729 research outputs found

    Robust configurable system design with built-in self-healing

    Get PDF
    The new generations of SRAM-based FPGA (Field Programmable Gate Array) devices, built on nanometre technology, are the preferred choice for the implementation of reconfigurable computing platforms. However, their vulnerability to hard and soft errors is a major weakness to robust system design based on FPGAs. In this paper, a novel Built-In Self-Healing (BISH) methodology, based on modular redundancy and on selfreconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the self-configuration features. Meanwhile, modular redundancy assures that the system still works correctly. This approach leads to a robust system design able to assure high reliability, availability and data integrity

    Minimum Distortion Variance Concatenated Block Codes for Embedded Source Transmission

    Full text link
    Some state-of-art multimedia source encoders produce embedded source bit streams that upon the reliable reception of only a fraction of the total bit stream, the decoder is able reconstruct the source up to a basic quality. Reliable reception of later source bits gradually improve the reconstruction quality. Examples include scalable extensions of H.264/AVC and progressive image coders such as JPEG2000. To provide an efficient protection for embedded source bit streams, a concatenated block coding scheme using a minimum mean distortion criterion was considered in the past. Although, the original design was shown to achieve better mean distortion characteristics than previous studies, the proposed coding structure was leading to dramatic quality fluctuations. In this paper, a modification of the original design is first presented and then the second order statistics of the distortion is taken into account in the optimization. More specifically, an extension scheme is proposed using a minimum distortion variance optimization criterion. This robust system design is tested for an image transmission scenario. Numerical results show that the proposed extension achieves significantly lower variance than the original design, while showing similar mean distortion performance using both convolutional codes and low density parity check codes.Comment: 6 pages, 4 figures, In Proc. of International Conference on Computing, Networking and Communications, ICNC 2014, Hawaii, US

    Bit Allocation Law for Multi-Antenna Channel Feedback Quantization: Single-User Case

    Full text link
    This paper studies the design and optimization of a limited feedback single-user system with multiple-antenna transmitter and single-antenna receiver. The design problem is cast in form of the minimizing the average transmission power at the base station subject to the user's outage probability constraint. The optimization is over the user's channel quantization codebook and the transmission power control function at the base station. Our approach is based on fixing the outage scenarios in advance and transforming the design problem into a robust system design problem. We start by showing that uniformly quantizing the channel magnitude in dB scale is asymptotically optimal, regardless of the magnitude distribution function. We derive the optimal uniform (in dB) channel magnitude codebook and combine it with a spatially uniform channel direction codebook to arrive at a product channel quantization codebook. We then optimize such a product structure in the asymptotic regime of B→∞B\rightarrow \infty, where BB is the total number of quantization feedback bits. The paper shows that for channels in the real space, the asymptotically optimal number of direction quantization bits should be (M−1)/2{(M{-}1)}/{2} times the number of magnitude quantization bits, where MM is the number of base station antennas. We also show that the performance of the designed system approaches the performance of the perfect channel state information system as 2−2BM+12^{-\frac{2B}{M+1}}. For complex channels, the number of magnitude and direction quantization bits are related by a factor of (M−1)(M{-}1) and the system performance scales as 2−BM2^{-\frac{B}{M}} as B→∞B\rightarrow\infty.Comment: Submitted to IEEE Transactions on Signal Processing, March 201

    Robust System Design Using BILP for Wireless Indoor Positioning Systems

    Get PDF

    Meteoroids and Meteor Storms: A Threat to Spacecraft

    Get PDF
    Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999

    Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System

    Get PDF
    A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design

    On high-efficiency optical communication and key distribution

    Get PDF
    We investigate modulation and coding techniques that approach the fundamental limits of communication and key distribution over optical channels, in the regime of simultaneously high photon and bandwidth efficiencies. First, we develop a simple and robust system design for free-space optical communication that incorporates pulse-position modulation (PPM) over multiple spatial degrees of freedom in order to achieve high photon and spectral efficiency. Further, in the context of key distribution, we determine the optimal rate using a Poisson source of entangled photon pairs and photon detectors, and show how to approach it using PPM parsing of the detected photon stream.United States. Defense Advanced Research Projects Agency. Information in a Photon Program (Contract HR0011-10-C-0159)United States. Army Research Office (Grant W911NF- 10-1-0416)United States. Air Force Office of Scientific Research (Grant FA9550-11-1-0183

    A Lightweight McEliece Cryptosystem Co-processor Design

    Full text link
    Due to the rapid advances in the development of quantum computers and their susceptibility to errors, there is a renewed interest in error correction algorithms. In particular, error correcting code-based cryptosystems have reemerged as a highly desirable coding technique. This is due to the fact that most classical asymmetric cryptosystems will fail in the quantum computing era. Quantum computers can solve many of the integer factorization and discrete logarithm problems efficiently. However, code-based cryptosystems are still secure against quantum computers, since the decoding of linear codes remains as NP-hard even on these computing systems. One such cryptosystem is the McEliece code-based cryptosystem. The original McEliece code-based cryptosystem uses binary Goppa code, which is known for its good code rate and error correction capability. However, its key generation and decoding procedures have a high computation complexity. In this work we propose a design and hardware implementation of an public-key encryption and decryption co-processor based on a new variant of McEliece system. This co-processor takes the advantage of the non-binary Orthogonal Latin Square Codes to achieve much smaller computation complexity, hardware cost, and the key size.Comment: 2019 Boston Area Architecture Workshop (BARC'19
    • …
    corecore