102–104 and 

LI-COR’s IRDye 680RD and IRDye 680LT, as well as the Alexa Fluor fluorophores (AF 633, 

AF 647, and AF 750, ThermoFisher Scientific, Waltham, Massachusetts), are used extensively as 

laboratory standards for in vitro and in vivo imaging. Finally, we included IR-m1050 (Nirmidas 
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Biotech, Inc., Palo Alto, California), one of the few commercially available SWIR-specific 

fluorophores. 

With the exception of ICG, which was dissolved in deionized water, all fluorophores 

were diluted in phosphate-buffered saline (PBS). The absorbance spectrum for each fluorophore, 

acquired using a Varian Cary® 50 Bio UV–VIS spectrophotometer (Varian, Inc., Walnut Creek, 

California), was used to calculate fluorophore concentrations. All fluorophores were diluted to a 

concentration of 1 μM for SWIR fluorescence spectroscopy. 

A diagram of the SWIR spectroscopy system used to quantify SWIR fluorescence is 

shown in Figure 3.1(a). The liquid samples were prepared in standard 1-cm (3 ml) spectroscopy 

cuvettes and placed in the sample interface, which positioned illumination and collection fibers 

perpendicular to one another on adjacent cuvette faces. The samples were excited with each of 

the following five lasers sequentially: 635, 730, 760, 785, and 670 nm (World Star Tech, 

Markham, Ontario, Canada) through a 200-μm illumination fiber. All laser power outputs were 

tuned to 21 mW/cm2 to ensure fluorescence intensity values were comparable. Emitted light was 

collected using a spectroscopy fiber bundle terminating in a linear array at the entrance of the 

spectrograph. The detection system consisted of a Spectra Pro SP2150 (Princeton Instruments, 

Acton, Massachusetts) spectrograph with a 300-g/mm grating blazed at 1200 nm, coupled to an 

InstaSpec IR spectroscopy camera (Newport Corporations, Franklin, Massachusetts). This 

camera is a 1024×256-pixel InGaAs transferred-electron electron-bombarded charged-coupled 

device cooled to −50°C. The detected light passed through an 1100-nm dichroic longpass filter 

(Thorlabs, Newton, New Jersey) positioned in a filter wheel at the entrance of the spectrometer. 

All measurements were acquired with a camera gain setting of 800-ms and 40-ms exposure time. 

Data from the sensor were binned vertically during acquisition. 
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Figure 3.1: Experimental configuration for (a) SWIR fluorescence spectroscopy and (b) SWIR phantom 

imaging. (c) Normalized absorbance spectra of each fluorophore with overlays indicating excitation laser 

wavelengths used to measure SWIR fluorescence. 

 

For each excitation source–fluorophore combination, 10 SWIR fluorescence spectra frames were 

acquired sequentially and the median of these 10 frames was computed, a common 

acquisition/processing strategy for cameras with high dark noise. Background subtraction was 

performed using dark count spectra without laser illumination. Integrated fluorescence was 

computed between 1130 and 1200 nm and normalized to the maximum integrated intensity value 

measured for all fluorophores (ICG excited at 785 nm). Signal-to-noise-ratios (SNRs) were 

calculated as the mean/ (standard deviation) of the integrated intensity values of 10 frames. All 
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measurements were acquired using the same camera settings, laser power, and sample 

preparation and thus were comparable. 

To establish the feasibility of imaging SWIR fluorescence of these fluorophores in more 

realistic conditions, a concentration dilution study in tissue-simulating phantoms was completed 

using a wide-field SWIR imaging system. This system, depicted in Figure 3.1(b), consists of a 

chosen laser source fiber coupled to a condenser lens for illumination, and a Nirvana 640 InGaAs 

camera (Princeton Instruments, Trenton, New Jersey) with an 1100-nm longpass dichroic filter 

for detection and a nominal detection range of 950-1500 nm (>85% Quantum Efficiency). 

Tissue-simulating phantoms consisted of 5-ml liquid wells containing 1% intralipid and 1% 

whole blood in PBS to approximate photon scatter and absorption of tissue, respectively, and the 

dye of interest. The concentration of each dye was varied from 5μM to 19 nM in 50% serial 

dilutions. The excitation lasers used for each phantom were as follows: 635 nm for AF 633 and 

AF 647; 670 nm for methylene blue, IRDye 680RD, and IRDye 700DX; 760 nm for IRDye 

800CW, AF 750, IR-m1050, and ICG. The excitation power densities measured at the sample 

surface ranged between 25 and 74mW/cm2 depending on laser source. Five 200-ms images were 

acquired for each dye concentration. Images were scaled to the excitation intensity and baselined 

using the intensities measured from phantoms containing no fluorophore for each laser, though 

were not adjusted based on dye absorbance. Mean values of a region of interest in each phantom 

were used to report the measured intensity as a function of dye concentration, and SNR was 

calculated as the mean/ (standard deviation) of the five frames. For each dye, linear fits and 

Pearson’s coefficient were determined using measurements with SNR >5. 
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3.3 RESULTS 

The absorbance spectra for all fluorophores under investigation are plotted with the overlapping 

laser diode excitation wavelengths in Figure 3.1(c). Representative SWIR fluorescence spectra 

and corresponding integrated signal values are shown in Figure 3.2(a)–(f), respectively. The 

characteristic longpass filter cut-on is observable at 1100 nm in the spectral plots, and the 

spectral features of these measurements are consistent with the tails of the fluorophores’ 

emission peaks. The complete set of integrated signal values was normalized to the highest 

signal value (ICG excited at 785 nm) and plotted in Figure 3.2(g) for every excitation source–

fluorophore pairing. For these measurements, the maximum SNR for each dye was as follows: 

AF 633 = 5, AF 647 = 10, methylene blue = 6, IRDye 680RD = 22, IRDye 700DX = 4, AF 750 

= 37, IRDye 800CW = 49, IR-m1050 = 38, and ICG = 38. 
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Figure 3.2: (a)–(c) Normalized fluorescence emission spectra and (d)–(f) corresponding integrated 

fluorescence signals for three excitation sources. (g) Normalized integrated SWIR fluorescence for each 

fluorophore/excitation source investigated. 

 

Inspection of Figure 3.2 indicates that in spectroscopy mode (dilute, non-turbid solutions), all 

fluorophores under investigation generated measurable fluorescence in the SWIR window under 

proper illumination conditions, and the intensity of the emission matched expectations based on 
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the characteristic absorbance spectrum of each fluorophore. As expected, fluorophores with 

absorbance and emission peaks at shorter wavelengths—AF 633, AF 647, methylene blue, 

IRDye 680RD, and IRDye 700DX—generated the lowest signal intensities in the SWIR window, 

and the highest fluorescence intensities were observed for the longer wavelength fluorophores. 

The strongest fluorescence emission signal of all fluorophores was observed from ICG when 

illuminated with 785-nm excitation light, though IRDye 800CW and IR-m1050 also showed 

robust fluorescence emission. These results are consistent with the absorbance spectra for each 

fluorophore. 

Images and quantitative analysis of the tissue-simulating phantoms, acquired with the 

widefield imaging system as shown in Figure 3.1(c), are presented in Figure 3.3. Figure 3.3(a) 

shows representative images of dye dilutions for AF 633, IRDye 680RD, and AF 750 over a 

selected range of concentrations. Qualitatively, these images show responses to changing dye 

concentration indicative of sensitivity to the dyes. A quantitative analysis of all dyes are 

presented in Figure 3.3(b)–(d) and confirm the qualitative observations. These panels show the 

mean fluorescence intensity values of all dyes as a function of dye concentration for 635-, 670-, 

and 760-nm excitation sources, respectively, with linear fits to the data. For reference, the 

baseline values for phantoms without fluorophores were 1560, 820, and 6030 counts/s for the 

635-, 670-, and 760-nm lasers, respectively (these values were subtracted from the data shown in 

Fig. 3.3 before plotting). The SNRs for all dyes at 156 nM were as follows: AF 633 = 150, AF 

647 = 8, methylene blue = 13, IRDye 680RD = 22, IRDye 700DX = 16, AF 750 = 281, IRDye 

800CW = 150, IR-m1050 = 221, and ICG = 119. 
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Figure 3.3: (a) Representative images of SWIR fluorescence in tissue-simulating phantoms containing AF 

633, IRDye 680RD, and AF 750. Each image is the median of five acquisitions. (b)–(d) Fluorescence intensities of 

phantom images as a function of fluorophore concentration (error bars are standard deviation) with linear fits and 

Pearson’s coefficients. 

 

3.4 DISCUSSION & CONCLUSION 

This study is the first to report SWIR fluorescence from AF 633, AF 647, methylene blue, IRDye 

680RD, IRDye 700DX, and AF 750, and provides a comprehensive, quantitative comparison of 

SWIR fluorescence efficiency among a catalog of commonly used fluorophores. SWIR 

fluorescence was readily detectable in non-turbid samples measured using spectroscopy and in 

turbid tissue-simulating phantoms imaged with an epi-illumination SWIR imaging system. The 
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results from the imaging study are particularly striking and showed a robust linear response 

down to the lowest concentrations imaged (20 nM) for nearly all fluorophores. Although many 

of these dyes will likely be detectable at even lower concentrations, this degree of sensitivity is 

already well within the range commonly encountered during in vivo molecular imaging. 

The relatively robust SWIR fluorescence for the shorter wavelength fluorophores (AF 

633, AF 647, methylene blue, IRDye 680RD, and IRDye 700DX) is particularly noteworthy. 

Although using these shorter wavelength fluorophores to image in the SWIR window will have 

inherent limitations, namely, lower fluorescence intensity and shorter wavelength excitation 

sources that may not penetrate as deeply in tissue, there are likely specific instances for which 

these fluorophores offer unique benefits. For example, methylene blue is commonly used for 

sentinel lymph node mapping during cancer resection and has been under clinical investigation 

for other indications105. Thus, clinical evaluation of SWIR fluorescence for this indication could 

be undertaken without the need for an investigational drug designation. 

The fluorescence intensity heatmap shown in Figure 3.2 can be used as a reference for 

comparing SWIR fluorescence efficiency between the fluorophores tested; however, it should be 

noted that some dyes were not excited at their optimal wavelength. This can be accommodated 

by scaling the results in the figure to the normalized absorbance spectra of each dye. 

The general trends observed in the spectroscopy measurements and the imaging 

experiments were comparable, although the relative intensities between some dyes changed. This 

is most likely due to the well-known effects of changing chemical environments. For example, 

the reversal of relative intensities of AF 633 and AF 647 between spectroscopy and phantom 

measurements is likely due to the fluorophores’ well-documented behavior in lipid-based 

solutions.106 This represents the most dramatic change observed between two dyes, and 

discrepancies between the two systems for other dyes were modest. 
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To our knowledge, the results herein are the first to report and compare methodically the 

SWIR fluorescence from a large catalog of red/NIR fluorophores. The observation that all 

fluorophores investigated produced measurable fluorescence expands the catalog of fluorophores 

that can be used for translational research of SWIR molecular imaging. Many of these 

fluorophores are used in clinical practice, are under clinical investigation, or are regularly used in 

preclinical animal research. Thus, the findings presented herein offer a valuable resource to 

accelerate the development and evaluation of this promising imaging modality. 
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4 SWIR IMAGING EXPERIENCE WITH ICG ANGIOGRAPHY IN 

LARGE ANIMAL 

This chapter covers the work published in the following manuscript:  

Byrd, B. K., Marois, M., Tichauer, K. M., Wirth, D. J., Hong, J., Leonor, J. P., ... & Davis, S. C. 

(2019). First experience imaging short-wave infrared fluorescence in a large animal: indocyanine 

green angiography of a pig brain. Journal of biomedical optics, 24(8), 080501. 

DOI: 10.1117/1.JBO.24.8.080501 

Supplemental video: https://doi.org/10.1117/1.JBO.24.8.080501.1 

 

4.1 INTRODUCTION 

The past five years have witnessed accelerating interest in imaging fluorescent contrast agents in 

the short-wave infrared (SWIR) wavelength regime for biomedical applications. In living tissue, 

this regime (∼1000 to 2000 nm) is characterized by negligible autofluorescence, reduced optical 

scatter, and lower or comparable absorption compared to the near-infrared-I (NIR-I) window 

(∼600 to 900 nm).79,81,96 These properties improve both spatial and contrast resolutions, 

particularly when imaging fluorescence below the surface of tissue, and a reduction in scatter can 

mitigate confounding background signals from neighboring fluorescent regions within the 

imaging field.37,85 A major development for the field was the recent observation that the 

conventional clinically approved dye, indocyanine green (ICG)—in addition to a prominent 

https://doi.org/10.1117/1.JBO.24.8.080501.1
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investigational dye, LI-COR IRDye 800CW (LI-COR Biosciences Inc., Lincoln, Nebraska)—

exhibits measurable fluorescence in the SWIR regime,87,100 and follow-up studies indicate that 

many conventional red/NIR-I fluorophores could be employed for SWIR imaging.93 These 

reports dramatically lower the barrier for preclinical and clinical evaluation of SWIR as a 

modality for diagnostic and interventional imaging. 

The characteristics of SWIR fluorescence propagation in tissue suggest it could be 

particularly well-suited for imaging the vascular uptake of fluorescent contrast agents, a 

procedure known as video angiography. In contrast to some targeted molecular imaging 

strategies that often require detecting low levels of fluorescence in tissue, the technical 

requirements of angiography are characterized by the ability to resolve relatively small, high-

contrast structures (vessels with high concentrations of contrast agent), which plays to the 

strengths of SWIR imaging in vivo. Current clinical practice relies on ICG angiography carried 

out in the NIR-I regime to visualize surface and subsurface blood vessels during surgery.107–109 

This information is used by the surgeon to navigate the tissue, avoiding injury to these critical 

structures, confirming blood flow, and/or identifying areas for repair. In this context, several 

published reports of ICG vascular imaging in mouse models have shown that the dye is readily 

detectable in the SWIR regime and produces images with higher spatial and contrast resolutions 

in blood vessels as compared to imaging ICG in the NIR-I regime.100,110 To date, however, these 

promising observations have been reported exclusively in mouse models, and images of SWIR 

fluorescence in model systems that more closely represent humans in size and complexity have 

not been reported. 

Herein, we report the first SWIR fluorescence imaging data in a large animal model. 

Particularly, we acquired intraoperative dynamic images of SWIR fluorescence in a pig brain 

after administration of an ICG bolus. For comparison, the imaging procedure was repeated for 
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the same subject and surgical field using a commercial, clinical-grade surgical microscope that 

images the NIR-I fluorescence of ICG. Time-lapsed visualizations and still frames from both 

systems were used to make qualitative evaluations and assess spatial and contrast resolution 

metrics for both SWIR and NIR-I image series 

4.2 METHODS 

All animal procedures were conducted in accordance with protocols approved by the Institutional 

Animal Care and Use Committee at Dartmouth College. A schematic of the procedure timeline is 

provided in Figure 4.1(a). Craniotomy of a 5-month-old Yorkshire mini-pig was completed 30 

min after anesthetization and ∼45 min before initiation of the imaging sessions; one for SWIR 

fluorescence using a custom SWIR imaging system, and the other for NIR-I fluorescence using a 

commercial ICG surgical microscope. The two imaging sessions were separated by 1 h to allow 

the ICG from the first session to clear. 
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Figure 4.1: (a) Relative time intervals between craniotomy and the two ICG injections for imaging ICG in 

the NIR-I and SWIR regimes. (b) Schematic diagram and (c) photograph of the SWIR imaging system used to 

collect SWIR fluorescence images during open pig craniotomy. 

 

The SWIR imaging system used in this study consisted of a Newport InstaSpec InGaAs SWIR 

(InstaSpec, Newport, Irvine, California) camera mounted to a modified Zeiss S1 surgical 

microscope stand (Carl Zeiss AG, Oberkochen, Germany), as shown in Figure 4.2(a) and (b). 

The InstaSpec is an InGaAs transferred-electron electron-bombarded charged-coupled device 

with a 256 × 1024 pixel sensor cooled to −50° C. Excitation of ICG was provided by a 760-nm 
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laser (CrystaLaser LC, Reno, Nevada) expanded to cover the surgical field at a power intensity 

of 22 mW/cm2. While the overall detection field of view was 180 mm × 50 mm (asymmetric due 

to the sensor shape), the circular illumination field was 40 mm in diameter (at 300 mm from the 

tissue surface). Fluorescence filtering was provided by an 1100-nm longpass dichroic filter 

(ThorLabs, Newton, New Jersey) positioned in front of the objective lens. Imaging rates for this 

system were relatively slow at 2 fps. Raw SWIR images were processed by subtracting laser-off 

dark images and then dividing by the exposure time. 

To provide a clinical-grade comparative benchmark, NIR-I fluorescence was imaged 

using a clinical surgical microscope (Pentero, Carl Zeiss, AG) equipped with the IR800 module 

designed specifically for ICG angiography. Excitation from this device is provided by a filtered 

white-light excitation source that illuminates the field at a power intensity of 30 mW/cm2 and 

focal distance of 250 mm. The captured image dataset consisted of 430×581 pixel 8-bit dynamic 

range data acquired at a frame rate of 30 fps. 

Each of the two imaging sessions followed the same procedure. First, the imaging system 

(either the NIR-I or SWIR instrument) was positioned over the surgical field and focused on the 

exposed brain. Room lights were then dimmed and continuous imaging started shortly before the 

administration of clinical-grade ICG (Chem-Impex Int’l., Inc., Wood Dale, Illinois) at a 0.07-

mg/kg human equivalent dose into an ear vein. Imaging continued for 5 min after the bolus 

administration. 

To synchronize the SWIR and NIR-I image series, the NIR-I video recorded by the 

Pentero was down sampled to match the lower frame rate of the SWIR instrument (total of 166 

frames) and the injection times between the two image series were aligned. A commercial 

motion-correction program, described extensively elsewhere111 was applied to the NIR-I and 

SWIR image series individually, and the resulting series combined in a synchronized time-lapse 
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video. Slight frame-to-frame movements are still visible, which may be a consequence of 

imperfect registration and motion management of the open brain. In addition, specular reflections 

are visible in the white-light images, which contaminate part of the white-light field-of-view. 

To examine the observed spatial resolution characteristics, cross-sectional profiles of 

both large and small vessels were extracted from both NIR-I and SWIR post injection images. 

Additionally, the dynamic vessel-to-tissue ratio (VTR) was calculated for several selected 

vessels (for large and small vessels in both NIR-I and SWIR image series). 

4.3 RESULTS 

The time-lapse Video 1 depicts the dynamic uptake of ICG in the brain using NIR-I and SWIR 

fluorescence from before injection to 5 min after administration. In both channels, the first 10 s 

show the fluorescence images prior to ICG administration. The initial exposure time setting for 

the SWIR camera (200 ms) was too long for the signal produced by ICG in the vessels, resulting 

in saturated regions (marked by pink in the video) until the exposure time was reduced to 50 ms, 

about 30 s after administration. To avoid confounding effects of saturation, these saturated 

regions have been excluded from the analyses. 

Both videos captured the uptake and distribution of the agent in the vessels. The observed 

uptake in larger vessels appears similar between the SWIR and NIR-I channels; however, there 

were stark differences in smaller vascular structures, some of which appeared in the SWIR 

channel but were not obvious in the NIR-I channel. Overall, the SWIR images appeared sharper 

throughout the sequence. These observations were examined further by considering selected 

frames from the dynamic visualization, as provided in Figure 4.2. Many of the finer vasculature 

shown branching from the large vessel in the center of the SWIR images were blurred and/or 

obscured in the NIR-I images (Figure 4.2). Particularly noteworthy observations arose when 

https://doi.org/10.1117/1.JBO.24.8.080501.1
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examining an area of the brain surface covered with a superficial layer of blood [outlined in 

Figure 4.2(a-b)]. In this region, small vessels were still resolvable in the SWIR images with 

details comparable to neighboring vessels outside the blood region; however, these vessels were 

not as clear in the NIR-I image, and the region seemed to suffer from heterogeneous reduction in 

signal compared to other regions of the brain. 

 

Figure 4.2: (a) White-light image taken prior to ICG-bolus injections and (b)–(f) representative frames of 

the time-lapsed video showing the dynamic uptake of ICG bolus in pig brain using NIR-I (left) and SWIR (right) 

fluorescence from before injection to 5 min after administration (Video 1, MOV, 697 KB [URL: 

https://doi.org/10.1117/1.JBO.24.8.080501.1]). 

 

Closer inspection of the vasculature in terms of cross-sectional intensity profiles from 

representative vessels 2-min after ICG-injection (Figure 4.3) revealed that while the largest 

vessel in the field of view (vessel 1) exhibited similar contrast profiles in the SWIR and NIR-I 

channels, smaller vessels were much more resolvable in the SWIR images. The profiles in Figs. 

Figure 4.3(c-d) show particularly stark differences between the two channels; the SWIR images 

https://doi.org/10.1117/1.JBO.24.8.080501.1
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showed well-resolved vascular features that branch from the large vessel, while the NIR-I 

profiles were very broad and showed no capacity to resolve these structures. 

 

 

Figure 4.3: (a) Locations of profile lines numbered and shown overlaid on white-light, NIR-I, and SWIR 

images. (b-e) Corresponding NIR-I and SWIR intensity profile curves plotted as a function of position. 
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Finally, we examined local vessel-to-tissue contrast (VTR) for selected vessels in the imaging 

field throughout the imaging sequence. The vessel and neighboring tissue regions-of-interest 

(ROIs) used to calculate VTR are shown in Figure 4.4 for both NIR-I and SWIR images. 

Overexposed regions in the early phase of SWIR imaging were excluded. VTR values of both 

NIR-I and SWIR over time for each vessel analyzed are plotted in Figure 4.4(a)–(d). These plots 

revealed that after the initial uptake of ICG, local VTR values were relatively stable for both 

NIR-I and SWIR channels over the 5 min measured. Notably, values of VTR in the SWIR 

channel were consistently higher than in the NIR-I values. In one example, shown in Figure 

4.4(b), the VTR measurements for the vessels were ∼50% higher in the SWIR than the NIR-I 

images. Also notable was the vessel analyzed in Figure 4.4(d), which was mostly undetectable in 

the NIR-I regime, yet produced measurable contrast in the SWIR channel. 
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Figure 4.4: (a–d) Dynamic VTR values plotted as a function of time with corresponding vessel and tissue 

ROIs outlined above each respective vessel-to-tissue contrast plot. 

 

4.4 DISCUSSION AND CONCLUSIONS 

To our knowledge, this is the first report of SWIR fluorescence in a large animal (non-mouse) 

model and the first to compare imaging of ICG using a SWIR instrument with a clinical NIR-I 

surgical microscope. Our results indicate that SWIR fluorescence of a human equivalent dose of 
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ICG is readily detectable in this craniotomy model, even when imaging using short exposure 

times (50 ms). The vessel structure was well-resolved in the SWIR, and many small vessels that 

were readily visualized in SWIR images were not visible in the NIR-I images. In the largest 

vessels, spatial resolution and contrast were similar between the two channels; however, SWIR 

imaging significantly outperformed the NIR-I system in both spatial and contrast resolutions in 

smaller vessels. A particularly notable observation was the stark difference between the two 

channels in a region of the brain covered by a layer of whole blood. In this region, smaller 

vessels were still visible in the SWIR images and looked similar to vessels outside the blood 

region. In contrast, the blood appeared to obscure vessels and produce high signal heterogeneity 

in the NIR-I images. 

These results imply that the superior imaging metrics observed in the SWIR images are a 

consequence of the favorable optical properties characteristic of the SWIR regime as compared 

to the NIR-I. However, although the SWIR system outperformed the NIR-I system based on a 

variety of criteria, we caution against attributing the observations solely to the differences in 

optical properties in the NIR-I and SWIR regimes. The specifications of each instrument used in 

this study differ in many respects beyond just the measurement wavelength range. Specifically, 

the optical components, excitation source, and sensor performance (pixel resolution, bit depth, 

and sensitivity) are distinct between the two instruments. Although some of the observed features 

of the two channels cannot be explained by instrumentation differences alone, a rigorous 

comparison based exclusively on wavelength would require these parameters to be consistent 

between the two systems. Nonetheless, the results presented here have significant clinical value, 

particularly considering the confounding issues of blood in the surgical field diminishing 

fluorescence signals, and the ability of SWIR fluorescence detection to mitigate these effects. As 

such, these exciting preliminary results establish the strong potential for SWIR-based 
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angiography and instrument-specific performance improvements over a clinical-grade surgical 

system. 

If the results presented herein are translatable to humans, they would have major 

implications for surgical guidance with fluorescence. The superior resolution, reduced 

background signal, and robustness to blood pooling observed in the SWIR images represent 

critical improvements to angiographic and other fluorescence-guided interventions. Efforts to 

further confirm these results in large animals and clinical cases are underway. 
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5 FIRST IN-HUMAN SWIR IMAGING OF A TARGETED AGENT  

5.1 INTRODUCTION 

Imaging fluorescent contrast agents that emit in the short-wave infrared (SWIR/NIR-II) regime 

(1000-2000 nm) has emerged as an accelerating area of inquiry for biomedical applications, 

largely prompted by the potential to visualize sub-surface features at higher resolution than 

achievable in other optical regimes.37,85,88,100,101,110 An important development for the field was 

the recent observation that SWIR fluorescence from conventional fluorophores that emit in the 

near-infrared I (NIR-I) window, some of which are either approved for clinical use or under 

clinical investigation, is readily detectable at concentrations found in tissue 87,88,100,110,112. This 

development has facilitated studies examining SWIR fluorescence of these agents in small and 

large animal models 87,88,100,110,112, many of which have demonstrated a resolution advantage 

compared to NIR-I imaging. Recently, a landmark first-in-human study reported SWIR  

fluorescence imaging of liver tumors using indocyanine green (ICG), an approved non-specific 

agent commonly used  for imaging vasculature.90 Yet, SWIR imaging in humans of targeted 

contrast agents designed to inform on a specific biomarker of interest, and which are often found 

at lower concentrations than vascular agents, has not yet been reported.  

Herein, we report the first-in-human SWIR imaging of a targeted fluorescent agent 

during surgical resection of cancer. Specifically, we acquired SWIR fluorescence images after 

administration of a low dose of ABY-029, an investigational imaging agent targeted to epidermal 

growth factor receptor (EGFR), during surgical resection of head and neck cancers in three 
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patients. SWIR and NIR-I images of resected fresh specimens were also acquired and compared 

to histopathological analysis. 

5.2 METHODS 

This study was conducted in accordance with a protocol approved by the Dartmouth Committee 

for the Protection of Human Subjects. The three patients imaged for this study were participants 

in a larger Phase 0 study evaluating the investigational agent ABY-029 for surgical guidance of 

head and neck cancer. This agent is an anti-EGFR Affibody molecule (Affibody®, Solna, 

Sweden) labeled with LI-COR IRDye® 800CW (LI-COR Biosciences, Lincoln, NE). Patient 

enrollment was contingent on confirmed elevation of EGFR receptor status from pre-operative 

biopsy. IRDye® 800CW is an NIR-I fluorophore with peak fluorescence around 795 nm, yet has 

been shown to produce measurable fluorescence in the SWIR regime.110 Each patient was 

administered 171 nmol (<6x microdose) of ABY-029 three hours prior to surgery per the study 

protocol.  

As shown in Figure 5.1, the SWIR imaging system consisted of a NIRvana 640 InGaAs 

camera (Princeton Instruments, Trenton, NJ) mounted to a modified Zeiss S1 surgical 

microscope stand (Carl Zeiss AG, Oberkochen, Germany). Illumination was provided by a 760 

nm laser (CrystaLaser LLC, Reno, NV) expanded to accommodate the surgical field with a 

power density of 28 mW/cm2.  Excitation light was filtered from the detected signal using an 

1100 nm long pass dichroic filter positioned between the microscope objective and camera.  

Each image was acquired at an exposure time of 4 seconds and was accompanied by a 

corresponding “laser off” image of the field. The imaging system was also configured to include 

an NIR-I channel along the same optical path. Specifically, a 950 nm dichroic mirror included in 

the optical path reflected NIR-I emission through an 800 nm dichroic long pass towards a PCO 
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Edge 4.2 sCMOS image detector (PCO Inc., Kelheim, Germany). This modification permitted 

imaging SWIR and NIR-I fluorescence through the same optical path in rapid sequence. 

Exposure times for the NIR-I channel were 100 ms. Image processing for both the NIR-I and 

SWIR images involved background subtraction, flatfield correction, and exposure time 

correction. Brightfield images were acquired separately with a standard RGB digital camera and 

manually aligned with fluorescence images.

 

Figure 5.1: Schematic diagram of SWIR/NIR-I imaging system coupled to a 760 nm laser illumination 

source. 

Within one hour after surgical excision, SWIR and NIR-I images of gross specimens and gross 

sections were acquired.  SWIR images were acquired using the instrument described above while 

NIR-I images were acquired using the 800 nm channel of a Solaris open-air fluorescence 

imaging system (PerkinElmer Inc., Waltham, MA). After imaging, specimens were processed for 
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histopathology under standard of care protocols to produce hematoxylin and eosin (H&E) stained 

slides. Additionally, anti-EGFR immunohistochemistry (IHC) was completed on adjacent 

sections following protocols described previously.113 

5.3 RESULTS 

Brightfield and SWIR fluorescence images of the surgical field for the three patients (Cases A-C) 

are shown in Figure 5.2(a) and (b), respectively. Tumors were located in the submandibular 

gland, lateral tongue and buccal mucosa for Cases A-C, respectively. All tumors were confirmed 

EGFR(+) squamous cell carcinomas. In each patient, SWIR fluorescence from ABY-029 was 

readily detectable in the images and generally corresponded to regions outlined in the brightfield 

images by the operating surgeon (in yellow). Strong SWIR fluorescence was observed in the 

teeth of Case A, which is consistent with previous reports of endogenous fluorescence in the 

SWIR previously reported.114 
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Figure 5.2: (a) Brightfield and (b) SWIR fluorescence images of the surgical field during resection of head 

and neck cancer. Tumor regions, as outlined by the operating surgeon, are provided in yellow in (a). (c) Brightfield, 

NIR-I and SWIR images of specimens (gross sections) for each Case. (d) Images of IHC and H&E slides that 

correspond to the gross sections in (c). Tumor regions are outlined in blue in (d). 

SWIR and NIR-I fluorescence images of gross sections for each case are shown in Figure 5.2(c), 

and corresponding histopathology images provided in Figure 5.2(d). A line profile analysis of 

Case A’s gross specimen, before bread loafing, is shown in Figure 5.3.  In gross specimens, 

SWIR images had sharper features than those acquired in the NIR-I regime, consistent with 

previous reports.88,90,100,110 
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Figure 5.3: (A) Brightfield, (B) NIR-I and (C) SWIR fluorescence images of gross specimen post-resection 

of Case A. (D) Line profile intensity curve through SWIR and NIR-I specimen. 

 

Qualitative comparisons of the gross sections and diagnostic pathology indicate that strong 

fluorescence signals were found in tumor regions in both SWIR and NIR-I channels; however, 

robust signal was observed in normal tissue as well.  In Case A, this was largely due to EGFR 

expression in the normal submandibular gland, which is typically high compared to other 

regional tissues.  

In Case C (a buccal mucosa), both a SWIR and NIR-I in vivo images were acquired as 

shown in Figure 5.4. As a surface-based tumor, the depth-based advantages of SWIR were not 

apparent. However, the SWIR image did appear to be sharper compared to the NIR-I image. 
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Figure 5.4: (A) Brightfield, (B) NIR-I and (C) SWIR fluorescence images of the surgical field during 

resection of head and neck cancer.  

5.4 DISCUSSION  

To our knowledge, this is the first example of SWIR fluorescence imaging with a conventional 

NIR-I targeted agent in humans. Notably, SWIR fluorescence was readily imaged even with <6x  

microdose administrations of ABY-029. As an important consideration, the EGFR-binding 

affinity of ABY-029 can cause a high accumulation of fluorescence in normal tissue which are 

known to overexpresses EGFR. The fluorescence distribution found in Case A’s ex vivo 

specimen suggests this to be the case with EGFR(+) normal glandular tissue confirmed in H&E 

staining.  

As another interesting result, the in vivo fluorescence pattern measured in Case C appears 

consistent with the peripheral uptake behaviors previously reported by other fluorescence 

imaging studies involving Affibody molecules 115,116.  Within FGS, this observation may have 

important clinical implications for more precisely identifying tumor infiltrating borders.  
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5.5 CONCLUSION 

This study reports on the viability of in vivo SWIR fluorescence imaging with targeted NIR-I 

agents in humans. As a key discovery, SWIR fluorescence was readily detectable in vivo even 

with <6x microdose administrations of the NIR-I contrast agent. Furthermore, measured SWIR 

fluorescence signal was observed to generally correspond with surgeon-identified tumor regions 

in vivo along with sampled H&E and IHC results. Additional patient enrollment is required to 

draw definitive conclusions and further evaluate SWIR fluorescence imaging of deeper-seated 

tumors. This initial experience establishes the feasibility of SWIR fluorescence imaging using 

clinically relevant targeted agent doses in humans, and compels further investigation of this 

promising new modality.    
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6 OR ROOM CONSIDERATIONS FOR NIR/SWIR IMAGING 

This appended chapter covers the work published as of the SPIE 2019 Biophotonics West 

proceedings:  

Byrd, B. K., Paydarfar, J. A., Wirth, D. J., Tafe, L. J., Samkoe, K. S., Paulsen, K. D., & Davis, S. 

C. (2020, February). Considerations for NIR-I and short-wave infrared (SWIR) fluorescence 

imaging within a clinical operating room. In Molecular-Guided Surgery: Molecules, Devices, 

and Applications VI (Vol. 11222, p. 112220T). International Society for Optics and Photonics. 

6.1 INTRODUCTION  

In the past 5 years, SWIR fluorescence imaging has gained attention within the FGS community 

as an imaging modality with the potential to provide higher spatial resolution of subsurface 

features.83,85,93,101 As these translational efforts progress,63,88,90,100 it is important to understand 

the sources of background signal in the surgical environment. To that end, we report on our 

initial experiences measuring potential sources of ambient contamination in SWIR and NIR-I 

channels originating within a modern operating room (OR). By isolating NIR-I and SWIR-

generating sources, we quantify and compare the contributing intensity measured from each 

separate source of background signal, both through direct viewing as well as in an operating 

configuration. 

6.2 METHODS AND MATERIALS 

6.2.1 A modified clinical SWIR imaging system 

The SWIR imaging system is shown in Figure 6.1 and consists of a NIRvana 640 InGaAs 

camera (Princeton Instruments, Trenton, NJ) with an 1100 nm long pass dichroic filter mounted 
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to a modified Zeiss S1 surgical microscope stand (Carl Zeiss AG, Oberkochen, Germany). 

Illumination was provided by a 760 nm laser (CrystalLaser, Renova, NV, USA) expanded to 

accommodate the surgical field with a power density of 28 mW/cm2. SWIR images were 

acquired using an exposure time of 150 ms. The imaging system was also configured to include 

an NIR-I channel along the same optical path. Specifically, a 950 nm dichroic mirror included in 

the optical path reflected NIR-I emission through an 800 nm dichroic long pass towards a PCO 

Edge 4.2 sCMOS image detector (PCO Inc., Kelheim, Germany). This modification permitted 

imaging SWIR and NIR-I fluorescence through the same optical path in rapid sequence. 

Exposure times for the NIR-I channel were 100 ms. Image processing involved dark image 

subtraction for both SWIR and NIR-I channels. 
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Figure 6.1: Schematic diagram of SWIR/NIR-I imaging system coupled to a 760 nm laser illumination 

source. 

6.2.2 Operating room experiments               

We surveyed a modern OR and identified the sources of background NIR-I and SWIR: 1) 

Stryker Berchtold LED F Generation surgical lights, 2) industrial LED ceiling lights, 3) NEC 

model V462 LCD wall monitor, and 4) a Medtronic StealthStation S8 Navigation System which 

includes an infrared tracking system and Navigation LCD monitor. Each of these systems were 

isolated and imaged directly by the NIR-I/SWIR imaging system.  

To evaluate each signal-emitting background source’s effect on imaging under realistic 

conditions, an imaging target was placed on top of the central surgical bed with the imaging 

system positioned directly over the surgical bed at a working distance of 10 cm. The imaging 

target was a Spectralon® Diffuse reflective standard (Labsphere, NH, USA) with 99% 

reflectance as used to measure incidental SWIR and NIR-I signal within the imaging plane. To 

quantify the additional signal incident upon the reflectance standard, average intensity (cps) was 

calculated from a selected region of interest inside the reflectance standard for each isolated 

background source in both the NIR-I and SWIR channels. (See Fig. 3). By plotting the average 

intensity (cps) measured from the reflectance standard, an absolute comparison of signal 

contribution can be made across both NIR-I and SWIR channels in all signal-emitting sources 

within the OR room. 

6.3 RESULTS 

Figure 6.2 illustrates the resulting fluorescence images of each light-emitting source present 

within the OR. The surgical light (Figure 6.2b) produced the highest amount of signal amongst 

all sources in the NIR-I channel. Second to the surgical light, the NIR-I signal resulting from the 
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infrared tracking system (Figure 6.2d) was the most significant source of noise with wave pulses 

of IR signal readily captured within a 10 fps NIR-I frame sequence. Within the SWIR channel, 

the screens (Figure 6.2a & c) surrounding the surgical bed generated a strikingly high amount of 

SWIR signal. Specifically, the large LCD wall monitor (Figure 6.2a) and Navigation LCD 

monitor (Figure 6.2c) generated an average of 3.18x10⁵ cps and 3.20 x10⁵ cps, respectively, as 

measured directly by the SWIR imaging system positioned above the surgical bed at a typical 

working distance from the display screens.  

 

Figure 6.2: NIR-I and SWIR images of fluorescence-emitting components typically found within a modern 

OR environment. Components shown include (a) LCD wall monitor (b) surgical light (c) Navigation LCD monitor 

and (d) an infrared tracking system.  



 

67 
 

 

Under each isolated background source condition, fluorescence images of the Spectralon 

reflectance standard along with average intensities measured from selected regions of interest 

can be seen in Figure 6.3a. As mentioned previously, the surgical light contributes the most 

signal in the NIR-I channel, followed by similar signal contributions from the LCD screens and 

IR tracking system. In both the NIR-I and SWIR channels, the room ceiling lights contribute a 

very low amount of signal. On the other hand, the large LCD wall monitor contributed the 

highest amount of signal in the SWIR channel (3.1x104 cps), followed by the Navigation LCD 

monitor (1.3 x 104 cps). 

Figure 6.3b presents the measured background signal measured on the reflectance 

standard resulting from each signal-producing background source present within the OR room.  

The resulting plot reveals the SWIR signal from the LCD monitor to be the most significant 

source of background noise. Beyond the surgical overhead light, the LCD wall monitor and IR 

tracking system pose the greatest threat in the NIR-I channel (5,537 cps and 4,783 cps, 

respectively).  
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Figure 6.3: (a) Average reflective standard intensities measured under each condition and (b) resulting plot 

of measured intensities (cps) in both the NIR-I and SWIR channels.  

 

6.4 DISCUSSION AND CONCLUSION 

From these results, a greater insight is provided into the potential sources of background NIR-

I/SWIR signal to expect within an OR room. Amongst all sources evaluated, the SWIR photons 

originating from the LCD monitors constituted the most significant origin of background signal 

across all source and channel combinations. The positioning of each LCD screen with respect to 
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the surgical imaging field obviously will affect how much incidental background SWIR signal is 

present while acquiring SWIR data.  

While performing in-human open field fluorescence imaging, it is conventional practice 

to shut off all overhead surgical lighting. However, from this set of experiments, we conclude 

that other unsuspected sources of background signal within an OR room likely remain active 

such as LCD monitor screens and the IR tracking systems. Furthermore, while dark image 

subtraction may eliminate most of the incidental background noise, there are still dynamic 

sources of noise such as the IR tracking system’s pulsed signal which may not be able to be 

completely corrected for in post-processing of fluorescence data. The findings presented here 

provide important guidance for implementing SWIR imaging systems in the OR. 
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7 DUAL-STAIN DIFFERENCE IMAGING FOR TARGETED BREAST 

CANCER MARGIN ASSESSMENT. 

This chapter covers the work published in the following manuscript:  

Byrd, B. K., Wells, W.A., Strawbridge, R.R., Barth, C.W., Samkoe, K.S., Gibbs, S.L., & Davis, 

S. C. (2022) Evaluating receptor-specific fresh specimen staining for tumor margin detection in 

clinical breast specimens. Molecular imaging and biology (Recently accepted). 

7.1 INTRODUCTION 

Breast conserving surgery (BCS) is a common procedure used to treat over 60% of patients 

diagnosed with breast cancer in the United States.117 This procedure is designed to completely 

remove malignant lesions while preserving as much normal breast tissue as possible. Yet, 

ensuring a complete resection is a persistent clinical challenge, and studies have shown that 

tumor remains on the cut surface of the resected specimen in 15 to 30% of BCS procedures.118–

121 The determination of a positive margin is typically made via pathological analysis of the 

excised specimen several days after the surgical procedure, and often prompts a second surgical 

procedure to try to remove residual tumor tissue, causing patient stress, increased morbidity, and 

burden to the healthcare system. Thus, reducing the rates of complete resection during the 

primary surgery is a widely recognized goal. 

In this context, intra-surgical margin assessment strategies have been translated to clinical 

practice or are in various stages of clinical development. Technologies currently deployed for 

intraoperative margin assessment include specimen mammography, which is widely considered 

standard of care,122,123 as well as frozen sectional analysis,124–126 and touch prep cytology.124–126 

These technologies have not fully addressed the re-excision problem, prompting broad efforts to 
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develop new approaches to reducing re-excision rates. Many of the technologies under 

development leverage optical imaging strategies, including: imaging tumoral changes in tissue 

scatter properties using structured light127–130 or optical coherence tomography,131–134 leveraging 

changes in Raman signatures, using either endogenous135–138 or exogenous markers,76,77,139 or 

imaging fluorescent contrast agents administered in vivo,140,141,70,142–144 or on tissue 

specimens.73,145,146 In vivo fluorescence imaging is a compelling approach which aims to reveal 

residual tumor sites directly in the surgical cavity, and one of the more advanced efforts recently 

reported promising data from a multicenter clinical trial.144  

Topical staining and imaging of fresh tissue specimens with tumor-specific probes is 

another active area of inquiry. This strategy aims to rapidly stain and image the surface of the 

specimen to identify positive margins during surgery, facilitating further excision to remove 

residual tumor. The approach precludes the need to establish the in vivo safety profiles of novel 

contrast agents, and enables the multiplexing of probes targeting various biomarkers. Multiple 

groups have shown that including a spectrally-distinct non-targeted isotype probe in the staining 

solution, acquiring images of both probes in separate channels, and mathematically comparing 

the two channels helps compensate for imaging system inhomogeneity and produce images of 

receptor-specific tumor contrast.76,77,145,73,146,78,147 This strategy, termed dual-probe difference 

specimen imaging (DDSI) in our lab, has been applied using antibodies labeled with surface-

enhanced Raman scattering (SERS) nanoparticles,76,77,139 quantum dots148 or with spectrally-

distinct fluorophores73,145,146 to target various biomarkers, including ERBB1 (EGFR), ERBB2 

(HER2), estrogen receptor, and CD44. Through a series of preclinical studies, we showed that 

fluorophore-based DDSI of EGFR or HER2 provided high tumor-to-normal diagnostic 

performance, with an area under the curve (AUC) from receiver operator characteristic (ROC) 

curves routinely > 0.95.145,73,146,78 We also used preclinical models to optimize the staining 
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protocol, reducing the tissue processing time to six minutes.146 To date, however, fluorophore-

based DDSI had not been evaluated in human breast specimens.  

Building upon our prior preclinical work, we conducted an observational study to 

evaluate HER2-targeted DDSI imaging in human breast specimens. Mastectomy specimens from 

10 patients were gross-sectioned, stained with a cocktail consisting of a fluorescently-labeled 

anti-HER2 antibody and an untargeted isotype labeled with a spectrally-distinct fluorophore, and 

imaged using the DDSI imaging protocol. Corresponding clinical histopathology tissue 

processing (formalin-fixed and paraffin-embedded (FFPE), hematoxylin & eosin (H&E) stained 

tissue sections) and anti-HER2 immunohistochemistry (IHC) slides were used to assess the 

diagnostic performance of the DDSI images. Additionally, diagnostic performance of the DDSI 

images was compared to the images of the targeted probe alone. Finally, we examined the 

relationship between DDSI values and HER2 expression levels across specimens. 

7.2 METHODS 

7.2.1 Study Procedure 

Imaging was performed at the Dartmouth Hitchcock Medical Center (DHMC) in Lebanon, New 

Hampshire. The clinical study was approved by the Institutional Review Board at Dartmouth 

College and all procedures followed the approved protocol. Specimen imaging occurred post-

operatively in the Department of Pathology and Laboratory Medicine and did not interfere with 

the standard of care workflow. This study considered mastectomy specimens containing tumor 

masses >1 cm in diameter that had not received neoadjuvant chemotherapy. After arrival in the 

Pathology Department, the fresh specimen was gross sectioned into tissues approximately 1.5 cm 

thick, per standard procedure, by a Pathologists’ Assistant (PA). One section that contained tumor 

tissue in the cut face was selected for imaging and prepared for DDSI processing. This involved 
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applying a 6-minute dual-probe staining protocol described below followed by dual-channel 

fluorescence imaging. Immediately after acquiring the fluorescence images, a standard red-green-

blue (RGB) image under white light illumination was acquired, followed by the FFPE breast tissue 

being sectioned in preparation for H&E and anti-HER2 IHC staining. Resulting H&E and anti-

HER2 IHC stains of each tumor specimen were interpreted by a Board-certified breast pathologist 

(WAW) to report the disease type and HER2-expression level.  

7.2.2 Antibody-fluorophore conjugation. 

The dual-probe staining solution consisted of a fluorescently-labeled antibody targeted to HER2 

(trastuzumab; Genentech, San Francisco, CA conjugated to IRDye 800CW; LI-COR Biosciences, 

Lincoln, NE) and an untargeted antibody labeled with a spectrally distinct fluorophore (Donkey-

anti-Rabbit-IgG conjugated to AlexaFluor 680). The targeted conjugate (trastuzumab-IRDye 

800CW) and untargeted conjugate (Donkey-anti-Rabbit-IgG-AlexaFluor 680) were designed to be 

isotypes; both conjugates had a molecular weight around ~150 kDa. 

 The untargeted conjugate (Donkey-anti-Rabbit-IgG-AlexaFluor 680) was purchased pre-

conjugated from Jackson ImmunoResearch Laboratories Inc., (West Grove, PA).   The targeted 

probe was conjugated using the following procedure, which has been reported previously.73  

Lyophilized trastuzumab powder was suspended in 2.5 mL of 8.3 pH phosphate buffered 

saline (PBS) to make a 1 mg/mL (6.8 M) solution of trastuzumab. For fluorophore preparation, 

IRDye 800CW NHS Ester was suspended in anhydrous dimethyl sulfoxide (DMSO) at 10 mg/mL 

(8.5 mM) stock solution. Then, 9.2 L of the IRDye 800 stock solution was slowly added to the 

trastuzumab solution and vigorously pipetted to avoid aggregation. The mixture was then shaken 

at room temperature on a vortex machine at low speed, while protected from light, for three hours. 

After this procedure, the antibody-fluorophore mixture was concentrated and buffer-exchanged 

into 1X PBS using a 500 L 10 kDa molecular weight cut off (MWCO) spin filter spun at 8.5k 
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revolutions per minute (RPM) for 7 minutes for multiple cycles. After the buffer exchange was 

complete, the remaining conjugate was collected by inverting the spin filters into a collection tube 

and spinning at 1k RPM for 1 min.  

Once the final conjugate was collected, absorbance spectroscopy (Cary 50 Scan UV/Vis 

Spectrophotometer, Varian, Inc., Walnut Creek, California) was used to quantify the antibody to 

fluorophore conjugation ratio. The final conjugate was found to have a dye-to-protein ratio of 2.74 

in 2 mL of trastuzumab-IRDye 800 conjugation solution. Similarly, absorbance spectroscopy was 

used to measure the antibody-to-fluorophore conjugation ratio in the pre-made Dk-anti-Rb-IgG-

AF680 solution, indicating a dye-to-protein ratio of 0.85.  

Staining conjugates were separately aliquotted into vials and stored at -80 degrees Celsius 

until the day of an imaging study. On the day of specimen imaging, the dual-probe staining solution 

was mixed into a 3 mL solution containing: 1X PBS pH 7, 200 nM antibody concentration of both 

trastuzumab-IRDye 800 and Dk-anti-Rb-IgG-AF680, 1% BSA, and 0.1% Tween20. Throughout 

the clinical study period, the concentration of each fluorophore-antibody conjugate was routinely 

checked on the absorbance spectrophotometer to ensure stable dye-to-protein conjugate binding.  

7.2.3 Dual-probe specimen imaging procedure and processing 

The specimen staining procedure optimized in preclinical models has been previously reported146 

and is outlined here in Figure 7.1. Briefly, this procedure consists of submerging a freshly-excised 

specimen in a blocking solution (5% BSA, 1xPBS) for 2 min, then incubating the specimen for 1 

min in the dual-probe staining solution and finally submerging the specimen in a washing solution 

(1xPBS with 0.1% Tween20) for 3-mins. Immediately following this procedure, specimens were 

imaged along with a calibration phantom on an Odyssey CLx Infrared Imaging System (LI-COR 

Biosciences, Lincoln, NE) in the 700 nm and 800 nm channels at 169 m resolution. Color images 

were also acquired on a digital camera for comparison.  
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Image processing was performed in MATLAB (v.2021a). After background subtraction, 

both images were normalized to the calibration solution to compensate for differences in 

sensitivity/responsivity between the two channels. Pixel intensity values falling below the noise 

floor in either channel were excluded from analysis. The DDSI values were then calculated on a 

pixel-by-pixel basis using the difference between the intensity-normalized targeted and untargeted 

images divided by the untargeted image (as shown in Figure 7.1(d)). 

 

Figure 7.1: (a) Flowchart of the dual-probe staining and imaging procedure. Examples of (b) targeted and 

(c) untargeted fluorescence images which are mathematically compared to create (d) the DDSI image. Sections from 

the imaged surface were also collected and processed for (e) H&E and (f) anti-HER2 IHC staining. 
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7.2.4 H&E and anti-HER2 IHC processing and image analysis 

Immediately following DDSI imaging, the imaged specimen was optimally formalin-fixed, and 

paraffin embedded for sectioning and staining, per standard clinical protocols. H&E and anti-

HER2 IHC staining was performed by the Dartmouth Hitchcock Medical Center’s (DHMC) 

Pathology Shared Resources. Serial sections of the tissue face imaged using DDSI were collected 

for staining after facing the blocks, per standard protocol. Immunohistochemical staining for 

HER2 was performed using PATHWAY anti-HER-2/neu (4B5) antibody (Ventana Medical 

Systems, Oro Valley, AZ). H&E and anti-HER2 IHC slides were imaged using the Aperio 

ScanScope slide scanner (Leica Biosystems, Nussloch, Germany). Color images were obtained at 

0.5x magnification and exported for further analysis as uint8 RGB TIFF files using the Aperio 

ImageScope viewing software.  

The lead pathologist (WAW) scored each anti-HER2 IHC slide according to the 2018 

ASCO/CAP guidelines149 which scores tumor staining into broad categories of 0, 1+, 2+ and 3+.  

To further quantify HER2-receptor expression levels, we processed the anti-HER2 IHC 

pathology images using a previously published protocol.150 Briefly, for each mastectomy 

specimen, five sampled ROIs of 600x600 m were selected from tumoral regions of the anti-

HER2 IHC image as shown in  Figure 7.2. Each selected region underwent the following 

procedures using ImageJ and following the step-by-step procedures previously described:150 

1) Perform color deconvolution using ImageJ’s Color Deconvolution function with the H 

DAB vector option selected. 

2) Threshold the DAB staining (brown) image to separate the brown signal. The threshold 

value was kept consistent throughout the entire study. 

3) Calculate the percent area of brown signal by taking the average of the binarized image. 

4) Threshold the Hematoxylin staining (blue/purple) image to separate the nucleus signal. 
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5) Perform a watershed and dot-counting algorithm to count the number of nuclei present 

within the image (excluding the image edge regions). 

6) Divide the percent area of brown signal (calculated in Step 3) by the number of nuclei 

(calculated in Step 5) to generate a HER2-score. 

7) Normalize all HER2-scores to the HER2(+) sample drop (control) present within the 

same anti-HER2 IHC pathology stain. Report resulting values as HER2-level 

percentages. 

8) Report on average and standard deviation in normalized HER2-level percentages 

amongst 5 sampled ROIs. 

Normalized HER2-levels ranged from 0-100%, with 100% representing the anti-HER2 IHC 

expression seen in the HER2(+) sample drop.  

 

Figure 7.2: ROI selection of 5 regions for quantitative IHC-HER2 analysis. 
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7.2.5 Image Analysis and Statistics 

The image acquisition and pathology process produce the following for each specimen: (1) 

fluorescence images of the targeted and untargeted probes, the DDSI image, and an RGB image, 

and (2) H&E and anti-HER2 IHC of the same surface from the fixed tissue. Tissue regions were 

classified by type – adipose, fibroglandular, tumor, fibrosis, or fibrocystic change (FCC, 

previously referred to as fibrocystid disease) - by the lead pathologist (WAW) using the RGB 

images and corresponding H&E pathology slides.   

In addition to basic assessment of probe uptake using mean values in tissue-specific regions-

of-interest, receiver-operator characteristic (ROC) analysis between tissue types was used as a 

primary evaluative metric. This analysis approach has been used extensively in our previous 

preclinical publications.145,73,146,78,147 Here, MATLAB’s perfcurve.m function was used to compute 

the ROC curves and area-under-the-curve (AUC) values for tumor-to-all other tissue types 

identified in each specimen. Mean AUC values for different imaging approaches were compared 

statistically using a two-sample paired t-test (α = 0.05) and 95% confidence intervals (CI) were 

reported.   

7.3 RESULTS 

Eleven mastectomy specimens from 10 patients were included in this analysis, with one patient 

receiving a bilateral mastectomy. Table 7.1 summarizes the tumor features observed within the 

11-specimen cohort. Intermediate to high-grade invasive ductal carcinoma (IDC) was observed in 

10/11 specimens while 5 of these 10 cases showed intermingled, non-invasive ductal carcinoma 

in situ (DCIS). In one case, extensive DCIS with foci of micro-invasion was present, but no visible 

IDC mass was identified. Analysis of the pre-operative, diagnostic biopsy determined that the 

majority of specimens (81%) were a Luminal A molecular subtype (estrogen receptor ER+ and/or 
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progesterone PR+, and HER2-) based on pre-operative biopsy. Post-operative anti-HER2 IHC 

analysis showed 10/11 specimens had low HER2 expression levels with incomplete/weak 

membrane staining in >10% of tumor cells (corresponding to a pathological score of 1+, which is 

clinically considered HER2-Negative) and one specimen to have amplified HER2 gene expression 

levels, characterized by circumferential membrane staining that is complete/strong in >10% of 

tumor cells (score of 3+, clinically HER2-Positive).  

Table 7.1: Tumor features observed in mastectomy specimen cohort (n = 11) 

Disease Type       
(determined by H&E): 

 Intermediate to 
High grade IDC 

only 

High grade IDC 
+   Focal DCIS 

Intermediate 
grade IDC + 

Extensive DCIS 

Extensive DCIS 
+ micro-
invasion 

  5 (45%) 4 (36%) 1 (9%) 1 (9%) 

Receptor Status        
(determined by biopsy): 

 
Luminal A 

(HER2-) 

HER2-enriched       
(ER-, PR-, 
HER2+) 

Basal-like (ER-, 
PR-, HER2-) 

   9 (81%) 1 (9%) 1 (9%) 

HER2 Expression 
(determined by IHC-

HER2): 

 
Amplified HER2 

expression 
(Score 3+) 

Low HER2 
expression 
(Score 1+) 

No HER2 
expression 
(Score 0+)  

   1 (9%) 10 (91%) 0 (0%) 

 

Figure 7.3 shows color images, images of the targeted and untargeted probe channels, and the 

dual-probe difference images (DDSI) for each specimen. Note that each specimen is labeled with 

a symbol which is used consistently throughout the results section to enable readers to track 

individual specimens through the quantitative analysis. Color-coded contours delineating tumor, 

adipose, fibroglandular, fibrosis, and FCC tissue types are overlaid on the RGB images.  

Figure 7.4 provides the corresponding H&E and anti-HER2 IHC slides from sampled tumoral 

regions in each specimen. The white dotted rectangles overlaid on the DDSI images outline the 

area of the H&E and IHC slides.  
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Figure 7.4 also includes the values for the HER2 expression level metric (normalized 

percent HER2 stained area) computed from the corresponding IHC slides. In specimens i, j, and 

k, a marked signal drop was observed in a few small regions, caused by an air pocket/bubble 

between the specimen surface and glass plate of the imaging system. In specimen i, the air 

pocket region was excluded from the full quantitative analysis of the specimen; however, 

because the artifact coincided with the tumor region in specimens j and k, these specimens were 

not included in the tumor contrast and ROC analysis.  
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Figure 7.3: A collection of all fresh specimen images acquired for the study (panels a-k). Each panel shows 

the image collection for an individual specimen, and includes the RGB image, targeted probe fluorescence image, 

untargeted probe fluorescence image, and the DDSI image. Colored contours overlaid on the RGB image delineate 

different tissue types, as determined by the lead pathologist. White dashed line indicates regions of air pocket 

artifacts. Note that each panel is marked with a symbol that is used throughout the analysis to allow readers to 

follow individual specimens. 

 

Figure 7.4: Images of selected pathology slides for each specimen. As in Figure 7.3, each panel (a-k) 

represents the images for one specimen. The white-dotted rectangles on the DDSI images outline the area of the 

H&E and IHC slides. 

 

Qualitative inspection of the images in Figure 7.3 reveals several notable observations. First, 

when considered alone, the targeted probe images show no preferential highlighting of tumor 



 

82 
 

tissue in any of the specimens. In many cases, the targeted fluorescence signal in the tumor tissue 

was lower than surrounding normal tissue (as observed in Case a, b, d, f, g, and h). Yet, despite 

this uptake pattern, the DDSI calculation produced definitive tumor-to-normal contrast in these 

specimens.  This is most obvious in specimens a, b, g, and h, which show close qualitative 

alignment of the DDSI intensity distributions and the tumor region outlines on the corresponding 

RGB images. Additionally, while DDSI values in the adipose and fibroglandular tissue were 

relatively low, the DDSI values appear elevated in tissues classified as FCC. Finally, these 

images reveal that many of the tumors which present with low HER2 expression produced 

significant DDSI tumor-to-normal contrast.  

Quantitative analysis of these tissue types confirms the qualitative observations.  Figure 

7.5 shows the average values in each tissue-type region for the untargeted probe, targeted probe, 

and DDSI images. Tissues classified as fibrosis or FCC are included in the graph, though these 

tissue types were present only in one and two specimens, respectively, and thus were not 

included in the statistical analysis. Targeted probe uptake was largely consistent across tissue 

types and showed no enhancement in the tumor regions compared to normal tissue types. Tissues 

classified as FCC were the exception, and showed enhanced targeted probe uptake compared to 

other tissue types, including tumor. Unlike the targeted probe images, the average DDSI values 

were significantly higher in tumor tissue than in adipose and glandular tissue. The DDSI values 

in FCC tissues remained high with mean values similar to tumor (two-tailed t-test (α = 0.05) 

p=0.79, 95% CI = [-2.06, 1.61]). Further examination of Figure 7.5 reveals that the specimen 

containing extensive DCIS with foci of micro-invasion and no IDC mass produced the lowest 

tumor-region DDSI values. Because the tumor was ill-defined in this specimen, the contoured 

tumor region considered for analysis encompassed a heterogeneous mixture of cell phenotypes, 

possibly explaining the low DDSI contrast. The specimen containing the tumor with the highest 
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HER2 expression level, the only Score 3+ tumor in the study, did not produce the highest tumor 

DDSI values. Indeed, DDSI values were higher in a majority of the tumors with low HER2 

expression levels included in the analysis.   

 

Figure 7.5: Box and whisker plot of the mean values of the targeted, untargeted, and DDSI images in each 

tissue region (shown in Figure 7.3. Note that the markers reference specific specimens as shown in Figure 7.3) 

 

To examine the capacity of the staining techniques to distinguish tumor tissue, ROC analysis 

comparing tumor to other tissue types was completed for each specimen (excluding specimens j 

and k per the reasons cited above). This was accomplished by computing the ROC metrics on all 

pixels in the contoured regions shown in Figure 7.3 , with the normal tissue types assigned to be 

negative and the cancerous tissue assigned to be positive in each pairwise ROC calculation. 

Figure 7.6 shows the ROC results for the targeted probe and DDSI images for each specimen, 
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along with the corresponding AUC values. All specimens considered contained adipose tissue, 

while only subsets of specimens contained glandular (N = 5), FCC (N = 2) and fibrosis (N = 1).   

 

 

Figure 7.6: Receiver-operator-characteristic curves from the targeted and DDSI images computed for 

tumor-to- several other tissue types.  All specimens that had a defined IDC and no interfering air pocket artifacts are 

included. 

 

Examination of these graphs indicates that the DDSI method increased the tumor-to-adipose 

AUC compared to targeted probe images alone in seven of the nine specimens considered. In 
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eight of the nine specimens, the DDSI tumor-to-adipose AUC values were equal to or greater 

than 0.82, and as high as 0.99. The outlier specimen, which produced an AUC = 0.58, was the 

sole specimen diagnosed as extensive DCIS with foci of micro-invasion (Figure 7.3e), which 

again could be explained by the heterogeneity in the contoured tumor region described above. 

The largest increase in AUC was observed for the only specimen scored a 3+ for HER2 

expression (Figure 7.3f). Of the two specimens that showed lower DDSI AUC compared to the 

targeted probe images, one produced very similar AUC performance (AUC = 0.84 and 0.82 for 

DDSI and targeted images, respectively), and the other was in the extensive DCIS specimen.  

Tumor-to-glandular AUC values also showed substantial increases between the targeted and 

DDSI images, though the resulting DDSI values were more variable (ranging from 0.62 to 0.99). 

Notably, the targeted image AUC values were all below 0.5 before application of the DDSI 

processing step. Finally, DDSI processing increased the tumor-to-FCC and tumor-to-fibrosis 

AUC values compared to targeted imaging alone in the few specimens that presented with these 

tissues. The latter showed the largest change, with the targeted probe and DDSI images 

producing AUC values of 0.13 and 0.99, respectively.   

Figure 7.7a shows a box and whisker plot of the AUC values for the specimens 

containing identifiable IDC masses presented in Figure 7.6 (this excludes the DCIS specimen 

that presented with no identifiable IDC mass). The mean tumor-to-adipose AUC values were 

0.62  0.18 and 0.90  0.07 for the targeted probe and DDSI images, respectively, and the mean 

tumor-to-glandular AUC values were 0.38  0.12 and 0.81  0.15 for targeted probe and DDSI 

images. The increase in AUC performance provided by DDSI over the targeted probe imaging 

was statistically significant in both cases, with p = 0.003 (95% CI = [-0.43, -0.13]) for tumor-to-

adipose AUC and p = 0.004 (95% CI = [-0.62, -0.23]) for tumor-to-fibroglandular AUC. 

Although DDSI also appeared to improve tumor-to-FCC and tumor-to-fibrosis AUC 
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performance, statistical comparisons were not performed due to the limited sample number. A 

notable observation is that even with DDSI imaging, tumor-to-FCC AUC values were relatively 

low (AUC = 0.56).    

 

Figure 7.7: (a) Box and whisker plots of ROC-AUC values for targeted and DDSI images for all specimens 

that had a defined IDC and no interfering air pocket artifact. (b) DDSI values in tumor plotted as a function of HER2 

expression level computed from the IHC images. (c) Tumor-to-adipose DDSI AUC values plotted as a function of 

HER2 expression level. (d) The ratio of (AUCDDSI)/(AUCTargeted) for tumor-to-adipose tissue plotted as a 

function of HER2 expression. 

 

To investigate whether the DDSI values capture information about expression level, the 

recovered HER2 expression levels, determined by anti-HER2 IHC, were compared to the 
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recovered DDSI values. Figure 7.7b plots HER2 expression level vs. DDSI value in the tumor, 

showing no obvious correlation between the two. A similar, non-correlative result was obtained 

when plotting HER2 expression level vs. DDSI tumor-to-adipose AUC values (Figure 7.7c). 

Finally, we computed the (AUCDDSI)/(AUCTargeted) ratio and plotting this factor against HER2 

expression level (Figure 7.7d). This analysis suggests that the factor increase in AUC values 

realized by applying the DDSI method is related to the expression level of the tumor.   

7.4 DISCUSSION 

The multi-probe normalization imaging approach, here termed DDSI, was developed to identify 

tumor cells in fresh specimens using a rapid receptor-specific fluorescence staining and imaging 

protocol. Prior efforts in our lab have demonstrated high tumor sensitivity and specificity in 

several preclinical models expressing different tumor-associated receptors,145,73,146,78,147 and have 

been used to optimize the protocol for efficiency.146 Researchers from Dr. Jonathan Liu’s group 

have also made important contributions to the field, examining similar tissue staining and image 

processing strategies using SERS particle labels instead of fluorophore labels.139,76,77 As part of 

that effort, Wang et al. reported normalized receptor imaging of multiple biomarkers in clinical 

breast specimens.77 To our knowledge, the study presented herein is the first to report DDSI on 

fresh clinical specimens using fluorophore-based probes.    

In this preliminary clinical study, the DDSI approach showed encouraging diagnostic 

performance.  We observed mean tumor-to-adipose AUC values of 0.90  0.07 in all specimens 

with IDC masses (excluding two specimens with air pocket artifacts), including all specimens 

with low HER2 expression (score of 1+). These values are generally consistent with those 

reported in our preclinical studies.73,78,145–147 Because fibroglandular tissue volumes in mouse 

models are small and difficult to identify, we have not previously reported on tumor-to-
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fibroglandular DDSI performance. In the clinical specimens examined herein, we observed mean 

DDSI tumor-to-fibroglandular AUC values of 0.81  0.15, which suggests that distinguishing 

tumor from glandular tissue will be more challenging than from adipose tissue. Further 

evaluating DDSI behavior in glandular tissue will be an important consideration in future studies.  

The relationship between DDSI values receptor expression levels reported herein is 

intriguing. We observed no correlation between tumor DDSI values and HER2 receptor 

expression, or between AUC performance and receptor expression. Relatedly, the diagnostic 

performance was robust even in low expressing tumors traditionally classified as clinically 

HER2-Negative (Score 1+). Although initially surprising, our previous preclinical studies 

suggested that DDSI values may not be linearly related to receptor expression,78 and that once an 

expression level threshold is reached, AUC does not change much with higher expression levels. 

These results come in the context of dramatic reports showing that new HER2-targeted antibody-

drug conjugates are highly effective in a large percentage of breast tumors traditionally classified 

as HER2-Negative (Score 1+).151,152 Taken together, these results suggest that HER2-targeted 

imaging for tumor identification may be applicable in a much wider patient population than 

anticipated, although such results need to be confirmed in a wider patient population.   

Although only present in a limited number of specimens, precluding formal statistical 

comparisons, tissues classified as FCC produced elevated DDSI values, reducing tumor-to-FCC 

contrast of the DDSI signal. In the current study, the elevated values were largely driven by 

preferential uptake of the targeted stain in these tissues. This could present a challenge for 

clinical translation of the technique, potentially requiring the deployment of methods to either 

identify FCC or otherwise increase tumor specificity; including adding other stains that label 

FCC or other tumor markers, or investigating endogenous optical techniques, such as scatter-

based imaging128,129 that may be able to distinguish FCC.      
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Another central finding is that applying the DDSI method significantly increased tumor-

to-normal tissue contrast and diagnostic performance compared to staining with a targeted 

imaging probe alone, again consistent with the bulk of our previous preclinical work. The extent 

to which the DDSI method improved diagnostic performance was quite striking, improving mean 

AUC values by 0.28 and 0.43, depending on tissue type comparisons. Interestingly, although we 

observed no correlation in DDSI values vs. expression level, the improvement in AUC values 

between DDSI and targeted-probe-alone imaging appears related to expression levels. This 

suggests that the DDSI approach is more adept at emphasizing receptor expression differences 

than staining with a single targeted probe. 

Although the results presented here are largely encouraging, it should be recognized that 

this preliminary clinical study was performed on cut surfaces of mastectomy specimens with 

grossly-identifiable tumor regions. Identifying small residual tumors on BCS specimen surfaces 

will certainly be more challenging, and will require rigorous image/tissue registration for 

validation. Understanding the sensitivity and specificity limits of the approach in BCS margins 

will be a central focus of future evaluation. Nonetheless, this study helps establish the feasibility 

of deploying the approach for clinical specimen imaging, and provides valuable guidance for 

continued development.   

7.5 CONCLUSION 

Accurate and rapid assessment of margin status in surgical specimens during surgery would help 

facilitate complete tumor removal, potentially reducing repeat surgery rates. Herein, we present 

the first experience with our fluorophore-based dual-probe topical staining approach in clinical 

breast specimens. Consistent with preclinical results, high diagnostic performance between 

tumor and the most common normal tissues was observed, though this performance dropped in 
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the presence of fibrocystic changes. Notably, specimens containing tumors that would 

traditionally be classified as HER2-Negative showed high ROC performance as a consequence 

of their low, but measurable, HER2 expression, suggesting that HER2-based imaging could be 

effective in patients beyond those with tumors defined as HER2-Positive based on current 

clinical standards. These encouraging results support further development and evaluation of this 

promising approach.  
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8 MULTI-CHANNEL HYPERSPECTRAL CRYO-IMAGING FOR 

AGENT RECOVERY 

This chapter covers and expands on the work published in:  

Wirth, D., Byrd, B., Meng, B., Strawbridge, R. R., Samkoe, K. S., & Davis, S. C. (2021). 

Hyperspectral imaging and spectral unmixing for improving whole-body fluorescence cryo-

imaging. Biomedical Optics Express, 12(1), 395-408. 

DOI: 10.1364/BOE.410810 

8.1 INTRODUCTION 

In this chapter, we will discuss the development of the multi-channel hyperspectral Dartmouth 

Cryo-Imaging Machine and the accompanying processing steps required to recover globally 

calibrated, agent-specific cryo-fluorescence volumes alongside anatomic RGB volumes.  This 

instrument enables hyperspectral image acquisition which can improve imaging performance, 

namely agent-specificity and sensitivity. Using tissue-simulating phantoms and animal models 

co-administered three commonly-used fluorophores, we quantify the improvements in sensitivity 

to the reporters provided by spectral information, and evaluate the impact on image 

interpretation. 

8.1.1 Methods for Depth-Resolved Fluorescence Imaging 

The ability to image labeled molecules or cells that inform on biological function throughout the 

entire body has long been a central aim of molecular imaging. This capability is important across 

biomedical disciplines, from studying drug candidate biodistribution and activity; tracking tumor 

growth and cell migration; understanding biological function using environment-sensitive 
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reporters; and developing novel imaging agents, among other objectives.153–159 Yet, acquiring 

this information at both high resolution and in large volumes is an enduring challenge. 

Conventional non-invasive whole-animal imaging modalities are limited in resolution and most 

are incapable of routinely imaging multiple reporters simultaneously. Optical techniques can 

provide highly-multiplexed imaging at high resolution, yet while technologies have been 

introduced to reveal high-fidelity subsurface information,160–167 the severe depth-resolution trade-

off has limited the role of optical imaging in intact animal volumes.  

In preclinical molecular imaging, whole body fluorescence cryo-imaging has emerged as 

an attractive technique that provides high-resolution three-dimensional fluorescent and anatomic 

information in whole-animal models or other tissue specimens.168–170 This capability has been 

applied in a variety of capacities, including anatomic phenotyping,170,171 blood flow 

mapping,168,169,172,173 cellular quantification,170,174 tracking metastatic spread,175,176 and the study 

of contrast agent biodistribution.176 Most cryo-imaging techniques employ a motorized cryo-

microtome with serial slice-and-image acquisition sequences and high-resolution fluorescence 

imaging to create registered stacks of 2D images containing anatomic and functional information 

of pre-clinical small animal models.168–170 

8.2 REVIEW OF PREVIOUS CRYO-MACROTOME DEVELOPMENTS 

Interestingly, the earliest major cryo-imaging approach was the imaging of a full male human in 

1994 as part of the Visible Human Project led by the U.S. National Library of Medicine which 

aimed to create a publicly-available dataset of cross-sectional anatomic photographs of the full 

human body for medical education purposes.177 The first male donor was a convicted Texas 

murderer who was executed by lethal injection in 1993. Shortly after, a female donor cryo-

imaging dataset became available as well. Such datasets have been extremely valuable for virtual 
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anatomy education, radiography applications, and surgical training.177 As compared to 

conventional whole-body imaging modalities (PET, CT, MRI), cryo-imaging collects anatomic 

color information which can be used in phenotyping,171 as well as further characterizing specific 

tissue types by color.178,179 

Preclinical cryo-macrotome systems are relatively rare and developments at a handful of 

research centers have led the way in the past 20 years. The first known cryo-imaging system was 

developed by Barlow Scientific (Olympia, WA) in 1999, and utilized for regional blood flow 

analysis with fluorescent microspheres.168 Briefly, the system consisted of a CCD camera, a 

metal halide lamp, two motorized filter wheels controlling excitation and emission filters, and a 

custom-designed microtome which serially cuts vertical sections off a tissue block.168 Since this 

initial 1999 development, a group from the University of Amsterdam has been highly active in 

quantifying myocardial blood flow and coronary vascularity using a modified version of the 

Barlow Scientific cryo-imaging system with advanced image processing techniques.180,181 

In 2009, a second cryo-imaging system was developed at Case Western Reserve by the 

Wilson group who have continued to make major advances in the imaging and analysis of cryo-

imaging data.170 Described in depth in previous work,170 their system consists of a modified 

whole-body cryo-microtome with a robotic XYZ positioner which carries the microscope 

imaging system that consists of a stereo microscope, light sources, filter cubes, and a low light 

digital camera. By interfacing with the 3-axis robotic positioning system, a computer control 

system pans the imaging system over the specimen for high-resolution mosaic tiled image 

acquisition. Their system was eventually commercialized as BioInVision Inc., which is a pay-

for-service cryo-imaging service. Active research continues within the Wilson group on the cryo-

image processing techniques including single cell counting,174 multi-modal contrast agent 
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screening,182 tumor dispersal pathways,183 and deep-learning met segmentation184 amongst other 

work produced by this group.   

Most recently, EMIT Imaging Inc. (Baltimore, MD) has launched a company in 2018 

selling cryo-imaging systems (XerraTM) with integrated image viewing software (VivIDTM). 

Meanwhile, inviCRO has produced cryo-image reconstruction and robust quantification software 

(VivoQuant(R)). Early collaboration studies are mostly out of Cambridge, Mass.,185,186 but the 

field may rapidly expand now that cryo-imaging systems and advanced image analysis software 

are commercially available. 

8.3 INSTRUMENTATION AND DATA ACQUISITION HARDWARE 

The hyperspectral whole body cryo-imaging system developed at Dartmouth consists of a Leica 

CM3600 whole animal cryo-macrotome modified with a custom-built multi-channel 

hyperspectral optical imaging system, as depicted in Figure 8.1(A). The cryostat/macrotome unit 

was retrofitted with new motors, encoders and customized software control, and is capable of 

automatically sectioning specimens as large as 10 cm x 10 cm x 5 cm (depth) in sub-10-mm 

sections. The imaging system is mounted to the top of the CM3600 cabinet (Figure 8.1(A) inset), 

suspended over the opening normally occupied by a heated viewing window and positioned to 

image the cut surface of the remaining specimen block after each slice is removed. The viewing 

window was replaced with a light-opaque board configured with ports for light sources and the 

objective lens, the latter of which views the specimen through a surgical microscope lens cover 

(Carl Zeiss Meditec, Inc., Dublin, CA). The small volume between the lens and cover is 

enclosed, though not sealed, and maintained under a slow nitrogen purge to prevent 

condensation. 
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A rendering and schematic of the optical imaging system are shown in Figure 8.1(A-

inset) and (B), respectively. This system consists of a thick aluminum mounting plate that can 

accommodate up to six LED’s or beam expanding lenses circumscribing the objective lens. In 

this study, we used four light sources:  A 6500 K white light LED and 470 nm LED (180 mW 

and 200 mW, respectively, Mightex, Toronto, ON), a 635 nm laser (250 mW, Intense Co, New 

Brunswick, NJ) and a 760 nm laser (1 W, CrystaLaser LC, Reno, NV). LED modules used to 

excite fluorescence were fitted with 2 in. diameter short pass filters to reduce the longer 

wavelength signals that can contaminate fluorescence measurements. Remitted light from the 

sample is collected using a 500 mm focal distance objective lens (50.8 mm diameter, 400-1100 

nm AR coated Achromatic Doublet, Thorlabs, Newton, NJ) and then split into two detection 

channels; a visible channel and an NIR channel, using a 750 nm short pass dichroic mirror 

(Thorlabs, Newton, NJ). Light transmitted through the visible detection channel passes through a 

10-position high-speed filter wheel (HS1024, FLI, Lima, NY) containing dichroic long pass 

filters (510 nm and 650 nm used herein) to reduce the excitation signal and a liquid crystal 

tunable filter (LCTF, Varispec, CRi, Woburn, MA) before being focused on a cooled, 16-bit 

scientific CMOS camera (Edge 4.2, PCO, Bavaria, Germany).  
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Figure 8.1: (A) Photograph of the macrotome hyperspectral imaging system with a 3D rendering of the 

imaging module (inset), (B) schematic diagram for the imaging setup, (C) automated slicing and imaging acquisition 

sequence and (D) Example of RGB reconstruction and multi-agent fluorescence channel overlay 

 

The LCTF enables automated selection of any 7 nm waveband between 420 and 720 nm, and 

thus can be used to record hyperspectral image stacks. Light transmitted through the NIR 

channel is filtered using a longpass filter (herein, a 780 nm cut-on, Thorlabs, Newton, NJ) before 

detection with a 2nd PCO scientific CMOS camera. The full filter and waveband combination 

used in this study is presented in Table 8.1, selected to accommodate the following commonly-

used fluorophores: sodium fluorescein (NaFl, Sigma Aldrich, St. Louis, MO, USA), IRDye 

680RD and IRDye 800CW (LI-COR Biosciences Inc., Lincoln, NE), and indocyanine green 

(ICG, Chem-Impex International, Inc., Wood Dale, IL,). In its current configuration, the field of 
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view is 93 x 93 mm and depth of focus 30.5 mm with a lateral resolution of 71 𝜇m or better as 

determined using a 1951 USAF resolution target. 

Table 8.1 Excitation and emission configurations for optical channels 

Light source Excitation Emission 

470 nm LED 475 nm SP 510 nm LP/LCTF: 510-720 nm 

530 nm LED 550 nm SP 570 nm LP/LCTF: 575-720 nm 

633 nm laser None 650 nm LP/LCTF: 660-720 nm 

760 nm laser None 780 LP 

White light None LCTF: 420-720 nm 

 

The automated sectioning/imaging sequence is controlled using custom software written in 

LabVIEW (National Instruments, Austin, TX, USA). All system parameters (light source 

selection and intensity, filter combinations, exposure times, etc.) are set and saved in identifiable 

configuration files prior to imaging to enable ease of use. Once the specimen is positioned, 

aligned and calibration data acquired, the steps for a typical automated acquisition sequence are 

outlined below.  
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Cryo-Macrotome steps for automated acquisition sequence:  

1. Position filter wheel and turn on white light LED 

2. Scan LCTF from 420 nm to 720 nm in preset increments (typically 10 nm). At 

each waveband, acquire two images, each at different exposure times (typically 

10 ms and 50 ms).  

3. Turn off LED and acquire dark images. 

4. Position filter wheel for the 470 nm LED fluorescence channel, and turn on 

470 nm LED 

5. Repeat steps 2 and 3 for the 470 nm channel with exposure times of 100 ms 

and 1000 ms, scanning the LCTF from 510 to 720 nm 

6. Repeat steps 3-5 for all additional fluorescence channels 

7. Cut section, which removes the top layer based on preset section thickness 

8. Repeat steps 1-7 through the entire specimen. 

 

Figure 8.1(C) shows the specimen during a sampling of the acquisition process (white light 

illumination, 470 nm illumination, 635 nm illumination, and sectioning).  For each light 

source/waveband combination, we acquire two images at different exposure times to increase the 

effective dynamic range of the data. Overall, the acquisition process produces multiple 

hyperspectral image stacks (often hundreds of high-resolution images) per slice. For imaging 

whole mice, we often section at 100-150 mm per slice, requiring 200-250 slices, thus generating 

0.5-1TB of data. All data are written in standard TIFF 16-bit image format directly to a cloud file 

server to minimize hard drive requirements of the control computer and enable remote image 
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review and data processing during acquisition. An example of a 3-D rendering produced by the 

instrument is shown in Figure 8.1(D). 

Total specimen imaging time is determined by the number of fluorescence channels 

imaged, the number of LCTF wavebands used per channel, the exposure time of each 

acquisition, the section thickness, the macrotome sectioning time (usually between 20 and 24 s), 

and thickness of the specimen. In studies for which only RGB and one fluorescence channel are 

required, total image/sectioning time per slice is typically between 40 and 50 s. Multi-

fluorophore imaging with densely-sampled spectra, as performed herein, requires between 3 and 

4 min per slice.  

8.4 PRIMARY IMAGE PROCESSING WORKFLOW AND METHODS 

8.4.1 Overview of image processing workflow 

Processing acquired data into interpretable image stacks is an involved series of steps involving 

system quality control and algorithmic processing. A daily workflow has been developed which 

is reproducible and considers the volumetric imaging geometry.  These steps are described in the 

following subsections, and consist of:  

1) Pre-acquisition QA (Section 8.4.2) 

2) Time-of-acquisition monitoring (Section 8.4.3) 

3) Basic post-processing image corrections: (including dark field subtraction, exposure 

correction, radial corrections, field of depth affine transformation, and field-of-view 

cropping). (Section 8.4.4) 

4) Volumetric flatfield corrections at every depth (Section 8.4.5) 

5) Anatomic RGB volume reconstruction (Section 8.4.6) 

6) Hyperspectral image stack integration to simulate bandpass filtering (Section 8.4.7) 
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7) Voxel-wise hyperspectral unmixing techniques (Section 8.5) 

8) Subsurface fluorescence corrections (Section 8.6) 

As illustrated in Figure 8.2, pre-acquisition QA and time-of-acquisition QA ensure consistent 

cryo-imaging performance on a day-to-day basis. Post-processing image corrections (discussed 

in depth in Section 8.4.4-5) are applied to the acquired hyperspectral raw data to correct for 

dark signal, varying exposure times, radial distortion, multi-camera registration, and volumetric 

illumination patterns. 

 

Figure 8.2: Daily workflow schematic of cryo-imaging and associated post-processing procedures 

 

The intermediate result from basic image processing is calibrated hyperspectral image stacks. As 

demonstrated in  

Figure 8.3, the hyperspectral image stacks are then utilized for either RGB image reconstruction 

(Section 8.4.6), bandpass integration of fluorescence signal (Section 8.4.7),  or hyperspectral 

unmixing of fluorescence signals (Section 8.5) to create a data rich set of 3D fluorescent and 

anatomic data of a whole-animal model. Finally, optical corrections are carried out using a 

‘Next-Image’ correction scheme to compensate for subsurface fluorescence contributions 

(Section 8.6). 
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Figure 8.3: Hyperspectral image processing workflow  

8.4.2 Pre-acquisition Quality Assurance 

A set of QA tests are carried out prior to every cryo-imaging experiment to ensure the excitation 

sources, cameras, and associated hardware are all working properly with spatial resolution and 

illumination power existing within a given level of acceptance.  

8.4.2.1 Multi-channel, hyperspectral flatfield test 

As part of the pre-acquisition QA, the counts per second (cps) between a reference flatfield 

image and the test flatfield image at a reference depth (5000 µm) are compared for every channel 

and wavelength acquired with a tolerance of 5% difference in cps.  In addition to the flatfield 

intensity comparison, the excitation source illumination patterns are visually compared. 
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Figure 8.4: Excitation source QA test carried out at 5000 μm depth across all channels and wavelengths of 

interest 

 

8.4.2.2 Volumetric resolution test 

To test for sufficient resolution throughout the whole imaging volume, a USAF 1951 resolution 

chart is examined at three heights across the volumetric imaging field. Regions lying in the focal 

center and opposite corners of the volumetric imaging field are compared to a reference 

resolution image in the exact same locations. The maximum resolution achieved in each image 

should be comparable to the prior reference cases. Spatial resolution varies between 55 and 120 
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μm in the volumetric imaging field, with the highest resolution existing in the center of the 

imaging field. An example of this resolution comparison test can be seen in Figure 8.5 below, 

with zoomed-in resolution charts displayed in the right column. If the user finds the minimum 

spatial resolution values to be comparable between the reference and newly acquired images at 

each location in the volumetric resolution test, then the image resolution is deemed acceptable to 

move forward to real data acquisition. 

 

Figure 8.5: Resolution test of USAF resolution target carried out at three depths and multiple regions 

throughout the volumetric FOV. 
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8.4.3 Time-of-acquisition monitoring 

After successful completion of the QA routine, a standard cryo-imaging experiment can 

commence. The cryo-imaging acquisition process is completely automated, with experiments 

usually lasting in between 7-24 hours depending on the number of channels used. As images are 

being acquired, the Dartmouth Cryo-imaging system writes all files to a shared cloud-storage 

drive. Thus, images can be viewed as they are acquired from anywhere with internet access. A 

monitoring program, reportMacroError.m, autonomously monitors the slice acquisition process.  

If a disturbance in acquisition occurs which stops or pauses acquisition for longer than 15 min, 

an email can be sent out to users to flag the error. An example automated email is shown below.  

Figure 8.6: Email alert of macrotome disturbance during runtime. 

 

The most common run-time disturbance occurred due to a temporary disconnection from the 

shared Cloud storage drive (a Google shared drive). When Google Drive software works 

properly, all image files are written as uint16 TIFF files in a respective Google drive folder 

which appears to exist on the local drive when the LabVIEW program looks for the specified 

folder. In the case of an internet connection disturbance, the specified folder can no longer be 

found or written to by the LabVIEW program and the error in Figure 8.7 will occur.  
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Figure 8.7: Common run-time error which occurs due to a temporary loss of internet connection 

 

As a work around, the LabVIEW main loop was modified to repetitively attempt to write to the 

‘local’ Google shared drive folder over the course of 2 min. In the scenario of a short internet 

connection disturbance, the LabVIEW program will remain in the writing loop until the program 

is successfully able to locate the Google shared drive folder. If the internet disconnection lasts 

for greater than 2 min, the main loop will pause acquisition, turn off all sources, and throw an 

error message.  

8.4.4 Basic Post-Processing Image Corrections 

Basic image processing steps are performed for every image acquired on the cryo-imaging 

system, with the end goal of producing globally calibrated, 4D images(x, y, z, λ) with minimal 

imaging field distortions.  The sequence of basic image processing steps is shown in Table 8.2 

below.  

Table 8.2: Basic post-processing steps applied to all acquired cryo-macrotome data 
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Execution 

Order 

Correction Step Correction accounts for: 

1 Dark field subtraction Dark current present within 

the detection system 

2 Exposure time correction Differing exposure times 

3 Radial distortion correction Fish-eye/barrel distortion 

from lens 

4 Camera co-registration Slightly altered fields of view 

between Vis and NIR 

cameras 

5 Field-depth affine 

transformation 

Imaging plane translation and 

changing image scale from 

top to bottom of imaging 

volume. 

 

6 Field-of-view cropping Cropping down the FOV 

rectangle to a user-selected 

region of interest rectangle, 

which reduces memory 

requirements for Step 7. 

7 Volumetric flatfield 

normalization 

Inhomogeneous illumination 

field throughout the volume 
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8.4.4.1 Dark field subtraction and exposure time corrections 

Each acquired image is accompanied by a dark image with the illumination source extinguished. 

Basic image processing begins with dark image subtraction followed by exposure time 

correction, which is accomplished by dividing the dark image subtracted image by the image’s 

exposure time to convert the image units into counts per second (CPS). This simple equation is 

shown below: 

𝐼𝑚𝑎𝑔𝑒𝑐𝑝𝑠  = ( 𝐼𝑚𝑎𝑔𝑒𝑙𝑖𝑔ℎ𝑡 𝑜𝑛 −  𝐼𝑚𝑎𝑔𝑒𝑙𝑖𝑔ℎ𝑡 𝑜𝑓𝑓 )/𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒                         Equation 8.1 

Each image is acquired with two exposure times (repetitions), the second time being a ~10x 

greater than the first time.  This was done in order to ensure, in the case that a detector pixel was 

saturated with signal, the image could be recovered using the shorter, unsaturated exposure 

times. 

8.4.4.2 Radial Distortion Correction 

Radial distortion, or a fish-eye effect, occurs due to the convex objective lens bending incoming 

rectilinear space into arced lines. This distortion is preserved when the image reaches the 

rectilinear sCMOS detector, thus a correction must be made to convert the distorted space into 

the rectilinear space again. By following Equation 8.2, one can map distorted voxels at a given 

radius (𝑟𝑑 ) to an undistorted radius value (𝑟𝑢 ), where the radius is defined as the vector distance 

between the optical center and distorted point in space.  

𝑟𝑢  =  𝑟𝑑  +  𝑘𝑟𝑑                                                             Equation 8.2 

Because all images are acquired from the same objective lens, the same radial distortion 

correction could be applied to all images acquired, as long as  𝑘, the distortion parameter is well-

characterized. MATLAB’s Camera Calibrator app was used with a checker-board pattern 

standard to determine the lens distortion parameters, specified as a 3x3 projection matrix. The 
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MATLAB function, undistortImage.m, takes in the lens distortion parameters and performs this 

radial distortion correction to every image.  

8.4.4.3 Camera co-registration 

After the lens-specific radial distortion correction has been applied, we can co-register the 

rectilinear images together between the two optical pathways (Visible and NIR detection). This 

co-registration is carried out by applying a linear transformation to the NIR detection channel 

such that the two-channels are perfectly co-registered. To do this, corresponding points between 

a checkerboard standard were selected in both the Visible and the NIR optical channels. The 

linear transformation was then estimated in MATLAB v.2021a (MathWorks, Natick, MA, USA) 

using an internal point-cloud registration program (pcregistericp.m).  

8.4.4.4 Field-depth affine transformation 

An additional affine transformation is necessary to accommodate for the slight shift in field 

location with respect to the lens. To measure this effect, we imaged a resolution card over the 

entire imaging volume at 100 μm increments. Using the SURF image registration function, we 

co-registered all images with the first image acquired at a depth of 5000 μm. An example of this 

affine registration technique, which relies on matching local features, is shown in Figure 8.8.  
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Figure 8.8: SURF registration between resolution card images acquired throughout the imaging volume 

 

Figure 8.9 shows the resulting x and y pixel offsets (A) and image scaling factor (B) determined 

from performing affine registration across the imaging volume. The maximum pixel offset was 

found to be 40 voxels at the bottom of the imaging field (35,000 μm).  As the xy-imaging plane 

gets further away from the camera, the recorded image looks ‘smaller’ because the optical field 

of view gets larger the further the specimen is away from the lens. The maximum scaling 

difference between the top and bottom of the imaging volume was found to be 3.5%. As shown 

below, the offsets and scaling factors are a linear function of depth, and thus can be computed for 

any imaging depth.  
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Figure 8.9: (A) Measured image offset and (B) observed image scaling function in xy plane from top (5000 

μm) to bottom (35,000 μm) of cryo-macrotome imaging volume.  

 

By calculating the necessary affine transformation for every imaging depth, and applying this 

depth-dependent transformation to all images, we are able to correct for the observed scaling and 

translational differences from the top to the bottom of the field. An example of this field-depth 

correction can be seen in Figure 8.10Figure 8.10 below, where we applied this affine 

transformation to all resolution card images acquired from the top to the bottom of the imaging 

volume.  Figure 8.10(A) shows the uncorrected cross-section, and Figure 8.10(B) shows the 

corrected cross-section in which the field lines appear parallel throughout the entire imaging 

volume.  
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Figure 8.10: (A) Initial cross-section and (B) corrected cross-section of resolution card imaged at 100um 

depth-increments across the entire imaging volume.  

 

8.4.4.5 Field-of-view cropping 

Finally, after executing the basic imaging steps described above, including: 1) dark image 

subtraction, 2) exposure time correction, 3) radial distortion correction, 4) Visible-NIR optical 

path co-registration, and 5) the field-depth affine transformation correction, we are able to crop 

the image down to a selected rectangular field-size which saves on memory for the future image 

processing steps. To perform this, the user is prompted to select a raw image (2048x2048 pixels), 

and select a rectangular ROI which will be used to crop all subsequent images down to the same 

size. An example of this step is shown in Figure 8.11 below.  
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Figure 8.11: ROI selection of rectangular region of interest for image processing 

By cropping out regions of the field which are not of interest, we are able to save on memory 

when interpolating and saving flatfield volumes in the next step. 

8.4.4.6 Volumetric flatfield normalization 

Once the image is cropped down, the image stack (currently in CPS units), is divided by a depth-

specific flatfield image (also in CPS) which is the same size as the cropped image stack to 

accommodate non-uniform illumination.  The reason for not normalizing the flatfield is to 

preserve and correct for the fluctuation in daily excitation source power and to ensure reported 

fluorescence intensities are comparable from day to day. As depicted in Figure 8.12, the ratio of 
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CPS intensities between the image stack and flatfield is multiplied by a factor of 1000 and this 

ratiometric unit is referred to as the relative fluorescence units (RFU) for our system.  

 

Figure 8.12: A pseudo-equation for flatfield correction and image transformation from CPS into RFUs 

 

As mentioned prior, the flatfield image must accommodate for the specific imaging plane height 

each image was acquired at. To do this, we need an accurate volumetric flatfield each time we 

image a specimen. The methods for generating this are described in the next section.  

8.4.5 Generation of Volumetric Flatfield 

In order to properly correct for the non-uniform, volumetric excitation field, we must know the 

flatfield intensity distribution of every source at all depths imaged as the section blade moves 

down through the specimen during cryo-imaging acquisition. Although the intensity and shape of 

the excitation field is fairly robust, it can fluctuate for a variety of reasons, including slight 

movement of hardware from daily use, and these changes are recorded and corrected for.  

To understand the full volumetric flatfield each day prior to an experimental run, we must 

acquire a set of flatfield images. However, acquiring a flatfield image at every single depth 

imaged would take as long as the experiment itself and is unrealistic for daily QA. Thus, 

sufficient sampling of the flatfield was looked at as an alternative approach for accurately 

interpolating the full flatfield volume.  
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Our goal was to interpolate a full volumetric flatfield based on sampled images, such that 

each depth-specific flatfield image had an error less than 1% relative error when compared with 

the real flatfield image at each depth. To measure the ground-truth volumetric flatfield of every 

excitation source, flatfield images of each channel were acquired at increments of 10 μm across 

the 3 cm focal volume. This real flatfield data served as the reference dataset for assessing the 

accuracy of interpolated flatfield datasets. By varying the number of ‘ground-truth’ images 

provided to a 3D interpolation algorithm (MATLAB’s interp3.m function), and calculating the 

relative error of the interpolated vs. the ground truth  

Our goal was to interpolate a full volumetric flatfield based on sampled images, such that 

each depth-specific flatfield image had an error less than 1% relative error when compared with 

the real flatfield image at each given depth. To measure the ground-truth volumetric flatfield of 

every excitation source, flatfield images of each channel were acquired at increments of 10 μm 

from a starting depth (0 cm) to a depth of 3 cm. We then compared the full flatfield volume 

against test volumes generated by interpolating a limited number of sampled flatfield images 

from the stack. A three-dimensional cubic interpolation algorithm (MATLAB’s interp3.m 

function) was used for interpolation. The resulting error for each condition tested at every depth 

is plotted in Figure 8.13 below. It is apparent that by using three flat fields sampled evenly across 

the 3 cm depth (0 cm, 1.5 cm, 3 cm), the relative error between a ground truth image and 

interpolated image does not reach above an average relative error of 1%.  
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Figure 8.13: Average pixel relative error as a function of imaging height for multiple flatfield sampling 

conditions 

 

In Figure 8.14, the mean relative error, averaged from all interpolated depths, is plotted as 

a function of the number of samples used in each volumetric interpolation. The average percent 

error appears to fall asymptotically as the number of sampled depths increases from 1 to 100 

sampled depths.  
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Figure 8.14: Average relative error per slice as a function of sampled depths used in the volumetric 

interpolation 

 

 

Multiple flatfield interpolation methods were compared and the Modified Akima cubic Hermite 

(Makima) interpolation was selected for faster computation time compared to spline, but with 

similar results to spline interpolation in terms of accuracy and continuity.  

From this study, we concluded that an interpolated flatfield using three sampled depths 

was sufficient to keep the average relative error below 1% for all interpolated flatfield images. A 

depiction of this three-flatfield approach is illustrated below.  
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Figure 8.15: Depiction of three flatfield depths sampled for interpolation of the volumetric flatfield 

 

In order to save on memory and computational speed, we only interpolate the depths which an 

image is acquired at. This requires user input to know the starting image acquisition depth and 

the slice thickness used to cut each slice during the slice-and-image cryo-imaging process. Using 

the known starting depth, slice thickness, and number of slices (n), we interpolate flatfield 

images at the starting acquisition depth and n slices at depth increments of the given slice 

thickness. Thus, for each channel imaged, we interpolate a flatfield image for every acquisition 

depth for every channel, which usually results in the creation of ~200× (number of channels) 

flatfield images. The flatfield matrices are stored as a structured variable (.mat) file within the 

experiment’s processed data folder. 
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As a minor limitation, this correction does not consider power source changes over the 

course of imaging. In order to correct for these fluctuations, we would need to consider the 

source intensity at every single cryo-slice. We conducted a study in which we imaged the same 

flatfield image of white paper over the course of 8 hour at 5000 μm height using all optical 

channels.  The results shown in Figure 8.16 indicate that in the 470, 530, and 635 channels 

(Figure 8.16(c-e)), there is a small cyclic variation (~1-3%) in the flatfield intensity that occurs 

roughly every ~30 min. The 530 nm channel also showed some decay (9%) over the course of 8 

hours. In the 760 channel (Figure 8.16(e & j)), there are random dips in intensity which are not 

seen in the other channels. Lastly, the WL channel appears to have slow shifts in intensity, 

ranging between 150,000-152,000 cps over the course of 8 hours.

 

Figure 8.16: Flatfield intensity measurements over the course of 8 hours for all channels. Flatfield intensity 

in absolute CPS for each channel is displayed in (a-e) and the normalized flatfield intensities are plotted in (f-j) 
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Because most fluctuations are contained within +/- 5% relative error over the duration of the 8-

hour imaging window, secondary intensity scaling corrections have not been implemented. 

8.4.6 Anatomic RGB Volume Reconstruction 

As part of most cryo-imaging sequences, hyperspectral reflective images are acquired across the 

visible wavelength range (420-720 nm) using a 6500 K white light LED source (Mightex, 

Toronto, ON) and a liquid crystal tunable filter (LCTF, VarispecTM CRi,Woburn, MA). The 

resulting white light hyperspectral image stack can be used for RGB color reconstruction. 

Because the RGB reconstruction algorithm relies on the 1931 CIE model, it was critical to have 

the same white point, which corresponds to the correlated color temperature of 6500K (D65). 

Thus, the spectral response of the system had to be rescaled to match the D65 standard 

illuminant daylight spectrum. To do this, the white light spectra of the cryo-imaging system was 

measured using a Spectralon(R) Diffuse Reflectance Standard (Labsphere, North Sutton, NH), 

and a scaling function was applied to this measured spectrum in order to convert it to the D65 

standard illuminant spectra. This rescaling process is demonstrated in  

Figure 8.17 below.  

 

Figure 8.17: Rescaling process to transform measured white light spectra to into D65 standard illuminant 

spectra 
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After applying the D65 rescaling function, rescaled white light image stacks were multiplied by a 

wavelength-specific XYZ tristimulus function based on the 1931 CIE standard observer function 

look-up table (Colour and Vision Laboratory, UCL, London, UK). Following Algorithm 7.1 

below, each wavelength-specific image (Image(x, y, λ)) was weighted based on a wavelength-

dependent factor (fX(λ)) and summed over to form a composite X(x, y) , Y(x, y) , and Z(x, y) 

image which is concatenated into a 3-channel XYZ color image. 

Algorithm 7.1: XYZ tristimulus mapping scheme 

For  (λ = 420:10:720)  

 X(x, y)  = X(x, y) + Image(x, y, λ) × fX(λ)  

 Y(x, y) = Y(x, y) + Image(x, y, λ) × fY(λ) 

 Z(x, y) = Z(x, y) + Image(x, y, λ) × fZ(λ)  

End 

XYZ(x, y, 1) = X(x, y); 

XYZ(x, y, 2) = Y(x, y); 

XYZ(x, y, 3) = Z(x, y); 

RGB(x, y, 1:3] = xyz2rgb(XYZ(x, y, 1:3]) 

 

The composite XYZ image was then mapped to an RGB 8-bit TIFF image using MATLAB’s 

xyz2rgb.m function. After the hyperspectral image stack is remixed into RGB space, a two-point 

color balancing scheme is applied based on daily QA white and black intensity values collected 

from a color card standard (CameraTrax Inc., Menlo Park, CA, USA). The color balancing 
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algorithm solves two linear equations for two unknowns (slope and offset) to convert the 

measured white and black values into known reference white and black RGB values. Example 

RGB values for measured and reference white and black intensity values are shown in Table 8.3. 

 

Table 8.3: Measured and reference RGB intensity values from the white and black color blocks 

 

 

For each RGB channel, two equations with two unknowns (𝑚𝑅  and 𝑏𝑅 ) are solved to establish 

the channel specific slope and offset to apply for two-point color rebalancing. An example of this 

mathematical approach is shown below:               

𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  =  𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  ×  𝑚𝑅  + 𝑏𝑅  

     White point equation: 235 =  26.9 ×  𝑚𝑅  +  𝑏𝑅  

–   Black point equation: 52 =  2.8 ×  𝑚𝑅  +  𝑏𝑅  

_____________________________________________ 

(235 −  52) =  (26.9 −  2.8) ×  𝑚𝑅  +  𝑏𝑅 −  𝑏𝑅  

    𝑚𝑅  =  (235 −  52)/(26.9 −  2.8)  =  4 

𝑏𝑅  =  235 −  26.9 × 4 =  127.4 
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By solving for slope (𝑚) and offset (𝑏) of all three RGB channels, we end up with three linear 

equations that can be used to convert each channel of the original three-channel RGB images to 

color-balanced, three-channel RGB images. An example of this resulting correction is shown 

below in Figure 8.18. 

 

Figure 8.18: (A) Reference color card, (B) uncorrected RGB remixed image, (C) two-point color-balanced 

RGB image. 

It is important to note that commercial versions of this 24-color card calibration test are available 

which use a more complex, nonlinear solver for this correction. To the best of our knowledge, 

such algorithms have not been made open-source yet.  

8.4.7 Hyperspectral image stack integration to simulate bandpass filtering 

Hyperspectral imaging allows for the acquisition of spectrally dense information, which can 

provide wavelength-specific images. Unlike broadband images, each hyperspectral image exists 

as an image stack with the additional dimension being wavelength. To recapitulate a standard 

bandpass filter, heretofore termed “integrated”, wavelength images were trapezoidally integrated 
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across a predefined range of wavelengths. The flexibility in choosing wavelength integration 

bands allows for agent-specific filtering to optimize the signal-to-noise ratio (SNR).  

As part of the configuration process, a front-end GUI (MATLAB App) has been 

developed to allow for easy selection of agent-specific imaging with pre-optimized wavelength 

ranges. As shown in Figure 8.19, an array of common fluorescent agents is provided to the user 

in each imaging channel. By selecting the specific agent, the wavelength range is automatically 

updated. However, the user still has the option to specify the wavelengths in the text-editing box. 

In order to compare the fluorescence intensities measured in multiple experiments, it is 

absolutely necessary to keep the limits of integration the same. A larger bandpass will always 

produce a higher signal compared to a narrower bandpass selection.  
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Figure 8.19: Channel selection and agent-specific bandpass selection GUI 
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8.5 HYPERSPECTRAL UNMIXING TECHNIQUES  

8.5.1 Motivation for spectral unmixing in fluorescence imaging 

A persistent challenge in applying fluorescence imaging in tissues, especially in the visible 

wavebands, is the contaminating effects of endogenous fluorescence.56,187 Imaging systems that 

use conventional long- or band-pass emission filters are often incapable of distinguishing 

between endogenous fluorescence and agent-specific fluorescence signals. Depending on the 

relative contribution of each emitter, the endogenous signal may represent a major confounder in 

data interpretation. Techniques to address this problem, including time gating188–190 and spectral 

unmixing191–194 have been used in a variety of applications.  The latter of these, acquiring 

densely-sampled spectral data and fitting measured data to pre-recorded basis spectra, has a track 

record of use for epi-illumination small animal imaging,193,195 and clinical fluorescence guided 

surgery,39,196 frequently demonstrating significant improvements in sensitivity to the 

fluorophore-of-interest and thus more specific measurements. This approach can also facilitate 

unmixing of overlapping fluorophores during highly-multiplexed imaging. Deploying this 

unmixing technique in whole-body cryo-imaging could substantially improve the accuracy of 

reporter biodistribution.  

8.5.2 Basics of voxel-by-voxel blind spectral unmixing  

As previously mentioned, the Dartmouth cryo-macrotome system readily produces hyperspectral 

image stacks of fluorescence emission within the LCTF’s wavelength range. These data are able 

to be spectrally unmixed (per pixel) by applying a spectral unmixing procedure to decouple the 

specific fluorophore emission from endogenous tissue autofluorescence, or from other 

fluorophores with overlapping emission spectra. Unmixing is achieved by fitting a combination 

of pre-recorded basis spectra to the measured data using negatively-constrained linear least-
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squares fitting, as described previously74,194 and illustrated in Figure 8.20 where a serial dilution 

phantom is spectrally separated into agent-specific and solution-specific spectral contributions. 

The resulting fit is shown with the data in Figure 8.20(A). Images of serial dilution phantoms 

show the integrated signal (no spectral unmixing applied) in (D), and the associated fitted 

contributions of (E) the dye and (F) autofluorescence.  

 

Figure 8.20:(A) Measured spectrum in one pixel from an intralipid phantom containing 10nM ofIRDye 

680RD carboxylate. Using pre-measured basis spectral, spectral unmixing recovered the relative signal contributions 

from, (B) the dye and (C) background autofluorescence. 

 

More specifically, the spectral unmixing algorithm applies a Moore-Penrose pseudo-matrix 

inversion to solve for the relative contributions of pre-recorded basis spectra, 𝑢(𝑘) , using 

Equation 8.3: 

𝑦(𝜆)  =  ∑  𝑁
𝑘 = 0 𝑢(𝑘) × 𝐴(𝑘, 𝜆)                                                    Equation 8.3 
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where 𝑦(𝜆)  is the measured spectrum, 𝐴(𝑘, 𝜆) is a matrix composed of N pre-measured basis 

spectra, and λ is wavelength. Since this is repeated at each voxel, the unmixing algorithm is 

parallelized to accommodate the large volume of data. Currently this processing is applied on a 

desktop equipped with an Intel Core i7-9800X CPU at 3.8GHz speed with 64 GB RAM and a 

NVIDIA Quadro P2000 GPU. Unmixed spectra are then integrated to report a single value for 

each spectral contribution for each pixel. 

8.5.3 Spectral unmixing in phantoms 

The benefit that spectral unmixing can have on agent sensitivity was explored using liquid 

phantoms consisting of 1% intralipid and varying concentrations of fluorescent agents from 102 

to 10-3 nM in 300 μL wells. After performing hyperspectral imaging and basic image processing 

described in Section 8.4, the hyperspectral image stacks were spectrally fit using pre-recorded 

basis spectra of dye and phantom autofluorescence. For comparison, we also simulated the 

bandpass filtering described in Section 8.4.7 over the same integration range as the spectrally 

unmixed images.  

The insets in Figure 8.21(A-C) show images of the fluorescent phantoms with serial 

dilutions of NaFl, IRDye 680RD carboxylate, and ICG, respectively (IRDye 800CW carboxylate 

images are not shown but display a similar pattern). To quantify concentration sensitivity for the 

integrated and spectrally unmixed images, mean values from each well were computed and 

plotted as a function of concentration. As shown in the graphs, spectral unmixing consistently 

reduced the limit of detection compared to the integrated spectra data. 
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Figure 8.21: The linearity of response to fluorophore concentration of the imaging cryo-macrotome for four 

fluorophores in intralipid phantoms: (A) NaFl showing both integrated and spectrally unmixed results, (B) LI-COR 

IRDye 680RD showing both integrated and spectrally unmixed results, and (C) NIR channel measurements of ICG 

and LI-COR IRDye 800CW carboxylate (acquired separately, no spectral unmixing). (D) provides the lowest 

detectable concentration for each channel/processing approach. 

 

In all cases, the lowest concentration values were used to establish the sensitivity limit for that 

channel, and the linearity of all data above this limit computed. The minimum detectable 
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concentrations for each fluorophore are provided in Figure 8.21(D). Spectral fitting conferred 

significant improvements in detectability: by a factor of 4.8 for NaFl and 2.5 for IRDye 680RD.  

8.5.4 Spectral unmixing in tissue  

For spectral unmixing in tissue, the task becomes more challenging due to heterogeneity of tissue 

and endogenous absorbers that can affect measured agent spectra.  Tissue autofluorescence basis 

spectra were obtained from naive animals (no agents injected). Figure 8.22 demonstrates the 

library of recorded spectral bases measured in the 470 nm excitation source optical channel.  

 

Figure 8.22: Measured autofluorescent bases observed from 470 nm. exc. channel 

 



 

130 
 

When performing a spectral unmixing experiment, the bases spectra are limited to only the 

expected autofluorescence bases in the region of interest. For example, in the brain region, only 

the brain and necrosis autofluorescence spectra are used along with an agent-specific spectrum. 

Figure 8.23 demonstrates the spectral unmixing process for the 635 nm (IRDye 680-NC) 

channel. Figure 8.23(A) represents the hyperspectral image data stack for one slice, which here 

consists of seven images of the same slice, each at a different waveband. The spectral unmixing 

algorithm is applied at each image pixel, using three basis spectra: (1) dye fluorescence, (2) 

normal brain autofluorescence and (3) necrotic tissue autofluorescence. The spectral data, fitted 

result, and constituent basis spectra for two different image pixels are shown in Figure 8.23(B) 

and (C). In this case the region of highest fluorescence intensity consisted primarily of necrotic 

autofluorescence, not dye fluorescence. Figure 8.23(D-F) shows the results of spectral unmixing 

for one slice of data in two tumor-bearing animals: one administered the imaging agent cocktail, 

and a control animal that had not received the imaging agents. The column labeled (D) provides 

the results if only a bandpass filter were to be used, and indicates that the highest fluorescence 

intensity is in the necrotic region of the tumor, regardless of whether dye had been injected. 

Panel (F) provides the resulting spectrally unmixed images (integrated basis spectra after 

unmixing). Notably, the distribution of the contrast agent in the injected mouse is altered 

significantly as fluorescence from the necrotic region, which would have otherwise been 

attributed to the dye, is properly classified. This is further illustrated in the control animal, which 

showed significant signals in the integrated images, the origin of which could not be determined 

without unmixing. 
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Figure 8.23: (A) Illustration of a hyperspectral image stack acquired with the red excitation channel. (B) 

and (C) are spectra sampled at two different pixels, one in necrotic tissue (B) and the other in surrounding tumor 

(C). (D) Single RGB image slice of two mice, one administered the agents, and a non-injected control. (E) Images of 

the integrated red channel spectrum. (F) Images of the contribution of each basis spectra after spectral unmixing in 

both the injected and control mice. Both animals had an orthotopic glioma xenograft. 

 

A closer examination of the brain demonstrates the potential influence of spectral unmixing on 

image interpretation in the visible channels. Figure 8.24 shows 2D slices (A and B) and 

renderings (C) of three administered agents. For the visible channels (mPEG-FITC and IRDye 

680-NC), integrated spectra are shown in (A), spectrally unmixed data in (B), and examples of 

FITC spectral unmixing results in two pixels provided in (D) and (E). Qualitative assessment of 

the visible channel data exclusively reveals significant differences in the spatial distribution of 
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agents between the integrated and unmixed images, especially in the IRDye 680 channel. In both 

mPEG-FITC and IRDye 680 channels, spectral unmixing reduced the signal in the normal brain 

and in the necrotic region of the tumor. 

 

 

Figure 8.24: (A) Integrated signal (one slice) for all three fluorescence channels: mPEG-FITC, unmixed 

IRDye 680 Affibody NC, and ICG. Spectrally unmixed signal for mPEG-FITC and IRDye 680 are shown in (B), 

and renderings of segmented agent distribution observed in the unmixed mPEG-FITC channel, unmixed IRDye 680 

Affibody NC channel, and integrated ICG channel are provided in (C). (D) and (E) show measured spectra, spectral 

fits, and the relative contributions of all basis spectra in two representative pixels in the FITC channel (indicated by 

arrows in B). Tumor-to-normal contrasts are provided in 2-D image panels as T:N. 

 

To further evaluate the potential improvement in tumor-to-brain ratio (TBR) contrast, we imaged 

14 glioma-bearing animals using the mPEG-FITC and IRDye 680 multiplexed agents and 
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completed a paired-sample analysis comparison between integrated and spectrally-unmixed 

tumor-to-normal contrast in each channel. Resulting plots for the small animal cohort are shown 

in Figure 8.25. 

 

Figure 8.25: Measured tumor-to-brain ratio (TBR) compared between integrated and unmixed images for 

(A) mPEG-FITC and (B) IRDye 680 agent distributions observed in 14 animals. 

 

On average, spectral fitting increased contrast by a factor of 1.7x and 8.2x for mPEG-FITC and 

IRDye 680, respectively. Using a paired-sample, two-tailed Student’s t-test, the difference 

between the integrated and spectrally unmixed contrast was found to be statistically significant in 

both cases (mPEG-FITC, p = 0.03, 95% CI = [0.47, 8.87]; IRDye 680, p = 0.04, 95% CI = [0.78, 

20.7]).  

 In conclusion, spectrally unmixing agent distribution in vivo can enable higher tumor-to-

brain contrast (Figure 8.25) as well as completely change the inferred agent distribution by 

removing contaminated autofluorescence signals (Figure 8.23). The hyperspectral, whole animal 

cryo-imaging approach reported here is broadly applicable to most of the fluorophores used in 

clinical and preclinical research. The methodology uses established hyperspectral processing 

techniques to improve image accuracy and enable a high level of reporter multiplexing to 
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examine multiple processes in one animal. Such spectral unmixing capability could play a central 

role in developing novel optical contrast agents, studying drug distribution and pharmacological 

effects, and monitoring metastatic spread. 

While voxel-by-voxel, negatively-constrained spectral fitting will always produce a 

result, the limitations of blind spectral fitting should be considered when reporting the final 

unmixed agent biodistributions. In Section 8.5.6.1, we will discuss some of the limitations in 

blind spectral fitting, and performance metrics for assessing spectral fitting quality. In Section 

8.5.6.4, we propose a semi-supervised spectral fitting approach which aims to address some 

limitations of blind spectral fitting by taking precautions in terms of signal sensitivity and fit 

uniqueness. 

8.5.5 Accommodating for spectral distortions 

A major factor in achieving an accurate spectral fit is using the correct bases spectra to perform 

the spectral fit. The spectral shape of exogenous fluorophores may change when emitting 

through endogenous absorbers. In efforts to correct for this, we can measure our fluorophore 

base spectra in realistic tissue property conditions. 

In a preliminary study, the spectral shape of fluorescein was measured at multiple whole-

blood concentrations and keeping intralipid (IL) at a constant 1% concentration. In this study, we 

examined the difference between sodium fluorescein and a PEGylated version (mPEG FITC 5k). 

As shown in Figure 8.26 below, the shape of fluorescein-based spectra does shift with the 

addition of whole blood (Hgb). The main difference between (A) 0% Hgb to (D) 5% Hgb is a dip 

in the spectra around the 585 nm absorption peak of Hgb.  
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Figure 8.26: Measured sodium fluorescein (FITC) and PEGylated fluorescein (PEG) spectra at varying 

whole-blood (Hgb) concentrations including (A) 0% Hgb with 1% IL, (B) 1% Hgb with 1% IL, (C) 2% Hgb with 

1% IL, and (D) 5% Hgb with 1% IL.  

 

In addition to the spectral shape differences, modifications to a fluorescent agent, such as 

PEGylation has also been found to shift the spectral shape. For example, the peak of mPEG-
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FITC-5kDa appears to not line up with the peak of sodium fluorescein (FITCA). To examine this 

difference in emission profiles, we ran a fluorescence spectrometer (FluoroMax-4) on samples of 

1 μM FITC and 1 μM mPEG-FITC-5kDa. The results shown in Figure 8.27 agreed with our 

previous findings in that mPEG-FITC-5kDa has a slightly higher maximum emission wavelength 

than FITC (516 nm vs. 512 nm).  

 

Figure 8.27: Measured sodium fluorescein (FITC) and PEGylated fluorescein (PEG) emission spectra using 

the FluoroMax-4 fluorescence spectrometer. 

 

After characterizing the differences in agent spectra between FITC and mPEG FITC 5k, as well 

as observing the spectral shape differences that occur due to variable hemoglobin (Hgb) 

concentrations, we tested the possible spectral fits of an in vivo mPEG-FITC 5kDa measurement 

using different bases to achieve a spectral fit. As shown in Figure 8.28, the PEGylated FITC 

5kDa spectral fit with 1% Hgb and 1% IL appears to have the best spectral fit.  
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Figure 8.28: Resulting spectral fits using a high concentration in vivo measurement of mPEG-FITC 5k as 

the input data, and a variety of measured FITC spectra as the fitting bases. 

 

8.5.6 Future Directions for spectral-unmixing approach  

In this section, we will discuss limitations in voxel-by-voxel spectral unmixing, as well as 

potential metrics to be implemented for assessing fit uniqueness, goodness of fit, and the signal 

detection limit. Lastly, we will present a framework for a ‘semi-supervised’ spectral fitting 

algorithm, which is informed by prior labels and limited to detectable spectral signal.  

8.5.6.1 Limitations for spectral fitting in vivo 

While spectral unmixing can be extremely useful for in vivo cases, spectral unmixing in whole-

body specimens is complicated due to the highly heterogeneous nature of tissue autofluorescence 

spectra. Common issues that come up with this kind of application are agent sensitivity limits, 

uniqueness, goodness of fit, and accounting for spectral distortion caused by biological absorbers 

present within tissue. 

The spectral unmixing approach is most beneficial when the contaminating signals (such 

as autofluorescence) are spectrally distinct, measurable a priori, and on the same order as the 

signal emitted by the reporter. For cases in which the reporter signal is substantially higher than 
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the endogenous signal, spectral unmixing may only confer a modest quantitative benefit. 

Similarly, the approach will not reliably quantify reporter fluorescence in cases for which the 

background signal is orders higher than the reporter’s, though non-spectrally-resolved data 

would also be unreliable in these cases. Visible fluorescence imaging in the gut is particularly 

challenging as autofluorescence intensity is often very high in these regions, even when animals 

are on low-chlorophyll diets. Ultimately, the utility of imaging in this region will be contingent 

on a relatively strong signal from the reporter and/or distance from autofluorescing organs. 

 As applied here, the autofluorescence basis spectra were assumed to be known explicitly 

and were cataloged from animals that had not been administered optical contrast agents. This is 

fairly straightforward for narrowly-defined regions of the animal, such as the head of the mouse, 

as examined herein. Applying the method throughout an entire animal is more challenging as the 

number of autofluorescence sources, and thus basis spectra increase and uniqueness-of-fit is not 

guaranteed. This facilitates a risk of data overfitting unless additional spatial or spectral 

constraints are applied. Optimizing this procedure is a focus of ongoing work in our lab.  

Additionally, the appearance of fluorescent sources that are not characterized a priori 

could lead to inaccurate estimations of fluorophore activity. Yet, the presence of a confounding 

signal may be identified through inspection of the measured spectrum and/or spectral fitting 

quality metrics, a capability not available with imaging systems employing conventional 

bandpass filtering. 

Previous strategies for addressing such challenges include:  

1) Limiting the number of spectral bases to autofluorescent bases which are specific 

to the region of interest and negatively-constraining a blind spectral fit. 

2) Examining the quality of spectral fit on a voxel-by-voxel basis using an 

interactive program that enables dynamically selected ROIs and spectral fitting.  
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3) Comparing spectrally unmixed specimens to naive specimens, post spectral 

unmixing to establish a lower noise limit in reporting uncoupled agent 

fluorescence 

8.5.6.2 Metrics for quantifying spectral fitting performance 

Goodness-of-Fit Tests 

As a commonly used metric for goodness-of-fit, the coefficient of determination (R2 ) metric can 

be used to assess the quality of spectral fit. Bravo et al.196 used the R2 metric for assessing quality 

of fluorescence hyperspectral fits for a PpIX spectral fitting application. In his paper, an R2 value 

of above 0.9 was considered a good fit. For a fitted linear regression model, the R2 metric can be 

calculated as the following equation: 

    

   Equation 8.4 

 

where SSRES is the sum of squared residual differences (observed compared to model points) and 

SSTOT is the total sum of squared differences between the observed data points and mean of 

observed data points.  

With multi-channel data, the spectral intensities could vary and introduce a scaling 

artifact when computing R2, where smaller values produce higher R2 values. Therefore, all 

spectral data were normalized to the peak fit intensity such that all spectral intensity values 

existed between [0, 1]. After normalization, the R2 metric was calculated on every voxel’s fit to 

create an R2 goodness of fit image. 
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Another option for assessing goodness of fit is using the reduced chi-squared metric.197 

This metric can be calculated as:  

   𝜒2/𝜈 =
1

(𝑛 − 𝑘)
∑  𝑛

𝑖 = 1

(𝑦𝑑𝑎𝑡𝑎(𝑖)
 
 − 𝑦𝑓𝑖𝑡(𝑖))

𝜎2 
 
                                        Equation 8.5 

where 𝑛  represents the number of wavelengths, 𝑘 represents the number of bases used, and 

𝜎2 represents the variance of measured data (𝑦𝑑𝑎𝑡𝑎). The reduced chi-squared measure does 

account for sample size, however the same scaling artifact can happen when comparing spectral 

fits of differing intensities. Therefore, we again used the normalized data and spectral fits to 

compute the reduced chi-squared metric(𝜒2/𝜈) on each voxel.  

The results from these goodness-of-fit tests are shown in Figure 8.29 below. It is 

important to note that for R2, a value greater than 0.9 is considered a good fit, with a value of 1 

representing a perfect spectral fit. On the other hand, a reduced chi squared (𝜒2/𝜈) value of 0 

represents a perfect fit and values below 0.1 were considered acceptable fits in this example. 
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Figure 8.29: (A) Measured fluorescence intensities of a serial dilution concentration phantom and (B) an in 

vivo cryo-slice of the same fluorophore (mPEG-FITC 5k). Resulting R2 values for (C) the concentration phantom 

and (D) the in vivo cryo-slice and calculated 𝜒2/𝜈 values for (E) the concentration phantom and (F) the in vivo 

cryo-slice. Black regions indicate insufficient spectral fit according to set goodness-of-fit criteria. 

 

From these preliminary results, it is clear that high-quality spectral fits are achievable when 

spectral fitting a known agent within a homogeneous solution (i.e. the concentration phantom 

example). However, when it comes to spectral fitting in an in vivo case, the observed spectra are 

a lot more challenging to fit. Certain regions within the brain were not successfully fit with the 

brain basis used. Specifically, the brain regions around the tumor resulted in R2 values less than 

0.9 and 𝜒2/𝜈 values greater than 0.1. In Figure 8.30, an example of the observed fit is shown 

with an R2 value of 0.77 and a 𝜒2/𝜈 value of 0.31. This poor fitting example could be the result 
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of not accounting for changing brain tissue optical properties, which has been reported to change 

at different stages of glioma development.198  

 

 

Figure 8.30: (A) RGB image, (B) mPEG-FITC-5000 fluorescence image, and (C) the resulting spectral fit 

from the selected region (red). 

As one potential remedy to this problem, we could use multiple brain spectral bases to fit tissue 

inside the cranial regions. However, you run into an issue with computation speed and 

uniqueness in finding a fit that is not achievable by more than one combination of bases. 

Uniqueness Tests 

Unlike phantom data, fluorescence spectra measured in tissue are heterogeneous and we can only 

use a few spectral bases for computational and uniqueness-of-fit concerns. If we use more bases, 

we can achieve a high goodness-of-fit metric, but the uniqueness of fit is sacrificed in the 

process. 

To formally test for uniqueness, we need to examine the linear independence of all bases 

that make up a spectral fit. To achieve linear independence, all spectra need to be orthogonal to 

one another, and no spectra can be a linear combination of other spectra.  While there are a 
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number of approaches to test for linear independence, we used orthogonal triangular 

decomposition (also known as QR factorization)199 to inspect the upper triangular matrix. We 

examined the diagonal elements which were set to be non-increasing: |r11| ≥ |r22| ≥ |r33|. The 

numerical rank of the matrix can be determined by examining the number of non-zero diagonal 

elements which are higher than the set tolerance level. This rank-revealing QR algorithm has a 

lower computational cost than a singular value decomposition algorithm, and thus is most 

appropriate for our purpose of checking uniqueness at every single voxel.  

When we applied the rank-revealing QR algorithm to check for linear independence of 

the contributing spectra that make up a spectral fit, we got the following results as shown in 

Figure 8.31. We examined using tolerances of 1E-2, 1E-3, and 1E-4. The percentage of unique 

fits for each case was: 87.9%, 98.4%, 99.8% for tolerance levels of 1E-2, 1E-3, and 1E-4, 

respectively. 

 

Figure 8.31: Image maps of non-unique spectral fits (white region) with tolerance levels varying from 1E-2 

to 1E-4 

Non-uniqueness occurs when one spectrum can be represented as the linear combination of other 

contributing spectra. To assess what the spectral fit actually looks like for a non-unique case, we 

examined a few points where the uniqueness test fails using a tolerance level of 1E-2. As shown 

in Figure 8.32 below, the non-unique fits have small contributions of different autofluorescence 

bases. 
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Figure 8.32: Non-unique spectral fit examples using spectral data from single voxels (Tolerance = 1E-2). 

The proposed solution to handle this uniqueness challenge is to use a prior label map in which 

regions are pre-classified as brain, muscle, etc. to limit the bases while performing semi-

monitored spectral fitting.  

 

8.5.6.3 Establishing the noise threshold for raw spectral data 

Sufficient signal is necessary for accurate spectral fitting. To quantify the image noise floor that 

arises from random variation in pixel values, we conducted an experiment in which we acquired 

10 images of the same flatfield image and calculated the standard deviation in each voxel for the 

given 10-image sample. Assuming a Poisson distribution, the relative error can be calculated as 

the standard deviation divided by the average intensity at each voxel. Figure 8.33 displays the 

calculated relative error for each channel’s flatfield image (image of white paper). As expected, 

the relative error increases near the edges of the focal imaging field. The 530nm exc. field has 

the highest relative error, while the other channels have a sufficiently large imaging area with 

<10% relative error.  
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Figure 8.33: Relative error images for flatfield acquisitions in four fluorescent channels. 

 

Relative error was then plotted as a function of average voxel intensity for each fluorescent 

channel in Figure 8.34. Each distribution was fit to a Power function and the intercept between 

line-of-fit and the 10% relative error threshold was recorded for each channel. We expect this 

noise floor threshold to be independent of channel, and intrinsic to the camera. As seen in Figure 

8.34, the 10% relative error intercept lies around 200 counts for most channels. Thus, for all 

channels and all wavelengths, we have conservatively set the noise threshold to 200 counts 
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above background. By doing so, we can ensure all reported intensity signal has is repeatable and 

has a relative signal error <10%. 

 

Figure 8.34: Relative error as a function of average signal counts above background for four fluorescent 

channels.  

8.5.6.4 A scheme for semi-supervised spectral fitting 

Herein, we present a semi-supervised spectral unmixing algorithm which considers limitations in 

spectral fitting including: inherent noise floor, system sensitivity, and, fit uniqueness limitations.  

As shown in Figure 8.35, the seven steps are as follows: 

Step 1) Reading in hyperspectral data at each voxel. 

Step 2) Checking to see if the raw hyperspectral data exceeds the signal noise threshold 

(established as a 10% relative error, Section 8.5.6.3).  

Step 3) Utilize a pre-segmented label map to assign specific autofluorescent bases in a 

given region of interest. 
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Step 4) Perform negatively-constrained spectral fit with pre-selected autofluorescent and 

fluorophore bases.  

Step 5) Assess if the fluorophores’ spectral contributions are 10x greater than the spectral 

contributions at the agent’s lower detection limit (established in Section 8.5.3). 

Step 6) Re-perform the spectral fit if the fluorophore basis is found to be too low to 

reliably be present in Step 5.  

Step 7) Integrate the final spectrally fit data over the desired bandpass range for a given 

fluorescent agent. 

 

Figure 8.35: Flowchart of semi-supervised spectral fitting algorithm. 
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8.6 SUBSURFACE FLUORESCENCE CORRECTIONS 

Cryo-imaging reports on the fluorescence signals of continuous slices within a small animal 

model. While slices can be as thin as 5 μm, the volume of fluorescence recorded in each slice is 

not perfectly representative of each individual slice’s fluorescence because subsurface 

fluorescence can contaminate the recorded signal, and artificially increase the amount of 

fluorescence assigned to individual slices. This phenomena of subsurface fluorescence 

contributions within cryo-imaging is covered by a number of previous articles.200–203 This section 

provides a brief review of the semi-infinite imaging geometry causing subsurface fluorescence, 

as well as techniques for correcting for subsurface fluorescence contributions including Next-

image corrections.  

8.6.1 Review of semi-infinite imaging geometry 

Wide-field cryo-imaging is a semi-infinite imaging geometry for light propagation, in which a 

source excites a semi-infinite medium. Excited photons can emit, internally reflect, or be 

reabsorbed within the turbid medium as shown in Figure 8.36 below. Tissue optical properties 

such as the absorption coefficient (𝜇𝑎) and scattering coefficient (𝜇𝑠), determine how far a 

photon travels and with how many steps. 
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Figure 8.36: A diagram of photon scattering within a semi-infinite turbid medium. Adapted from He et al., 

(2008, SPIE Proceedings).204 

  

In this semi-infinite imaging configuration, the amount of photons emitted by a source (Isource ) 

collected by a detector (Iobserved) is a product of the amount of excitation photons that travel 

through the air-tissue interface (tat) and make it to the fluorescent source (𝑒−(𝜇𝑎 +𝜇𝑠′)𝑧  ), the 

fraction of emitted epifluorescence intensity (fi), the number of emitted photons which make it to 

the turbid medium surface (𝑒−(𝜇𝑎 +𝜇𝑠′)𝑟  ), and the fraction of emitted photons that transmit 

through the tissue-air interface (tta).
202  

Iobserved = Isource(tat * fi *tta) 𝑒−(𝜇𝑎 +𝜇𝑠′)𝑧𝑒−(𝜇𝑎 +𝜇𝑠′)𝑟                     Equation 8.6 

The cryo-imaging set-up enables one to collect images from thin slices of tissue, but the 

observed intensity at each slice will be the sum of fluorescence photons which reach the camera, 

which depends on the wavelength and tissue optical properties. Thus, the volume of tissue 

probed on each image acquisition, is not the same volume as the slice. Another way of looking at 

this problem is that you may be collecting and reporting more fluorescence signal than what is 
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actually present in a single slice. Prior studies have attempted to correct for this using various 

image-processing techniques.181,202 

A popular approach is the Next-Image correction algorithm in which you subtract an 

attenuated version of the slice below in order to reduce the subsurface fluorescence contributions 

to the top slice. To estimate the k+1 slice contribution to the k image ( Ik
observed), we attenuate the 

actual k+1 image (Ik+1
observed) and convolve it with a known point spread function  ℎ(𝑥, 𝑦) for a 

given channel202. The observed intensity in slice k is approximately equal to: 

 

Ik
observed = Ik

source(tat * fi *tta) +   Ik+1
observed 𝑒−(𝜇𝑎 +𝜇𝑠′)𝑧𝑒−(𝜇𝑎 +𝜇𝑠′)𝑟  ⊗  ℎ(𝑥, 𝑦)            Equation 8.7 

 

where 𝑒−(𝜇𝑎 +𝜇𝑠′)𝑧𝑒−(𝜇𝑎 +𝜇𝑠′)𝑟   represents the scattering, point spread function (PSF) in the 

diffuse regime and ℎ(𝑥, 𝑦) represents the lens PSF.  To solve for Ik
source, you simply subtract off 

the contributions from the k+1 slice: 

Ik
source(tat * fi *tta)  = Ik

observed -  Ik+1
observed 𝑒−(𝜇𝑎 +𝜇𝑠′)𝑧𝑒−(𝜇𝑎 +𝜇𝑠′)𝑟  ⊗  ℎ(𝑥, 𝑦)        Equation 8.8 

 

Van Horssen et al. offered an approximation to this equation under the assumptions that 1) r ≈ z, 

2) the effective attenuation constant is roughly the same for the excitation and emission 

wavelengths, and 3) the PSF Gaussian spread is a linear function of depth (z).181 By making 

these assumptions, one can simplify Equation 8.8 to Equation 8.9. 

Ik
source(tat * fi *tta)  = Ik

observed   -   Ik+1
observed 𝑒−2(𝜇𝑡)𝑧 ⊗ 𝑒

−
(𝑥2 + 𝑦2 )

2(𝜎1 𝑧 + 𝜎2 )
2   

      Equation 8.9 

However, an accurate approximation for effective attenuation (𝜇t) and the in-plane scattering 

function (σ1z + σ2) is necessary to correctly characterize and correct for subsurface fluorescence 
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contributions. This ‘Next-Image’ correction approach does require knowing something about the 

optical properties of the tissue and scattering coefficients. Therefore, this following section is 

dedicated to accurately characterizing subsurface fluorescence contributions and optical 

scattering properties used for ‘Next-Image’ corrections. 

8.6.2 Quantifying semi-infinite multi-channel PSF using multi-color fluorescent 

microspheres.  

As a first pass for approximating the Next-image correction coefficients (𝜇𝑡, 𝜎1 , 𝑎𝑛𝑑 𝜎2 ) for 

each optical channel, we used fluorescent microspheres of average diameter of 15 μm 

(ThermoFisher FluoSpheres, Thermo Fisher Scientific, Waltham, MA) to simulate a point source 

in our system. In the initial study, we used three colors of microspheres: yellow-green (Ex: 505 

nm/Em: 515 nm), orange (Ex: 540 nm/Em: 560 nm), and scarlet (Ex: 645 nm/ Em: 680 nm) 

embedded in OCT medium which is supposed to simulate frozen brain optical properties.202 The 

optical properties for each microsphere color are displayed in Table 8.4 below. We used these 

three colors to simulate fluorophore PSF that may be observed in the 470 nm, 530 nm, and 633 

nm optical channels.  

Table 8.4: Microsphere colors and emission/excitation settings used in experiments 

Microsphere (Peak exc./em.) Excitation Source Used Emission Filter Used 

Yellow-Green (505 nm/515 nm) 470 nm LED 500 nm LP 

Orange (540 nm/560 nm) 530 nm LED 550 nm LP 

Scarlet (645 nm/685 nm) 633 nm laser 650 nm LP 

 

The embedded microsphere OCT phantoms were cryo-sliced at 50um resolution with an in-plane 

pixel size of 40x40um. Basic image processing steps produced fluorescence cryo-volumes for 
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each optical channel imaged. Spectral unmixing was performed to decouple the fluorescent 

microsphere signal from the surrounding OCT signal. The reconstructed distribution of 

fluorescent microspheres (103 of each color) in OCT can be visualized below in Figure 8.37.  

 

Figure 8.37: Rendering of cryo-volume containing yellow-green, orange, and scarlet microspheres 

suspended in OCT  

 

Since the microspheres are 15 μm in diameter, the microspheres may exist in a single voxel or 

span between multiple voxels, which will have an effect on the measured spread. Therefore, we 

averaged 10 different microspheres observed PSFs for each color microsphere to come up with 

an ‘average’ PSF to expect for every exc./em. channel studied. The averaged PSFs for each 

channel are shown in Figure 8.38 below. 
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Figure 8.38: Microsphere PSF spread observed in the (A) in-plane and (B) z-direction planes. 

 

To measure the axial attenuation (z-direction attenuation), we assumed the subsurface 

contributions measured directly above a microsphere took the form of  𝐴𝑒−2𝜇𝑧 where 𝜇 

represents the effective attenuation coefficient (assuming 𝜇t(𝝀em.) ≈ 𝜇t (𝝀exc.)). When we fit the 

axial profile of each averaged PSF to this exponential function, the R2 goodness-of-fit 

measurement was greater than 0.99 for each channel inspected as shown in Figure 8.39 below.  
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Figure 8.39: Axial attenuation function in each measured channel’s average PSF. 

 

To measure the in-plane spread, we assumed the in-plane spread function took the Gaussian form 

of e^(-(x2+y2)/2σ2 ) where σ is a linear function of distance away from the point source in the 

depth (z) direction (σ =s1z + s2 ) as suggested by Van Horssen.181 For this experiment, we again 

used the averaged PSF for each channel and performed Gaussian fitting for 10 different depths 

ranging from 0-450 μm away from the point source. An example of this approach is shown in 

Figure 8.40(A), using the Yellow-Green microspheres in the 470 nm exc./520 nm em. channel. 

The resulting σ values at each depth were linearly fit, to find the slope (s1) and offset (s2) 

coefficients (Figure 8.40(B)). 
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Figure 8.40: (A) Measured in-plane scatter fitted to a 2D Gaussian function at multiple depths with (B) the 

resulting σ values plotted as a function of depth away from the point source (um).   

 

This analysis was performed for every microsphere color to calculate the average in-plane spread 

function in OCT for each channel examined.   In each channel, the linear sigma function (Figure 

8.40(B)) had a correlation coefficient (R2) of above 0.98. The measured effective attenuation 

coefficient (𝜇t) vs theoretical values for 𝜇t are provided for each channel in Table 8.5 along with 

the s1 and s2 constants which categorize in-plane scatter. 

Table 8.5: Estimated and previously reported values for the effective attenuation coefficient of frozen brain 

and estimated values of the in-place scatter coefficients used to estimate the Gaussian PSF (σ =s1z + s2 ) 

 

Microsphere 

(Peak 

exc./em.) 

 

Excitation 

Source 

Used 

 

Emission 

Filter 

Used 

 

Measured  

𝜇t (cm-1) 

 

Reported 

Frozen 

Brain  𝜇t 

(cm-1) 

 

Measured 

s1 (μm-1)  

 

Measured 

s2 

(μm-1)  

Yellow-

Green 

(505/515) 

470 nm 

LED 

500 nm 

LP 
37.16 ∓1.5 

21-10434, 

28-37205 
0.36∓0.04 91.15∓9. 1 

Orange 

(540/560) 
530 nm 

LED 

550 nm 

LP 
32.92 ∓1.5 

18-9734, 

22-34205 
0.46∓0.09 91.42∓2.3 

Scarlet 

(645/685) 
633 nm 

laser 

650 nm 

LP 
28.7 ∓0.92 

13-9434, 

17-25205 
0.37∓0.005 98.89∓4.01 

 

With these ‘Next-Image’ correction parameters, we applied Next-Image corrections to the 

spectrally-unmixed microsphere cryo-volumes acquired in each optical channel. The results of 

this correction are visualized in Figure 8.41. Following Next-Image correction, we were able to 

observe significant improvements in the ‘comet-tail’ artifact observed in all three channels. The 

https://www.zotero.org/google-docs/?broken=3L4rGt
https://www.zotero.org/google-docs/?broken=3L4rGt
https://www.zotero.org/google-docs/?broken=3L4rGt
https://www.zotero.org/google-docs/?broken=uw3Iyh
https://www.zotero.org/google-docs/?broken=uw3Iyh
https://www.zotero.org/google-docs/?broken=uw3Iyh
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diffuse scatter above each microsphere is greatly reduced using this algorithm, however there is 

no way for the ‘Next-Image’ correction method to correct for in-plane scatter. Deconvolution 

methods which can correct for in-plane scatter include Richardson-Lucy and Wiener 

deconvolution.202 

 

Figure 8.41: Cross-section of single microsphere spread in (A) initially observed and (B) Next-Image 

corrected image volumes. Observed cross-section of multiple microspheres in (C) initially observed and (D) Next-

Image corrected image volumes. 

An important caveat is that; the microsphere measurements were performed in OCT which is 

supposed to have similar optical properties to frozen brain tissue,198 but the effective attenuation 

values (𝜇t) for OCT found in previous studies were significantly different from literature values 

for brain 𝜇t. Steyer et al. reported 𝜇t = 97 cm-1 for the OCT effective attenuation constant (𝜇t),
201 

while the literature values for the effective attenuation constant in brain tissue are expected to be 

~21-104 cm-1 for the 470 exc./520 em. channel.34,198,205 The large spread in literature values can 

be attributed to the different techniques used to determine tissue properties including different 

regions of the brain reported on and varying tissue preparation methods.198 

8.6.3 Measuring axial effective attenuation (𝜇t) in tissue 

As previously mentioned, the optical properties of OCT may not accurately recapitulate frozen in 

vivo optical properties. Therefore, our next set of experiments involved characterizing effective 

https://www.zotero.org/google-docs/?broken=dMT4bq
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attenuation (𝜇t) in frozen tissue. To create a frozen tissue phantom, we inserted cylindrical wells 

of fluorophore concentrations into a frozen mouse block using a 2.5mm diameter biopsy punch. 

Concentration wells were placed in muscle, GI, heart, brain, and boney regions. After preparing 

the wells, 20 uL of a multiplexed fluorophore cocktail was deposited in each frozen well 

consisting of 200 nM of IRDye 800CW, and 200 nM of IRDye 680RD diluted in a 1% intralipid 

PBS solution. The result of this procedure is a well-like mouse phantom which can be used for 

measuring axial attenuation (𝜇t) above each concentration well. The mouse phantom set-up and 

regions surveyed are shown in Figure 8.42 with yellow lines indicating the ROI for axial 

attenuation measurement in the Z-direction.  

 

Figure 8.42: Depiction of mouse phantom with concentration wells inserted into regions of interest. 

 

Axial profile measurements of each ROI were measured in the 635 nm exc./680 nm em. channel 

and the 760 nm exc./780 nm emission channel. For each ROI, 10 measurements were made and 

the average axial attenuation curve was plotted (as shown in Figure 8.43(C-D)) and fit to the 
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simplified exponential function (𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥, 𝑦, 𝑧)  =  𝐼𝑆𝑜𝑢𝑟𝑐𝑒(𝑥, 𝑦, 𝑧) 𝑒−2𝜇𝑡𝑧), which only 

applies when measuring directly over a point source (where r = z). 

 

 

Figure 8.43: (A) RGB image and (B) fluorescent image of measured profiles. (C-D) Measured averages of 

axial attenuation in tissue regions of interest for (C) the 635 nm exc./680 nm em. channel and (D) the 760 nm 

exc./780 nm em. channel. 

 

Measurements for 𝜇t were then compared against literature values34,205 in both the 635 nm exc. 

and 760 nm exc. channels in Table 8.6. To generate theoretical values, we used wavelength-

dependent equations from Jacques34 & Alexandrakis et al.205 to compute 𝜇a and 𝜇s’ at the 

excitation and emission wavelengths. Our ‘Next-Image’ correction formula assumes 𝜇t (𝜆 exc.) 

≃ 𝜇t (𝜆 em.). Therefore, we compared our experimental 𝜇t values to the theoretical average 𝜇t 

calculated as (𝜇t(𝜆 exc.) + 𝜇t(𝜆 em.))/2. The resulting correlation between theoretical and 

measured 𝜇t was R2 = 0.97 for the 635/680 nm channel and R2 = 0.58 for the 760/780 nm 

channel.  
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Table 8.6: Theoretical 𝜇t vs. measured 𝜇t values for the 635/680 nm exc. and 760/780 nm exc. channels 

 

 

The measured 𝜇t (cm-1) values closely reflected literature values.34,205 Generally speaking, 

measured 𝜇t ranged from 7.1-16.4 cm-1 for the 635/680 nm channel, and from 5.3-12.8 cm-1 for 

the 760/780 nm channel. From an implementation standpoint, it is much more practical to use a 

single PSF for the entire cryo-volume when performing ‘Next-Image’ correction. Thus, we 

wanted to understand how much of an effect underestimating or overestimating axial attenuation 

would have on the measured signal in tissue sliced at 100 μm thickness. The percentage of 

subsurface contribution expected when slicing at 100 μm was calculated for a range of 𝜇t (cm-1) 

values. The range of expected subsurface contribution percentages ranged from 71-87% in the 

635/680 nm channel and 77-90% in the 760/780 nm channel. Brain and muscle 𝜇t values were 

similar in both channels. Since we are mostly interested in brain fluorescence distributions, we 

decided to use the measured brain effective attenuation values when correcting the whole-body 

(𝜇t (635/680 nm) = 8.47 cm-1 and 𝜇t (635/680 nm) = 6.82 cm-1).  



 

160 
 

Using these estimates for 𝜇t along with the in-plane Gaussian spread estimations from 

Section 8.6.2, we applied Next-Image corrections to the frozen mouse well phantom dataset as 

shown in Figure 8.44. The same Gaussian spread estimations (𝜎1 = 0.37 μm-1, 𝜎2 = 98.89 μm-1) 

were used for both the 635/680 nm channel and the 760/780 nm channel because we only have 

3D PSF data on the 470, 530, and 635 nm exc. channels from Section 8.6.2. Cross-sectional 

profiles in the brain, muscle, bowels, and heart regions exhibit a sharper image post-correction 

for both the 635 nm exc. channel (column C), and the 760 nm exc. channel (column E).  

We hypothesize that the horizontal stripping artifacts are a consequence of slight power 

fluctuations in the 760 nm channel which has previously been observed in laser stability studies 

(Section 5.3.2) where we examined the flatfield fluorescence as a function of time. The ideal test 

condition for testing the 760 nm channel’s stability and accuracy in Next-Image corrections 

would be to use 760 nm-excited microspheres embedded within OCT, similar to the approach 

taken in Section 8.6.2. It is also important to note that the wells are not completely homogenous 

as apparent from the RGB images. 

 



 

161 
 

Figure 8.44: (A) RGB cross-section accompanied with the (B) 635 nm channel uncorrected, (C) 635 nm 

channel post-Next-Image correction, (D) 760 nm channel uncorrected, and (E)  760 nm channel Next-Image 

corrected versions of the mouse concentration wells (consisting of 200 nM or IRDye 680 and 200 nM or IRDye 

800). 

 

After applying Next-Image correction using the same parameters across the whole animal, we 

examined how well each scattering well was corrected for. A line-profile analysis was performed 

on sampled cross-sections from each ROI as shown in Figure 8.45. The black dotted lines 

indicate the original observed line profile taken in the XY plane. The colored lines show the 

‘Next-Image’ corrected profile, and the yellow box indicates the ground truth for each well’s 

width as determined from the RGB images. As expected, the Next-Image corrections sharpened 

each well-profile and reduced the FWHM closer to the actual well-size.  
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Figure 8.45: (A) RGB cross-section accompanied with the (B) 635/680 nm channel line profiles observed 

in the XY-plane of the mouse well phantom at various regions of interest. 

 

In addition to correcting for subsurface fluorescence intensity, we are also interested in 

accurately recovering structural details. Figure 8.46 shows structural details of autofluorescent 

organs before and after Next-Image correction. Using this technique, additional features in the 
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highly fluorescent stomach and GI tract are recovered. Next-Image correction also is seen to 

reduce scattering photons around the retroorbital sinus which strongly emits fluorescence in the 

635/680 nm channel.  

 

Figure 8.46: (A) RGB cryo-slice of peritoneal cavity and orbital sinus with (B) Uncorrected fluorescence 

from the 635/680 nm channel and (C) Next-image corrected version of the 635/680 fluorescence image. 

 

Figure 8.47 shows the contrast agent distribution of IRDye 800 before and after Next-Image 

correction. In this case, the actual distribution pattern is changed with greater accumulation 

observed at the tumor boundary in the Next-Image correction volume (Figure 8.47(B)).  
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Figure 8.47: (A) Uncorrected NIR-I fluorescence image of IRDye 800 uptake in a glioma model. (B) Next-

Image corrected fluorescence image of same cryo-slice. (C)  Corresponding RGB cryo-slice 

 

8.6.4 In silico simulation of different subsurface correction methods 

Beyond Next-Image correction, other 3D deconvolution methods exist for recovering blurred 3D 

image data. Wiener deconvolution and Richardson-Lucy deconvolution are two additional 

techniques for solving the subsurface fluorescence problem.202  We performed in silico 

simulations of all three correction techniques (Next-Image, Wiener Filtering, and Richardson-

Lucy).  

The original image data was produced by convolving a single voxel point source with a 

3D PSF created using Krishnamurthi et al.’s parameters for a 3D Gaussian point spread 

function202 and adding random noise throughout the original image volume. This original image 

volume (raw data) is shown in Figure 8.48(A).  The results from applying Next-Image, Wiener 

Filtering, and Richardson-Lucy damped filtering algorithms to this original image volume are 

shown in Figure 8.48(B-D). It is observable that Richard-Lucy (RL) deconvolution, which is a 

Poisson-based iterative log-likelihood maximization algorithm, does the best job of reducing in-

plane and subsurface fluorescence contributions. Wiener deconvolution has the chance to 

amplify noise, which can be lessened by applying a dampening factor. Finally, the ‘Next-Image’ 

correction does reduce subsurface fluorescence but does nothing for in-plane scattering.  
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Figure 8.48: (A) Simulated 3D point spread in semi-infinite imaging geometry, (B) Next-Image Filtering, 

(C) Wiener Filtering, and (D) Richard-Lucy (RL) Dampened filtering results in correcting for subsurface 

fluorescence contributions. 

 

An important question when performing subsurface corrections is what is our end goal? If the 

end goal is efficiently applying a moderately accurate correction, then ‘Next-Image’ correction 

may be the way to go. For this simulation which consisted of 50 slices, the ‘Next-Image’ 

correction only took 15 sec, while Wiener filtering and RL deconvolution took 79 sec and 45 

min, respectively. This long processing time may disqualify RL deconvolution from every day, 

high throughput use. Time, sensitivity, and scale of features of interest will ultimately determine 

which correction method is most appropriate for the task at hand.  

 Moving forward, it will be critical to accurately recover structural details, particularly 

when it comes to recovering smaller fluorescing structures (nerves) or inspecting high-resolution 

spatial pattern similarities between fluorescence and MRI imaging modalities. Next-Image 

correction offers a simple technique for accomplishing this, without the high computational 

demands that other deconvolution methods require (e.g. Richardson-Lucy deconvolution). 
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8.7 CONCLUDING THOUGHTS 

Cryo-imaging calls for accurately calibrated corrections in order to produce 3D biodistributions 

that are globally comparable, volumetrically accurate cryo-volumes, which allow one to draw 

semi-quantitative conclusions on the biodistribution of a particular agent or labeled-cell in 

animal models. Image processing methods presented in this chapter work towards recovering 

agent biodistributions as accurately as possible by recovering well-calibrated fluorescence 

intensities and agent-specific biodistributions in whole-animal models.  

Pre-acquisition QA and time-of-acquisition QA ensure consistent cryo-imaging 

performance on a day-to-day basis. Post-processing image corrections are applied to the acquired 

hyperspectral raw data to correct for dark signal, varying exposure times, radial distortion, multi-

camera registration, and volumetric illumination patterns. The hyperspectral image stacks are 

then utilized for either RGB image reconstruction, bandpass integration of fluorescence signal, or 

hyperspectral unmixing of fluorescence signals to create a data rich set of 3D fluorescent and 

anatomic data of a whole-animal model. Finally, optical corrections are carried out using a 

‘Next-Image’ correction scheme to compensate for subsurface fluorescence contributions. 

Experiments have been carried out to calibrate and validate each one of these aforementioned 

corrections. By applying such corrections, we are able to accurately recover 3D biodistributions 

that are globally comparable and enable one to draw semi-quantitative conclusions with 

confidence. Such capabilities have led to multiple extended applications,57,179,206–208 later 

discussed in Chapter 11. 
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9 A TOOLBOX FOR MULTI-MODAL REGISTRATION WITH CRYO-

IMAGING: MRI, CRYO-VOLUMES, AND PATHOLOGY SLIDES 

9.1 INTRODUCTION 

In this chapter, we will discuss the development of a toolbox for cryo-volume registration with 

conventional imaging (MRI) and histology slides (H&E) which directly correlate on a voxel-to-

voxel basis.  

Conventional molecular imaging is often limited by resolution, scale, and/or imaging 

depth. Such limitations hamper the ability to research systemic, physiological processes in a 

biologically relevant system. Examples of such limited research areas include metastatic 

modeling, contrast and therapeutic agent delivery mechanisms, full-body drug distribution, and 

gene-transfection mapping. In these cases, conventional imaging can’t probe the volume deep 

enough or sample at high enough resolution to gather whole-body, high-resolution information. 

Quite often, there is also a mismatch between whole-body functional imaging and microscopy, in 

which the inspected regions do not perfectly co-register to histology or other imaging modalities.  

To address this challenge, we have developed a platform for co-registering high 

resolution, hyperspectral cryo-imaging with conventional imaging modalities (MRI) and full-

body histology slides. This platform can provide answers to biological questions which require \ 

comparisons with Gd-MRI, validation with co-registered H&E, or even H&E validation of both 

Gd-MRI and fluorescent agents’ spatial distribution. For example, Gd-MRI is commonly used to 

define glioma tumor regions, thus having a co-registered Gd-MRI and cryo-fluorescence volume 

allows one to examine how well a fluorescent agent corresponds to clinical gold-standard for 

tumor boundary assessment (Gd-MRI). Unlike clinical imaging, we are then able to collect H&E 
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on the same tumor region for validation of both the Gd-based agent and fluorescent agents’ 

accuracy in enhancing a tumor region.  

This application requires multiple registration steps including: 1) post-to-pre Gd-MRI 

registration, 2) MRI to Cryo volume registration, and 3) Cryo to H&E slice registration. Each of 

these registration methods utilizes a two-step approach which will be discussed later in this 

section. Herein, we will describe the development of our multi-modal registration toolbox, and 

validate registration accuracy for MR-to-MR, Cryo-to-MR, and Pathology-to-Cryo registration 

methods across a large subset of animal experiments. 

9.2 METHODS 

9.2.1 MR-to-MR Registration 

Post-to-Pre Gd MRI-registration is required because animals can slightly shift when the contrast 

cocktail is administered via IV injection and after the predetermined imaging duration (e.g. 10, 

40, or 90 min). Therefore, it is critical to ensure post-Gd and pre-Gd image registration before 

performing pre-Gd image subtraction. Herein, we have developed and validated an accurate Gd-

MRI registration technique across a large cohort of animals (n = 28). Our goal was to achieve a 

robust registration process with a target registration error (TRE) < 500 μm for all animals.  

Registration between pre-Gd and post-Gd requires manual segmentation of the eyes and 

brain features to create two models to perform surface-based registration.  Using IGT’s surface 

registration module, the two models (pre- and post-Gd segmentations) are able to be registered 

together by minimizing the RMSE between surfaces as shown in Figure 9.1. 
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Figure 9.1: Example of surface-based registration technique used as an initial registration step. (A) Original 

pre-Gd (green) and post-Gd (magenta) brain & eyes surface segmentations. (B) Rigid transform field. Target 

registration points shown in original (C) and transformed field (D). 

 

After this initial registration, we use the intensity-based registration algorithms to semi-

automatically register the two volumes together. The only caveat is that the two intensity 

distributions will not perfectly correspond to each other after injecting Gd. Therefore, we only 
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use the non-enhancing normal brain regions (via masking) to perform the intensity-based 

registration. An example of the mask selection is shown in Figure 9.2(A-B). 

Specifically, we used a custom Slicer module, (BRAINSFit, UIOWA)209 which was 

developed using ITK’s 3D multimodal image registration classes specifically for the purpose of 

registering brain MRI images. We limited the transform to a rigid registration, which is 

appropriate for registering the rigid skull anatomy of interest. For the BRAINSFit algorithm, we 

used mean square error (MSE) as our optimization parameter. In this case, we are comparing T1 

vs. T1 so MSE can be applied to regions we expect to have similar intensity values, and thus 

minimizing MSE would provide an optimized registration solution. As an important caveat, a 3D 

mask is applied to the two volumes such that only low-enhancing regions are considered for the 

intensity-based MSE minimization algorithm. An example of this mask-based approach is shown 

in Figure 9.2, where only the segmented green regions are considered for MSE-minimization. 

Other relevant parameters used for BRAINSFit registration are: sampling percentage = 30%, 

initialization = Use center of image mass, DOF = 6, Relaxation Factor = 0.5, and Maximum Step 

length = 0.05).  Obviously, the limitation to using MSE is that the post-Gd volume will have 

different intensity values than the pre-Gd MRI, therefore using MSE may not be the best metric 

to use. Moving forward, it is suggested to use normalized mutual information (NMI) as the 

minimization parameter for registering post-Gd to pre-Gd MRI volumes, because NMI is an 

intensity-independent metric which only considers similarity in distribution patterns when 

optimizing the registration. 
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Figure 9.2: (A) Initial surface-registered volume and (B) resulting BRAINSFit registration with the green 

mask indicating regions considered for MSE-minimization. (C) Intermediate and (D) resulting target registration 

error following BRAINSFit registration. 

 

9.2.2 Cryo-to-MR Registration 

Registering MRI volumes with cryo-volumes presents the biggest challenge due to the 

differences in image resolution, image features, and volumetric expansion that occurs due to the 

freezing process. Herein, we developed a Cryo-to-MR co-registration techniques with a target 



 

172 
 

registration error (TRE) < 500μm. This technique was then validated across 28 animal Cryo-to-

MRI registration sets by an independent user. 

The Cryo-to-MRI registration technique is a two-step technique which first rigidly 

registers the manually segmented brain and eye surfaces between MRI and cryo-volumes using 

an automated surface registration technique (IGT Surface registration module) similar to the 

technique shown in Figure 9.1. An example of the eyes and brain segmentation and IGT surface 

registration is shown in Figure 9.3. Currently, the brain and eye surfaces are manually segmented 

in the RGB cryo-volume, with the option to color threshold the brain and eye features in 3D 

Slicer. 
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Figure 9.3: (A) T2 MRI segmentation of brain and eye features, (B) RGB cryo-volume segmentation of 

corresponding brain and eye features. (C) Original and (D) surface-registered surface models. 

 

After the MRI and cryo-volumes are roughly registered, a second point-based registration 

technique is used for small rigid registration adjustments. In order to focus on the rigid skull 

anatomy, the second step involves manually selecting fiducial points on corresponding brain 

features between the T2-MRI and a color-filtered cryo-volume. An overview schematic of this 

process is shown in Figure 9.4. 

The color-filtered cryo-volume is filtered to enhance darker liquid-filled brain regions 

which can correspond to T2 fluid enhancement.  To generate the color-filtered cryo-volume, we 

used the color-filter algorithm proposed by Gargesha et al. (2011)210. Specifically, the three RGB 

components were weighted according to the average ventricular color as shown in Gargasha et 

al.’s Equation 1210. The relative weights were: CR = 0.39, CG = 0.32, CB = 0.28. All RGB voxels 

values were then transformed into a uint8 grayscale value using Equation 9.1: 

𝐼𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒 = 255 ×  
𝐶𝑅(𝑅)+ 𝐶𝐺(𝐺)+ 𝐶𝐵(𝐵)

(𝑅+𝐺+𝐵)
   Equation 9.1 

The resulting color-filtered cryo-image is shown in Figure 9.4(B). By selecting corresponding 

ventral features between the T2 MRI (which highlights fluid-filled ventricles) and the color-

filtered cryo-image, we identify at least 20 fiducial points throughout the entire brain of each 

animal. A rigid transformation between the T2 MRI and cryo-volume is then calculated and 

applied using the IGT Fiducial Wizard module.  
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Figure 9.4: Corresponding fiducials shown from (A) the T2 Gd-MRI, and (B) the color-filtered cryo-

volume. (C) Intermediary registration from surface-based registration (Step 1). (D) Final registration from internal 

feature registration (Step 2). 

 

9.2.3 Pathology-to-Cryo Registration 

In order to accurately evaluate the labeling-performance of the candidate agents, we must be able 

to confidently define the tumor region. While Gd-defined tumor regions can tell us quite a bit 
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about how well our candidate fluorophores are performing, histochemistry is the only reliable 

method to define ground-truth tumor extent. Before any correlation can be inferred between 

H&E, Cryo, and MRI volumes, all three volumes must first be accurately co registered. 

 Because the H&E slice was harvested during cryo-slicing, we are able to localize the 

exact slice position of H&E compared to the cryo-volume. Thus, it becomes a 2D registration 

problem. The current approach uses a point-based registration technique to register the scanned 

H&E slide to the cryo-slice, where the user manually selects feature points between the two 

images (using >8 corresponding fiducial pairs), and a rigid transformation is calculated to 

transform the H&E slide into the cryo-volume frame-of-reference, which is already co-registered 

with Gd-MRI. An example of feature point selection between H&E and cryo-RGB images is 

shown below in Figure 9.5. 

Figure 9.5: Example of corresponding feature point selections for manual registration between cryo RGB 

and H&E image scans. 
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9.3 RESULTS 

9.3.1 MR-to-MR Registration 

The two-step MR-to-MR registration technique, consisting of an initial surface registration 

followed by an intensity-based registration, was validated on a test set of 28 pre- and post-Gd 

MRIs by an independent user. To evaluate the registration error, we selected the same 8 points 

on every animal’s pre- and post-Gd MRI to serve as our registration targets. The 8 points were 

landmarked features easily identifiable in both T1-weighted MRI sets (e.g. ventral horn and well-

defined gyri features). The TRE was calculated as the root-mean squared distance between the 8 

selected points in each image volume. The resulting TRE values across all 28 animals are shown 

in Figure 9.6, with a mean TRE (μTRE) value of 294±116 μm with a 95% CI of [249-338 μm]. 

When tested against the null hypothesis that the μTRE > 500 μm using a single sample, two-

tailed t-test (α=0.05), we found p < 0.001 with a post-hoc Power = 0.99. Thus, we can conclude 

that our post-to-pre Gd-MRI registration technique produces adequate co-registrations, with an 

average TRE less than 500μm.  
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Figure 9.6: Resulting TRE from post-to-pre Gd-MRI registration across 28 animals. TRE was calculated as 

the root mean square error of 8 target fiducials consistently selected across all animals. 

 

9.3.2 Cryo-to-MR Registration 

To evaluate the reliability of the two-step Cryo-to-MR registration method, we performed this 

co-registration technique on 28 cryo/MRI datasets and tracked the TRE using the same eight 

target fiducials used in Section 9.2.1. As shown in Figure 9.7, the resulting average TRE (μTRE) 

was 322±157 μm with a 95% CI of [260-382 μm]. The average absolute difference of TRE 

measurements between two animals was found to be 181±128 μm, with an upper 95% percentile 

of 412 μm. When tested against the null hypothesis that the μTRE > 500 μm using a single-

sample, two-tailed t-test (α=0.05), we found p < 0.001 with a post-hoc Power = 0.99. Thus, we 
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can conclude that our post-to-pre Gd-MRI registration technique produces adequate co-

registrations, with an average TRE less than 500μm.  

 As an important caveat to consider, resolution is the leading limitation for achieving 

accurate registrations when using such a feature-based approach. Furthermore, inherent voxel 

resolution (0.3x0.3x0.8 mm) inherently puts constraints on obtainable TRE. In these given 

examples (Figure 9.6 and Figure 9.7), TRE was calculated using sub-voxel locations which 

errantly produced lower TRE’s than the 0.3 mm voxel dimension. Moving forward, TRE should 

be calculated using center-of-mass voxel locations. 

 

Figure 9.7: Resulting TRE from cryo-to-Gd-MRI registration across 28 animals. TRE was calculated as the 

root mean square error of 8 target fiducials consistently selected across all animals. 

 

Examples of co-registered cryo-fluorescence and Gd-MRI volumes are shown in Figure 9.8 with 

the yellow-outlined regions indicating tumor. With such co-registered volumes, agent uptake 
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behaviors and distributions can now be successfully compared between Gd-based and 

fluorescent contrast agents. A full performance analysis across contrast agents can be found in 

Chapter 9. 

 

Figure 9.8: Cryo-to-MRI registrations shown amongst Gd-MRI and all fluorescence channels in each 

experiment for 4 exemplary cases (A-D). 

 

9.3.3 Pathology-to-Cryo Registration 

A preliminary whole-body, Cryo-to-H&E registration is as shown in Figure 9.9 achieved a TRE 

of <150 μm using 12 independent target pairs. In this whole-body H&E case, feature points 

throughout the entire axial body slice could be used for co-registration.  



 

180 
 

 

Figure 9.9: (A) Recovered and stained H&E slice of whole-body cross-section co-registered to a (B) RGB 

cryo-slice. 

The main application of interest for H&E lies around co-registering the brain regions between 

H&E and RGB cryo-images in order to delineate the glioma tumor extent with confidence. For 

this co-registration task, the limiting factor is the cryo-image resolution, which worsens at the 

edges of the camera’s focal limits.  

By using >10 corresponding fiducial pairs to register each animal, then calculating TRE 

with the same eight corresponding target pairs for each animal, the average TRE (μTRE) was 
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found to be 95.4 ± 28.6 μm within a small cohort of glioma models (n=8). Thus, we have 

achieved our goal of keeping H&E registration error under 150 μm (confirmed by a two-tailed, 

one-sample t-test, p (μTRE < 150 μm) = 0.001). Examples of H&E-to-cryo brain registration 

results are shown in Figure 9.10. 

 

Figure 9.10: Examples of cryo-RGB images co-registered to H&E slices of glioma brain models. 
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9.4 DISCUSSION 

While a previous group has developed an MRI-Cryo imaging platform with co-registered 

pathology, they are mostly focused on whole-body non-rigid transformations which use 

complicated free-form deformation (FFD) algorithms.182 Their FFD algorithm optimizes a cost 

function which incorporates normalized mutual information, smoothness, and a logarithmic 

Jacobian term.  An exhaustive grid search is performed to find optimal cost function weights to 

use during FFD. Finally, registration quality is inspected quantitatively and qualitatively amongst 

all iterated weighting conditions. This sliding-organs method requires segmentation of every 

organ-of-interest and careful tuning of optimization parameters per case. As an independent 

metric of success, they used surface-based metrics to quantify the accuracy of registration.  

For our purposes, we are less interested in free-form surface deformation, because our 

primary interest is in registering brain features contained within the skull, a rigid structure. 

However, it is non-trivial to accurately segment the brain surface for registration, particularly 

around the cerebellum region. In addition, the same anatomy is not visible amongst all imaging 

modalities.  Thus, a surface-based registration scheme is non-ideal for our purposes. 

We’ve developed intensity- and feature-based rigid-registration procedures which ensure 

accurate registration of brain features between cryo-volumes, Gd-MRI, and H&E images. While 

the registration algorithms used in our study were not novel, the application required additional 

image processing and optimization steps to ensure each registration method performed robustly 

across all animal experiments. 
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9.5 CONCLUSION 

The ability to draw scientific conclusions from multiple imaging modalities hinges on the ability 

to accurately register all imaging modalities into the same space. We’ve developed a toolbox for 

MR-to-MR, Cryo-to-MR, and H&E-to-Cryo registrations.  

Accurate registrations enable a multitude of biological questions to be answered with co-

localized MRI, anatomic, fluorescence, and histochemistry information. By utilizing two-step 

methods for MR-to-MR and Cryo-to-MR registration, we are able to ensure robust registration 

behavior across a wide array of experiments. Validation results demonstrate accurate 

registrations with μTRE = 290±120 μm for MR-to-MR (n = 28), μTRE = 320±160 μm for Cryo-

to-MR (n = 28), μTRE = 95±29 μm for Cryo-to-H&E (n = 8). 
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10 USING REGISTERED MRI AND VOLUMETRIC CRYO-IMAGING 

TO IDENTIFY FLUORESCENT ANALOGS TO GADOLINIUM-

BASED CONTRAST AGENTS FOR FLUORESCENCE GUIDED 

NEUROSURGERY  

10.1   INTRODUCTION 

In this chapter, we will discuss the development of a multiplexed cryo-MRI screening approach 

to search for a Gadolinium-mimicking fluorescent contrast agent which could augment the 

surgical resection procedure, which often relies heavily on Gd-MRI.  In this study, we evaluate 

several contrast agent performance and Gd-similarity metrics across multiple candidate 

fluorescent agents in glioma models.   

I would like to acknowledge Mr. Augustino Scorzo and Mr. Rendall Strawbridge for their 

experimental work and data collection which supported the validation studies presented within 

this chapter. Analytical methods presented here will contribute to the larger ongoing Gd-Analog 

Screening study (R01CA188491, S.C. Davis). 

10.1.1   Emergence of fluorescence-guided glioma resection 

Brain surgery is one of the most technologically advanced types of surgery and is centered on 

Gd-MRI image guidance in all stages of treatment. For diagnosis and surgical planning, T1-

weighted Gd-enhanced MRI is the main information used to guide surgical decisions. During 

surgery, the surgical field is rigidly co-registered with the pre-op MRI, and often the Gd-MRI-

defined tumor boundaries are overlaid into the surgeon’s co-registered microscope oculars. 
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Finally, Gd-enhanced MRI is the main metric used when assessing postoperative extent of 

resection.  

By using preoperative MRI (pMRI) that is co-registered with the surgeon’s tools and 

microscope view, the brain surgery can be completed with precision typically within 1-2 mm of 

pMRI margins. However, as the surgery progresses and significant brain deformation takes 

place, it becomes more challenging for a pMRI or even an updated MRI (uMRI) to accurately 

pinpoint tumor margins. Deformation modeling tries to account for such shifts, often using 

stereovision, ultrasound, or CT as a supplemental imaging modality.211  In this space, 

fluorescence-guided surgery has emerged as a possible solution dealing with brain shift and 

deformation during glioma resection by providing direct infield guidance.212 

To date, surgical resection of GBM using Aminolevulinic acid-induced protoporphyrin 

IX (5-ALA-PpIX) stands out as the most successful translation of fluorescence guided surgery 

(FGS).212–215 In a landmark study, 5-ALA-PPIX fluorescence guidance was shown to enable 

more complete tumor resections, leading to improved patient outcomes.212 As of 2017, this 

imaging modality has secured approval for both EU and US clinical use.  Following FDA-

approval and compelling clinical trial results, surgeon use of 5-ALA-PPIX fluorescence guidance 

has continued to increase, assisted by accelerated development and wider availability of 5-ALA-

PpIX imaging systems.216 

10.1.2   Limitations of the targeted agent approach for fluorescence-guided 

glioma resection 

Despite the successful translation of 5-ALA-PpIX to clinic, limitations of using this targeted 

agent for fluorescence guided surgery still exist. Previous studies have found this 5-ALA-

induced mechanism to can vary across patient populations,217–219 which can result in variability 
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in fluorescence intensity and distribution based on disease grade,217 molecular abnormalities,220 

location in the brain,218 and other patient-specific factors. For example, neural GBM tissue has 

shown lower fluorescence production compared to non-neural GBM tissue.221 Also, because 5-

ALA-PpIX fluorescence is produed through a unique mechanism, it may not always correlate 

with the full tumor extent as defined by Gd-MRI.27  

Substantial work remains to understand and exploit the information revealed by 5-ALA-

induced fluorescence.217,219 The tumoral heterogeneity observed during 5-ALA-PpIX 

fluorescence guidance is not as well understood by the surgical community as Gd-MRI uptake, 

thus introducing uncertainty at the time of resection.  

Table 10.1: List of targeted fluorescent agents currently under development with indications for glioma 

resection. 

Fluorescent Agent Targeted 

Pathway/Receptor 

Incubation Time 

Cetuximab-IRDye 

800CW222,223 

EGFR(+) 2-5 days 

Panitumumab-IRDye 

800CW222,224 

EGFR(+) 1-5 days 

ABY-029225,226 EGFR(+) 1-3 hours 

BLZ-100227,228 matrix 

metalloproteinase 2 

(MMP-2) 

1 hour 
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To date, 5-ALA-PpIX is the only with FDA-approved fluorescent agent for glioma localization. 

However there is a large influx of targeted fluorescence contrast agents currently in the 

regulatory pipeline for the same indication of glioma localization (as shown in Table 10.1).48 

Such targeted agents rely on a particular genetic phenotype and often require long incubation 

times which is non-optimal in terms of clinical workflow. In the glioma surgical guidance space, 

targeted fluorescent agents currently in the clinical development pipeline include the following:48 

While promising, these targeted approaches only cover a portion of the glioma patient cohort. 

For example, EGFR(+) amplification varies widely by tumor stage,212 and has been reported in 

~40% of high-grade glioblastomas.231 Evidence suggests that the GRPR(+) amplification may be 

more widespread across differing stages and genetic phenotypes.232  

10.1.3   Can non-specific fluorescence contrast agents mimic GBCA behavior? 

In contrast to targeted agents, Gd-based contrast agents (GBCA) are untargeted and rely solely 

on the enhanced permeability retention (EPR) effect. GBCAs have a long history of use in 

neurosurgery for diagnosis, resection planning, guidance, and post-operative assessment. 

Therefore, Gd-MRI uptake is highly familiar to the neurosurgical as the universal MRI contrast 

agent.  

Identification of an optical contrast agent that behaves like GBCA and provides similar 

image specificity to tumor could have an important impact on surgical guidance. Importantly, 

GBCA often provides high contrast in many gliomas within minutes of administration. An 

optical agent with these rapid characteristics would provide familiar information directly in the 

BBN-IRDye 

800CW229,230 

Gastrin-releasing 

peptide receptor 

(GRPR(+)) 

2 hour 
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surgical field while alleviating many of the logistical challenges associated with administering 

FGS contrast agents hours or days before the procedure. In this context, the contrast agent could 

even be administered as needed during the course of surgery. 

Two untargeted fluorescent agents have been investigated for use in glioma resection, i.e. 

Indocyanine Green (ICG) and sodium fluorescein. Fluorescein has a fast clearance time; yet has 

been shown to nonspecifically perfuse into normal tissue at later points.65 On the other hand, 

ICG requires a prolonged incubation period (24hr+) and is often administered at high doses (5 

mg/kg).233  In contrast, Gd-based agents are known to have fast uptake times234,235 with a 

plateauing tumor washout curve. Interestingly, Gd-enhancement is often observed to remain 

within the tumor region for multiple hours.236,237 If a fluorescent contrast agent had similar 

kinetic properties to Gd-based agents (fast uptake with plateauing tumor accumulation), it would 

represent a major advancement compared to ICG and fluorescein which have non-ideal kinetic 

profiles for surgical use.  

Lastly, we are interested in finding a Gd-mimicking fluorophore which has a similar 

spatial distribution to Gd-MRI. If we are able to find a fluorescent contrast agent which reliably 

matches the uptake-distribution of Gd-MRI, then the surgeon could be presented with an uptake 

pattern they are familiar with because it mimics the Gd-MRI pattern they are used to interpreting 

for guidance. If we are able to find a fluorescent contrast agent which reliably matches the 

uptake-distribution of Gd-MRI, then we could present a much more familiar fluorophore uptake 

pattern which surgeons are used to interpreting with Gd-MRI. 

Should a Gd-mimicking fluorescence agent be identified, one could envision using the 

images to perform brain tissue deformation compensation to update the pre-operative MRI 

images during surgery. This approach has been reported on extensively using by Fan. et al.211 

and other groups using various inputs to guide the updating process, such as stereovision, 
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ultrasound, etc. A novel fluorophore that provides high tumor-to-normal brain contrast within 

minutes of administration that persists for several hours could alleviate some of the 

aforementioned challenges.  

In summary, the key criteria we have established in search for a Gd-mimicking fluorescent 

contrast agent include:  

1. Robustly report on blood-brain barrier breakdown across multiple tumor phenotypes. 

2. Possess kinetic profile that allows for rapid administration time and prolonged tumor 

enhancement (long window-of-usefulness).  

3. Present a familiar spatial uptake pattern to the surgical community which may be able to 

be used as a sparse dataset to perform deformation compensation for updated MRI fusion. 

10.1.4   Cryo-MR Screening Design 

The ability to compare multiple fluorescence contrast agents, voxel-for-voxel, in the same 

glioma model presents a powerful screening tool for directly evaluating fluorescence contrast 

agent performance, as it relates to mimicking Gd-uptake in a co-registered MRI dataset.  

The cryo-MR screening study was designed to focus on untargeted fluorescent contrast 

agents that have current FDA-approved indications for use (ICG & fluorescein) and agents 

which are currently in the regulatory pipeline (e.g. LI-COR IRDyes). This list was appended to 

also include Rhodamine which has a similar chemical structure to fluorescein, yet does not carry 

the same temperature sensitivity as fluorescein.238 Moving forward, the goal is to administer both 

targeted and untargeted agents at each agent’s ideal injection time in order to make a fair 

comparison of uptake patterns and performances across agents (similar to work presented in 

Elliott et. al, Clin Cancer Res, 2017). 
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Additional PEGylated derivatives of these fluorophores are also of interest. A wide 

variety of PEG modifications are available that can be readily conjugated to these labels with 

NHS-ester and maleimide chemistry. PEGylated-versions of Rhodomaine, FITC, and Cy5 can be 

readily purchased and tested in different optical channels. Previous studies within our lab have 

shown that PEGylation can favorably alter the kinetic behavior of contrast agents for tumor 

imaging in glioma.239 In 2019, Folaron et al. showed that sodium fluorescein uptake within the 

normal brain tissue could be reduced with the use of a PEGylated fluorescein derivative (PEG-

Fluorescein-550 Da).239 As a result, tumor-to-normal of the PEGylated agent was increased, with 

less competing signal in the normal brain regions. 

 In addition, a recent patent showed that PEG chain lengths greater than 5K prohibit 

agents from crossing over the blood brain barrier into normal brain tissue.240 By limiting the 

fluorophore to regions of blood brain barrier breakdown, we can significantly increase the tumor-

to-brain contrast. Increased linear PEG chain length also increases the time of circulation. We 

predict there to be a happy medium of PEG chain length, which is large enough to minimize 

BBB diffusion, yet small enough to be rapidly deposited in regions of BBB damage. 

After narrowing down the list of candidate fluorophores to clinically relevant untargeted 

agents and additional PEGylated derivatives, we multiplexed different combinations of three 

non-overlapping fluorophores and directly compared such multi-fluorophore distributions to co-

registered Gd-uptake distributions. As illustrated in Figure 10.1, the goal of this intermediate 

screening step is to eventually narrow down the search to 3-4 Gd-mimicking candidate 

fluorescent agents at an optimized kinetic time point. At which point, the 3-4 multiplexed 

candidate agents will be administered to larger animal models (i.e. porcine glioma model) and 

hopefully examined across a larger population of tumor types. Such experiments will not be 
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high-throughput therefore it is critical to identify strong Gd-mimicking candidates before moving 

into large animal models.  

 

Figure 10.1: Multi-stage Gd-Analog screening approach. 

10.2    METHODS 

10.2.1   Cryo-MR Experimental Set-up 

We used a U251 xenograft glioma cell line for initial studies because U251 closely replicates the 

histological features of human glioma, including necrosis, angiogenesis, and tumoral cell 

infiltration.241 Female nude mice (Charles River Laboratories, Wilmington, MD) were inoculated 

intracranially with 106 U251 glioma cells using procedures described previously.242 Tumor 

growth was monitored using gadolinium-enhanced MRI until reaching a size of at least 2 mm 

which usually takes ~3 weeks.  

For MRI acquisition, the mouse is placed in a custom rodent coil produced by Philips 

Research, with a small-diameter receiver coil designed for imaging small animals with a 3T 

MRI. This custom rodent coil set-up has been reported on in more detail by Davis et al., 2008.194 

The mouse is positioned in a 50 ml Falcon tube with a drilled hole delivering isoflurane 
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throughout the duration of the imaging session. The mouse is then closely aligned such that the 

middle of the brain is in line with the center of the donut-shaped rodent coil.  

  Prior to contrast administration, T2-weighted and pre-Gd T1-weighted MR images are 

acquired using the following settings in Table 10.2. The T2-weighted images are the highest-

resolution MRI images (0.3x0.3x0.3 mm) which highlight structural features used later for Cryo-

MRI registration processes. The pre-Gd T1-weighted MR images are used as the baseline for T1 

signal, subtracted from the post-Gd T1-weighted MRI images.  

 

Table 10.2: T1-weighted and T2-weighted sequences developed for Gd-analog mouse MRI acquisition 

 

Sequence 

 

TR 

 

TE 

Echo 

Train 

Length 

 

FOV 

# of 

Slices 

# of 

Frame 

Averages 

 

Slice 

Thickness 

Total 

Acquisition 

Time 

 

T1-

weighted 

Spin-

Echo 

580 5 4 

68.0 mm 

(FEG) x 

34.0 mm 

(PEG) 

25 2 0.8 mm 0.75 min 

 

T2-

weighted 

Spin-

Echo 

200

0 
99 51 

83.9 mm 

(FEG) x 

49.9 mm 

(PEG) 

160 2 0.330 mm 8.48 min 

 

After acquiring the initial set of MR images, animals are co-administered with human-equivalent 

doses of fluorophores and a Gd-based contrast agent (Dotarem) in a 200 μL injection. 

Immediately afterwards, T1-weighted MR imaging is performed at incremental time points to 

capture the kinetic profile of GBCA prior to sacrifice. The selection of time points was guided by 
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previous fluorescein kinetic work which showed brain clearance of sodium fluorescein and 

PEGylated fluorescein to occur in around the 30-120 min mark.239 We also examined shorter 

time points in efforts to identify an agent that has a rapid uptake and prolonged accumulation in 

tumor regions similar to Gd-based contrast agents. At a predetermined time point (10 min, 40 

min, 90 min, etc.), the animal is euthanized. 

Immediately after euthanization, the animal is submerged in optimal cutting temperature 

(OCT) compound by completely filling the 50 ml Falcon tube and attempting to displace the 

animal as little as possible. With the OCT surrounding the animal, one more T1-weighted is 

acquired in order to see the surrounding mouse fiducials in negative contrast. At this point, the 

OCT-filled Falcon tube is frozen down to -20°C for a minimum of eight hours. The frozen 

specimen block was then mounted on the macrotome sledge and faced in preparation for auto-

sectioning and imaging.  Figure 10.2 presents a diagram of this MRI experimental set-up from 

start to finish.  

 

Figure 10.2: A diagram of the MRI experimental steps used for Gd-analog screening project. Created with 

BioRender.com. 

https://biorender.com/
https://biorender.com/
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10.2.2   Table of agent performance metrics  

Contrast agent performance and image similarity metrics are well-studied topics within the 

medical imaging community, and as such, there are a plethora of options. To compare agent 

performance between Gd-based agents and candidate fluorescent agents, we identified an array 

of performance metrics of interest that fell into the three main categories of: 1) image contrast, 2) 

image similarity, and 3) diagnostic performance.  

Table 10.3 provides a short list of common performance metrics which may be of 

interest. Prior to assessing any similarity metrics, we need to ensure the cryo-volume and MRI-

volume are accurately registered (as described in Section 9.2.2) and sampled in the same voxel 

space. Thus, the cryo-volume is downsampled into MRI voxel space (0.3x0.3x0.8 mm) as an 

initial step. This step is achieved by using the Resample Image (BRAINS) module in 3D Slicer 

with the Gd-MRI voxel space as the reference. After performing this step, the methods for 

implementing each performance metric are described in the following subsections. 
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Table 10.3: Common performance metrics used to assess medical image datasets 

 

10.2.3   Metrics for Agent Contrast 

10.2.3.1 Tumor-to-normal ratio (TNR) and tumor-to-background ratio (TBR) 

The tumor-to-normal ratio (TNR), also referred to as the tumor-to-background ratio (TBR), is 

one of the most commonly used metrics to assess contrast in the context of fluorescence guided 

surgery.243,244 The Rose criterion states that a TNR of 5 or greater is needed to distinguish image 

features with 100% certainty.245 However, the selection of normal tissue regions for tumor-to-

normal calculations has long been a debated topic within the fluorescence-guided surgery 

community with variations including the use of muscle tissue,246 contralateral brain tissue,247–249 

surrounding normal tissue.214–216  
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For this calculation, we segmented the tumor and contralateral normal brain regions 

based off the RGB cryo-volume and validated with H&E samples in some cases. After 

segmenting both tumor and normal regions, we calculated the average intensity value in each 

segmentation and computed TNR by dividing the average tumor intensity by the average normal 

intensity as shown in Equation 10.1. 

Tumor-to-normal ratio (TNR) =  
𝐼𝑇𝑢𝑚𝑜𝑟

 𝐼𝑁𝑜𝑟𝑚𝑎𝑙
                    Equation 10.1 

As depicted in Figure 10.3(A-B), the same regions were used for the Gd-MRI and co-registered 

fluorescence volumes to compute all contrast measurements. 
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Figure 10.3: Tumor and contralateral normal brain regional segmentations based off of (A) the RGB cryo-

volume, which is co-registered to (B) the Gd-MRI volume. (C) 3D rending of tumor and normal brain segmentations 

for TNR calculation. 
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10.2.3.2 Normalized tumor-to-normal contrast (TNC) 

As a normalized version of contrast, the normalized tumor-to-normal contrast (TNC) metric 

considers the difference between tumor and normal tissue, as well as the total amount of signal 

available in the regions of interest. Also known as Michelson contrast, this normalization 

technique is used commonly to bound contrast measurements within a constant window of [-1,1] 

to enable global comparisons.253,254 The equation for calculating normalized TNC is shown 

below: 

Normalized tumor-to-normal contrast (𝑇𝑁𝐶) = 𝐼𝑇𝑢𝑚𝑜𝑟−𝐼𝑁𝑜𝑟𝑚𝑎𝑙
𝐼𝑇𝑢𝑚𝑜𝑟+ 𝐼𝑁𝑜𝑟𝑚𝑎𝑙

             Equation 10.2                                        

Where 𝐼𝑇𝑢𝑚𝑜𝑟 and 𝐼𝑁𝑜𝑟𝑚𝑎𝑙 represent the mean intensities within the tumor and normal brain 

ROI, respectively. Dividing the regional mean intensity differences by their sum (𝐼𝑇𝑢𝑚𝑜𝑟 +

 𝐼𝑁𝑜𝑟𝑚𝑎𝑙) ensured contrast values ranged from [-1, 1].  A normalized contrast value of zero 

indicates no difference between tumor and normal brain intensity signals, and a normalized 

contrast value of 1 indicates infinite contrast between the tumor and normal brain region. 

10.2.3.3 Contrast-to-noise ratio (CNR) 

As another variation of image contrast, we also examined the contrast-to-noise ratio (CNR) 

which looks at the difference in tumor and background signal divided by the standard deviation 

in the background. As shown in Equation 10.3, to calculate CNR, we subtracted the average 

brain signal from the average tumor signal and divided by the standard deviation found in the 

segmented normal brain region, using the same segmentations as the TNR calculation.   

Contrast-to-noise ratio (CNR) =  
𝐼𝑇𝑢𝑚𝑜𝑟−𝐼𝑁𝑜𝑟𝑚𝑎𝑙

𝐼𝑇𝑢𝑚𝑜𝑟+ 𝐼𝑁𝑜𝑟𝑚𝑎𝑙
                   Equation 10.3      

Unlike TNR, this metric has more to do with image quality and the ability to statistically detect 

tumor within the brain.  
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10.2.4   Metrics for Diagnostic Performance 

Sensitivity and specificity are two of the most commonly reported on clinical metrics.190 In our 

fluorescence guidance context, sensitivity (TP/ (TP+FN)) represents the ability to detect a 

cancerous region, and specificity (TN/ (TN+FP)) relates to the ability to distinguish that a 

detected cancerous region is truly positive. We decided to examine two measures which 

incorporate sensitivity and specificity. The first being Receiver-operator curves, which plots the 

true positive rate (sensitivity) as a function of false positive rate (1 – specificity). As a second 

measure, we also examined Precision-Recall curves, which do not explicitly include specificity 

(which can be skewed by uneven distributions of negatives and positives), but instead plots 

precision (TP/TP + FP) vs. recall (sensitivity) to avoid using the false negatives as predictive 

input. 

10.2.4.1 Receiver-operator AUC 

To assess diagnostic performance of the fluorescent contrast agents, we explored Receiver-

Operator curve (ROC) analysis. In this case, we held the Gd-defined tumor space as ground truth 

and plotted the true positive rate (TPR) vs. the false positive rate (FPR) in the fluorescence cryo-

volume as the threshold value is gradually increased. TPR is calculated as the number of true 

positives divided by the total number of positives (TP/ (TP+FN)). FPR is calculated as the 

number of false positives divided by the total number of negatives (FP/ (TN+FP)). The area 

under the curve (AUC) is the primary metric to report diagnostic accuracy, with an AUC of 1 

indicating a perfect diagnostic performance. In the 3D normal brain ROI, there can be a large 

number of true negatives which can inflate the FPR and the resulting AUC values. ROC is most 

appropriate when looking at approximately binary distributions of positives and negatives, yet is 

among the most commonly used metric for assessing diagnostic performance of fluorescent 

contrast agent performance.  
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10.2.4.2 Precision-Recall AUC 

When sample populations are not roughly equal, Precision-Recall (PR) curve analysis is the 

preferred diagnostic test in some cases. In this PR analysis, precision (TP/TP + FP) is plotted 

against recall (TP/ (TP+FN)), also known as sensitivity or the TPR. By using precision rather 

than specificity, the bias from high populations of true negatives is excluded from the diagnostic 

curve.  For this calculation, we again assumed the RGB-defined tumor was positive and normal 

contralateral brain region was negative. By using a sliding threshold, we calculated precision and 

recall based on the classification of true positives and negatives for each threshold value. As with 

the ROC-AUC, the area under the curve (AUC) of the Precision-Recall curve is trapezoidally 

integrated to produce a PR-AUC value for each distribution of interest. The resulting AUC 

curves were reported and compared across different test cases. 

In Figure 10.4, a Gd-based agent distribution and three co-registered fluorophore 

distributions are shown with both ROC-AUC and PR-AUC measurements calculated and 

compared to Gd-MRI in each case. Using this approach, we are able to make global comparisons 

between multiple agents’ AUC compared to Gd-MRI AUC values, where Gd-MRI is considered 

the diagnostic gold standard.  
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Figure 10.4: Diagnostic performance comparisons of (A) Gd-based agent uptake vs. (B) three fluorophore 

uptake distributions in the same glioma model. (C) Receiver-operator curves (ROC) (D) Precision-recall (PR) 

curves. 

 

10.2.5     Metrics for Image Similarity 

Image similarity is of particular interest because we are searching for an agent which is most 

spatially-similar to T1-weighted Gd-MRI. The motivation for this is two-fold. First, an agent 

with high spatial similarity to Gd-MRI will present the surgeon with familiar information that is 

representative of the Gd-MRI images which glioma resection is centered around. The second 

potential advantage to finding a fluorophore with high spatial similarity to Gd-MRI, is that the 

fluorescence information could assist in the updated-MRI (uMRI) image fusion process, by 

providing priors to deform the reference Gd-MRI to an updated MRI image which is 

representative of the current surgical field. Here we explore a few metrics which could help us 

identify and rank different fluorophores’ spatial similarities to Gd-MRI. 
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10.2.5.1 Normalized Mutual Information 

We calculated normalized Mutual Information (NMI) by computing the entropy (H(X)) of each 

image’s intensity distribution function (p(x)). Individual image entropy can be calculated as:  

𝐻(𝑋)  =  − ∑   
𝑥𝜖𝑋 𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥)               Equation 10.4 

Where 𝑝 (𝑥) represents the intensity distribution function at a given histogram bin location (x).  

The joint entropy (H(X, Y)) is calculated using a normalized 2D joint-histogram function 

(𝑃(𝑥, 𝑦)) computed between the pair of images. Joint image, 𝐻(𝑋, 𝑌), entropy is then calculated 

as: 

𝐻(𝑋, 𝑌)  =  − ∑   
𝑥𝜖𝑋 ∑   

𝑦𝜖𝑌 𝑃(𝑥, 𝑦)𝑙𝑜𝑔2[𝑃(𝑥, 𝑦)]                     Equation 10.5 

Where 𝑃(𝑥, 𝑦) represents the intensity distribution function at a given histogram bin location (x, 

y). Using image entropy of two images (H(X) and H(Y)), and the computed joint entropy between 

the two images (H(X, Y)), the Normalized Mutual Information (NMI) can be computed using the 

follow equation:  

𝑁𝑀𝐼(𝑋, 𝑌)  = [𝐻(𝑋)  +  𝐻(𝑌)  −  𝐻(𝑋, 𝑌)]/ 𝐻(𝑋, 𝑌)       Equation 10.6 

While there are various forms of the NMI equation, we used the version that is also known as the 

Information Quality Ratio which reports on the percentage of total entropy (H(X, Y)) that is 

shared entropy between the two images. Another way of thinking about the Information Quality 

Ratio is that it quantifies the amount shared information between images against the total 

uncertainty within the two images.  

A graphical diagram of this version of NMI is shown in Figure 10.5 where H(X) is 

variable X’s individual entropy, H(Y) is variable Y’s individual entropy, H(X | Y) is the 

conditional entropy for X given Y, H(Y | X) is the conditional entropy for Y given X, H(X, Y) 

represents the total entropy, and I(X, Y) represents the mutual information. By dividing I(X, Y) by 
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H(X,Y), we are able to look at the percentage of mutual information shard between variables X 

and Y relative to the total amount of information present in X and Y (i.e. normalized mutual 

information) as demonstrated in Figure 10.5(B).  

 

Figure 10.5: (A) Joint entropy diagram where where H(X) is variable X’s individual entropy, H(X|Y) is the 

conditional entropy for how much information Y encodes about X, H(X,Y) represents the total entropy, and I(X,Y) 

represents the mutual information. (B) Illustration of the Information Quality Ratio calculation for normalized 

mutual information (NMI).  

 

An NMI value of 1 indicates that 100% of total information (H(X, Y)) is mutual information (I(X, 

Y)) with no amount of conditional entropy present. On the opposite end, an NMI value of 0 

indicates that individual entropy distributions (H(X) and H(Y)) have no overlapping information.  

 Specific considerations had to be made when calculating NMI on our brain datasets. 

First, we only considered the regions of tumor and boundary regions surrounding the tumor. We 

chose this ROI because we are primarily interested how similar the tumoral and peritumoral 

regions are to Gd-MRI for surgical field guidance and uMRI applications.  
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Secondly, for computing joint entropy between two distributions, we only want to include 

voxel intensities above the noise floor. In an ideal case for comparing image similarity metrics, 

we would only utilize corresponding voxels above a known noise floor. For example, we could 

consider only keeping signals above an SNR of 10 to avoid the consideration of noise in image 

similarity calculations. However, defining noise floor for Gd-subtracted T1-weighted MRI 

images is non-trivial. Using too high of a noise filter limits the number of voxels available for 

comparison in both volumes. In our current implementation of image similarity metrics, we 

count all signals greater than zero. However, in larger animal models, care should be taken to 

only include voxels which have signal above the noise level in both Gd-MRI and the fluorescent 

cryo-volume. 

Lastly, a requirement for calculating joint entropy is that there are a sufficient number of 

co-occurrences within the 2D joint histogram. In Figure 10.6, the same MRI and fluorophore 

intensity distributions are sampled in 14 bins (A) vs. 1500 bins (B), with vastly different NMI 

values (NMI = 0.161 vs. NMI = 0.907). A low number of co-occurrences (caused by sampling 

the intensity distribution too finely with too many histogram bins) can actually inflate the NMI 

calculation as demonstrated in Figure 10.6(B).  
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Figure 10.6: Normalized Mutual information calculations from the same corresponding fluorophore and 

Gd-MRI intensity distributions using (A) 14 bins vs. (B) 1500 bins to sample the intensity distributions with vastly 

different NMI values (NMI = 0.161 vs NMI = 0.907).  

 

As a rule of thumb, there should be 5 co-occurrence counts in each joint-histogram cell if two 

uniform distributions were compared. Thus, the number of bins can be chosen based off this rule 

of thumb and how many data points are present within the two corresponding intensity 

distributions according to Equation 10.7. 

𝑛

𝐷2
 ≥ 5 → 𝐷 =  √𝑛/5                     Equation 10.7 

Where n is the number of data points, and D represents the number of bins in either direction of 

the joint histogram. Figure 10.7 displays the regional selection for image similarity analysis 

including the tumor region + 1 mm boundary region. The ROI dependence of CC and NMI 
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measurements will be further discussed in Section 10.3.3. The joint-distribution of intensity 

values within the segmented region can be used for calculating NMI following the methods 

described above.  Using such 3D regions, the joint-distribution of intensity values between (B) 

Gd-MRI and (C) a given fluorophore can be used to calculate NMI following the methods 

described above.  

 

Figure 10.7: (A) RGB cryo-slice (B) Gd-MRI agent distribution (C) Fluorophore agent distribution. (D) 

Histogram of normalized intensity distributions. (D) Joint-histogram for Fluorophore vs. Gd-MRI intensity 

distributions and computed NMI metric.  

 

10.2.5.2 Cross correlation 

As another similarity metric, normalized cross correlation (CC) is calculated by computing the 

covariance between the two image-volume intensity distributions and dividing this value by the 
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product of each image-volume’s standard deviation for normalization as demonstrated in 

Equation 10.8. Normalized cross correlation is effectively the same measurement as the 

Pearson’s correlation coefficient. 

               Normalized cross correlation = 
1

𝑁
∑ (𝑥𝑖−�̅�)∗ 𝑁

𝑖=0 (𝑦𝑖−�̅�)

√
1

𝑁 
∑(𝑥𝑖−�̅�)2  √

1

𝑁 
∑(𝑦𝑖−�̅�)2 

           Equation 10.8 

Therefore, cross correlation is only a valid measure of similarity if we expect the two image 

distributions to possess linear intensity scales with respect to one another. In our case, we expect 

the Gd-based agents and fluorophores to have concentrations which are within the linearity range 

of each of their respective imaging modalities. For fluorophores, we expect to see concentrations 

around the hundreds of nanomolars, which we’ve confirmed to be within the linear range of our 

cryo-imaging system.57 For T1-weighted, Gd-based MRI, we administer 30 μmol of the Gd-

based agent, gadoterate meglumine (DOTAREM), and we expect to see blood concentrations 

around 15 mM, given that the Gd-based agent disperses in a blood volume of 2 mL. Previous 

studies have shown DOTAREM to have a linear T1-weighted enhancement range from 7 mM 

down to 0.1 mM.255–257 The upper concentration limit of linearity for DOTAREM is not well 

characterized in the literature. But for the purposes of our study, we will assume that the 

concentrations of Gd-based agents and fluorophores are approximately linear with one another. 

The 3D region selected for CC measurements was the same as NMI, which included the 

tumor and surrounding peritumoral margin region. A CC value of 1 indicates perfect linearity 

between Gd-MRI and fluorescence intensities in each corresponding voxel, and a CC value of 

zero indicates no correlations between the two intensity distributions. An example of this CC 

analysis is shown in Figure 10.8 below. The voxel intensity values for cryo-fluorescence are 

plotted as a function of Gd-MRI voxel intensities for all ROI values in Figure 10.8(C). 
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Figure 10.8: (A) Gd-MRI and (B) fluorescence volume co-registered in the same voxel space. (C) Heatmap 

plot between fluorescence intensity and Gd-MRI normalized intensity using voxels located within the selected 3D 

region (tumor + 1 mm margin region).  

While cross correlation and mutual information report on image similarity, they actually present 

complementary information. Cross correlation is based solely on the data points, not the 

distribution, and reports on the linearity of two distributions. On the other hand, mutual 

information reports on stochastic dependence between two distributions, and examines the 

similarity of the full intensity distribution. Mutual information is supremely sensitive to 
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registration error, while cross correlation is less sensitive to misalignment. Both metrics are 

independent to image multiplicative factors. 

10.3   RESULTS 

As discussed in Section 10.2.2, we are interested in evaluating agent contrast, diagnostic 

performance, and similarity to Gd-MRI. In order to understand the limitations and dependencies 

of each performance metric developed in Section 10.2.2, we performed a series of simulations 

and introduced variations into the ROI selection, registration error, image noise, and agent 

distribution conditions of interest. Our goal was to identify performance metrics which are robust 

to error, yet sensitive to agent performance conditions of interest, for future large animal cohort 

studies. Afterwards, we performed experimental validation studies in which we examined 

multiple fluorescent agents in a glioma model, and compared such agent distributions to the Gd-

based agent distributions acquired from co-registered Gd-MRI volumes. 

10.3.1   A simulation to evaluate performance metric robustness to error 

When co-registering multiple imaging modalities together, registration error is unavoidable. 

Therefore, in the context of comparing multiple agent distributions, we must understand how 

registration error affects reported agent performance metrics, such as TNR. In Section 9.3.2, 

we’ve demonstrated that our average cryo-to-MRI registration error is 320±160 μm. In our case, 

registration error is most likely to affect the Gd-based agent measurements, because the Gd-MRI 

is co-registered with the cryo-volumes, and the ROI selection for tumor and normal regions is 

based off the anatomic RGB cryo-volume. Thus, essentially no registration error is introduced 

between the ROI selection and fluorophore agent cryo-volume. But registration error will always 

be present when comparing Gd-MRI performance to cryo-selected ROI regions and cryo-
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fluorescence volumes. The magnitude of registration error also varies between animals, with the 

average difference in registration error between animals is 180±130 μm.   

10.3.1.1 Introducing registration error to Gd-MRI images 

To evaluate performance metric robustness to registration error, we artificially introduced 

registration error ranging from 0.1-3.0 mm in a sample Gd-MRI, and calculated performance 

metrics under each registration error condition. In Figure 10.9(i), a baseline Gd-MRI is shown 

with the pre-segmented tumor (yellow) and normal brain (pink) regions displayed. The 

assumption is that in condition (i), there is no registration error between the original tumor and 

normal brain ROI (based on the cryo-volume) and the Gd-MRI. Then, translational registration 

error is gradually introduced from left to right in Figure 10.9. In conditions (v-vi), the Gd-

enhancement completely falls outside of the tumor ROI (yellow) due to large registration errors 

between the reference volume and the Gd-MRI volume. As a result, the TNR measurement also 

decreases from left to right in this example. In each condition, the percent error (ΔTNR (%)) due 

to registration error is calculated as the difference between TNR measurements in the perfectly 

registered baseline condition (i) and misregistered conditions (ii-vi), divided by the TNR 

measurement of the perfectly registered condition (i). Percent error is represented in a heatmap 

with 0% error in the baseline condition (i), and 99% error in case (vi) which has a registration 

error of 3mm.  
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Figure 10.9: Example of simulated registration error conditions ranging from 0 (i) to 3mm (vi) of 

translational error between the Gd-MRI image and the reference tumor and normal ROIs.  

10.3.1.2 Introducing image noise to Gd-MRI images 

A secondary error that we are interested in is understanding how image noise (which varies 

between imaging modalities) will contribute to agent performance evaluations. To simulate 

image noise contributions, we generated noisy images using the follow equation: 𝐼𝑛 = 𝐼𝑜 + 𝛼𝑛, 

where 𝑛 describes normally distributed noise centered at 0 with a variance of 1, and 𝛼 describes 

the noise contribution percentage, ranging from [0-100%] relative to the mean tumor intensity, 𝐼𝑜 

is the baseline image, and 𝐼𝑛 is the simulated image with additional Gaussian noise. Examples of 

simulated noisy image are shown in Figure 10.10(ii-v). Percent error for TNR measurements 

(ΔTNR (%)) for each condition compared to the baseline image (i) are represented in a 1D 

vertical heatmap. At 10% and 40% noise levels, the ΔTNR (%) was 57% and 83%, respectively. 
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Figure 10.10: Example of simulated image noise conditions ranging from 0% (i) to 40% (v) additive 

Gaussian noise contributions relative to the mean tumor intensity.  
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10.3.1.3 Examining registration error and image noise in combination 

We examined the combinations of these two error conditions (i.e. image noise and registration 

error) in relationship to one another. The matrix of error condition combinations is depicted in 

Figure 10.11, with the bottom left quadrant representing an ideal case (low registration error and 

low image noise), and the top right quadrant representing the worst case (high registration error 

and high image noise).  

   

 

Figure 10.11: Error condition matrix with the four quadrants of possible error combinations. 

 

In Figure 10.12, the resulting images from this error condition matrix are shown with noise 

increasing bottom to top, and registration error increasing left to right. The bottom left image 

(vii) is considered the baseline, ‘ground-truth’ image distribution, and the top right image (iii) 
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has the highest amount of error, including both random image error (50%) and registration error 

(1 mm). 

 

 

Figure 10.12: Error condition combinational matrix with increasing levels of random noise (bottom to top), 

and increasing levels of registration error (left to right).  

As illustrated in Figure 10.13, the 1-dimensional percent error heatmaps from (A) random noise 

and (B) registration error can be multiplied to form a (C) 2D heatmap representative of percent 

error from each error condition combination tested compared to the baseline ‘ground-truth’ 

condition. In Figure 10.13(C), it is apparent that TNR degraded more rapidly in the random noise 

direction (bottom to top), than in the registration error direction (left to right). Our average cryo-
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to-MRI registration error is ~300μm, which correlates to a relative TNR error of 15% compared 

to the ideal zero-registration error scenario. Understanding such limitations will become critical 

when comparing Gd-based agents’ TNR to fluorophore agents’ TNR, as Gd-based agents will 

have a slightly reduced TNR due to registration error.   

 

 

Figure 10.13: (A) Random noise simulation, and (B) Registration error simulation with percent error in 

TNR measurements represented in 1D heatmaps. (C) Combinational matrix of error conditions with percent error 

represented as a 2D heatmap.  

 

10.3.1.4 Evaluating all performance metrics’ robustness to the error conditions matrix. 

This concept of examining percent error in performance metrics examined under different 

combinations of error conditions was expanded to look at all metrics which relate to image 



 

216 
 

contrast (TNR, TNC, and CNR), diagnostic performance (ROC-AUC and PR-AUC), as well as 

image similarity metrics (CC & NMI) compared to a baseline image. 

The resulting percent error found in each metric, when applied across all possible error 

combinations and compared to the baseline, ‘ground-truth’ conditions, are all shown in Figure 

10.14. Amongst the image contrast measures (TNR, TNC, and CNR), TNC showed the highest 

robustness to both registration error and noise contributions. ΔTNR and ΔCNR had similar 

percent error trends, with ΔTNR being the most sensitive metric to relative noise contributions. 

For diagnostic performance tests, we compared the percent error trends between ΔROC-AUC 

and ΔPR-AUC measurements. ΔROC-AUC appeared to be slightly more robust (i.e. lower 

percent errors) when compared to ΔPR-AUC values, for both registration error and image noise 

conditions. 

Lastly, we compared normalized image similarity metrics, NMI and CC, in terms of 

maintained image similarity in the presence of misregistration and noise between a reference 

image and a simulated image with error introduced. In Figure 10.14(F-G), the percent error in 

NMI and CC measurements calculated from different error conditions are shown. Perhaps one of 

the most important findings was that ΔNMI breaks down upon small registration errors (57% 

percent error at 0.1mm registration error), and slight additions of noise (64% percent error at 

10% relative noise). Compared to ΔNMI, ΔCC was much more robust to these same errors, only 

degrading to 14% percent error with a registration error of 0.1 mm and a 10% relative noise 

contribution.  

Robustness to registration error is particularly important to consider in the context of our 

cryo-to-MRI image similarity comparisons. From Section 9.3.2, we’ve demonstrated that our 

average cryo-to-MRI registration error is 320±160 μm, and that our average difference in 

registration error between animals is 180±130 μm. Thus, for cross-cohort comparisons in 
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between animals, the relative error heatmap in Figure 10.14(G) shows that we can expect a 

relative error in CC of 10% and 19% for 200 and 300 μm registration errors, respectively. For 

these same expected registration errors, NMI shows 75% percent error with a 200 μm 

registration error and 83% percent error with a 300 μm registration error in Figure 10.14(F).  

This finding has important implications when comparing agent similarities in two 

volumes which are likely to have >0.1 mm registration error with some amount of image noise. 

Essentially, NMI is supremely sensitive to registration error, which is unavoidable in our multi-

modal image similarity studies. Therefore, CC is the much more appropriate parameter than NMI 

for our applications.  
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Figure 10.14: Error condition matrices showing percent error in image contrast measurements with respect 

to the ‘ground-truth’ image. Row 1: Contrast measurements including (A) Tumor-to-normal ratio (TNR), (B) 

normalized tumor-to-normal contrast (TNC), (C) contrast-to-noise ratio (CNR). Row 2: Diagnostic measurements 

including percent error calculated from (D) ROC-AUC (E) Precision-Recall curve (PR-AUC). Row 3: Image 

similarity metric measurements including (F) normalized mutual information (NMI), and (G) cross correlation (CC) 

percent error measurements. 

 

Furthermore, by examining the relationship between registration error, image noise, and 

performance metric response, we are able to quantify the percent error to be expected when 

comparing metrics, like TNR, across multiple contrast agent distributions arises from different 

imaging modalities which will have registration error and image noise present. In Section 9.3.2, 

our cryo-to-MRI registration error was found to be 320±160 μm average difference in 

registration error between animals of 180±130 μm, thus each metric’s percent errors associated 

with 0.2-0.3 mm registration errors must be considered when evaluating statistical differences 

between Gd-MRI and cryo-fluorescence agent distributions. 

10.3.2   A simulation to evaluate performance metric sensitivity to conditions of 

interest 

In addition to understanding performance metric robustness, we wanted to understand each 

metrics sensitivity to conditions of interest. Here we define conditions of interest as agent 

behaviors that are likely to occur in the context of glioma uptake behaviors. The two events we 

simulated were: 1) the event that an agent disperses/enhances in a region larger than the actual 

tumor and becomes a non-specific marker overtime, and 2) the event that an agent crosses the 

BBB and enhances normal brain tissue, thus reducing tumor contrast. The table below outlines 

the simulation parameters tested for altering agent performance behavior to generate such 

conditions of interest. 



 

219 
 

Table 10.4: Test conditions and parameters for simulation evaluating performance metric sensitivity to 

distribution changes and robustness to error.  

Test Condition Tested Parameters 

Alter normal brain 

intensity levels. 

Adding normal brain enhancement from [10-100%] 

relative to the mean tumor intensity. 

Increase agent 

enhancement size. 

Tumor intensity-based dilations with kernel radii 

ranging from [1-9] voxels, while maintaining the same 

average tumor intensity.  

 

To implement these conditions, we manipulated a T1-weighted, Gd-subtracted MRI, which we 

will refer to as the ‘ground-truth’ image, in order to artificially create each condition.  

10.3.2.1 Introducing changes in normal brain enhancement levels. 

To modify the normal brain distribution, we added signal to only the normal brain region. The 

amount of additional enhancement in the brain is described as a percentage relative to tumor 

enhancement, and this value ranged from 0-100% of the mean tumor intensity.  

An example of increasing brain enhancement levels from left to right and resulting image 

similarity metric changes are shown in Figure 10.15. In this example, the ‘ground-truth’ Gd-MRI 

(A) is being compared for image similarity to the simulated fluorescent agent distributions (B) 

which have increasing levels of brain enhancement from left to right. Between each 

corresponding Gd-MRI and fluorescent agent pair (displayed vertically in Figure 10.15), CC and 

NMI measurements were calculated within the tumor and 1mm normal brain regions. The 

percent change in CC and NMI measurements compared to the ground-truth’ Gd-MRI (i) are 

displayed as a 1D heatmap in Figure 10.15(D, F). 
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Figure 10.15: (A) Gd-MRI reference images with (B) fluorescent agent images with increasing normal 

brain enhancement levels. (C) Cross correlation (CC) measurements between Gd-MRI and the fluorescent agent 

ROI, with (D) ΔCC (%) representing the percent change in CC from the 0% brain enhancement case. (E) 

Normalized mutual information (NMI) measurements between Gd-MRI and the fluorescent agent ROI with (F) 

ΔNMI (%) representing the percent change in NMI from the 0% brain enhancement case. 

 

10.3.2.2 Introducing changes in agent enhancement size. 

To change the agent’s enhancement size, we performed an intensity-based dilation using 

approximately spherical kernels with radii ranging from 1-9 voxels, while ensuring the mean 

tumor intensity did not change. An example of increasing agent enhancement size compared to a 

reference image is shown in Figure 10.16, where in column (B) the fluorescent agent enhances a 

larger region than apparent in column (A) the Gd-MRI image. The differences in image 

similarity between the data pairs (shown horizontally in Figure 10.16(A-B)) were measured 

using both CC and NMI measurements within the ROI defined around the tumor region 
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(including pink + yellow outlines). For each condition, these measurements were compared to 

the ‘ground-truth’ image (i) to compute the percent change measures (ΔCC (%) and ΔNMI (%)) 

which are displayed as vertical 1D heatmaps in Figure 10.16(D, F).  

 

Figure 10.16: (A) Gd-MRI reference images with (B) fluorescent agent images with increasing agent 

enhancement sizes from bottom to top. (C) Cross correlation (CC) measurements between Gd-MRI and the 

fluorescent agent ROI, with (D) ΔCC (%) representing the percent change in CC from (i) the ‘ground-truth’ image. 

(E) Normalized mutual information (NMI) measurements between Gd-MRI and the fluorescent agent ROI with (F) 

ΔNMI (%) representing the percent change in NMI compared to (i) the ‘ground-truth’ image. 

 

10.3.2.3  Examining increases in normal brain enhancement and agent enhancement size in 

combination. 

We also tested the two agent performance conditions in combination with one another. The 

matrix of performance condition combinations is depicted in Figure 10.17, with the bottom left 

quadrant representing the best agent performance (high tumor-labeling accuracy with high tumor 
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contrast created by low normal brain enhancement), and the top right quadrant representing the 

worst agent performance (poor tumor-labeling accuracy with low tumor contrast caused by high 

normal brain enhancement).  

 

Figure 10.17: Agent performance condition matrix with the four quadrants of possible uptake behavior 

combinations. 

 

Figure 10.18 displays representative cases from this agent performance conditional matrix. The 

‘ground-truth’ image (vii) in the bottom left is considered to have the best agent performance. 

Tumor-labeling accuracy decreases from bottom to top as the agent enhancement enlarges, to 

replicate what can happen in the event of non-specific agent dispersal in the peritumoral regions. 

Normal brain enhancement increases left to right in Figure 10.18, in effort to replicate a contrast 

agent crossing the blood-brain barrier and enhancing normal brain regions, which consequently 
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reduced tumor contrast.  Because we are effectively decreasing contrast by artificially enhancing 

normal brain, and decreasing the agent’s tumor-labeling accuracy by dilating the enhancement 

outside of the predetermined tumor region (yellow outline), we expect the artificially-

implemented conditions to result in worsened performance metrics compared to the ‘ground-

truth’ image as the performance decreases from bottom to top, and from left to right in the 

performance conditions matrix in Figure 10.18.  

 

Figure 10.18: Agent performance combinational matrix with increasing levels of agent dispersion (bottom 

to top), and increasing levels of background brain enhancement (left to right).  
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10.3.2.4 Evaluating all performance metrics’ sensitivity to the performance conditions matrix. 

After generating combinations of agent performance ‘conditions of interest’, we examined each 

proposed performance metric’s percent change across the full conditional matrix. In the presence 

of ‘real’ changes in agent performance, we want to find a performance metric which does indeed 

reflect this change with high sensitivity. Thus, we calculated the absolute percent change of each 

simulated performance condition with respect to the baseline ‘ground-truth’ image, in search of a 

metric which detects both brain enhancement changes and changes to the agent enhancement 

size, compared to a baseline Gd-MRI dataset. 

By expanding on the results in Figure 10.15 and Figure 10.16, the percent change 

measurements can form 2D heatmaps for ΔNMI and ΔCC as shown in Figure 10.19. 

Interestingly, ΔCC appears to correlate with both increases in brain enhancement and agent 

enhancement size (dilation), with slightly more sensitivity to changes in agent enhancement size 

(or dilation radius). In the presence of zero dilation, ΔNMI is slightly sensitive to brain 

enhancement, with percent change values ranging from 14% to 37% in the bottom row of Figure 

10.19(A), but ΔNMI is highly sensitive to changes in agent enhancement size, with percent 

change reaching 62% when a 1 voxel dilation was performed. This intuitively makes sense 

because NMI reports on the full intensity distribution’s joint entropy, which can be easily 

degraded in the presence of slight distribution changes. NMI is more sensitive to pattern 

similarities and disregards relative intensity differences between corresponding voxels. On the 

other hand, CC reports on how close two intensity values are from one another in corresponding 

voxels between two volumes, thus is more robust to slight changes in distribution patterns, as 

long as the corresponding voxel intensities remain linearly related. 
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Figure 10.19: 2D heatmaps of relative percent change in (A) NMI and (B) CC measurements resulting from 

combinations of brain enhancement levels and agent-enhancement size.  

 

In Figure 10.20, the resulting percent changes in contrast measurements, including TNR, TNC, 

and CNR, are shown for the entire performance condition matrix. Amongst all three 

measurements, ΔTNR showed the sharpest sensitivity to changing brain enhancement levels (as 

expected). ΔTNC’s response to changing agent distributions appeared linear both with respect to 

increasing brain enhancement and agent enhancement size. ΔCNR generally followed a similar 

trend with higher percent changes in the top right, but percent change was not linear with 

increasing enhancement dilation radius. 

 

Figure 10.20: 2D heatmaps of relative percent change in (A) TNR, (B) TNC, and (C) CNR measurements 

resulting from combinations of brain enhancement levels and agent enhancement size.  
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In Figure 10.21, we examined the percent changes in the conditional matrices’ ROC-AUC and 

PR-AUC measurements compared to the baseline ‘ground-truth’ image. Between ΔROC-AUC 

and ΔPR-AUC response, it is apparent that ΔPR-AUC is more sensitive to changes in 

enhancement dilation radius than ΔROC-AUC. In the first column of the 2D heatmaps, ΔROC-

AUC ranged from [3%-12%] while ΔPR-ROC ranged from [4%-43%] over the same range of 

increasing dilation radii from 1-9 voxels. Both ΔPR-ROC and ΔROC-AUC were equally 

sensitive to changes in normal brain enhancement levels (left to right). 

 

Figure 10.21: 2D heatmaps of relative percent change in (A) ROC-AUC and (B) PR-AUC measurements 

resulting from combinations of brain enhancement levels and agent enhancement size.  

 

10.3.3   Performance metric dependence on ROI selection volume 

In many studies, ROI selection can skew results because of regional variations not accounted for 

or inflate results due to a disproportionate number of true negatives in the case of specificity and 

ROC statistics. Thus, we conducted a set of experiments aimed at understanding how ROI 

selection affects our performance metrics of interest. The data used for these following 
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experiments was an animal cohort selected from the Cryo-MR screening experiment in which 

multiple fluorescence agents and a GBCA were administered at the same time, and the 90-min 

kinetic time point was then captured using the methods described in Section 10.2.1. 

10.3.3.1 Contrast measurement variance as a function of normal brain ROI size 

In our first experiment, we altered the normal brain ROI by first selecting the entire normal 

brain, excluding the tumor and a 1mm boundary around the tumor. These normal brain selections 

were then eroded by a 3D kernel, thus generating multiple normal brain ROIs of decreasing 

volume inside the original normal brain ROI. This ROI selection scheme was applied to a cohort 

of four animals which captured a 90-min time point of multiplexed contrast agents including: a 

Gd-based agent (referred to as Gd-MRI), ICG, and PEGylated Rhodamine 1kDa (PEG-Rhd-

1kDa) (See Figure 10.22).  

 

Figure 10.22: RGB and agent distributions of four glioma models all captured at the 90-min kinetic time 

point. Normal brain ROIs were continually eroded to generate a series of normal brain ROIs with decreases sizes. 
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We then examined the proposed contrast metrics (TNR, TNC, and CNR) as a function of normal 

brain ROI volume for each of the three agents (ICG, PEG-Rhd-1kDa, and Gd-MRI). In Figure 

10.23, an example of multiplexed agent distributions is shown in (A) with the 3D ROI selections 

rendered in (B), with the resulting contrast measurements as a function of normal brain ROI 

volume shown in (C-E). Each marker refers back to a specific animal’s agent distribution shown 

in Figure 10.22. 

For the TNR and TNC measurements Figure 10.23(C-D), each fluorophore distribution 

per animal (represented as individual line plots), remains mostly constant as volume changes. In 

Figure Figure 10.23(E), the CNR measures for PEG-Rhd-1kDa trend downwards with increasing 

normal brain ROI size.  

 

Figure 10.23: (A) Multiplexed agent distribution with RGB-cryo, Gd-MRI, and two fluorophore agent 

distributions shown in co-registered space. (B) 3D ROI selections rendering showing multiple normal brain ROIs. 

Contrast measurements as a function of volume are shown including (C) TNR, (D) TNC, and (E) CNR.  
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To get a better handle on variance between ROI measurements compared to the variance we 

observe between agents, we computed the F-ratio for each animal which represents the ratio of 

variance between agents divided by the variance between ROI sizes. An example of this F-ratio 

calculation for a single animal is depicted in  

Figure 10.24. An F-ratio greater than a given critical F-ratio value, indicates that one can reject 

the null hypothesis that the means of each cohort are the equal. 

 

Figure 10.24: F-ratio components including (A) the MST calculations between independent agents for each 

ROI selection, and (B) the MSE calculations between ROI sizes for each agent.    

 

In  

Figure 10.24(A), the variance between all three agents was computed (MST). In  

Figure 10.24(B), the variance between the five ROI cases within each agent was computed 

(MSE). Then the F-ratio is simply the ratio of MST over MSE as shown in Equation 10.9.  

   

Equation 10.9 
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A higher F-ratio is indicative of high variance between contrast agents, and a small variance 

across varying ROI sizes in the same animal (which is the ideal condition). Assuming α = 0.05, 

the critical F-ratio is F2, 12= 3.88. Any F-ratios greater than the critical F-ratio indicate that there 

is a significant difference between two groups and that variance between groups is significant 

compared to the variance within groups. The mean ± standard deviation in computed F-ratios 

(variance across agents / variance between ROIs) across four animals were as follows: TNR: F2, 

12= 308.9 ± 219.2; TNC: F2, 12 = 609.0 ± 594.4; and CNR: F2, 12= 85.5 ± 83.5. Therefore, all F-

ratios fell above the critical F-ratio (F2, 12 = 3.88), indicating that there is a significant different 

between agents in at least two groups, even with the variance within cohorts. Relative to the 

other metric’s F-ratios, CNR had the lowest F-ratios which reflects the high variance in CNR 

measures observed across different ROI volumes in Figure 10.23(E). The TNC and TNR metrics 

generally possessed high F-ratios, suggesting that TNC and TNR both have relatively low 

variance across different ROI volumes in the same animal. Such quantitative findings are 

concurrent with qualitative observations drawn from Figure 10.23.  

10.3.3.2 Diagnostic measurement variance as a function of normal brain ROI size 

Using the same ROI selections as the previous experiment, we evaluated diagnostic performance 

measurements as a function of normal brain ROI volume. In Figure 10.25, ROC-AUC and PR-

AUC measurements are plotted as a function of normal brain ROI volume, where each marker 

corresponds to a specific animal’s agent distribution shown in Figure 10.22. 



 

231 
 

 

Figure 10.25: Diagnostic performance measurements as a function of volume are shown for (A) ROC-AUC 

values and (B) PR-AUC measurements for three separate agents. 

 

From qualitative observations of Figure 10.25(A), it is apparent that ROC-AUC values, although 

clustered around one, do appear to have nearly constant values as a function of ROI volume. In 

Figure 10.25(B), the PR-AUC measurements decrease quite severely as volume increases, and 

this downward trend is shared across all three agents as a function of ROI volume. 
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For statistical analysis, we calculated the F-ratio for each diagnostic measurement for 

each animal, which represents the variance between agents, divided by the variance within 

between ROI selections in the same agent distribution for a given animal.  Thus, the only intra-

group variance is attributable to changing ROI sizes within the same animal for each F-test.  

The critical F-ratio (assuming α = 0.05) was F2,12= 3.88 in all F-tests. The mean and 

standard deviation in computed F-ratios across four animals in this experiment were as follows: 

ROC-AUC: F2,12= 192.17 ± 204.48; and PR-AUC: F2,12 = 2.60 ±1.86. The distribution of F-ratios 

from each measurement and each animal are shown in Figure 10.26, with each marker 

corresponding to a specific animal in Figure 10.22. It is important to note that PR-AUC 

measurements possessed F-ratios which were below the critical F-ratio value (3.88) in three out 

of four animals.  

 

Figure 10.26: Resulting F-ratios from four animals representing the ratio of variance between agents, 

divided by the variance within each agent caused by changing ROI sizes. F-ratios were computed in four animals 

(n=4), with the black dashed-line indicating the critical F-ratio (F2,12 = 3.88).  
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From this quantitative analysis, it is clear that ROC-AUC measurements produced the highest F-

ratios (i.e. variance between agents/variance between ROIs in same agent), while PR-AUC had 

large variation between ROI selections which resulted in much lower F-ratios, below the critical 

F-ratio in some cases. As a result of these findings, we’ve excluded PR-AUC as a possible metric 

for diagnostic performance for this application because of its strong dependence on ROI size. 

Moving forward, ROC-AUC appears to be the most promising metric in terms of measurement 

stability across varying ROI sizes, with robustness to registration error and noise as well.  

10.3.3.3 Image similarity dependence on ROI size 

Methods applied when calculating image similarity can greatly affect the resulting 

measurements. Referring back to Figure 10.6, normalized mutual information (NMI) can be 

inflated if the joint-histogram bin size is too small. To accommodate for this, we adjust the 

number of joint histogram bins according to the rule: 𝐷 =  √𝑛/5, where 𝐷 is the number of 1D 

histogram bins for each intensity distribution and 𝑛 is the number of corresponding data points, 

to ensure at least 5 co-occurrences per joint-histogram voxel would occur if comparing two 

uniform distributions. Beyond using an appropriate bin size, there may be other factors which 

affect image similarity computations. In this study, we investigated how image similarity metrics 

can be affected by regional selection volumes. 

For the Gd-analog experiments, we are primarily concerned about finding similarities in 

and around the tumor region between Gd-MRI and candidate fluorescent contrast agents.  In this 

particular study, we wanted to quantify the similarities between Gd-MRI and PEG-Rhd-1kDa, 

and between Gd-MRI and ICG agents at this 90-min kinetic time point (n = 4).  
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A representative glioma-model animal captured at the 90-min kinetic time point is shown 

in Figure 10.27(A). In Figure 10.27(B-C), the selection of tumor and boundary regions of 

varying boundary sizes are depicted in a 2D slice and a 3D rendering. The boundary regions 

were automatically generated by dilating the tumor boundary multiple times to create 3D ROIs 

of various volumes surrounding the tumor. The entire region (tumor + variable boundary region) 

was used for cross correlation (CC) and normalized mutual information (NMI) calculations. 

Resulting CC and NMI measurements from using these variable ROI selections are plotted as a 

function of ROI volume in Figure 10.27(D-E).  

 

Figure 10.27: (A) Representative glioma-model animal captured at the 90-min kinetic time point with 

corresponding Gd-MRI, PEG-Rhd-1kDa, and ICG distributions. ROI selections are shown on (B) a RGB cryo-slice 

and (C) a 3D rendering of the ROIs, with the tumor (yellow) and variable boundary regions (green). (D) Cross 

correlation (CC), and (E) normalized mutual information (NMI) measurements plotted as a function of ROI volume. 

 

When comparing image similarity globally across multiple animals, we want the most robust 

metric to ensure reliable measurements, without concern for variations in ROI selection. From 
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the comparisons in Figure 10.27(D-E), it is clear that CC had much less variation as a function of 

ROI volume, while NMI measurements generally trended downwards with increasing ROI 

volume selection.  

Overall, the results of Figure 10.27(D) suggest that CC can be used reliably when the 

volume evaluated is greater than ~70 mm3. The outlier case to this trend was the ICG ‘star’ case, 

in which the CC measurement dropped significantly once the ROI volume contained ventricular 

structures, which degrade the similarity between ICG and Gd-MRI. This example case is shown 

in Figure 10.28, with the ventricular ICG enhancement shown in (B), which does not correspond 

to the Gd-MRI uptake pattern in (A).  

 

Figure 10.28: (A) Gd-MRI showing the yellow tumor ROI (T.) and growing boundary regions (B.). (B) 

ICG agent distribution showing ventricular uptake (cyan arrow). 

 

Quantitatively, the F-ratio for variance between agents/variance between ROI selection in the 

same agent were as follows: CC: F1,30= 371.8 ±250.1 and NMI: F1,30 = 72.9 ± 103.3. In both 

cases, the F-ratio exceeded the critical F-ratio of 4.17, assuming α = 0.05. However, NMI clearly 

has a downward trend when volume assessed is increased in Figure 10.27(E). 
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Both qualitatively and quantitatively, CC outperforms NMI in terms of minimizing 

variance associated with ROI selection. In addition to being supremely sensitive to registration 

error, NMI showed high variability across different ROI sizes, which makes NMI problematic 

for comparing image similarity across animal cohorts because ROI selections and registration 

errors will vary across animals.  

10.3.4   Qualitative validation of quantitative agent performance metrics  

Quantitative performance metrics for agent uptake were established in Section 10.2.4, evaluated 

for robustness in 10.3.1, and examined for adequate sensitivity to ‘conditions of interest’ in 

Section 10.3.2. In Section 10.3.3, we tested the ROI-dependence of metric by changing the ROI 

volume selection. In the following Section 10.3.4, we simply ensure the highly-characterized 

quantitative performance metrics match our qualitative observances for a small subset of 

animals. 

` To do so, we will examine a small cohort (n=4) of glioma models at the 90-min time 

point. We selected this time point due to the high variation in performances between Gd-based 

agents and fluorophores observed at this time point. Our quantitative measurements should 

reflect such deviances which are qualitatively observed. In Figure 10.29, four animals are shown 

with the RGB, 90-min fluorophore distribution, and Gd-MRI examined at the 2-min and 90-min 

time points.  

Informed by the ROI dependencies explored in Section 10.3.3, we chose ROI volumes 

which showed metric stability as a function of ROI volume in Figure 10.25 and Figure 10.27.  

The normal brain ROIs used for contrast metrics were all approximately the same size at 40 mm3 

(and shown in Figure 10.29 as overlays) and the ROIs used for image similarity were all 

approximately ~70 mm3. 
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Figure 10.29: (A) RGB cryo-slices, alongside 90-min fluorophore distributions of (B) PEG-Rhd-1kDa and 

(C) ICG. (D) Initial Gd-MRI (post 3-min Gd-administration), (E) Final 90-m. Gd-MRI acquired immediately before 

sacrifice.  

 

10.3.4.1 Contrast metric results at 90-min time point 

Qualitatively, PEG-Rhd-1kDa appears to have high contrast in all four cases, while ICG appears 

to accumulate in the ventricular structures in all four animals, as well as faintly accumulate in the 
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tumor region of some animals. In this section, the three contrast metrics (TNR, TNC, and CNR) 

were compared to one another in their ability to accurately quantify such qualitative 

observations. For all contrast calculations, the tumor ROI was selected based of the RGB cryo-

image. The normal brain ROIs were segmented in the contralateral normal brain, such that each 

ROI volume was approximately 40 mm3 which corresponds to a region of metric stability in 

Figure 10.23. 

The three contrast metrics evaluated (TNR, TNC, and CNR) are all shown in Figure 

10.30 for the two fluorophores at 90-min, and Gd-based agent uptake (Gd-MRI) at the 2-min and 

90-min time points. Across all three metrics shown in Figure 10.30, PEG-Rhd-1kDa possesses 

the highest contrast, and ICG appears to have the lowest contrast measurements. 

Using a one-way ANOVA test, statistical differences in between some of the groups were 

found in all three metrics at the 90 min time point (TNR: F3,12 = 5.52, P=0.012; TNC: F3,12 = 

8.86, P = 0.002; and CNR: F3,12 = 6.74, P=0.006). The critical F-ratio, assuming (α = 0.05), for 

all ANOVA tests was F3,12 = 3.49. These F-ratios between the cohorts of animals (Cohort F-

ratio) can be compared to the previous F-ratios calculated between ROI sizes (ROI F-ratio). In 

both studies, TNC had the highest F-ratio (ROI F-ratio = 609.0, Cohort F-ratio = 8.86), which 

indicates TNC has small inter-ROI variance and inter-animal variance relative to the variance 

observed between agents.  

Using the Tukey-Kramer method to make post-hoc pairwise comparisons between each 

group, we found a statistical difference between PEG-Rhd-1kDa and ICG, as well as in between 

PEG-Rhd-1kDa and the 90-min Gd-MRI in all three cases. Statistical results from the Tukey-

Kramer post-hoc tests are shown in Figure 10.30. In Figure 10.30(B), TNC in the 2-min. Gd-

MRI cohort is statistically different from ICG, which corresponds with qualitative observations 
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of Figure 10.29. Amongst all three metrics, TNC was the only metric to report this difference 

between 2-min Gd-MRI and ICG.  

 

Figure 10.30: (A) Tumor-to-normal ratio (TNR), (B) normalized tumor-to-normal contrast (TNC), (C) 

contrast-to-noise ratio (CNR) plotted across four different agent distributions (n=4 animals per cohort).  

 

10.3.4.2 Diagnostic metric results at 90-min time point 

Amongst the proposed diagnostic metrics, PR-AUC showed unacceptable dependency on ROI 

volume in Section 10.3.3, and thus has been excluded from further analysis. Therefore, only 

ROC-AUC was compared across the four agent distributions in all four animals with results 

plotted in Figure 10.31. The markers correspond to a specific animal’s agent distribution in 

Figure 10.29.  

From observation of Figure 10.31, PEG-Rhd-1kDa shows the strongest diagnostic 

performance, and ICG represents the worst diagnostic performance at this 90-min time point. 

The individual animals’ performances appeared to align with the diagnostic scores. For instance, 
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case ii (star marker) barely showed any ICG in the tumor region, and has the lowest ROC-AUC 

value (ROC-AUC = 0.53) of the cohort. Across all agents, case iv (circle marker) showed the 

strongest performance in the quantitative results, which reflects qualitative observations.  

 

Figure 10.31: (A) Optimal specificity and (B) sensitivity measurements for multiple fluorophores. Area 

under the curve (AUC) comparisons from (C) Receiver-operator curves (ROC) and (D) Precision-Recall (PR) 

curves for multi-agent comparisons.  

A single-variable ANOVA was performed on the ROC-AUC comparison, with no statistical 

difference between any two groups found (F3, 12 = 1.56, P=0.24), possibly be due to the small 

sample size (n = 4) examined in this study.  

Anecdotally, a prior study has shown that peak tumor contrast for T1-weighted Gd-MRI 

occurs around 5 min in orthotopic brain tumors injected with a similar Gd-based chelating 

agent.258 Herrmann et al. also found Gd-based agents to ‘leak out’ of the initial contrast area at 
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the 30 min mark. Qualitatively, our 2-min Gd-MRI and 90-min Gd-MRI datasets appear to 

match Herrmann’s conclusions, in that the Gd-based agent appears to disperse into the proximal 

normal tissue at the 90-min mark, which enhances normal brain tissue and degrades tumor 

contrast (as apparent in Figure 10.30. This tumor leakage can particularly be seen in cases i & ii. 

However, ROC-AUC measurements only showed a slight difference between the 2-min and 90-

min Gd-MRI data.  

10.3.4.3 Image similarity metric results in 90-min cohort 

From qualitative observations of Figure 10.29, it is clear that PEG-Rhd-1kDa is more similar to 

(D) the initial Gd-MRI than (E) the final Gd-MRI distribution. On the other hand, 90-min ICG 

appears to not correlate with either the initial or final Gd-MRI, with low levels of enhancement 

in the tumor and high ICG enhancement of ventricular regions. Thus, this dataset serves as an 

ideal validation set for image similarity comparisons between fluorophore distributions and Gd-

MRI agent distributions. 

For all image similarity calculations, we assessed a volume around the tumor of 

approximately 70 mm3 for all experiments. This volume was selected because the stability in CC 

measurements greater than ~70 mm3 in Figure 10.27. Prior studies have shown NMI to be 

unreliable in the context of registration error and variable ROI sizes, thus, we will only focus on 

CC in this section.  

In Figure 10.32, we examined the cross correlation of case i presented in Figure 10.29.  In 

each row, two agent distributions are compared within the selected 3D region of interest 

(outlined in yellow). In Figure 10.32(B), the normalized voxel intensities of Gd-MRI vs. 

fluorophore distributions are plotted with the resulting normalized cross correlation (CC) 

measurement displayed in each case.  
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Figure 10.32: (A) 3D agent distribution patterns (yellow outline indicates region of interest). (B) Cross 

correlation plots and resulting CC measurements.  

Quantitatively, the image similarity measurements correspond to user observations with row i 

showing the highest similarity and row ii and iv showing the lowest image similarities within the 
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yellow-outlined region of interest. ICG’s CC measurements were lower than PEG-Rhd-1kDa 

likely due to the fact that ICG was taken up in the ventricular structures. In row iii, the 90-min 

ICG appears to be somewhat correlative to the 2-min Gd-MRI (CC = 0.44) but completely non-

correlative to the 90-min Gd-MRI in row iv (CC = 0.13).  

When we looked at this 4-animal cohort using this 90-min time point, the CC 

measurements followed a similar trend as the example shown in Figure 10.32. In Figure 10.33, it 

is apparent that both PEG-Rhd-1kDa and ICG agents are more correlative to the 2-min Gd-MRI 

than the time-matched, 90-min Gd-MRI. There was no significant difference found between the 

initial vs. time-matched image similarity measurements, likely due to the limited sample size 

(n=4).  
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Figure 10.33: (A) Cross correlation (CC) comparison of PEG-Rhd-1kDa and ICG at the 90-min kinetic 

time point.  

If we take a closer look at how similar PEG-Rhd-1kDa and ICG are to the initial Gd-MRI 

(diagnostic standard), we can see that PEG-Rhd-1kDa possess high image similarity in all cases, 

but ICG only possesses high image similarity when labeling tumors located at the brain-skull 

interface (Figure 10.34(A-B)). In the two cases where the tumor was fully encapsulated in the 

frontal lobe as shown in Figure 10.34(C-D), the ICG vs. Gd-MRI CC scores were lower (CC = 
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0.44 and 0.19). No ventricular accumulation was seen with the PEG-Rhd-1kDa distributions, and 

the agent had similar distribution patterns to Gd-MRI no matter where the tumor was located. 

 

Figure 10.34: (A-B) Examples of tumors located in the brain-skull interface, and (C-D) tumors fully 

encapsulated in the frontal lobe, with fluorophore and Gd-MRI distributions compared using cross correlation (CC) 

measurements.  

 

10.3.5   Agent performance metrics at a 10-min kinetic time point. 

Up until now, our results have probed into metric robustness, sensitivity, ROI dependence, and 

how well each metric reflects the observable differences between agent distributions. Such 

findings have led us to exclude certain metrics which performed unreliably in the face of 

registration error (such as NMI) or variances between ROI selections from animal to animal 

(such as PR-AUC).  

In Section 10.3.4, we ensured the quantitative results matched the observable differences 

between agent distributions at a specific time point using a small cohort (n=4). Now, we will 

apply this framework for comparing agent performances on a larger cohort of animals in Section 

10.3.5. To accomplish this, we used a cohort of animals (n = 16) who received either PEG-Rhd-
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1kDa with IRDye 800, PEG-Rhd-550Da with IRDye 800, or ICG, along with a Gd-based 

contrast agent and were sacrificed 10-min post administration to capture the 10-min kinetic time 

point of all agents. Biodistributions observed in two representative animals sampled from each 

animal cohort are shown in Figure 10.35. The tumor region in each case is outline in yellow, and 

the contralateral normal brain ROI has been outlined in pink. Qualitatively, IRDye 800 and the 

PEGylated Rhodamine derivatives (PEG-Rhd-1kDa and PEG-Rhd-550Da) all show promising 

tumor-labeling capabilities, while ICG appears to be largely non-specific at this given 10-min 

time point. 
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Figure 10.35: (A) Cryo-RGB slices, Gd-subtracted MRI images from (B) the 2-min and (C) the10-min 

post-administration time points, and four different fluorophore distributions including (D) ICG, (E) IRDye 800, (F) 

PEG-Rhd-550Da, and (G) PEG-Rhd-1kDa distributions all acquired at the 10-min post-administration time point.  

 

Taking a closer look at the ICG, Figure 10.36 shows the ICG agent distribution in two injected 

animals (cases i and ii in Figure 10.35), compared to a naïve animal which did not have any 

contrast agent administered. In Figure 10.36(B), both 10-min ICG animals (cases i-ii) show ICG 

has perfused into the normal brain region, with accumulation in the ventricular structures (red 
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arrows), and low levels of ICG accumulation around the necrotic tumor core (outlined in 

yellow).  

 

Figure 10.36: (A) Cryo-RGB slices from three animals include a naïve animal with no contrast agent 

injected. (B) ICG channel fluorescence distributions. Tumor region outline in yellow. 

 

The agent performance characteristics (including contrast, diagnostic performance, and Gd-

similarity) of all four fluorophores (ICG, IRDye 800, PEG-Rhd-550Da, and PEG-Rhd-1kDa) as 

well as the Gd-based agent will be assessed in the following subsections.  

10.3.5.1 Multi-agent contrast comparisons at 10-min kinetic time point.  

Agent contrast measurements were computed using the RGB-identified tumor region and 

contralateral normal brain region with resulting contrast measurements for all fluorophores and 

Gd-based agents shown in Figure 10.30. A one-way ANOVA revealed there was a significant 
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difference in contrast measurements between cohorts, with the following F-ratios: (TNR: F5,52= 

2.79, P = 0.03; TNC: F5,52= 16.28, P < 0.001; CNR: F5,52= 16.28, P < 0.001; critical F-ratio for 

all comparisons: F5,52 = 2.39).  

 

Figure 10.37: (A) Tumor-to-normal ratio (TNR), (B) normalized tumor-to-normal contrast (TNC), (C) 

contrast-to-noise ratio (CNR). * indicates P< 0.05, ** indicates P<0.01, *** indicates P<0.001 

 

Using the Tukey-Kramer method to make post-hoc pairwise comparisons between each group, 

we actually found no statistical difference in TNR comparisons (Figure 10.30(A)), likely due to 

the high mean squared error within cohorts, particularly the Gd-MRI cohorts. The three outlier 

cases with a TNR >40 in the 2-min Gd-MRI cohort were caused by essentially having close to 

zero signal in the Gd-subtracted normal brain ROI.  

TNC normalizes contrast by dividing the difference in between tumor and normal signals 

by the total amount of signal present in both regions. Thus, the cases of near-infinite contrast are 

bound to one and as a result, there were less outliers in the Gd-MRI agent cohorts.  Tukey-
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Kramer’s test for multiple pairwise comparisons showed a large number of statistical differences 

between agents’ TNC measurements (shown in Figure 10.30(B)). Briefly, ICG was found to be 

significantly lower than all other agents compared in this 10-min cohort. PEG-Rhd-550kDa was 

found to be significantly lower than PEG-Rhd-1kDa (P=0.003, 95% CI = [-0.79, -0.10]), the 2-

min Gd-MRI (P=0.005, 95% CI = [-0.67, -0.08]), and the 10-min Gd-MRI cohort (P=0.028, 95% 

CI = [-0.61, -0.02]). PEG-Rhd-1kDa was also found to be significantly different than IRDye 800 

(p = 0.030, 95% CI = [-0.54, -0.018]), but not significantly different from the 2-min or 10-min 

Gd-MRI distributions.  

One caveat to consider is that hyperspectral data acquisition and spectral unmixing 

occurred in the Rhodamine channel but did not occur within the IRDye 800 and ICG NIR-I 

channel. Thus, contrast measurements might be biased towards the spectrally-unmixed 

Rhodamine channel. To steer away from relying on contrast metrics, we evaluated diagnostic 

performance metrics of these four fluorescent agents at the 10-min time point in the following 

section.  

10.3.5.2 Diagnostic performance comparisons at 10-min kinetic time point.  

 Diagnostic performance measures beyond contrast are critical to think about in the context of 

translational surgical guidance probe development. While the questions in navigating the surgical 

field arise from evaluating tissues around the tumor, we used contralateral brain as our negative 

(normal brain) regions because we did not have H&E confirmation on the full 3D cryo-volume.  

Using the approaches for diagnostic performance testing outlined in Section 10.2.4 and 

robustly tested in Section 10.3.1-10.3.3, we exclusively examined the diagnostic measure of 

ROC-AUC, because PR-AUC was found to be unacceptably sensitive to variations in ROI size. 

Results from such ROC-AUC comparisons across all agents evaluated at the 10-min time point 

are shown in Figure 10.38.  
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Notably, ICG has the lowest average ROC-AUC values. The PEG-Rhd-550Da cohort has 

one animal with very low diagnostic performance (case iv in Figure 10.35), and three animals 

with relatively high ROC-AUC scores clustered near one. PEG-Rhd-1kDa shows the least 

variation in diagnostic performance, with all animals possessing ROC-AUC scores near one. 

Lastly, IRDye 800 shows relatively high ROC-AUC scores with a few outliers (including case iv 

in Figure 10.35).  

 

Figure 10.38: (A) Receiver-operator curve area under the curve (ROC-AUC) comparisons for multi-agent 

comparisons.  
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A 1-way ANOVA was performed on all 10-min ROC-AUC values, with a nearly significant 

difference in between two groups: F5,52= 2.26, P=0.06, critical F-ratio = 2.39). As demonstrated 

by the previous simulation in Section 9.3.2, ROC-AUC does not possess high sensitivity to 

changes in agent distributions. Therefore, these diagnostic measurements may not be the ideal 

way to compare agent performance across multiple candidate fluorophores. Further studies 

exploring multiple time points and larger cohort sizes are currently underway to better 

understand the agent performance differences. 

10.3.5.3 Agent similarity comparisons to Gd-MRI at the 10-min kinetic time point.  

We are also interested in finding an agent which is most similar to the diagnostic Gd-MRI, if 

rapidly imaged 10-min post-administration. For this comparison across agents, we used cross 

correlation (CC) because of its robustness to registration error, while still possessing sensitivity 

to ‘conditions of interest’ and relative independence to ROI size selection. The results from this 

comparison are shown in Figure 10.39. From observations, PEG-Rhd-550Da and IRDye 800 

possess high variability in CC measurements within their respective cohorts at this 10-min time 

point, while PEG-Rhd-1kDa consistently shows high cross correlation in all animals (low intra-

group variance). Variability within cohorts may simply reflect the highly varied distribution 

behaviors at this 10-min time point. On the other hand, ICG consistently shows poor cross 

correlation to Gd-MRI at this 10-min time point, which is reflective of the non-specific uptake 

patterns with ICG accumulation in the ventricle structures as observed in Figure 10.36.  
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Figure 10.39: Cross-correlation (CC) measurements between four fluorophores and 2-min Gd-MRI. 

A 1-way ANOVA was performed, and no statistical difference between any two groups was 

found, likely due to the large fluctuations within cohorts and small cohort sizes compared in this 

study. The critical F-ratio for statistical significance was F3,22= 3.04, and the resulting F-ratio for 

comparing CC across agent cohorts was F3,22= 2.54, P = 0.08), thus the results are nearly 

significant.  Overall, comparing cross correlation scores across animals does provide an intuitive 
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measure of success in each agent’s capability to mimic Gd-MRI spatial distributions, with 

respect to other candidate agents.  

10.3.6   Fluorophore vs. Gd-MRI cross correlation as a function of time 

Finally, we were interested in how fluorescent agent similarity to Gd-MRI evolves over time for 

the candidate agents. An ideal candidate fluorescent agent would maintain high image similarity 

with the initial, diagnostic Gd-MRI. In our experimental set-up, the 2-min Gd-MRI acquired 

immediately post-Gd administration is considered the diagnostic Gd-MRI. 

  To examine how a fluorescent agent’s similarity to a reference Gd-MRI changes over 

time, we can compare an agent’s similarity to the diagnostic (2-min) Gd-MRI at multiple 

sacrifice time points using multiple animal cohorts. We can also compare the fluorophore 

distributions to pre-sacrifice Gd-MRI acquired at approximately the same time point as the 

fluorescence distribution was captured (time-matched Gd-MRI). This procedure for tracking 

image similarity overtime with was applied to PEG-Rhd-1kDa and ICG at three different time 

points (10, 40, and 90 min) as shown in Figure 10.40(A-B).  
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Figure 10.40: Normalized cross correlation measurements for fluorescent agents vs. immediate, 2-min Gd-

MRI (colored boxes), and fluorescent agents vs. time-matched Gd-MRI (colored boxes) for (A) PEG-Rhd-1kDa 

cohort comparisons and (B) ICG cohort comparisons at three different time points.  

 

In Figure 10.40(A), it is apparent that PEG-Rhd-1kDa is more similar to the immediate, 2-min 

Gd-MRI (green boxes) than the time-matched Gd-MRI (grey boxes) at the 40-min and 90-min 

time points.  Although none of these comparisons were statistically significant, trends suggest 
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that this agent maintains higher similarity to the immediate, 2-min Gd-MRI than to the time-

matched Gd-MRI over the 90-min study period.  On the other hand, in Figure 10.40(B), ICG 

possessed relatively low correlation to both the 2-min Gd-MRI and the time-matched Gd-MRI at 

all three time-points studies. 

These cross correlation measurements can be compared across agents to screen for which 

agent appears to be most similar to diagnostic Gd-MRI as time progresses. In  Figure 10.41(A-

B), representative distribution comparisons between the diagnostic 2-min Gd-MRI and 

fluorophore distributions of PEG-Rhd-1kDa and ICG at each time point studied are shown with 

the cross correlation (CC) score shown in yellow for each pairing. Of the representative samples, 

case v showed the lowest cross correlation score (CC=0.08) because there was ICG uptake in the 

ventricular structures around the tumor region (red arrow). In Figure 10.41(C), the cross 

correlation results from comparing both agents with the 2-min Gd-MRI are plotted with 4-6 

animals in each time point cohort. The difference between PEG-Rhd-1kDa (green) and ICG 

(cyan) image similarity to Gd-MRI appears to decrease overtime. Using a two-tailed, two-sample 

t-test, assuming unequal variances and α=0.05, a statistical difference was found between ICG 

and PEG-Rhd-1kDa cross-correlation scores at the 10-min mark (P < 0.001, 95% CI = [0.67, 

0.85]). 



 

257 
 

 

Figure 10.41: Representative images of the 2-min Gd-MRI (greyscale) and co-registered fluorophore 

distributions of glioma models in (A) the PEG-Rhd-1kDa cohorts and (B) ICG cohorts across three time points. CC 

scores are shown in yellow for each representative case. (C) Cross correlation (CC) scores of both agents compared 

to the 2-min Gd-MRI at the 10, 40, and 90 min time points. (n = 4-6) in each cohort.  

 

When comparing metrics across animals, we must keep in mind the expected registration errors 

between Gd-MRI and cryo-volumes, and the variation in registration errors across animals. From 

Section 9.3.2, we’ve demonstrated that our average cryo-to-MRI registration error is 320±160 

μm, and that our average difference in registration error between animals is 180±130 μm, with a 

95% upper percentile of 410 μm.  
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The degradation in CC with an expected registration error of 200-400 μm is 10%-25% (as 

demonstrated in Section 10.3.1). Therefore, we use this result to inform or margin of 

superiority/inferiority when comparing CC between animal cohorts. When comparing the two 

agent’s 10-min cohorts, we used non-inferiority margins of 0.10 and 0.25 for CC values. With 

both margin sizes, ICG was found to be inferior to PEG-Rhd-1kDa, with an average difference 

of 0.452 and a 95% CI for sample differences of [0.28, 0.62]. Using margins of 0.10 and 0.25, 

we reject the null hypothesis of non-inferiority in both cases. The post-hoc, two-sample, one-

sided t-test (α = 0.05), resulted in p-values of P=0.030 (Power = 0.995) when using a margin of 

0.25 CC units, and P=0.004 (Power > 0.999) when using a margin of 0.10 CC units.  

Overall, the ability to recover and compare the spatial similarities of Gd-MRI and multiple 

fluorophores at different time points enables us to quantify how similar contrast agents remain 

overtime to a reference Gd-MRI. The goal is to find a fluorescent contrast agent which remains 

similar to a diagnostic Gd-MRI over the full duration of surgery, which can enable the 

visualization of Gd-like information in real-time within the surgical field-of-view. Using robust 

quantitative measurements, like cross correlation, enables us to confidently identify a 

fluorophore which possesses such Gd-analog capabilities over a long ‘window-of-usefulness’. 

10.4   CONCLUSION 

Herein, we present a robust screening method that enables direct comparisons of multiple 

contrast agent biodistributions within preclinical glioma models. By examining the full 3D 

biodistributions of candidate agents, we can screen and identify an agent which most similarly 

behaves like Gd-MRI in biologically relevant glioma models.  A candidate agent which 

possesses a high contrast, accuracy, and similarity to Gd-MRI at the early and later time points, 

with minimal brain uptake would be the ideal candidate for a ‘dummy’ fluorescence-guidance 
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contrast agent. Within this chapter, we have introduced quantitative measures to characterize 

candidate agent performance including contrast, diagnostic performance, and spatial similarity to 

Gd-MRI, within the context of successfully labeling a glioma tumor during fluorescence guided 

surgery. 

The experimental and computational methods for agent performance measurements from 

cryo-fluorescence volumes, co-registered with Gd-MRI, are developed within the methods 

section of this chapter. By testing each performance metric’s robustness to inherent error and 

sensitivity to conditions of interest, we were able to narrow down which metrics could be used 

reliably in the context of assessing agent performance in between animal cohorts and between 

imaging modalities, with variations in registration error, ROI selection, and inherent image noise. 

A summary of the findings for each metric’s robustness, sensitivity, and stability under various 

simulation conditions is provided below:  

10.4.1   Summary of performance metric response to simulation tests 

 For image contrast, TNC was more robust to image noise and registration error than 

TNR or CNR, when comparing relative percent error in Figure 10.14. Both CNR and 

TNR measurements greatly degraded >50% in the presence of 20% relative error. When 

conditions of interest were introduced, including normal brain enhancement and 

enhancement region growth, TNC was ideally sensitive to both conditions, while TNR 

was clearly the most sensitivity to normal brain enhancement as shown in Figure 10.20. 

When normal brain ROI sizes were altered, TNC had the smallest inter-animal variance 

as determined by Fisher’s F-ratios, and CNR showed the greatest change as a function of 

normal brain ROI volume (See Figure 10.23). In the large 10-min cohort, TNC provided 

the strongest statistical results with Gd-based agents and PEG-Rhd-1kDa both showing 

high normalized contrast in Figure 10.37(B). In Figure 10.37(C), CNR favored PEG-
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Rhd-1kDa above all other agents, although the noise in between Gd-MRI and 

fluorescence channels likely complicates cross-modality CNR comparisons. 

 For diagnostic performance, the metrics we considered were ROC-AUC and PR-AUC, 

which are both calculated as the integrated areas under different diagnostic curves.  When 

comparing relative percent error under different error conditions in Figure 10.14, ROC-

AUC appeared to be slightly more robust than PR-AUC. On the other hand, PR-AUC 

was more sensitive to the tested ‘conditions-of-interest’ than ROC-AUC in Figure 10.21. 

When the normal brain ROI volume was changed, PR-AUC decayed quite significantly 

with increasing brain volume across all agents in Figure 10.25. The variance in between 

ROI sizes was found to be unacceptably large for PR-AUC, quantified by F-ratios in 

Figure 10.26, and thus we excluded PR-AUC from further analysis. When ROC-AUC 

was applied to a larger 10-min animal cohort in Figure 10.38, most agents had ROC-

AUC values clustered around one, except for ICG which had the lowest average ROC-

AUC value. 

 For image similarity, cross correlation (CC) measurements were much more robust to 

translational error than normalized mutual information (NMI) as apparent in Figure 

10.14, and CC was sensitive to both ‘conditions of interest’ explored in Figure 10.19. In 

Figure 10.27, CC appears to be mostly stable when evaluating volumes >70 mm3, while 

NMI decreases significantly with increasing ROI volume size. Therefore, CC was the 

metric of choice for comparing real distributions against each other. When examining a 

small cohort of animals with highly different uptake patterns, CC provided intuitive 

measures of agent similarity as demonstrated in Figure 10.32 and Figure 10.34. When CC 

was applied to a larger cohort of animals at the 10-min time point, the quantitative trends 

matched the observable image similarities which were high in between Gd-MRI and 

PEG-Rhd-1kDa and low in between Gd-MRI and ICG (See Figure 10.39). 
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Overall, the ideal metric will depend on the objective of the strategy under development, 

however it is critical to understand the limitations of each metric, particularly when comparing 

metrics in between imaging modalities and large cohorts of animals. The goal of this study is to 

identify which fluorophore has the best rapid-uptake Gd-mimicking performance, which can be 

clinically translated over to rapid guidance (fast administration time) during guided glioma 

resection surgery. Analytical methods and robustness testing presented here will contribute to the 

analysis of a larger ongoing Gd-Analog Screening study (R01CA188491, S.C. Davis).  
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11  EXPANDED APPLICATIONS FOR WHOLE-BODY 

HYPERSPECTRAL CRYO-IMAGING.  

11.1   METASTATIC CANCER MODELS (NIEDRE) 

Fitzgerald, J. E., Byrd, B. K., Patil, R. A., Strawbridge, R. R., Davis, S. C., Bellini, C., & Niedre, 

M. (2020). Heterogeneity of circulating tumor cell dissemination and lung metastases in a 

subcutaneous Lewis lung carcinoma model. Biomedical Optics Express, 11(7), 3633-3647. 

 

Cryo-imaging offers an ideal tool for mapping metastatic disease throughout a whole-body 

animal model.182,184 In this collaboration with the Niedre lab (Northeastern University), we 

examined a metastatic lung cancer model which inherently expressed green fluorescent protein 

(GFP).  

For up to 31 days post tumor cell inoculation, the circulating tumor cells (CTCs) and 

circulating tumor cell clusters (CTCCs) were routinely measured using a new technique called 

‘diffuse in vivo flow cytometry’ (DiFC).259 When the tumor volume reached 3 cm3 or the mice 

appeared moribund, the animal was sacrificed and prepared for cryo-imaging. Cryo-imaging 

performed at 150 μm sections provided an anatomic RGB volume and GFP fluorescence volume 

for each animal. Further image processing was performed to quantify the number and volume of 

metastases. We found a correlation between total tumor volume (measured by cryo-imaging) and 

the estimated CTC concentration (CTCs/mL) measured on the DiFC for high shedding (HS) 

mice (R2 = 0.615, See Fitzgerald et al., Fig 6b).206 

We also examined the diagnostic power of metastatic tumor volume (mm3) for predicting 

the number of CTCCs detections and the CTC flow count rate (FCR) as measured on the DiFC 

in CTCs/hr. To do so, we classified the CTCCs detection into two classes, CTCCs were either 
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detected or not detected at all, and classified the flow count rates (FCRs) into two binary classes, 

either less than or greater than 25 CTCs/hr. We then applied receiver-operator curve (ROC) 

analysis by sliding a threshold through metastatic tumor volume (mm3), and calculating the false 

positive and true positive rates to plot an ROC characteristic curve. The area under the curve 

(AUC) was then calculated and reported for using metastatic tumor volume to predict CTCC 

detection and CTC flow count rate (FCR) as shown in Figure 11.1. The resulting AUCs for using 

metastatic tumor volume to predict the presence of CTCCs, and whether the FCR is > 25 

CTCs/hr was 0.79 and 0.68, respectively. In all but one case, metastatic tumor volumes greater 

than 500 mm3 resulted in a CTCC detection (Figure 11.1(A)).  

 

Figure 11.1: (A) CTCC detection classification and (B) CTC flow count rate (FCR) as a function of 

metastatic tumor volume with resulting ROC curves and AUC calculations. 
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Noting the large range of CTC and CTCC count rates observed within the same experimental 

cohort, we visualized cryo-volumes of low shedding (LS) and high shedding (HS) animals to 

evaluate the main differences in GFP metastasis distributions. Figure 11.2(a-b) shows example 

fluorescence images (coronal and 3-dimensional reconstruction overlaid on white-light images) 

for a low-shedding (LS) mouse, which showed little or no infiltration into the peritoneal cavity. 

Conversely in the high shedding (HS) animals, significant invasion into the peritoneal cavity was 

observed as shown in Figure 11.2(c-d). Since the peritoneal cavity is well-vascularized, we posit 

that this growth pattern largely accounted for differences in the CTC detection rates between the 

two mice. These data suggest that the large differences in CTC detection rates and lung 

metastasis formation in the HS and LS groups may be due to differences in tumor invasion 

patterns. 
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Figure 11.2: Cryo-macrotome images from an LS (a,b) and HS (c,d) mouse. Coronal slices (a,c) and 3D 

reconstructions (b,d) of GFP fluorescence and white-light images are shown. For the LS mouse (a,b) the primary 

tumor (red box) showed little or no infiltration into the peritoneal cavity. The primary tumor in the HS mouse (c,d) 

showed extensive infiltration (arrows), presumably accounting for differences in CTC numbers measured with 

DiFC. 

Because the GFP tumor channel is spectrally separable from the gastrointestinal (GI) tract in the 

470 nm exc. channel, we performed spectral unmixing to better separate GFP metastatic invasion 

(green) from the GI tract (yellow) in Figure 11.3. By doing so, we were able to identify animals 

with clear metastatic invasion of the GI tract (Figure 11.3A) compared to those without any 

visible GI tract invasions (Figure 11.3B). Without spectral unmixing, both the GI tract and GFP 

metastases present signal in the 470 nm exc. channel; thus it would not be possible to 
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differentiate the two or examine such metastatic invasion patterns around highly autofluorescent 

features.  

 

Figure 11.3: GFP metastatic tumor growth (green) next to the GI tract (yellow) of lung metastatic models. 

11.2   DRUG DISTRIBUTION MAPPING (POGUE) 

Soter, J. A., LaRochelle, E. P., Byrd, B. K., Tendler, I. I., Gunn, J. R., Meng, B., ... & Pogue, B. 

W. (2020). Tracking tumor radiotherapy response in vivo with Cherenkov-excited luminescence 

ink imaging. Physics in Medicine & Biology, 65(9), 095004. 

 

Mapping a fluorescent contrast agent biodistribution in 3D has been the primary use of the 

Dartmouth cryo-imaging system. In a collaborative effort with the Pogue Lab (Dartmouth 

College), we examined the diffusive spread of an injected intra-tumor tattoo ink after receiving a 

high dose treatment of radiation. Such diffusion provided a surrogate for radiation-induced tumor 

microstructural changes. In this particular study, we were interested in validating diffusion 

spread as measured in vivo using Cherenkov-excited luminescence imaging (CELI)260 with ex 

vivo means (macrotome cryo-imaging). 
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In this experiment, head and neck tumor cells (A431) were implanted in flank regions, 

allowed to grow ~10 days, and stereotactically injected with a phosphorescent ink in the center 

of the tumor. After a series of CELI imaging, dose delivery (10Gy+), and secondary CELI 

imaging, animals were sacrificed in between 1-6 days post treatment and prepared for cryo-

imaging by embedding the harvested tumors in OCT.   

For these particular experiments, it was particularly challenging to cryo-slice the 

spherical specimen such that the specimen did not ‘pop-out’, creating an artifact seen in the 

farthest right specimen in Figure 11.4a). To work around this issue, we changed the tumor 

orientation so that no large flat surfaces were parallel to the slicing plane, and we also placed 

attached tissue deeper below the main tumor specimen as a way to anchor the tumor specimen 

down. Since the RGB data was used to delineate the necrotic core, it was also particularly 

important to standardize the RGB channel using the 24-color card calibration methods covered in 

Section 8.4.6. 

After generating globally calibrated RGB and cryo-fluorescence volumes, we found that 

as the size of the necrotic core increased, ink diffusion also increased. RGB and the 

corresponding ink fluorescence slices imaged at various depths within the same tumor are shown 

in Figure 11.4(a) for both a treated and control mouse. In Figure 11.4(c), the percentage of 

necrosis compared to the total tumor volume is plotted against the diffusive spread percentage 

measured in vivo with CELI imaging. A high correlation was found between diffusive spread in 

vivo CELI measurements and the percentage of necrotic volume (R2 = 0.90). Similar to the 

collaborative work presented in Section 11.1, our cryo-imaging system can provide an ideal tool 

for verifying other tools, like DiFC and CELI, which aim to monitor tumor response and 

progression in vivo.  
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Figure 11.4: Ex vivo cryo-imaging of tumors from untreated and treated mice in 100μm slices. (a) RGB 

images and fluorescence images taken with a 470nm excitation and 560nm filter; slices presented for control and 

treated mouse each euthanized after 4 days post-injection. (b) boxplots of percentage change in tumor volume 

measurements from Day 0 to day of euthanasia and boxplots of percentage of necrotic tumor volume organized by 

day post-treatment or controls (c) plots of relative diffusive measured in vivo with percent tumor volume change and 

with percent necrotic volume; linear fits shown in red.207 

11.3   ANTIBODY DISTRIBUTION DUAL-COMPARISONS (GRISWOLD) 

Fluorescence imaging also has utility in drug efficacy studies by examining the distribution of 

fluorescently-tagged drugs.20 For this collaboration, we assisted the Carl Griswold Lab 

(Dartmouth College) in understanding the difference between two variants of lysins which are 

anti-MRSA antibiotics. Because lysins can elicit detrimental anti-drug antibodies that undermine 

the efficacy, the Griswold Lab has engineered a novel variant of a well-known lysin 

(lysostaphin) by T-cell epitome deletion as a way to get around the detrimental immune response 

of wild-type lysostaphin.261 As part of their toxicity studies, they were interested in comparing 

the biodistributions of wild-type lysostaphin vs. their modified variant of lysostaphin. 
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In efforts to answer this question, they tagged the wild-type lysostaphin with one 

fluorophore (AlexaFluor 488) and the variant lysostaphin with another fluorophore of a different 

color (AlexaFluor 647). An equal dose was delivered of both drugs, and the full body fluorescent 

biodistribution was recovered in both channels at the 6hr and 9hr post-injection time points. 

Initial results shown in Figure 11.5 suggest the variant lysostaphin drug conjugated to 

AlexaFluor 488 (green) spread throughout the subdermal layers more than the wild-type 

lysostaphin which was conjugated to Alexa Fluor 647 (magenta). However, there are limitations 

in comparing the biodistributions between multiple channels because each channel has a 

different range of sensitivity. Studies are still ongoing to assess the biodistribution differences of 

the variant lysostaphin compared to the conventional wild-type formulation.  

 

Figure 11.5: Renderings of two-agent biodistributions observed in three different experimental conditions: 

a) Animal sacrificed 6 hours post-intraperitoneal injection, b) animal sacrificed 6 hours post-subcutaneous injection, 

and c) animal sacrificed 9 hours post-subcutaneous injection. An animal with no agents injected is rendered in (d) to 

provide an autofluorescence background example. 
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11.4   ANTIBODY TRANSFER MODELS (BACKES) 

Backes, I.M., Byrd, B.K., Slein, M.D., Patel, C.D., Taylor, S.A., Garland, C.R., MacDonald, 

S.W., Balazs, A.B., Davis, S.C., Ackerman, M.E. and Leib, D.A., 2022. Maternally transferred 

mAbs protect neonatal mice from HSV-induced mortality and morbidity. Journal of 

Experimental Medicine, 219(12).  

DOI: 10.1084/jem.20220110 

 

By using cryo-imaging to track antibody distributions, we have found that structural details and 

anatomic uptake patterns are able to be elucidated in ways never explored before. In 

collaboration with the Ackerman Lab and the Leib Lab (Dartmouth College), we explored the 

mechanisms of maternally-transferred antibodies through a series of experiments using 

fluorescently-labeled monoclonal antibodies (UB-621 mAb) and examining the antibody 

biodistribution in a pregnant dam, as well as conceptuses that were harvested from the murine 

uterus with maternal and fetal layers intact. The resulting cryo-renderings from these 

experiments are shown in Figure 11.6 below along with a naive dam shown in Figure 11.6(A).  
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Figure 11.6: Fluorescently labeled mAb accumulates at the placental-fetal interface. To assess maternally 

administered Ab biodistribution, conjugated Ab was administered intravenously (IV) on day 15 or 16 of gestation, 

then 2-3 days later tissues were prepared for whole body imaging using the cryo-macrotome. (A)Background 

fluorescence levels in a pregnant dam not injected with conjugated Ab. (B) Accumulation of fluorescently labeled 

UB-621 Ab in a pregnant dam two days following IV administration. (C) Accumulation of fluorescently labeled Ab 

in conceptuses that were harvested from the murine uterus, with maternal and fetal layers removed as indicated.179 

 

These experiments confirmed that the antibody accumulated at the placental-fetal interface. In 

this case, the anatomic color data, along with the fluorescence data, allowed us to localize the 

antibody distribution to specific tissue types in the maternal and fetal layers. Notably, high 

fluorescence concentrations were observed in a harvest conceptus where the visceral yolk sac, a 

tissue rich in expression of the neonatal Fc receptor (FcRd) necessary for IgG transfer remained 
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intact (Figure 11.6(C), middle image). Interestingly, this is a finding that required the color 

anatomic information as well as the fluorescence data to co-localize the mAb accumulation in the 

visceral yolk sac. Such an identification could not have been made in other conventional 3D 

imaging modalities (such as CT262 or MRI263), because color information was required to make 

an anatomic assessment of the maternal and fetal layers.  

 While visual inspections of the 3D mAb distribution within the maternal-fetal layers 

reveals quite a lot of information, we also examined methods of quantitatively display the 

biodistribution information. In Figure 11.7, violin plots represent the voxel intensity distributions 

of all voxels within the fetal tissue (B) and maternal layers (C) of all fetes displayed in Figure 

11.6. The three experimental cohorts depicted in Figure 11.6 (naïve fetus in dam, fetus in dam, 

and harvested fetes) are displayed as separate violin plots in Figure 11.7(B-C). The individual 

plotted points represent the mean value for each fetus included in each of the three cohorts, the 

black dotted lines represent the cohort mean voxel intensities, and the red lines represent the 

median voxel intensity observed in each cohort. From Figure 11.7(B-C), it is apparent that the 

maternal layers of the fetes had the highest concentration of AF488-UB621 when examined 

inside the dam (blue violin plot in Figure 11.7(C)). As demonstrated in this example, plotting the 

distribution of all voxel intensities as violin plots can be a useful method of examining agent 

biodistributions within specific tissues of interest.  
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Figure 11.7: (A) 2D visualization of fetal tissue and maternal layer regions. All voxel intensities from the 

fetal tissue and maternal layers are plotted as violin plots in (B-C).  

11.5    GENETIC EDITING MAPPING (HONG) 

Recent developments in genome-editing have enabled a new capability in which the sequence of 

the human genome can be precisely manipulated to achieve a therapeutic effect.264. The concept 

of genome editing to correct mutations, add therapeutic genes, or remove harmful sequences has 

rapidly gained interest as a transformative technology.264,265 As the leading platform for gene 

delivery, adeno-associated virus (AAV) vectors have shown success in AAV-mediated gene 

mutations.266 AAV9 is a serotype which was isolated from human liver tissue and demonstrates 

the capacity to bypass the blood-brain barrier, making it ideal for central nervous system 

therapy.266,267 

Motivated by such developments, the Hong Lab (DHMC) has experimented with 

injecting a recombinant AAV9 agent in Ai14 mice which will express tdTomato fluorescence 

following Cre-mediated recombination. By measuring tdTomato fluorescence using whole-body 

cryo-imaging, we were able to measure the transduction efficiency in every tissue type within a 

mouse model.  
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Figure 11.8 below shows the tdTomato fluorescence measured in a cryo-slice for three 

different animals. In Figure 11.8(A-B), the Ai14 male mice show high tdTomato fluorescence in 

the liver, salivary gland, and seminal vesicle. For comparison, an Ai14 mouse which did not 

receive an AAV9 injection is shown in Figure 11.8(C). In this naive animal, there appears to be 

‘leaky’ Cre recombinase causing tdTomato fluorescence within the salivary gland. Efforts are 

still underway to understand the AAV9 transduction efficiency in each tissue type and 

repeatability of these experiments. 

 

Figure 11.8: TdTomato cryo-fluorescence observed Ai14 mice under the following conditions: (A) IV 

injection of AAV9 viral vector (B) intrathecal injection of AAV9 viral vector, and (C) No injection administered 

(naive dataset). 
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11.6    BONE FRACTURE KINETIC MODELING (ELLIOTT) 

The use of radio-labeled or fluorescently-labeled microspheres for studying blood flow and 

clearance kinetics is well established.168,268–270 In the cryo-imaging space, fluorescent 

microspheres have been used to quantify myocardial blood flow.168,271 The Elliott Lab 

(Dartmouth College) has been developing an intraoperative dynamic contrast-enhanced 

fluorescence imaging approach to provide valuable bone tissue perfusion information at the time 

of orthopedic trauma surgery.272,273 

To validate their model-based quantification of flow rates, they were interested in a 

microsphere-based approach. By applying the hyperspectral unmixing techniques discussed in 

Chapter 8.5, the Dartmouth cryo-imaging system was able to successfully differentiate all three 

microsphere colors of average diameter of 15μm when suspended in OCT as shown in Figure 

11.9. 
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Figure 11.9: Rendering of cryo-volume containing yellow-green, orange, and Scarlet microspheres 

suspended in OCT  

Since the microspheres measured 15 μm in diameter, this experiment represented nearly-ideal 

point sources for quantifying the three-dimensional point spread function (PSF) as discussed in 

detail in Section 8.6.2. The Next-Image correction was calibrated and applied to each of the three 

microsphere colors imaged here. Doing so reduced the comet artifact and enabled a standard dot-

counting algorithm to be applied for quantification.  

After validating such capabilities to quantify microspheres using cryo-imaging, the multi-

colored microspheres were injected into the right femoral artery of a rabbit at various stages of 

leg surgery.208 For the animal surgery experiments, three different colors injected at three 

different stages (Orange = baseline, Scarlet = osteotomy, and Yellow-green=periosteal tissue 

stripping) were distinctly detected in varying biodistribution patterns as shown in Figure 11.10. 

In these image-volumes presented below, spectral unmixing followed by the wavelength-specific 

Next-Image corrections were also applied. Such microsphere count densities can be converted to 

a compartment-specific flowrate using a kinetic modeling-based approach.271  

 

Figure 11.10: Rendering of cryo-volume containing yellow-green, orange, and Scarlet microspheres 

injected at different time points over the course of a rabbit femur fracture surgery.208 
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12  CONCLUDING REMARKS  

Novel methods for enhanced fluorescence guided imaging are rapidly emerging alongside new 

contrast agent development. Molecular imaging provides a tool to probe a large array of 

physiological processes, including contrast agent biodistributions. This thesis focused on the 

study of fluorescent probe biodistributions for the purposes of detecting and imaging cancer for 

surgical guidance applications.  

Initial thesis work focused on reaping the advantages of second-window infrared (SWIR) 

imaging for fluorescence guided surgery, namely the decreased scatter and increased depth-

penetration. Chapter 3 characterizes the ability to image conventional NIR-I fluorophores in the 

SWIR regime. Chapter 4 validates the advantages gained from imaging an NIR-I agent (ICG) 

during a large animal angiography study. This work led up to the first in-human imaging of a 

targeted NIR-I probe (ABY0-029) imaged during head and neck surgery as reported in Chapter 

5. Another application investigated in Chapter 6 incorporated paired targeted and untargeted 

probes for ex vivo breast cancer surgical margin assessment.  

Amongst molecular imaging modalities, fluorescence cryo-imaging is a powerful 

instrument for large-scale, high-resolution volumetric molecular imaging. The development of 

the hyperspectral, multi-channel cryo-imaging system is discussed in Chapter 7 with the 

capability to provide multi-modal imaging information (i.e. MRI, H&E, anatomic, and cryo-

fluorescence) discussed in Chapter 8. The novel cryo-imaging feature of hyperspectral image 

acquisition enables further agent-specificity in reporting each agent’s biodistribution. As 

presented in (Wirth, D., Byrd, B., et al., 2020), spectral unmixing can alter the inferences drawn 

from collected fluorescence images. This imaging modality can benefit a broad array of 
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preclinical applications by better probing physiological processes in realistic whole-body models 

(as presented in Chapter 11).  

Going beyond molecular targeting, it can be advantageous to use an untargeted contrast 

agent to highlight tumor biomarkers which are not associated with a particular molecular 

phenotype. The most successful example of this approach is Gadolinium-based contrast agents 

(GBCAs) which rely on the EPR effect. Our goal is to find a fluorescent agent which performs as 

robustly as GBCAs with similar spatial uptake behaviors and prolonged ‘window-of-usefulness’. 

Thus, a large animal study is currently underway screening 10-12 untargeted fluorescent 

candidate agents in search for a Gd-mimicking fluorescent contrast agent (R01CA188491, S.C. 

Davis).  

 As an ideal screening tool for contrast agent performance, fluorescence cryo-imaging 

enables direct comparisons between Gd-based and optical contrast agents’ three-dimensional 

uptake behaviors using co-registered Gd-MRI and cryo-fluorescence volumes.  As described in 

Chapter 9, we have developed a scheme for Gd-analog fluorescent agent screening using co-

registered cryo-fluorescence, Gd-MRI, and H&E images. Performance metric robustness testing 

illuminated the strengths and limitations of multiple ways to quantify agent contrast, diagnostic 

performance, and image similarity to Gd-MRI. By utilizing cross-correlation as a robust image 

similarity metric, multiple candidate agents’ spatial similarity to diagnostic Gd-MRI were able to 

be tracked overtime. By robustly verifying a lead fluorescent agent’s spatial similarity to Gd-

MRI in a glioma model over a given time frame, further translational steps can be taken with the 

confidence that the fluorescent agent does indeed replicate Gd-MRI information in preclinical 

models.  
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Moving forward, the multi-modal, hyperspectral cryo-imaging platform developed within 

this thesis represents a major step towards rigorously understanding contrast agent behavior and 

drug biodistributions in whole-body disease models.  

  



 

280 
 

13  ACKNOWLEDGEMENTS 

● I would like to thank my thesis advisor, Dr. Scott C. Davis, for his continual mentorship, 

support, and compassionate leadership throughout my 6 years of training at Thayer. 

● I would like to thank the members of the Davis Laboratory for incredible support, 

collaboration, and guidance in our lab research endeavors. Specifically, I would like to 

thank Dr. Dennis Wirth for teaching me optics and hardware basics. I would also like to 

thank Mr. Rendall Strawbridge for continuous help, animal handling, and moral support. 

I would like to thank my lab mates, Mr. Augustino Scorzo, for his collaboration and 

willingness to help with ongoing projects. I would like to thank our student interns: 

Joseph Leonor, Vlado Vojdanovski, and Caroline Filan. 

● I would like to thank our primary research collaborators including the Brian Pogue group 

(Dartmouth), the Kimberley Samkoe group (Dartmouth), the Ken Tichaur group (IIT), 

the Summer Gibbs Lab (OHSU), the Mark Niedre Lab (Northeastern), the Bryan Spring 

group (Northeastern), the Ackerman and Leib Lab (Dartmouth), the Griswold lab 

(Dartmouth), the Hong lab (Dartmouth), and the Keith Paulsen group (Dartmouth).  

● I would like to thank the Surgical Innovation program for financial support, innovation 

training, and mentorship received from Dr. Eric Fossum, Dr. Keith Paulsen, Dr. Richard 

Barth, Dr. Soheil Mirza, Dr. Timothy Rooney, and Dr. Venkat Krishnaswamy. 

Specifically, I’m extremely grateful for the academic and career mentorship provided by 

Venkat who, although always busy, has always been an accessible, helpful and 

supportive mentor to me. Anyone would be extremely fortunate to work with someone 

like Venkat, and I consider myself the luckiest to have him as my internship supervisor.  

● I would like to thank the Dartmouth Hitchcock Medical Center’s Department of Surgery, 

the Department of Pathology, the Department of Radiology, and the Department of 



 

281 
 

Radiation Oncology for both research support and training opportunities. Specifically, I 

would like to thank our clinical collaborators including: Dr. Richard Barth Jr., Dr. 

Timothy Rooney, Dr. Wendy Wells, Dr. Joseph Paydarfar, Dr. Linton Evans, Dr. Jennifer 

Hong, Dr. Roberta diFlorio-Alexander, and Dr. Christina Angeles.  

● Lastly, I would like to thank my family for their unwavering support, despite being 

separated by far distances. I’m thankful for parents (Bob and Nancy) who taught me to be 

courageous (and good at math), siblings (Ryan and Jessica) who inspire me to be a better 

person, and a partner (Nicholas) who always believes in me more than I do.  

 

  



 

282 
 

APPENDIX A: CLINICAL EXPERIENCE WITH SUPINE MRI FOR OPTIMIZING 

SURGICAL GUIDANCE 

This appended chapter covers the manuscript published as part of the Surgical Innovation 

Program requirements: 

Byrd, B. K., Krishnaswamy, V., Gui, J., Rooney, T., Zuurbier, R., Rosenkranz, K., ... & Barth, R. 

J. (2020). The shape of breast cancer. Breast Cancer Research and Treatment, 183(2), 403-410. 

A.1 INTRODUCTION  

Successful breast-conserving surgery (BCS) of patients without palpable neoplasms relies on 

image-guidance tools and the skills of surgeons and has the goal of completely removing the 

tumor with appropriate surgical margins. Even with an influx of novel surgical guidance 

technologies, the positive margin rate in BCS, which ranges from 15 to 30%, remains an issue 

yet to be solved completely by any one technology.118–121 If a positive margin is identified, an 

additional re-excision surgery is necessary which increases the emotional burden and financial 

cost to the patient and healthcare system. 

The standard of care for localizing non-palpable breast cancer and DCIS is wire 

localization. Point-based technologies that utilize radioactive or magnetic seeds or reflectors are 

increasing in popularity because they may facilitate surgical scheduling.121 Although 

occasionally used to bracket extensive areas of neoplasia, in most cases both wire localization 

and point-based technologies are intended to identify the center of the tumor for the surgeon. 

These methods do not inform the surgeon about the volumetric shape or three-dimensional 

extents of the cancer. Led by point-based guidance, surgeons may assume that breast cancer is 

spherical and design their excision accordingly. Furthermore, presurgical MR planning images 
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offer only a limited number of 2D views which hinders a surgeon’s ability to visualize the 3D 

shape of the target excision in each BCS case. 

In comparison to breast MRI done in the prone position, breast MRI done in the supine 

position gives the surgeon an image of the cancer and its position in the breast that corresponds 

to the shape and relative position of the tumor when the patient is supine on the operating room 

table. Herein, we characterize and explore trends in the 3D shapes of tumors from a group of 

breast cancer patients who had supine MRIs and underwent BCS utilizing technologies that 

relied on supine MRI data to guide BCS. We also evaluated the potential effect of tumor shape 

on BCS excision volumes by (1) comparing a hypothetical spherical excision to the MRI-defined 

tumor volume and (2) comparing actual resection volumes obtained using MRI-guided surgery 

with the MRI-defined tumor volume. 

A.2 METHODS 

Patients for this study were entered on one of two prospective experimental studies of 

technologies used for supine MRI guided surgery.119,274 Both studies were approved by the 

Dartmouth Committee for the Protection of Human Subjects. Sixty-seven patients were treated 

on “A Randomized Prospective Trial of Supine MRI Guided vs. Wire Localization Lumpectomy 

for Breast Cancer”, Clinical Trials.gov #NCT01929395.119 All of these patients had non-palpable 

breast cancer. They underwent BCS by surgeons who had access in the OR to a virtual 3D model 

of the cancer derived from supine MRI images and used an intra-operative tracking system to 

outline the projected tumor edges on the skin surface. The 3D model of the cancer in the breast 

informed the surgeon of the shortest distance from the tumor to the skin and from the tumor to 

the chest wall and allowed the surgeon to see which part of the tumor was closest to the skin or 

chest wall. The surgeon used this information and the tumor outline on the skin surface to do the 
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lumpectomy; no wires were placed (as more fully described elsewhere).119The remainder of the 

patients (16) had palpable breast cancer that was excised by surgeons who had access in the OR 

to the same virtual 3D model of the cancer derived from supine MRI and used a 3D printed bra-

like form (the Breast Cancer Locator, BCL) to identify projected tumor edges on the skin surface 

and mark the tumor edges within the breast parenchyma.274 The surgeon placed the BCL on the 

patient’s breast prior to surgery and used it to mark the projected tumor edges on the skin surface 

and to inject blue dye into the breast to define the tumor edges. Surgery was done utilizing these 

cues and no wires, as more fully described elsewhere.274 These patients were treated on The Pilot 

BCL Study, Clinical Trials.gov # NCT02550210. 

During both of these studies, patients underwent contrast-enhanced T1-weighted breast 

MRI in the supine position on either a Phillips 3T MRI scanner (Philips Healthcare, Andover, 

MA) with circular coils, or a Siemens 1.5 T scanner (MAGNETOM Area, Siemens Healthineers, 

Malvern, PA) with a rectangular flex coil. A soft pad was placed on the sternum to support the 

rectangular flex coil. The pad was designed with cut-outs for each breast, which minimized 

breast deformation. Patients were positioned in the scanner with their ipsilateral arm parallel to 

their body. A pre-injection T1 weighted ultrafast gradient echo sequence was acquired to define 

the breast volume and tissue structures while a post-injection T1 weighted turbo gradient echo 

volume acquisition with fat saturation was used to determine tumor location and shape. A 

radiologist outlined the tumor edges on contiguous axial MRI slices acquired with the patient 

positioned in the surgical (supine) position. A 3D virtual model of the tumor, breast surface and 

chest wall was constructed from the MRI data based on segmented models obtained with 3D 

Slicer (Version 4.3.1, www.slicer.org) software.275 One-centimeter margins were expanded in all 

directions about the segmented tumor shape to generate ‘ideal’ tumor excision models. 
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Geometric Definitions of Tumor Shapes 

We defined four tumor shape categories based on their geometric characteristics- spherical, 

segmental, discoidal and irregular. To describe the spherical or nonspherical nature of each 

tumor shape, a sphericity metric (previously defined276 was calculated (Eq. 1) as-   

Ψ = 𝜋
1

3(6𝑉𝑡𝑢𝑚𝑜𝑟)
2

3/𝑆𝐴𝑡𝑢𝑚𝑜𝑟                   (1) 

where V represented the computed tumor model volume and SA denoted its corresponding 

surface area. A secondary metric, isocentricity was also computed and utilized for shape 

categorization. This measure (Eq. 2), compared the maximal (dmax) and minimal (dmin) tumor 

extents from the center of the tumor to evaluate tumor compactness (See Figure 1(a)). 

                                 Isocentricity = (dmax - dmin)/dmax                  (2) 

A perfect sphere has a sphericity value (Ψ) of 1 and an isocentricity value of 0. We defined 

tumors with sphericity values (Ψ) above 0.75 or an isocentricity value below 1 to be spherical. 

 

Figure 1: (a) Maximum (dmax) and minimum (dmax) tumor extents calculated from central point of tumor. 

(b) Spherical excision volume with 1 cm margin on all sides. (c) Ellipsoid fit of tumor with three primary axes to 

characterize tumor shape. 
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Tumor diameters along three orthogonal principle axes were measured by fitting each tumor 

shape to the smallest possible ellipsoid shape found through singular value decomposition. As 

shown in Fig. 1(b), the three primary axes of the fitted ellipsoids, for each respective shape, were 

used to differentiate between segmental, discoidal, and irregular shapes. Long and tubular shapes 

were classified as segmental- defined by one axis of the fitted ellipsoid being 50% longer than 

the other two ellipsoid axes. Flat and disk-like shapes were classified as discoidal -defined by 

one axis being 50% shorter than the other two primary axes of the fitted ellipsoid. Tumors that 

did not fit the geometric criteria for spherical, discoidal, or segmental were defined as 

“irregular”. Post-classification, all shapes were visually surveyed to ensure accuracy and 

credibility of the classification scheme. 

We tested relationships between the shape of tumors and clinical variables. For discrete 

clinical variables, such as cancer type and positive margin status, chi-squared tests were 

performed to identify possible associations. For clinical measurements, such as tumor volume 

and age, ANOVA tests were performed to identify significant differences in average 

measurements across shape categories. If a significant difference was found amongst shape 

categories (p < 0.05) Tukey’s post hoc test was performed to identify which two categories 

differed significantly. 

To evaluate effects of tumor shape on the BCS target excision volume in each case, we fit 

the smallest possible sphere to each tumor model with 1 cm margins and measured the excess 

tissue volume excised by such a hypothetical spherical excision (See Fig. 1(c)). This hypothetical 

excision was compared to ‘ideal’ resection volumes, which were determined by expanding the 

tumor model surface 1 cm in each dimension. Lastly, actual tumor resection volumes were also 

measured by water displacement at the time of surgery for all cases. Comparisons were made 

between the hypothetical spherical and ‘ideal’ excision volume and between the actual excision 
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and ‘ideal’ excision volumes for each patient in the trials using paired T-tests. The percentage of 

volume over-excised was calculated as (actual or hypothetical volume excised – ideal 

volume)/ideal volume X 100. 

A.3 RESULTS  

Breast cancers were categorized into 4 tumor shapes: 34% of tumors were discoidal, 29% 

segmental, 19% spherical and 18% irregular. Examples of 5 tumors from each of the shape 

categories are shown in Figure 2. Examples of the 3D reconstructed tumor shapes compared to 

the 2D images of these tumors on prone and supine MRI are shown in Figure 3. These 

comparisons highlight the additional information provided to the surgeon by the 3D tumor shape 

when compared to one cross-sectional slice of MRI data.  
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Figure 2: Examples of each tumor shape category: spherical (a), segmental (b), discoidal (c), and irregular (d). 

 

Figure 3: Segmented shape of categorized tumors compared with prone and supine MRI images. For each of the four 

tumor shapes there is an example of one patient’s prone MRI, supine MRI and 3D tumor model (in red). 

 



 

289 
 

Table 1 displays the relationship between pathologic findings and tumor shape. None of 8 DCIS 

tumors were spherical; half were discoidal and half were segmental. Of 64 invasive ductal 

cancers, 31% were discoidal, 25% segmental, 23% spherical and 20% irregular. Only 1 of 11 

(9%) infiltrating lobular cancers was spherical; 36% were discoidal, 25% segmental and 13% 

irregular. No significant difference was evident in the shape of infiltrating ductal vs. infiltrating 

lobular carcinomas.  

 

As shown in Table 2, the mean patient age was 64 years. Most of the cancers were non-palpable 

(67/83, 81%); 16/83 (19%) were palpable. The mean pathologic tumor diameter was 1.94 cm. 

Seventy five percent of the tumors were estrogen receptor positive. Ten of 75 invasive cancers 

(13%) were node positive. No significant correlation was found between cancer shape and 

patient age, estrogen receptor positivity, Her-2 status, mean pathologic tumor diameter or the 

presence of nodal metastases (Table 2). Of note, there was an association between largest tumor 

diameter on MRI and tumor shape, with discoid tumors having the largest diameter (2.56 cm) 

and spherical tumors having the smallest diameter (1.59 cm) (p= 0.01).  
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Breast conserving surgery performed with knowledge of the 3D tumor location and shape and 

supine MRI guidance resulted in positive margins in 7/83 (8%) of cases. No significant 

difference was found in the positive margin rate according to tumor shape: spherical 2/16 (12%), 

discoidal 0/28 (0%), segmental 4/24 (17%), irregular 1/15 (7%), p = 0.17.  

We evaluated the potential effect of tumor shape on BCS excision volume by fitting the 

smallest possible sphere to the ideal resection tumor shape and measuring the excess tissue 

volume excised by a hypothetical spherical excision when compared to the ideal resection 

volume. As seen in Figure 4(a), the over-excised volume in hypothetical spherical excisions was 

significantly higher for the discoidal (172%), segmental (114%), and irregular (139%) tumors 

than for the sphere-shaped tumors (50%) (sphere vs. disk, p < 0.001; sphere vs. segmental, p < 

0.001; sphere vs. irregular, p = 0.003). When surgeons performed MR-guided BCS, the percent 

excess volume of tissue actually removed was markedly less than the hypothetical spherical 
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excision volume in the discoidal (66% vs. 172%), segmental (62% vs. 113%), and irregular 

tumors (75% vs. 139%) (Fig. 4b). This difference was statistically significant for discoidal 

tumors (p < 0.001) and marginally significant for segmental (p = 0.06) and irregular tumors (p = 

0.08). When all non-spherical cases were considered together, the over-excised volume was 

significantly less when the actual volume excised in MR guided BCS cases was compared to the 

hypothetical spherical excision volume (66% vs. 143%, p < 0.001). 
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Fig. 4 (a) Excess volume excised with a spherical excision compared to an ideal excision volume for each 

shape category (sphere vs. disk, p < 0.001; sphere vs. segmental, p < 0.001; sphere vs. irregular, p = 0.003). (b) 

Excess volume excised using hypothetical spherical excision vs. actual excess volume excised with supine MRI 

guided surgery (sphere, p = 0.05; disk, p < 0.001; segmental, p = 0.06; irregular, p = 0.08). 

 

We also compared the maximal tumor diameter (MTD), as computed from the 3D MRI models, 

with the MTD described in the prone MRI radiology report. The mean MTD of the 3D tumor 

models (3.9 cm, SD = 1.7 cm) was significantly greater than the mean MTDs reported by the 

Radiologists (2.5 cm, SD = 1.4) (p < 0.0001). The MTD computed from the 3D model was 
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greater than the MTD in the prone MRI report in 80% of patients, and was at least 1 cm greater 

than the MTD in the MRI report in 61% of cases.  

A.4 DISCUSSION 

This paper is the first, to our knowledge, to describe breast cancer shapes based on supine MRI 

data. By applying geometric formulas to 3D tumor reconstructions, we classified 83 breast 

cancers into 4 distinct shapes: spherical, discoidal, segmental and irregular. Overall, only 19% of 

breast cancers were spherical; the most common shapes were discoidal (34%) and segmental 

(29%). Spherical tumors were particularly uncommon in the subsets of patients with DCIS (0/8) 

and infiltrating lobular cancer (1/11).  

Similar results were reported by Uematsu et al., who reported the shape of breast cancers 

in 134 patients who underwent prone MRI.277 Their analysis of serial MRI images showed that 

breast cancers could be categorized into 4 shapes: 32% were oval, 26% lobulated, 26% irregular 

and 16% were round. Although their methodology was less quantitative than ours (for example, 

the authors did not create 3D models of the breast cancers, nor did they fit geometric models to 

segmented shapes), they also found that less than 20% of their patients had spherical (round) 

tumors.  

Observations from a limited number of pathologic analyses also support our findings. In 

1996, Wapnir et. al. evaluated breast cancer shapes by measuring three perpendicular diameters 

of breast cancer pathology specimens.278 They studied 165 cancers, all of which were < 2.5 cm in 

greatest diameter. These authors also described 4 different tumor shapes: spheres, “oblate” 

tumors, “prolate” tumors and irregular tumors (which had diameters with 3 different 

dimensions). Their “oblate” category corresponds with our discoidal shape (with two large and 

one smaller diameter). Their “prolate” shape corresponds with our segmental shape (with two 
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small and one large diameter). Interestingly, only 6 of their 165 patients (4%) had cancers 

categorized as true spheres. Eighteen percent of patients had “oblate” (discoidal) tumors, 32% 

had “prolate” (segmental) tumors and 46% had irregularly shaped cancers. 

 In another study, Merrill et al evaluated the shape of eight breast cancers in patients who 

had not received neoadjuvant therapy.279 They performed serial sectioning of tissue blocks at 100 

micrometer intervals, scanned the sections and generated 3D reconstructions. They then visually 

picked a shape that best corresponded to the 3D reconstructions. The study included 5 infiltrating 

ductal cancers, 2 infiltrating lobular carcinomas and 1 DCIS. The majority of tumors were either 

linear or ellipsoid in shape; only 3/8 (37%) were considered to be approximately spherical. Thus, 

the preponderance of evidence from studies that evaluated breast tumor shape pathologically or 

from MRI data indicates that the vast majority of breast cancers do not have a spherical shape. 

 Knowledge of the shape of breast cancer is important for performing precise breast 

conserving surgery. Current localization methods for non-palpable cancers attempt to identify the 

approximate tumor center using various techniques (e.g. a wire, a radioactive seed, a magnetic 

chip). These localizing systems provide no further guidance regarding the location of the tumor 

edges; the surgeon must estimate the distance from the approximate tumor center to the tumor 

edge using the image defined tumor diameters in combination with assumptions about tumor 

shape. Even if two wires or detectors are deployed to bracket a tumor, visualizing the tumor 

shape from static CC and MLO mammography images is difficult. As shown in Fig 3, 

understanding tumor shape from a few axial and coronal MRI cross-sections is challenging, and 

may not capture the true extent of the disease in many instances. Therefore, in many cases, the 

surgeon may just assume that the tumor is spherical. This has some biologic credence; we can 

imagine that the cancer started as a single cell and then continued to divide and expand in all 

directions. However, this simplistic model ignores studies of tumor growth, a complex 
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phenomenon influenced by the nature of the surrounding breast tissue (eg. fat vs fibrous stroma 

vs lobules).280,281 

We have now demonstrated that basing a breast conserving resection on an assumption 

that the tumor is spherical will result in marked overexcision of normal breast tissue. The 

overexcised volume was 172% of the actual tumor volume for discoidal tumors, 114% for 

segmental tumors and 139% for irregular tumors. In contrast, when surgery is based on a 

knowledge of breast cancer shape, we have shown that significantly less breast tissue was 

actually overexcised for non-spherical tumors (overexcised volume 66% vs 143%, p <0.001). 

Given the well-established relationship between the amount of breast tissue excised and 

cosmesis282,283 improved cosmetic outcomes are likely in patients treated with more precise BCS.   

Another advantage of generating a 3D tumor model that includes tumor shape is a more 

accurate understanding of the maximal tumor diameter. Pathologic studies based on digitalized 

whole mount serial sections have shown that assessment of the entire tumor results in a 

significantly larger maximal tumor diameter than reported by conventional pathology in 62% of 

cases.284  We have now shown that 3D modeling of tumors based on supine MRI data results in 

significantly greater maximal diameters, relative to values routinely described in MRI radiology 

reports.  In fact, the maximal tumor diameter computed from the 3D model was greater than the 

MRI report in 80% of patients, and was at least 1 cm greater than the MRI Three-dimensional 

tumor visualization of invasive breast carcinomas using whole-mount serial section 

histopathology: implications for tumor size assessment report in 61% of cases. This finding is 

clinically significant, since we have shown recently that underestimation of tumor size is 

strongly associated with positive margins when performing breast conserving surgery.119  Both 

serial sectioning of pathology specimens and 3D modeling of consecutive supine MRI images 

appears to more accurately determine tumor size than conventional methods.  
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A.5   CONCLUSION 

In summary, a gap in knowledge currently exists in understanding the 3D shape and orientation 

of the tumor volume within the surgical field.  This study is the first to establish multi-

dimensional parameters for the characterization of the shape of breast cancer based on supine 

MRI data.   Information obtained from a supine MRI can be used to generate 3D tumor models 

that characterize breast tumor shapes rapidly in the surgical position. Most breast cancers and 

DCIS are not spherical. Knowledge of breast cancer shape may allow surgeons to excise breast 

cancer more precisely. 
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APPENDIX B: EVALUATING REGIONAL TUMOR CONTRAST IN 

INVESTIGATIONAL SUPINE AND PRONE-TO-SUPINE BREAST MRI SCANS. 

This appended chapter covers the manuscript completed as part of the Surgical Innovation 

capstone project: 

Byrd, B. K., Krishnaswamy, V., Fox, M., Gui, J., diFlorio-Alexander, R., Paulsen, K.D., Barth, 

R. J., & Rooney, T.B. (2022). A quantitative method to compare regional tumor contrast between 

prone and supine breast MRI. In preparation. 

B.1 INTRODUCTION  

The most sensitive imaging examination for breast cancer diagnosis remains bilateral contrast-

enhanced prone breast MRI.285–288 In pendent position, invasive disease and enhancing ductal 

carcinoma in situ (DCIS) can be detected with excellent sensitivity.289–291 However, secondary to 

individual patient breast size and other morphology variables, spatial translation of a breast 

lesion from prone imaging geometry to supine, in an attempt to approximate the surgical 

position, presents additional complexity for the surgeon, and uncertainty in tumor localization 

during the procedure. To address this deformation challenge, efforts to model breast tissue from 

prone-to-supine positions have been underway.292–294 However, these methods are often 

computationally expensive and difficult to adapt to the broad array of breast sizes and tissue 

densities. 

Supine breast MRI offers tumor localizing information in an anatomically-relevant 

surgical position.295–298 Acquisition of supine MRI introduces other requirements including the 

need to compensate for breathing artifacts.290,296,299,300 Previous studies have shown the value of 

supine MRI-guided surgery in randomized prospective trials to decrease the incidence of positive 

margins in breast conserving surgery (BCS).119,301 With these clear advantages, we have 
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developed the Breast Cancer Locator™  (BCLTM) device, a patient-specific 3D-printed form, to 

accurately transfer supine MRI-derived tumor localization information during BCS.274 In our 

current practice, an additional patient exam is ordered to acquire contrast-enhanced supine 

images. Subsequently, in effort to optimize the patient experience in obtaining supine MRIs, we 

conducted a trial acquiring delayed-supine MRI directly after SoC diagnostic prone MRIs within 

a single imaging session to reduce expense, time, and logistical constraints inherent in two 

separate imaging sessions (#NCT03573804). 

Herein, we apply a method for quantifying image contrast associated with tumor 

localization across multiple breast MRI exams including two investigational supine imaging 

protocols (independent supine and delayed-supine) and a standard-of-care (SoC) prone imaging 

study. By focusing on regional contrast around the tumor, we assessed MR image contrast for 

tumor localization and surgical planning segmentation purposes. 

B.2  MATERIALS AND METHODS 

B.2.1 Study Design 

Image data were acquired from consenting subjects entered on one of two prospective 

experimental studies of technologies used for supine MRI-guided breast conserving surgery 

(#NCT03573804; #NCT03573661) which were approved by Dartmouth’s Committee for the 

Protection of Human Subjects. De-identified MRI image data were shared with CairnSurgical, 

Inc. under a data sharing agreement. 

Breast MRI data were acquired on either a 1.5T Siemens scanner (MAGNETOM Aera or 

MAGNETOM Symphony; Siemens Medical Solutions, Malvern, PA, USA), a 3.0T Siemens 

scanner (MAGNETOM Prisma or MAGNETOM Skyra; Siemens Medical Solutions, Malvern, 

PA, USA), or a 1.5T GE MRI scanner (SIGNATM Explorer; General Electric Company, 
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Philadelphia, PA, USA). Prone MRI was acquired bilaterally, and supine MRI was acquired 

unilaterally. Standard SoC prone MRI imaging sequences were performed using either an 

ultrafast 3D gradient echo (GE) sequence (VIBRANT FS) on 1.5T GE scanners, or a spoiled GE 

sequence (3D FLASH) with spectral (Quick-FatSat) fat suppression on 1.5T and 3.0T Siemens 

scanners. For supine MR imaging, the GE 1.5T scanners used a fast-spoiled gradient echo 

sequence (3D LAVA-Flex) to acquire T1-weighted, fat-saturated images. The Siemens 1.5T and 

3.0T scanners used a spoiled GE sequence (3D FLASH) in combination with either spectral 

(Quick-FatSat) or inversion-recovery (SPAIR) fat suppression techniques to acquire T1-

weighted supine MR images.  

Intravenous Gd-agent Dotarem® (gadoterate meglumine) was administered at the 

prescribed dose of 0.2 ml/kg. In control group MRI data, prone and supine images were obtained 

45s post Gd-administration. Analyzed images were all T1-weighted, fat-saturated scans; 

however, the prone and supine MRI sequence parameters varied significantly demonstrating the 

need for exam-independent image comparison methods. 

Study Cohorts 

Prone (control): This prone MRI dataset (n = 78) resulted from breast cancer patients 

enrolled in two studies: 61 subjects participating in a Prone to Supine Breast MRI trial 

(#NCT03573804) and 17 individuals entered in a Pilot Multi-Institutional study 

(#NCT03573661). All patients demonstrated at least 1 cm of disease as measured on 

mammography and/or ultrasound with a histologic diagnosis of either invasive breast 

cancer or ductal carcinoma in situ (DCIS). Exclusion criteria in both studies included 

patients who received neoadjuvant chemotherapy (NAC). The prone cohort received SoC 

prone MRI either immediately prior to delayed supine imaging (n=61) or on a separate 

day prior to the supine MRI exam (n=17). 
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Independent supine: This supine MRI dataset (n = 17) resulted from non-NAC breast 

cancer patients enrolled in a Pilot Multi-Institutional study (#NCT03573661) who had ≥1 

cm mass and received SoC prone and supine MRI on separate days/imaging sessions. 

Prone-to-delayed supine (P2D-supine): This supine MRI dataset (n=61) resulted from 

non-NAC breast cancer patients enrolled in a Prone to Supine Breast MRI trial 

(#NCT03573804) who had ≥1cm mass and received SoC prone MRI immediately prior 

to a supine MRI exam. The prone-to-delayed-supine imaging protocol involved 

acquisition of SoC contrast-enhanced prone MRI followed by turning the patient over to 

the supine position to acquire additional supine images (P2D-supine) during the same 

imaging session and without additional contrast injection. Average time from contrast 

administration (prone) to start and end of the dynamic supine sequence was 23.0 ± 2.7 

min. and 29.3 ± 2.9 min., respectively. SoC prone MRI data from these subjects are 

included in the prone cohort. 

B.2.2 Segmentation Methods 

A breast radiologist with 21 years of experience, outlined tumor edges on contiguous axial MRI 

slices acquired with subjects positioned in prone and supine positions as illustrated in Fig. 1A. A 

3D tumor model was constructed using 3D Slicer (Version 4.11, www.slicer.org) software on the 

radiologist-segmented MRI obtained from Ambra (Ambra Health Inc., New York, NY). 

Additional image analysis was performed in MATLAB (v.2021a).   
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Figure 1: (A) Radiologist’s slice-by-slice segmentation of tumor region. (B) 3D rendered tumor model and 

surrounding boundary regions. (C) Segmentations overlaid onto MRI volume with (D) tumor and boundary voxel 

regions identified. 

 

 To define normal boundary regions, tissue directly surrounding the segmented tumor was 

selected with a margin thickness which ensured equivalent volumetric comparisons between 

tumor and boundary regions (Fig. 1B). The normalized tumor-to-boundary contrast was 

calculated as: 

          𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝐼𝑡𝑢𝑚𝑜𝑟− 𝐼𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝐼𝑡𝑢𝑚𝑜𝑟− 𝐼𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
                          (Equation 1) 

where 𝐼𝑡𝑢𝑚𝑜𝑟  and 𝐼𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦   represent mean tumor and boundary region intensities in raw 

MR signal units, respectively. Dividing MR intensity differences by their sum ensured contrast 

values ranged from [-1, 1].  Also known as Michelson contrast, this normalization technique 
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bounds contrast measurements within a constant window to enable global comparisons.253,302 A 

normalized contrast value of zero indicates no difference between tumor and boundary intensity 

signals. Normalized tumor-to-boundary contrast values were compared between the prone, 

independent supine, and P2D-supine MRI datasets. Boundary regions were further classified into 

either adipose or fibroglandular regions using Otsu’s method for thresholding intensity 

distributions (See Fig. 2(A-B)).303 In some cases, fibroglandular segmentations also included 

pectoral muscle that was located within the boundary region. Resulting segmentations are shown 

in Fig. 2(C-F). All segmentations were confirmed by the lead breast radiologist’s visual 

inspection. 

 

Figure 2: Exemplary boundary tissue MRI signal intensity histograms with Otsu thresholding to distinguish 

adipose from fibroglandular in prone (A) and supine (B) orientations. Resulting segmentations distinguish tumor-

surrounding adipose (orange) from fibroglandular (blue) tissues in the prone (C) and supine (D) MRI. 3D 

reconstructions of segmented adipose (orange) and fibroglandular (blue) regions in prone (E) and supine (F) 

acquisitions.  

 

Using segmented fibroglandular and adipose regions, normalized tumor-to-fibroglandular 

contrast was also calculated, similarly to Equation 1, in which mean tumor intensity minus mean 
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fibroglandular intensity was divided by their sum. And, a tumor-to-adipose contrast was 

computed based on mean MR signal intensity in segmented adipose regions. To estimate the 

amount of fibroglandular tissue surrounding each segmented tumor volume, a compositional 

percentage was calculated as the volume of fibroglandular tissue in the boundary region divided 

by the total boundary volume.  

B.2.3 Statistical analysis 

A series of two-sample t-tests was performed amongst the three MRI datasets (prone, 

independent supine, and P2S supine) for tumor-to-fibroglandular and tumor-to-adipose contrast 

measurements with α = 0.05 and assumed unequal variances. To address sample size limitations, 

a post-hoc power (PHP) analysis was applied to generate 95% confidence intervals (CIs) and 

Power for each statistical test. All sample populations were confirmed to be normally distributed 

using the One-sample Kolmogorov-Smirnov test.  

Differences between the two investigational supine scans (independent supine and P2S 

supine) when compared to prone were calculated with 95% CI. Non-inferiority tests were 

conducted on independent supine and P2S supine in which the non-inferiority margin was set to 

a difference of -0.1, representing a 10% decrease in normalized contrast. Using a two-sample, 

one-tailed t-test (α = 0.025), the null hypothesis of inferiority was rejected if p < 0.025 and the 

95% CI extended below the non-inferiority margin.  

Tumor-to-boundary contrast was not statistically compared across cohorts because it is 

not a reliable measure due to varying compositions of adipose and fibroglandular tissue in the 

boundary regions across patients. To examine the dependence of tumor-to-boundary contrast on 

boundary tissue composition, we looked at the correlation between tumor-to-boundary contrast 
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and fibroglandular boundary composition (%) in paired prone and P2S supine MRI datasets (p = 

61) through Pearson’s correlation coefficient (r) and its 95% CI. 

B.3   RESULTS 

Distributions of tumor-to-fibroglandular and tumor-to-adipose contrast for prone, independent 

supine, and P2S supine datasets are shown in Fig 3. P2S supine image data exhibited lower 

tumor-to-fibroglandular contrast compared to others (Fig. 3A). Using a two-sample, two-tailed t-

test, mean P2S supine tumor-to-fibroglandular contrast was different statistically from the prone 

(μdiff = -0.09, 95% CI = [-0.12, -0.05], p < 0.001, PHP>0.99) and independent supine cohort (μdiff 

= -0.09, 95% CI = [-0.16, -0.03], p=0.008, PHP = 0.80). No statistical differences were found 

amongst tumor-to-adipose contrast comparisons amongst the three datasets (Fig. 3B).  
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Figure 3: Boxplot distributions and two-sample, t-test statistical outcomes for comparisons between prone, 

independent supine, and P2S supine image data for (A) tumor-to-fibroglandular and (B) tumor-to-adipose contrasts. 

 

Using one-sided, two-sample t-tests to test for non-inferiority (α = 0.025) and associated power 

calculations for 95% CI, the p-value and post-hoc power (PHP) calculations for non-inferiority 

of independent supine and P2S supine contrast values relative to prone measurements are 

displayed in Fig. 4 as forest plots with the 95% CIs for sample differences represented as black 

lines in the figure.  
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Figure 4: Forest plots exhibiting differences from the prone contrast values for P2S supine and independent 

supine measurements of (A) tumor-to-fibroglandular and (B) tumor-to-adipose normalized contrasts. The non-

inferiority margin (grey) was set to be a difference of 0.1 from the prone contrast measurement. 

 

The non-inferiority margin [-0.10, 0] is depicted as the gray region in the plots of Fig. 4. Across 

both contrast metrics, the independent supine contrast was found to be statistically non-inferior 

to prone contrast within a margin of 0.1 normalized contrast units. For tumor-to-fibroglandular 

contrast, the P2S supine contrast was found to be inferior to prone, crossing over the non-

inferiority margin (Fig. 4A). The P2S supine contrast values fell above the non-inferiority 

margin for tumor-to-adipose contrast (p < 0.001, PHP > 0.99); thus, we reject the null hypothesis 

of inferiority in this case.  

As another interesting finding, negative correlations were observed between 

fibroglandular boundary composition (%) and resulting tumor-to-boundary contrast (Fig 5). The 

linear relationships for the paired prone (Pearson’s r = -0.50, [-0.67, -0.29]) and P2S supine 

(Pearson’s r = -0.57 [-0.72, -0.37]) datasets exhibited similar negative trends. Cases with high 

amounts of fibroglandular tissue in the tumor boundary often resulted in reduced tumor-to-
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boundary contrast as demonstrated in Fig. 5 (C-D). 

 

Figure 5: Correlation between Tumor-to-normal contrast and fibroglandular boundary composition (%) for 

P2D cohort’s (A) prone MRI and (B) P2D-supine MRI datasets (n = 61). T1-weighted MRI examples from the P2D 

dataset exhibiting high fibroglandular composition around the tumor region (C-D). 

B.4   DISCUSSION 

While previous studies have reported on supine MRI feasibility,297,304–306 prone vs. supine MRI 

characteristics,297,298,307 and prone-to-supine (P2S) MRI study results,308,309 tumor contrast has 

yet to be systematically compared between prone and supine breast MRI scans. To address this 

gap, we utilized ratiometric contrast measurements to compare prone and supine breast MRI 

acquisitions and assess acceptability of investigational supine MRI (as non-inferior to prone 

breast MRI tumor contrast) for the first time. Our results showed no statistical difference in 

tumor contrast between prone and supine breast MRI when acquired separately, and suggest that 

breast orientation change from prone (for SoC imaging) to supine (for surgical planning) is 

acceptable, clinically, for determining MRI-defined tumor extent in the supine position. 

Although motivation to perform prone-to-supine MRI within a single imaging session is 

strong, the sufficiency of tumor contrast in supplemental supine scans for margin delineation has 
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not been quantified previously. Amongst the two published P2S studies,308,309 both reported on 

observed lesion displacement from prone-to-supine patient positioning, but did not otherwise 

examine tumor contrast. Aribal et al. (2019) did investigate the radiologists’ ability to detect 

lesions in supine MRI.308 However, detecting tumor vs. determining its extent are different tasks, 

the latter requiring high fidelity in tumor margin delineation, which can be evaluated 

quantitatively by assessing tumor contrast. Our approach was designed to assess image contrast 

as it relates to segmenting tumor extent in a 3D volume – an important step in surgical planning 

for optimal (margin negative) breast conserving surgery.119 

Supplemental P2S supine image contrast (without additional contrast injection during the 

supine MRI acquisition) was found to be inferior quantitatively to SoC prone contrast, with 

lower tumor-to-fibroglandular contrast found in the P2S supine MRI data. Loss of contrast at 

later time points (average delay time = 23 min.) may be explained by known Gd-kinetics in 

which fibroglandular tissue often shows persistent Gd-uptake while tumorous regions washout 

the Gd-based contrast in the later phases of image acquisition.310,311  

Unlike the P2S supine image data, independent supine (separate imaging session) MRI 

exhibited non-inferior contrast compared to prone, indicating that independent supine imaging 

can produce non-inferior tumor-to-fibroglandular contrast when compared to SoC prone MRI. 

While supine MRI achieves tumor contrast comparable to prone MRI when acquired separately, 

patient and clinical care demands associated with multiple visits suggest a single imaging session 

solution is needed.  Given these preliminary prone-to-supine results, a secondary prone-to-supine 

study is underway which utilizes two boluses, one before prone and one before supine 

acquisitions, in a single imaging exam session (ClinicalTrials.gov, # NCT00159939). Moving 

forward, the ratiometric contrast approach used here is a powerful tool for examining and 
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comparing image contrast amongst multiple MRI sequences and breast exam protocols 

independent of patient orientation or image sequence. 

By partitioning regional tumor contrast into tumor-to-fibroglandular and tumor-to-

adipose categories, differences associated with specific types of surrounding tissue were 

identified; however, patient-specific factors such as disease type and receptor status were not 

examined. In addition, the cohort sizes of each imaging procedure compared were different 

(independent supine n = 17, P2S supine n = 61, and prone n = 78) due to the differing sizes of 

two clinical trials. Additional statistical measures were taken to ensure a fair comparison 

amongst cohorts including Kolmogorov-Smirnov tests for sample normalcy, post-hoc power 

analysis, and assumptions of non-equal variance amongst the three cohorts. 

B.5   CONCLUSION 

The ratiometric contrast method presented herein enabled quantitative comparisons of regional 

tumor contrast amongst standard-of-care prone and investigational supine breast Gd-MRI 

datasets. When acquired separately, supine MRI produced non-inferior tumor contrast compared 

to prone MRI. Confirming non-inferiority of supine breast MRI contrast for the first time 

increases confidence that breast orientation change from prone (for SoC imaging) to supine (for 

surgical planning) will have a positive clinical impact on BCS outcomes. However, regional 

contrast between tumor and surrounding fibroglandular tissue suffered in later time points 

observed in the P2S supine study, resulting in inferior P2S supine image contrast suggesting that 

further work is needed to acquire prone and supine image data with non-inferior tumor contrast 

within a single breast MRI exam session.  
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APPENDIX C: CRYO-MACROTOME USER MANUAL STANDARDS OF 

PRACTICE 

STEP 1: Turn on detection cameras ~30 mins before imaging 

All cameras are connected the same power strip, separate from the one used for illumination. 

1. LCTF filter 

a.  LCTF on the visible channel is connected and powered via USB (com port:4) 

2. PCO cameras 

a. PCO cameras(2) are connected via USB 3.0 to the computer (com ports: _(VIS) 

_(IR)) and have a power toggle switch on the back panel.  

b. Make sure green light is on for both cameras. 

3. Check to ensure the lenses are not fogged by condensation.  

This can be done by using your phone to acquire an image of the camera. This is known to 

happen during times of high humidity, or if a fan is not paced directly on the camera.   

 

Figure 1: Example of lens condensation experience in humid conditions. 

STEP 2: Set up illumination sources 

Check Illumination sources are all connected to the same power strip.  
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1. 760nm laser - Ensure fiber is connected to the front panel before powering on, and keys 

are turned to “off” position.  

a. Power switch is on the rear panel, turn the power switch on. 

b. When safe, turn keys to “on” position. The shutter is connected to the computer 

via USB (com port: _) 

2. 633nm Intense Laser: Ensure fiber is connected to the front panel before powering on.  

a. Power switch is on the front panel. To turn on the laser, push “laser on” button 

and in approximately 5 seconds TEC temp will level and the laser will turn on. 

b. Max current should be set to 0.40 mA  

3. LED’s (white, 405 nm, 470 nm) are all connected to the same controller(-016),.  

a. Power is a toggle switch on the front, and LED’s are controlled via the computer, 

connected by  

● LED 530 nm is connected to separate controller (-018) and if used the cooling fan 

needs to be turned on 

● For additional LED’s: Type A to be connected to controller -016 and Type B to 

be connected to controller -018 

NOTE: LED’s that require cooling fans to be powered, are plugged into a separate power strip 

that can be turned on/off from outside the macrotome.  

STEP 3: Creating an experiment and running LabView 

1. Run Load_or_Create_Sequence.vi from LabView under the bioslice_control.lvproj 

a. Startup LabView software. 

b. Select  bioslice_control.lvproj from the ‘Open Existing’ section 

c. Run Load_or_Create_Sequence.vi 

i. Push the white arrow at the top left of the LabView ribbon to run 
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ii. Click the folder button to select a prior XML file from: 

C:/BioSlice/Control/Sequences 

iii. After selecting the file, hit the LOAD button 

iv. To add another channel:  

1. Starting typing in the greyed out boxes entering in the information 

saved in Table 1.  

2. Make sure the exposure times are correct on the right most column 

3. Once you are happy with the channel selections, select the number 

of channels you want to save with the green dots on the right side 

of the screen.  

4. Type Save Filename in the white text box above the green dots.  

5. Select the SAVE CURRENT button  

6. Hit the red stop button to stop running 

7. Close Load_or_Create_Sequence.vi 

 

Figure 2: User interface from Load_or_Create_Sequence.vi used for creating experimental parameters. 
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Table 1: Light source parameters 

 

2. Run Bioslice_acquisition.vi from LabView under the bioslice_control.lvproj project. 

a. Launch LabView software. 

b. Select bioslice_control. lvproj from the ‘Open Existing’ section 

c. Run Bioslice_acquisition.vi  

i. Push the white arrow at the top left of the LabView ribbon to run 

ii. Type Sample name in the Specimen Label textbox 

iii. Next, click the Button with [...] to select the sequence XML created in 

4.1, the sequence name should show up in the text box to the left of [...]. 

iv. Click the Load Sequence button 

v. For just imaging, select Test Imaging only 

1. Select the number of images to take (1 for image testing) 

2. With the green light on, hit the Acquire button  

3. Specify the type of acquisition (control the folder each acquisition 

is saved in). 

a. Spatial Calib, Flatfield, Real Data 

4. Once you select data type, a prompt will appear to fill in the 

following fields.  

a. Slice Thickness, Sample Type, and Dye 
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b. Write down the depth as seen on the Macrotome monitor in 

the Other Notes section. 

c. Check to make sure the white light camera isn’t on from 

the macrotome monitor. 

d. Hit the Proceed button to start acquiring images. 

e. The Initialization status should read acquiring as new 

images will be written to 

Data_Bioslice\Bioslice\Data\’Specimen Name’ 

 

Figure 3: User interface from Bioslice_acquisition.vi used for runtime control. 
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Figure 4: Field prompt to set-up experiment notes prior to acquisition.  

 

STEP 4:  Imaging calibration steps 

Calibration sequence: (hanger with white paper is hanging on side of the imaging module 

support structure, calibration cards are located in a binder that resides on top of the macrotome. 
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1. Put hanger on blade stage, white surface corresponds to the height of the blade

 

Figure 5: Hanging flatfield with height corresponding to the imaging surface height of the blade. Hanger is 

placed directly on the blade hardware. 

 

2. Set blade height to 5,000 microns on Macrotome monitor. 

3. Place position resolution card matrix on hanger, and position color card in center. 

4. Launch Bioslice_acquisition.vi. 

5. With “test data only” checked and number of slices set to 1, acquire the following:  

a. Color card at 5000: Acquire imaging sequence as “calibration data”  with the 

same exam card to be used for the sample to be imaged, in the notes, include 

“color card at 5000 microns” 

b. Resolution card at 5000, 20,000, 35,000: Acquire another imaging sequence as 

“calibration data” and in the notes, include “res card at 5000 microns”. Repeat for 

20,000 and 35,000 micron heights. 
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c. Flatfield card at 35,000, 20,000, 5,000: Acquire imaging sequence as “flatfield” 

and in the notes, include “flatfield at 35,000 microns”. Repeat for 20,000 and 

5,000 micron heights. 

 

a) b) c)  

Figure 6: Example of (a) 24-color card, (b) USAF-1951 resolution card, (c) white flatfield surface. 

6. Flatfield QA: After running the flatfields and before proceeding any further, run 

checkFlatfield.m script found in Macrotome_software/QA_routines 

a. This should take approximately 60 seconds  

b. Check the Flatfield QA result in 

Macrotome_software/QA_routines/FF_QA_results 

c. Acceptable case: 

 

Figure 7: Flatfield QA results from a 3-channel hyperspectral acquisition experiment with the CPS 

compared across wavelengths for each channel.  
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d. Unacceptable case: 

 

Figure 8: Flatfield QA results from a 3-channel hyperspectral acquisition experiment with errant spectral 

spikes in the 530nm and 635nm channels. 

e. Check the ResCard QA result in 

Macrotome_software/QA_routines/ResCard_QA_results. The maximum 

resolution should be approximately equal between the reference and day-of test 

resolution card. A zoomed-in ROI at each plane is provided in right column of  
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Figure 9: Resolution card QA result with full fields at each of the three heights compared in the left 

column, and zoomed-in ROIs at each height compared in the right column.  

 

STEP 5:  Imaging calibration steps 

1. Following Step 5, complete with the basic checks: 

❏ Is the camera condensation free? 

❏ Is the macrotome light off? 

❏ Is the specimen in the appropriate field of view? 

❏ Are all camera sources on and running? 

❏ Have you checked the flatfield in Step 5.6? 

2. Move the blade height to the height determined when facing the sample (around 9,000) 

3. Set desired slice thickness and “slices in run” to 1 slice on Macrotome monitor. 
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Figure 10: Example of Macrotome monitor set-up to begin real data acquisition. 

 

4. Set number of slices necessary to get through the sample  

a. Max # of slices = (35,000 - height determined while facing sample)/(desired 

thickness of slice) 

i.) E.g. (35,000 μm - 9,000 μm)/(100 μm) = 260 slices 

5. Select “Use macrotome” on the Bioslice_acquisition.vi  

6. Once you select data type, a prompt will appear to fill in the following fields.  

a. Slice Thickness, Sample Type, Dye/Fluorophore 

b. Write down the depth as seen on the Macrotome monitor in the Other Notes 

section. 

c. Check to make sure the white light camera isn’t on from the macrotome monitor. 
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d. Hit the Proceed button to start acquiring images. 

e. The Initialization status should read acquiring as new images will be written to 

Data_Bioslice\Bioslice\Data\’Specimen Name’. 

STEP 6:  Basic Imaging processing  

1. SOP for routine macro data processing: Run the following two programs to complete 

basic processing programs 

a. [config, flatfield] = config_experiment(); 

b. main_loop(config,flatfield);   

i.  Inputs:  

1. config = experiment configuration file 

2. flatfield = experiment-specific flatfield 

2. Run configExpirement.m: The configuration set-up program performs the following 

steps: 

a. Select raw folder. 

b. Name the study. 

c. Select channels. 

d. Select range for bandpass filtering. 

e. Select save path. 

f. Select cropping ROI. 

g. Select OCT ROI for slice-to-slice intensity scaled corrections. 

h. Generate interpolated flatfields. 

i. Performs linear interpolation pixel by pixel for one wavelength per 

channel.  

3. Run mainLoop.m 
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Main loop performs the basic image processing steps: 

1. Read in off and on images for each wavelength along with relevant file in 

(wavelength, exposure, rep, slice #) in a try-catch statement. 

2. Subtract off dark image from on images and then correct for exposure in 

counts/ms. 

3. Perform radial distortion correction based on the inherent camera barrel distortion 

properties characterized in September with the system. 

4.  Register the IR image with the Vis images by a rigid transformation from the 

calibration checkerboard program ran prior to image acquisition for each 

experiment.  

5. Crop the image (optional). 

6. Divide by the flatfield image which has been processed in the 

InterpolateFlatfield.m function, prefiltered with a Gaussian filter to smooth out 

any paper imperfections but still keeping the low frequency noise and stored as a 

floating point matrix.  (Optional) 

7. Scale the image intensity to D65 Illumination if in the WL.  

8. Perform this for every channel, for every wavelength indicated per slice: 

i. Save LCTF stack of all hyperspectral images. 

ii. Save integrated stack of selected integration range. 

iii. Save Next-Image corrected image. 

9. Remix the RGB image by providing WL wavelengths and passing in the 3D tiff 

images of each slice for the WL channels. 

i. Use the processed WL image stacks to create 3 layers of an RGB image. 

Essentially each wavelength’s image intensity contributes to the R, G, or 
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B plain a certain percentage. It is like taking a weighted average of the 

wave stack for each R, G, and B channel. This process gets performed on 

every slice.  

ii. Either one of the following white balance strategies:  

1. White balance based off of the OCT such that the R, G, and B 

channels are all balanced. (optional) 

2. Two-point white balance with m and b slopes for each RGB 

channel figured out with the color-card calibration program. 

10. All processed data is organized in the processed specimen folder including:  

i. Hyperspectral images of each slice 

ii. Integrated fluorescence volume  

iii. Spectral-unmixed fluorescence volume 

iv. RGB-remixed anatomic volume 
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APPENDIX D: RELEVANT SOFTWARE PROGRAMS 

The major software programs developed to process macrotome data into globally calibrated 

forms of image data are provided below. All other related MATLAB code has been stored in the 

Davis Lab GitHub repository which is accessible at: 

https://github.com/brookbyrd/CryoSoftware.git 

D.1 CONFIG_EXPERIMENT.M 

function[config, flatfield] = config_experiment(config) 

 

CONFIG_EXPERIMENT: Function dedicated to setting up all parameters for running all 

Bioslice data processing sequences 

 

INPUTS:  

 CONFIG: Allows the user to specify config file that is partially already set-up, or needs to be 

modified 

 

OUTPUTS:  

 CONFIG: returns a config variable which has subfields of experimental parameters necessary to 

process macrotome data in the main loop. 

 FLATFIELD: returns the flatfield variable which has stored flatfield images for each channel at every 

depth. 

 

Author: Brook K. Byrd 

Date Created: 6-11-19 

Copyright: Dartmouth College 

 
 

1. SET UP FILEPATH CONFIGURATIONS 

currentPath = pwd; config.currentPath = currentPath; addpath(config.currentPath); 

addpath('color'); 

addpath('SegmentationFit'); 

 

 % load in the camera barrel-distortion parameters, last calibrated 7-3-19 

config.params = load('distortion_param.mat','params'); 

 

% Select raw data for a new configuration 

disp('Select all folder path(s) for this data'); 

https://github.com/brookbyrd/CryoSoftware.git
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config.filePath = string(uigetdir2()); % Select the filepaths each time bc it can 

change 

 

% Name the specimen being processed (autofills as folder selection name) 

if ~isfield(config, 'studyName') 

    fileSplit = split(config.filePath,filesep); 

    studyName = inputdlg({'Name this study: '},'Channel selection',[ 1 

35],string(fileSplit(end))); 

    config.studyName = string(studyName); 

end 

 

2. SELECT CHANNELS TO PROCESS 

if ~isfield(config, 'channels') 

    cd(config.filePath(1)); 

    direct = dir('20*'); 

    cd(direct(1).name) 

 

    % SEARCH FOR ALL CHANNEL FOLDERS IN THE MAIN DATA DIRECTORY 

    channelDir = dir(); keepconfig.channels = string; 

 

        for ch = 1:length(channelDir) 

            match = string(intersect(channelDir(ch).name, {'405','470', '530', '532', 

'635', '760','WL'})); 

            if (~isempty(match)) 

                keepconfig.channels = [keepconfig.channels, match]; 

            end 

        end 

    % Combine possible channels into one string 

    allOneString = sprintf('%s,' , keepconfig.channels); 

    allOneString = string(allOneString(2:end-1)); % get rid of the comma 

 

    % Provide the string of channels to to user to allow them to chose in a 

    % text box 

    input = inputdlg({'Enter channels to process'},'Channel selection',[ 1    

35],string(allOneString)); 

    channelArray = cellfun(@(x)regexp(x,',','split'),input,'UniformOutput',0); 

    config.channels = string(channelArray{1,1}); 

 

end 

3. DISCOVER ALL WAVELENGTHS USED 

config.numberOfSlices = zeros(length(config.channels),1); 

% Iterate across all channels 

for c = 1:length(config.channels) 

 

    % Iterate across all data folders previously selected by the user 

    for f = 1:length(config.filePath) 

 

        % Direct into the raw data files 

        cd(char(strcat(config.filePath(f)))); 

        date = dir('*20*'); 

        for d = 1:length(date) 

 

            try 

                % cd to raw data files under a given date, and a given 

                % channel name 

                cd(char(strcat(config.filePath(f)))); cd(date(d).name);  

                cd(config.channels(c)); 
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                files =  dir('*.tif'); 

                fileInfo = {}; 

 

                %  Iterate through the files, and populate fileInfo using 

                %  the parsed data from each file's name. 

                sliceCount = 1; 

                for slice = 1:length(files) 

                    % There should be 8 pieces of data 

                    if(length(split(files(slice).name,'_')) == 8) 

                        fileInfo(sliceCount,:) = split(files(slice).name,'_'); 

                        sliceCount = sliceCount + 1; 

                    end 

                end 

 

                % Pull out the important bits of detail from all files in 

                % the fileInfo string matrix. 

                if ~isempty(fileInfo) 

 

                    %Convert file info into strings that can be called on 

                    fileInfo = string(fileInfo); 

 

                    % pull out the unique waves collected in file 

                    wave = unique(fileInfo(:,3)); 

 

                    % pull out the unique SpatialCalib waves 

                    config.numberOfSlices(c,1) = config.numberOfSlices(c,1) + 

length(unique(fileInfo(:,2))); 

 

                    % pull out starting slice 

                    if(d == 1) 

                        config.startingSlice = 

cellfun(@(x)sscanf(x,'Slice%d'),fileInfo(1,2)); 

                    end 

 

                    %record the wavelengths as a channel-specific field 

                    field = strcat('lambda_',char(config.channels(c))); 

                    wavelengths.(field) = cellfun(@(x)sscanf(x,'LCTF%dnm'),wave); 

 

                end 

 

                % clear file info before going into a new raw data folder 

                clear wave; clear fileInfo; clear files; 

            catch 

            end 

 

        end 

    end 

 

    % set up the wavelengths 

    config.wavelengths = wavelengths; 

    cd(currentPath); 

 

end 

4. FEED IN ALL EXPERIMENTAL PARAMETERS 

% Give the slice thickness for computing 

if ~isfield(config, 'sliceThickness') 

    input = inputdlg({'Enter slice thickness'},'Slice thickness (um)',[ 1 

35],{'100'}); 

    config.sliceThickness = str2num(char(input)); 

end 

 

% Give the starting depth of the data to do a proper FF correction 
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if ~isfield(config, 'startDepth') 

    input = inputdlg({'Enter slice starting depth'},'Start depth (um)',[ 1 

35],{'9000'}); 

    config.startDepth = str2num(char(input)) - 1; % Accounts for an indexing error in 

LABview 

end 

 

% Give the starting slice of the data 

input = inputdlg({'Enter starting slice number'},'Slice #:',[ 1 

35],{char(num2str(config.startingSlice))}); 

config.startingSlice = str2num(char(input)); 

 

% Set the range for integration 

newRange = setRange_app(config.channels); 

waitfor(newRange,'running',0); 

 

% Gather the agents and ranges from the setRange app 

config.agents = newRange.agents; 

config.range = newRange.range; 

delete(newRange); 

 

% Set which rep to use per channel 

config.rep = 2*ones([1,length(config.channels)]); 

 

% Set up for possible slice-specific transforms that need to be added due to physical 

shifts that occured in the OCT block mounted on the stage during H&E-slide recovery. 

(10/20/22) 

% config.sliceTransform(:,:,range) = repmat([1 0 0; 0 1 0; tx ty 

1],1,1,length(range)); 

% Positive ty is down and positive tx moves it right 

config.sliceTransform = repmat(eye(3,3),1,1,config.numberOfSlices(1)); 

 

close all; 

5. SET UP THE SAVEPATH FOR PROCESSED DATA 

% Identify the location to save this processed data 

if ~isfield(config, 'savePath') 

    % Selecting where to save the data 

    disp('Select where to save processed data'); 

    % Collect folder info for reading and writing 

    config.savePath =  string(uigetdir2()); 

 

end 

 

% Make save path directory and folder 

cd(strcat(config.savePath)); mkdir(char(strcat(config.studyName,'_processed'))); 

cd(char(strcat(config.studyName,'_processed'))); 

config.newSavePath = pwd; 

 

% Create a folder structure to deposite processed image stacks 

mkdir('RGB'); cd('RGB'); mkdir('RGB_stacks'); 

6. OPTIONAL CROPPING FOR FUTURE PROCESSING 

% Option to select a raw file for cropping 

config.cropQ = questdlg('Crop image?'); 

if(strcmp(config.cropQ,'No')); 

    config.channel_rect = [0,0,2048,2048]; 

    config.channel_roi = ones(2048); 

elseif ~isfield(config, 'channel_rect') 

    cd(config.filePath(1)); 
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    disp('Select an image to crop'); 

    [imFile,impath] = uigetfile('.tif'); 

    im = imread(strcat(impath,imFile)); 

    im = undistortImage(im,params,'OutputView','same'); 

    % Save the cropped image parameters to be applied to every processed 

    % image. 

    [ config.channel_roi,  config.channel_rect] = imcrop(mat2gray(im)); 

    close all; 

end 

 

cd(currentPath); 

7. SELECT NIR-I CAMERA TRANSFORM 

cd(currentPath); 

if (~isempty(find(config.channels == "760"))) 

 

    % Offer the user the ability to hand select an NIR-I registration 

    config.tform_Q = questdlg('Select a different NIR-I camera registration 

transform?'); 

    if(strcmp(config.tform_Q ,'No')) 

        config.transformFile = ('tform_760.mat');  %Use the default transform 

    else 

        % Allow the user to navigate to find a different registration transform file 

        disp('Select an IR camera registration transform .mat file'); 

        [tFile,tpath] = uigetfile('.mat'); 

 

        % Save the transform file as part of the config file info. 

        config.transformFile = (strcat(tpath,tFile)); 

    end 

end 

cd(currentPath); 

8. SETUP FLATFIELD PATH 

config.flatfieldQ = questdlg('Perform flatfield corrections?'); 

if(strcmp(config.flatfieldQ ,'Yes')) 

 

    % Give the option to select a different folder 

    config.FF_Q = questdlg('Select a different folder for flatfield calibration 

data?'); 

    if(strcmp(config.FF_Q ,'No')) 

        config.FFfilePath = config.filePath(1); 

    else 

        disp('Select Flatfield folder directory'); 

        cd(config.filePath(1)); 

        config.FFfilePath = string(uigetdir2()); 

    end 

end 

9. ANALYZE SPATIAL CALIBRATION 

config.spatialCalibQ = questdlg('Perform Color Card calibrations?'); 

if(strcmp(config.spatialCalibQ,'Yes')) 

 

    % Allow user to select a specific color card folder 
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    config.Spatial_Q = questdlg('Is the Color Card data in a different location as FF 

calibration data?'); 

    if(strcmp(config.Spatial_Q ,'No')) 

        config.SQfilePath = config.FFfilePath; 

    else 

        cd(config.filePath); 

        disp('Select Spatial Calibration folder directory'); 

        config.SQfilePath = string(uigetdir2()); 

    end 

 

    % run spatial calibration program 

    [config] = process_SpatialCalib(config); 

 

end 

drawnow; 

disp('User input complete'); 

10. SAVE ALL CONFIGURATIONS 

disp('Saving configurations'); 

save(char(strcat(config.newSavePath,filesep, config.studyName,'_config.mat')), 

'config', '-v7.3'); 

11. PROCESS FLATFIELD 

currentPath = pwd; 

addpath(currentPath); 

if ~exist('flatfield') 

 

    % %%Interpolate Flatfield 

    if(strcmp(config.flatfieldQ,'Yes')) 

 

        % Generate the flatfield for each channel using 

        % interpolateFlatfield_correctDepth.m 

        for c = 1:length(config.channels) 

            disp(strcat('Interpolating Channel ',config.channels(c),' Flatfield')); 

            field = char(strcat('Channel_',config.channels(c),'_mat')); 

            [ff_mat] = interpolateFlatfield_correctDepth(config, config.channels(c), 

currentPath); 

            flatfield.(field) = (ff_mat); 

        end 

    else 

        % If a flatfield folder is not selected, just generate a flatfield 

        % which consists of all ones. 

        for c = 1:length(config.channels) 

            field = char(strcat('Channel_',config.channels(c),'_mat')); 

            flatfield.(field) = 

ones(size(config.channel_roi,1),size(config.channel_roi,2),config.numberOfSlices(c)); 

        end 

 

    end 

 

    % Write out the processed flatfield to keep record 

    writeProcessedFlatfield(config,flatfield); 

 

    % Save flatfield variable as a .mat file 
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    save(char(strcat(config.newSavePath,filesep, config.studyName,'_flatfield.mat')), 

'flatfield', '-v7.3'); 

 

end 

end 

D.2 INTERPOLATEFLATFIELD_CORRECTDEPTH.M 

function[interp_Frames] =  interpolateFlatfield_correctDepth(config, channel, 

currentPath) 

 

INTERPOLATEFLATFIELD_CORRECTDEPTH: Function generates a Makima 

interpolated 3D flatfield based on sampled flatfield images stored in the experimental data files. 

 

INPUTS:  

 CONFIG: Experiment-specific config variable which has subfields of experimental parameters 

necessary to generate flatfields. 

 CHANNEL: Channel which is being processed. Only one channel's flatfield is generated at a 

time. 

 CURRENTPATH: Path which has all necessary filepath dependencies. 

 

OUTPUTS:  

 INTERP_FRAMES: returns a config variable which has subfields of experimental parameters 

necessary to process macrotome data in the main loop. 

 FLATFIELD: returns the flatfield variable which has stored flatfield images for each channel at every 

depth. 

 

Author: Brook K. Byrd 

Date Created: 4-18-20 

Copyright: Dartmouth College 

 

 

1. LOAD IN SAMPLED FLATFIELD IMAGES 

% Storage for interpolated flatfield frames 

interp_Frames = []; 

% Direct to file path 

fNum = 1 

cd(char(config.FFfilePath(fNum))); 

 

% Collect all the date folders 

date = dir('*20*'); 

for day = 1:length(date) 

    dateNum(day) = datenum(date(day,1).name,'yyyymmmdd'); 
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end 

[dateNum,I] = sort(dateNum); 

 

% Provide an update 

disp(strcat('Processing the flatfield of: ', channel)); 

 

% Load in the NIR-I transform if it is the 760 channel 

cd(currentPath); 

if(strcmp(channel,"760")) 

    load(strcat('tform_760.mat')); 

    disp(strcat('loading: ','tform_',channel,'_default.mat')); 

else 

    load('tform_identity.mat'); 

end 

 

 

% Assumes the FF was all taken on the first day of experimentation. 

cd(char(strcat(config.FFfilePath(fNum), filesep , date(I(1)).name, filesep, 

'Flatfield', filesep, channel))) 

disp(strcat('Loading flatfields of channel: ',channel)); 

 

% Work around to make sure all files are in the correct format 

raw_files =  dir('*.tif'); 

counter = 1; % 

for f = 1:length(raw_files) 

    %check to make sure the formatting is correct 

    if(length(split(raw_files(f).name,'_')) == 8) 

        files(counter) = raw_files(f); % remove any files that do not fit this format 

        fileInfo(counter,:) = split(files(counter).name,'_'); 

        counter = counter + 1; 

    end 

end 

 

%Convert file info into strings that can be called on 

fileInfo = string(fileInfo); 

 

% pull out the unique repitions 

repitions = unique(fileInfo(:,8)); 

 

% pull out the last 3 slices of the acquired FF images 

allSlices = [allSlices; unique(fileInfo(:,2))]; 

selectedSlices = unique(fileInfo(:,2)); 

if (length(selectedSlices) > 2) 

    selectedSlices = selectedSlices(end - 2:end); 

else 

    selectedSlices = selectedSlices(end); 

end 

 

% pull out the unique LCTF waves for this particular channel 

wave = unique(fileInfo(:,3)); 

 

2. PROCESS THREE SAMPLED FLATFIELD IMAGES 

% Iterate over each image, using the first wavelength as the basis for the flatfield 

image. 

 

% Slice counting index 

index = 1; 

 

% Storage for sampled flatfield slices 

allSlices = []; 
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for slice = 1:length(selectedSlices) 

 

    % pull out the file indices for this slice 

    sliceIndexArray = find(fileInfo(:,2) == selectedSlices(slice)); 

 

    % pull out the historical slice number 

    sliceLabel = selectedSlices(slice); 

    N = cellfun(@(x)sscanf(x,'Slice%d'),{sliceLabel}); 

 

    %Figure out the slice number and appropriate affine transforms 

    z_microns =  5000 + 15000*(slice - 1); 

    tform_z = affine2d([1.3e-6*z_microns + 0.99,0,0;0,1.3e-6*z_microns + 0.99,0; -

0.0015*z_microns + 7.3,-0.0014*z_microns + 6.8,1]); 

 

    % pull out the dark image from the last LCTF 

    % wavelength used 

    OffIndex = intersect(intersect(find(strcmp(fileInfo(:,7),'OFF')), 

find(strcmp(fileInfo(:,8),'rep2.tif'))),find(strcmp(fileInfo(:,2), 

selectedSlices(slice)))); 

 

    % just in case the file is corrupted 

    imOff = imread(files(OffIndex(1)).name); 

 

    % Gather the exposure time in milliseconds of the 

    % specific instance and repititions 

    D = regexp(fileInfo(OffIndex,6),'\d*','Match'); 

 

    %Exposure time expressed in ms so adjusting to for cps 

    exptime  = str2num(char(D{1,1}))./1e3; 

 

    % pull out the slice within the time set that has the 

    % correct wavelength for the given LCTF wavelength 

    OnIndex = intersect(intersect(intersect(find(strcmp(fileInfo(:,7),'ON')), 

find(strcmp(fileInfo(:,8),'rep2.tif'))),find(strcmp(fileInfo(:,3), 

wave(1)))),find(strcmp(fileInfo(:,2), selectedSlices(slice)))); 

    imOn = imread(files(OnIndex(1)).name); 

 

    %perform basic image subtract 

    temp_image =  ((double(imOn - 

imOff)./double(exptime)));%./double(flatfield_norm)); 

 

    % perform distortion correction based on barrel distortion 

    temp_image = undistortImage(temp_image,config.params,'OutputView','same'); 

 

    %register all channels together 

    temp_image = imwarp((temp_image), mytform, 'OutputView', 

imref2d(size(temp_image)));%, 'OutputView',imref2d(size(temp_image))); 

 

    % adjust for scale and transform based on stage 

    temp_image = imwarp((temp_image), tform_z, 'OutputView', 

imref2d(size(temp_image)));%, 'OutputView',imref2d(size(temp_image))); 

 

    % apply smoothing function to take out the paper artifacts 

    temp_image = imgaussfilt(temp_image,8); 

 

    % crop down the flatfield to save on time 

    temp_image_rect = imcrop(temp_image, config.channel_rect); 

 

    % save the processed flatfield image in a stack 

    flatfield(:,:,index) = (temp_image_rect); 

 

    % progress through all selectedSlices 

    index = index + 1; 
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end 

3. INTERPOLATE VOLUME FROM PROCESSED FLATFIELD IMAGES 

% If there are three or more slices present, assume the standard three 

% flatfields at 35,000, 20,000 and 5,000 have been acquired and proceed 

% with Makima 3D interpolation 

if(length(allSlices) > 2) 

    interpSlices = 

[config.startDepth:config.sliceThickness:config.sliceThickness*config.numberOfSlices(1

) - config.sliceThickness + config.startDepth]; 

    [Xq,Yq,Zq] = 

meshgrid(1:size(flatfield,2),1:size(flatfield,1),config.startDepth:config.sliceThickne

ss:config.sliceThickness*config.numberOfSlices(1) - config.sliceThickness + 

config.startDepth); 

 

    % Concatenate the 3 planes to create a volume for interpolation 

    X = cat(3, Xq(:,:,1), Xq(:,:,1), Xq(:,:,1)); 

    Y = cat(3, Yq(:,:,1), Yq(:,:,1),  Yq(:,:,1)); 

 

    % Z is the height of the acquired flatfield 

    Z = cat(3, 5000*ones([size(flatfield,1), 

size(flatfield,2)]),20000*ones([size(flatfield,1), size(flatfield,2)]), 

35000*ones([size(flatfield,1),size(flatfield,2)])); 

 

    % Feed in the last image and the two proceeding (assuming last is 5000) 

    V =  

cat(3,squeeze(flatfield(:,:,size(flatfield,3))),squeeze(flatfield(:,:,size(flatfield,3

)-1)),squeeze(flatfield(:,:,size(flatfield,3)-2))); 

 

    % Perform the makima interpolation 

    interp_Frames = interp3(X,Y,Z,V,Xq,Yq,Zq,'makima'); 

    disp('Multi-slice FF detected'); 

 

% In the condition of having only one FF slice, just use that one FF as the whole 

volume 

else 

    disp('Single-slice FF detected'); 

 

    % no need for interpolation, just return the single flatfield image at 

    % every depeth 

    for n = 1:config.numberOfSlices(1) 

        interp_Frames(:,:,n) = double(flatfield(:,:,size(flatfield,3))); 

    end 

 

end 

 

% Provides an update for which channel is processed 

disp(strcat('Completed channel: ', channel)); 

cd(currentPath); 

end 

D.3 PROCESSALLSTACKS.M 

function processAllStacks(config,flatfield, channel, currentPath, rep, beginSlice, 

countFlag, ME) 
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PROCESSALLSTACKS: Core function for basic processing of bioslice macrotome data. 

 

INPUTS:  

 CONFIG: Experiment-specific config variable which has subfields of experimental parameters 

necessary to generate flatfields. 

 FLATFIELD: flatfield variable which has stored flatfield images for each channel at every depth. 

 CHANNEL: Channel which is being processed. Only one channel's flatfield is generated at a 

time. 

 CURRENTPATH: Path which has all necessary filepath dependencies. 

 REP: Exposure repition which should be processed 

 BEGINSLICE: Historical name of starting slice to be processed  

 COUNTFLAG: Option to also write the images in raw counts as a debugging tool.  

 ME: Power term for scaling all image intensities to a Base 10 uint16 range (Iscaled = Io x 10ME). 

 

 

Author: Brook K. Byrd 

Date Created: 6-18-19 

Copyright: Dartmouth College 
 

4. SET UP DEPENDENT FILEPATHS AN EXPERIMENTAL PARAMETERS FOR 

PROCESSING 

Current path is the folder with all processing functions 

cd(currentPath); 

addpath(currentPath); 

%Color weights to use for converting light to D65 illuminant 

load('color_weights_D65.mat'); 

% Transform for merging two channels, default is the identity transform 

load('tform_identity.mat'); 

 

% Use the second repitition unless specified 

if ~exist('rep') 

    rep = 2; 

end 

 

% Use the first slice unless specified 

if ~exist('beginSlice') 

    beginSlice = config.startingSlice 

end 

 

% Allow the user to report signal to background images 

if ~exist('countFlag') 

    countFlag = 0; 

end 
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% Set the channelRange to the range specified for the given channel 

channelRange = config.range(find(config.channels == channel),:); 

 

% Allow the user to preselect ME value for converting processed image intensities to 

fit within a uint-16 range by using a Base 10 scale 

if ~exist('ME') 

    switch channel 

 

        % modify the uint16 conversion to suite each channel 

        case "760" 

            ME = 1; 

        case "470" 

            ME = 1; 

        case "635" 

            ME = 1; 

        case "WL" 

            ME = 1; 

        case "530" 

            ME = 2; 

        case "532" 

            ME = 1; 

        otherwise 

    end 

 

end 

% 

% load in the flatfield array matrix 

field = char(strcat('Channel_',channel,'_mat')); 

flatfield_array = getfield(flatfield,field); 

5. CREATE FOLDER STRUCTURE FOR PROCESSED DATA 

disp(strcat('Processing Channel ',char(channel))); 

 

% Make the necessary folders for each channel 

cd(config.newSavePath); 

mkdir(char(channel)); 

cd(char(channel)); 

mkdir(char(strcat(channel,'_processed_LCTF_stacks'))); % Hyperspectral image file 

directory 

mkdir(char(strcat(channel,'_nextImage_corrected_stacks'))); % Next-image corrected 

file directory 

 

% NO LCTF exists in NIR-I channel so don't need to make an integrated stack 

% for this channel 

if~(strcmp(channel, "760")) 

    mkdir(char(strcat(channel,'_integratedStack'))); % Integrated stack file directors 

else 

    % Load in the 760 transform file if this is channel 760 

    load(config.transformFile); 

end 

 

% Flag to allow the images to be recorded in units of absolute pixel counts 

% at each voxel. 

if (countFlag) 

    mkdir(strcat(config.newSavePath, filesep, channel, filesep, channel, 

'_processed_Counts_stacks')); 

end 

6. LOAD FILES IN EACH RAW DATA FOLDER 

z is the cumulative slice counter 
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for fNum = 1:length(config.filePath) 

 

    % Examine the first raw data folder directory  provided by the user 

    cd(char(config.filePath(fNum))); 

    date = dir('*20*'); %dates when data was acquired 

    for day = 1:length(date) 

        dateNum(day) = datenum(date(day,1).name,'yyyymmmdd'); 

    end 

    % sort dates correctly by year, month, and date. 

    [dateNum,I] = sort(dateNum); 

 

    % Loop through all dates in the sorted order 

    for d = 1:length(date) 

 

        % change directory to date folder of a given file path 

        cd(strcat(config.filePath(fNum), filesep, date(I(d)).name)); 

 

        if(isdir(channel)) 

            % Select the correct channel folder director 

            cd(strcat(config.filePath(fNum), filesep, 

date(I(d)).name,filesep,channel)); 

 

            % Work around to make sure all files are in the correct format 

            raw_files =  dir('*.tif'); 

            counter = 1; % 

            for f = 1:length(raw_files) 

                %check to make sure the formatting is correct 

                if(length(split(raw_files(f).name,'_')) == 8) 

                    files(counter) = raw_files(f); % remove any files that do not fit 

this format 

                    fileInfo(counter,:) = split(files(counter).name,'_'); 

                    counter = counter + 1; 

                end 

            end 

            slices = []; 

 

            if exist('fileInfo','var') 

                %Convert file info into strings that can be called on 

                fileInfo = string(fileInfo); 

 

                % pull out the unique repitions 

                repitions = unique(fileInfo(:,8)); 

 

                % pull out the unique slices 

                slices = unique(fileInfo(:,2)); 

            end 

 

            currentFolder = pwd; 

7. MAIN PROCESSING LOOP 

Iterate over all slices in the folder 

            for slice = 1:(length(slices)) 

                cd(currentFolder); 

                tic 

 

                % pull out the file indices for this slice 

                sliceIndexArray = find(fileInfo(:,2) == slices(slice)); 

 

                % pull out the historical slice number 

                sliceLabel = slices(slice); 

                N = cellfun(@(x)sscanf(x,'Slice%d'),{sliceLabel}); 
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                % Assign the startingSlice to the first slice number N, if 

                % it hasn't already been assigned in the configExperiment.m 

                % program. 

                if ~isfield(config, 'startingSlice') 

                    config.startingSlice = N; 

                end 

 

                %Figure out the slice number and appropriate affine transforms 

                z =  N - config.startingSlice + 1; % This counts from 1 to the number 

of slices 

                z_microns = config.startDepth + config.sliceThickness*z; 

 

                % Linear function for affine transform to correctly scale 

                % and shift field as it moves away from the camera. 

                tform_z = affine2d([1.3e-6*z_microns + 0.99,0,0;0,1.3e-6*z_microns + 

0.99,0; -0.0015*z_microns + 7.3,-0.0014*z_microns + 6.8,1]); 

 

                if(N < beginSlice) 

                    % skip over the processing because the slice number is 

                    % lower than the assigned starting slice. 

                    disp(strcat('Skipping Slice:', {' '}, num2str(N))); 

                else 

                    % select the flatfield file per slice 

                    flatfield_temp = (squeeze(flatfield_array(:,:,z))); 

 

                    % pull out the unique LCTF waves for this particular slice 

                    wave = unique(fileInfo(sliceIndexArray,3)); 

                    lambda = cellfun(@(x)sscanf(x,'LCTF%dnm'),wave); 

 

                    % select the range to integrate over 

                    bandpass = [channelRange(1):channelRange(end)]; 

 

                    % pull out which wavelengths to integrate 

                    available_waves = intersect(lambda(:),bandpass(:)); 

                    available_indexes = find(ismember(lambda(:),bandpass(:))); 

 

                    % pull out the dark image from the last LCTF 

                    % wavelength used 

                    OffIndex = intersect(intersect(find(strcmp(fileInfo(:,7),'OFF')), 

find(strcmp(fileInfo(:,8),strcat('rep',num2str(rep),'.tif')))),find(strcmp(fileInfo(:,

2), slices(slice)))); 

 

                    if(~isempty(OffIndex)) 

                        % Read in off image using the correct OffIndex 

                        try 

                            imOff = imread(files(OffIndex(1)).name); 

                        catch 

                            warning(strcat('Slice', {' '}, sliceLabel, {' '}, 'does 

not exist')); 

                        end 

 

                        % Gather the exposure time in seconds of the 

                        % specific instance 

                        D = cellfun(@(x)sscanf(x,'exp%dms'),(fileInfo(OffIndex,6))); 

                        exptime  = D./1e3; %Exposure time expressed in cps assuming it 

is the same for laser off and on 

 

                        % Iterate over all wavelengths 

                        for wavecount = 1:length(wave) 

 

                            % pull out the specific image that is the 

                            % correct wavelength for a given LCTF wavelength 

                            OnIndex = 

intersect(intersect(intersect(find(strcmp(fileInfo(:,7),'ON')), 
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find(strcmp(fileInfo(:,8),strcat('rep',num2str(rep),'.tif')))),find(strcmp(fileInfo(:,

3), wave(wavecount)))),find(strcmp(fileInfo(:,2), slices(slice)))); 

 

                            % skip over wavelength if it does not exist 

                            if(~isempty(OnIndex)) 

                                imOn = loadtiff(files(OnIndex(1)).name); 

                            end 

 

                            %Perform basic image corrections for signal background and 

exposure time. 

                            temp_image =  ((double(imOn - imOff))/double(exptime(1))); 

 

 

                            % Perform radial distortion correction 

                            temp_image = 

undistortImage(temp_image,config.params,'OutputView','same'); 

 

                            % Register all channels together 

                            temp_image = imwarp((temp_image), mytform, 'OutputView', 

imref2d(size(temp_image)));%, 

 

                            % Adjust for scale and transform based on stage 

                            temp_image = imwarp((temp_image), tform_z, 'OutputView', 

imref2d(size(temp_image)));%, 

 

 

                            % crop the image down to save on memory 

                            temp_image_rect = imcrop(temp_image, config.channel_rect); 

 

                            % Apply flatfield correction and then scale up by a 

                            % Multiply the ratio of image intensity divided by the 

flatfield by a factor of x1000 

                            try 

                                temp_image_rect = 

1000*(double(temp_image_rect)./double(flatfield_temp)); 

                            catch 

                            end 

 

                            % CIE D65 Scaling for RGB reconstruction to 

                            % make the WL hyperspectral image look like it 

                            % came from a D65 illuminant 

                            if(strcmp(cellstr(channel),'WL')) 

                                scalingFactor = 

weightedLambda(find(weightedLambda(:,1) ==  sscanf(wave(wavecount),'LCTF%dnm')),2); 

                            else 

                                scalingFactor = 1; 

                            end 

 

                            % Scale the matrix by the appropriate scalingFactor 

                            stack(:,:,wavecount) =  

(temp_image_rect).*double(scalingFactor); 

 

                        end 

 

                        % Apply a slice-specific transform to the entire stack if 

                        % config.sliceTransform exists, which is a 

                        % transform necessary to adjust for physical shifts 

                        % in the OCT block location. 

                        if isfield(config,'sliceTransform') 

                            offset = affine2d; 

                            offset.T = config.sliceTransform(:,:,z); 

                            stack = imwarp(stack, offset, 'OutputView', 

imref2d(size(temp_image_rect)));%, 

                        end 

 

                        % Calculate raw stack counts based on the exposure 
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                        % time and flatfield correction. 

                        flatfield_temp = (squeeze(flatfield_array(:,:,z))); 

                        stackCounts = 

(double(stack)/1000).*double(flatfield_temp)*exptime(1) + 100; 

                        maxCounts = max(stackCounts,[],3); 

 

                        % Count map is a logical map which shows when 

                        % voxels achieve a signal greater than the lower 

                        % detection limit of 300 raw counts per voxel. 

                        countMap = zeros(size(maxCounts)); 

                        countMap(find(maxCounts > 300)) = 1; 

 

                        % CONVERT THE PROCESSED STACK ON A BASE 10 

                        % using ME as the power coefficient. 

                        cd(config.newSavePath); 

                        if(ME < 0) 

                            fullStack = convertTo16bit(stack.*10^abs(ME), 65535); 

                        else 

                            fullStack = convertTo16bit(stack, 65535*10^ME); 

                        end 

8. SAVE HYPERSPECTRAL IMAGE FILES 

Code to save the 3D uint16 hyperspectral images in the LCTF directory for each slice. 

                        saveLCTFPath =  char(strcat(config.newSavePath, filesep, 

channel, filesep, channel, '_processed_LCTF_stacks')); 

                        saveLCTFFile = char(strcat('Channel', channel,'_', sliceLabel, 

'_','exp',num2str(D(1)),'ms_rep',num2str(rep),'_','cpsE',num2str(ME),'_cropped_stack.t

if')); 

                        cd(saveLCTFPath); 

                        options.overwrite = true; 

                        options.message = 1; 

                        saveastiff(uint16(fullStack),char(saveLCTFFile),options); 

                        cd(currentFolder); 

 

                        % write the count stack if countFlag = 1 

                        if(countFlag) 

                            saveCountPath =  char(strcat(config.newSavePath, filesep, 

channel, filesep, channel, '_processed_Counts_stacks')); 

                            saveCountFile = char(strcat('Channel', channel,'_', 

sliceLabel, 

'_','exp',num2str(D(1)),'ms_rep',num2str(rep),'_','cpsE',num2str(ME),'_Count_stack.tif

')); 

                            cd(saveCountPath); 

                            

saveastiff(uint16(stackCounts),char(saveCountFile),options); 

                            cd(currentFolder); 

                        end 

9. INTEGRATE HYPERSPECTRAL IMAGES OVER SIMULATED BANDPASS 

                        if(length(available_indexes) > 1) 

 

                            %Integrate over necessary wavelengths 

                            % We divide the range by 10 nm to keep dx at 10 nm instead 

                            % of 1 nm. 

                            integralStack = trapz(available_waves, 

double(stack(:,:,available_indexes)),3)./(10); 
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                            % convert integrated staack to 16 bit accounting for +/- 

ME 

                            if(ME < 0) 

                                dataIntegrated = 

convertTo16bit(integralStack.*10^abs(ME), 65535); 

                            else 

                                dataIntegrated = convertTo16bit(integralStack, 

65535*10^ME); 

                            end 

 

                            % Code to save the integrated image 

                            saveIntegratedPath =  char(strcat(config.newSavePath, 

filesep, channel, filesep, channel, '_integratedStack')); options.message = 0; 

                            saveIntegratedFile =  

char(strcat(sliceLabel,'_integrated_exp',num2str(D),'ms_rep',num2str(rep),'_','cpsE',n

um2str(ME),'_', num2str(channelRange(1)),'_', num2str(channelRange(2)),'nm.tif')); 

options.message = 0; 

                            cd(saveIntegratedPath); 

                            options.overwrite = true; 

                            options.message = 0; 

                            saveastiff(uint16(dataIntegrated) 

,char(saveIntegratedFile),options); 

                            cd(currentFolder); 

                        end 

10. NEXT-IMAGE CORRECTION 

Function using calculated muscle attenuation (post-correction for cylindrical volume) 

                        if exist('topIm','var') 

                            switch channel 

                                case "470" 

                                    % Using Microsphere phantom data 

                                    bottomIm = uint16(dataIntegrated); 

                                    mu = 0.0037; %based off microspheres 

                                    s1 = 0.36;  %based off microspheres 

                                    s2 = 91.15;  %based off microspheres 

 

                                case "530" 

                                    bottomIm = uint16(dataIntegrated); 

 

                                    mu = 0.0032; %based off microspheres 

                                    s1 = 0.46;  %based off microspheres 

                                    s2 = 91.42; %based off microspheres 

                                case "532" 

                                    bottomIm = uint16(dataIntegrated); 

 

                                    mu = 0.0032; %based off microspheres 

                                    s1 = 0.46;  %based off microspheres 

                                    s2 = 91.42;  %based off microspheres 

 

                                case "635" 

                                    % Measured mut (post-correction for cylindrical 

volume) 

                                    bottomIm = uint16(dataIntegrated); 

 

                                    mu = 0.000847; % Measured in vivo 

                                    s1 = 0.37;  %based off microspheres 

                                    s2 = 98.89;  %based off microspheres 

 

                                case "760" 

                                    % Measured mut (post-correction for cylindrical 

volume) 
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                                    bottomIm = uint16(fullStack); 

                                    mu = 0.000682;  % Measured in vivo 

                                    s1 = 1.506;  %Based off 

                                    s2 = 4047;  %based off microspheres 

 

                                case "WL" 

                                    % Using Alexandrakis, 2005 value for muscle 

                                    % attentuation at 520 nm 

                                    bottomIm = uint16(dataIntegrated); 

                                    mu = 0.0028;  %based off microspheres (530) 

                                    s1 = 0.36;  %based off microspheres (530) 

                                    s2 = 91.15;  %based off microspheres (530) 

                                otherwise 

                                    bottomIm = []; 

                            end 

 

                            % generate voxel-wise attenuation coefficient 

                            % Kernel radius 

                            n = 15; 

 

                            % generate the Gaussian 2D spread 

                            h = generateGausPsf(config, n, s1, s2); 

                            %imshow(h,[]); 

 

                            % Attenuate from source and fluorophore 

                            mu_a = exp(-2*mu*config.sliceThickness); 

 

                            % filter the top and bottom images 

                            % topIm was already filtered 

                            %bottomIm = medfilt2(double(bottomIm),[3 3]); 

 

                            %%convolve the image below 

                            gausIm = conv2(bottomIm,h/(sum(h(:))),'same'); 

 

                            % subtract off top image and rescale to maintain 

                            % global intensities 

                            % rescaleFactor = double(1/(1- mu_a)); 

                            rescaleFactor = 1; 

                            Rs = rescaleFactor*(double(topIm) - mu_a.*gausIm); 

 

 

                            % Save the file in the NextImage subfolder 

                            saveNextImagePath =  char(strcat(config.newSavePath, 

filesep, channel, filesep, channel, '_nextImage_corrected_stacks')); 

                            saveNextImageFile = char(strcat('Channel', channel,'_', 

sliceLabel, '_','exp',num2str(D(1)),'ms_rep',num2str(rep),'_','cpsE',num2str(ME),'_', 

num2str(channelRange(1)),'_', 

num2str(channelRange(2)),'nm_','mut_',num2str(mu,2),'_nextImage_corrected.tif')); 

                            cd(saveNextImagePath); 

                            options.overwrite = true; 

                            options.message = 1; 

                            saveastiff(uint16(imboxfilt(medfilt2(Rs,[3 3]),[3 

3])),char(saveNextImageFile),options); 

 

                            cd(currentFolder); 

 

                            % reset the topIm for the next image 

                            topIm = bottomIm; 

 

 

                        else % If no top image exists, it is the first image so just 

save the image as the top image for next-image corrections on the second image. 

                            switch channel 

                                case "470" 

                                    topIm = uint16(dataIntegrated); 
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                                case "530" 

                                    topIm = uint16(dataIntegrated); 

                                case "532" 

                                    topIm = uint16(dataIntegrated); 

                                case "635" 

                                    topIm = uint16(dataIntegrated); 

                                case "760" 

                                    topIm = uint16(fullStack); 

                                case "WL" 

                                    topIm = uint16(dataIntegrated); 

                                otherwise 

                                    topIm = []; 

                            end 

 

                        end 

11. RGB REMIXING 

                        if(strcmp(channel,'WL')) 

                            cd(config.newSavePath); 

 

                            % If no maximum signal is predetermined in this 

                            % channel, use a pre-set maximum for the 

                            % spectre2rgb.m function 

                            if(~isfield(config,'maximum')) 

                                disp('no max set'); % used for setting global maxima 

                                config.maximum = [77968.1503850000]; 

                                [rgbStack] = spectrum2rgb(lambda, 

fullStack,config.maximum); 

                                save(char(strcat(config.newSavePath,filesep, 

config.studyName,'_config.mat')), 'config', '-v7.3'); 

                            else 

                                rgbStack = spectrum2rgb(lambda, fullStack, 

config.maximum); 

                            end 

 

                            % Use pre-calibrated color card to perform 

                            % black and white balancing, by applying the 

                            % predetermined offset and slope in each R, G, 

                            % and B channel. 

                            disp('Using pre-calibrated color card'); 

                            m = config.colorConsts(1,[1:3]); 

                            b = config.colorConsts(2,[1:3]); 

 

                            rgbStack(:,:,1) = m(1)*rgbStack(:,:,1) + b(1); 

                            rgbStack(:,:,2) = m(2)*rgbStack(:,:,2) + b(2); 

                            rgbStack(:,:,3) = m(3)*rgbStack(:,:,3) + b(3); 

                            imshow(rgbStack); 

                            RGBfilename = char(strcat(config.newSavePath,filesep, 

'RGB', filesep, 'RGB_stacks', filesep, sliceLabel,'_rgb_twopoint_corrected.tif')); 

 

                            imwrite(rgbStack, RGBfilename); 

                            cd(currentFolder); 

                        end 

                    else 

                        disp(strcat('Could not find Slice:', {' '}, num2str(N))); 

                    end 

                    toc 

                    disp(strcat('Processed ',{' '}, channel,{' '}, 'Slice', 

num2str(N))); 

                    disp(strcat('Slice ',{' '}, num2str(z),{' '}, 'out of', {' '}, 

num2str(config.numberOfSlices(1)))); 
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                end 

            end 

 

            % Clear slices and file info before moving onto the next data 

            % folder. 

            clear('files') 

            clear('fileInfo'); 

            clear('slices'); 

            clear('raw_files'); 

        else 

            % Safety check to make sure data folder exists. 

            disp(strcat('Folder: ',channel,' does not exist')); 

        end 

 

    end 

end  
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