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In wireless indoor positioning system designs, reference node (RN) failures during the online phase cause received signal strength
values to be unavailable. .is leads to accuracy performance degradation and a lack of system reliability in smart office systems.
Moreover, the major design concern in the reliability of indoor positioning systems under the faulty RNs during the online phase
has not been yet investigated in previous works. To address these gaps, we propose a novel mathematical formulation using
a Binary Integer Linear Programming (BILP) approach that employs the Simulated Annealing (SA) solution technique. .e
proposed robust system design aims to put in place a suitable number of RNs and to determine their optimum locations, which
may be located on a single floor or on multiple floors. In particular, the proposed system design provisions to support robust
operation both during a normal situation and when there are some RN failures. Experimental results and comparative per-
formance evaluation revealed that the proposed robust system design outperformed other system designs and was able to achieve
the highest location accuracy performance in both fault-free and RN-failure scenarios. Specifically, when nine of the RNs in
a three-story building failed, the proposed system design achieved 84.6%, 54.7%, and 32.9% more accurate performance than the
Uniform, the MSMR, and the PhI-Uni, respectively.

1. Introduction

.e rapid growth of wireless communication technologies is
the major driving force behind the integration of the various
embedded devices and systems in the vision of smart cities.
.e systems in a smart city deploy a combination of data
collection, processing, and allocation technologies in con-
junction with network and computer technologies. .ese
provide several advantages, such as an effective resource al-
location as well as higher data security and privacy, facilitating
the development of smart cities and enhancing the quality of
life for their citizens [1]. One of the applications currently
deployed for smart cities is location-based services. For ex-
ample, Li et al.[2] presented a wireless indoor positioning
system that can monitor and track the location of the visitors
in a smart office building. Nazari et al. [3] proposed the
development of a hospital solution framework for smart
health systems, in which the staff can quickly check the
location and availability of the needed equipment in an

emergency situation. Wang et al. [4] presented indoor
location services for smart shopping systems, which enable
customers to ask the system to find the shortest path for them
to obtain the desired product in a supermarket..erefore, this
article focuses on indoor positioning systems inside smart
buildings and smart offices that can be considered as im-
portant parts of smart cities.

A wireless indoor positioning system is one of the key
capabilities of context-aware computing, allowing the sys-
tem to determine the location of a mobile station inside
a building..e physical information of a mobile station with
respect to a set of reference positions within a service area is
analyzed and used to estimate its location by using a local-
ization algorithm..us, the challenges of indoor positioning
systems in terms of location estimation are not only to
achieve performance accuracy in finding the required lo-
cation, but also to overcome completely various indoor
positioning issues, such as the problems arising from a dense
indoor environment (e.g., multipath effect) [5], technology
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capabilities (e.g., hardware limitations) [6], and the types of
service areas (e.g., inside multistory buildings) [7]. Gener-
ally, the operation of a wireless indoor positioning system is
divided into two processes: the system design phase and the
localization phase.

First, in the system design phase, various wireless network
configurations are considered and determined by the system
designer. .ese are provisioned to support the indoor posi-
tioning system before implementing and deploying the actual
localization system. .is is a necessary and indeed essential
process for an indoor positioning system to achieve any re-
quired performance goal. An example of wireless network
configurations that are considered in the system design phase
include the type of applications, the number and installed
locations of reference devices, size of service area, and wireless
device specifications (e.g., wireless technologies, radio fre-
quency channels, and transmit power) [5, 8].

In the existing literature, on the system design phase, the
research focused on various issues related to meeting required
indoor positioning performance. In [9–11], the authors in-
vestigated the impact of reference node (RN) placement on
location accuracy performance. .ey compared the posi-
tioning performance obtained from different RN placements,
such as comparing the placement of various basic geometric
layouts [9], symmetrical/unsymmetrical layouts [10], or over-
lapping and hierarchical clustering [11]. Other system design
researches aimed at developing the RN-placement techniques
to determine the optimum number and location. .ese re-
searches focused on essential issues that should be considered
in the design of wireless indoor positioning systems, such
as the radio signal coverage requirements [12, 13], the min-
imization of localization error [14], and the selection of the
fitness values for the RN-placement techniques [15].

Second, in the localization phase, the physical information
at the target location is measured and then analyzed to es-
timate its coordinates using localization algorithms. An ex-
ample of these localization algorithms include the algorithms
based on the Triangulation approach, such as Time Difference
of Arrival (TDOA) [16] and Angle of Arrival (AOA) [17].
Another example of a localization approach called Scene
Analysis utilizes a database of received signal strength (RSS)
patterns recorded during the offline phase (i.e., location
fingerprint database). .e sample vectors of RSS values are
matched with the patterns in the database during the online
phase to estimate the location of the target [4, 18]. .e al-
gorithms used in the Scene Analysis approach are the
probabilistic methods [18], theWeighted K-Nearest Neighbor
(WKNN) [19, 20], and the neural networks [21].

Based on the localization phase, several recent researches
have aimed at investigating the properties of the RSS values
inside the building..e findings of these analyses are needed
in order to understand the underlying features of RSS char-
acteristics, such as the distribution of RSS values [22] and the
effect of the human body on RSS values [23]. Other researches
have aimed at the development of the underlying mechanism
for the localization algorithms, whereby those researches
focused on improving the accuracy and the precision per-
formance [24] and on reducing the computational complexity
in location estimation [25].

One of the main challenges in wireless indoor posi-
tioning systems is the reliability. RN failures during the
online (location determination) phase cause RSS values to be
unavailable. .is leads to performance degradation of lo-
calization accuracy and a lack of system reliability. In the
design of indoor positioning systems, reliability is the ca-
pability required in order to maintain the functionality of the
location determination in uncontrollable environments. In
such cases, some RNs in the systems may fail, which could
affect the entire operation of the indoor positioning system
[26]. Under such unexpected situations, the performance
accuracy of the system could drop by almost half [27].
According to the literature reviewed in Section 2, although
some existing works have studied the reliable network design
problem under node failure [28–30], they only investigated
the provisioning of systems designed for telecommunica-
tions networks, and these network design solutions cannot
be used effectively for indoor positioning systems. Fur-
thermore, the system design for an indoor positioning
system that supports the RN-failure scenario during the
online phase has not yet been investigated in the existing
works. .us, in this article, we will investigate how to design
an RN-placement technique for robust indoor positioning
systems that can overcome the problem of when some RNs
fail. .e major contributions of our article are as follows:

(i) We propose a robust system design for wireless
indoor positioning systems based on the location
fingerprinting technique. .e proposed system de-
sign is provisioned to support the robust operation
both during a normal situation and when some RNs
fail. Our proposed design can be applied to various
service area structures ranging from single-floor to
multiple-floor environments.

(ii) We have developed a novel mathematical formu-
lation using a Binary Integer Linear Programming
(BILP) approach that employs simulated annealing
(SA) based on the heuristic solution technique to
solve the design problem for wireless indoor posi-
tioning systems.

.e remainder of this manuscript is organized into six
sections as follows. In Section 2, we briefly summarize existing
works on the system design for indoor positioning systems.
Section 3 provides the problem definition and the problem
formulation. Section 4 describes the experimental environ-
ment, the wireless transceivers, and the setup parameters used
in this work. Section 5 presents the experimental results and
discussion. Finally, Section 6 concludes the findings of this
article.

2. Related Works

In wireless sensor network (WSN) system design, the posi-
tioning of the nodes can affect numerous network perfor-
mance metrics. .e placement of any node will affect overall
data collection and must take into account the condition of
the physical environment. To ensure usability, it is necessary
to propose a reasonable method for the installation of nodes
in the network [31]. Moreover, many current applications
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require the wireless network to continue functioning under
unexpected situations and hostile environments, such as node
failures. For these reasons, the reliability of the network also
requires considerable interest. Recently, several studies have
focused on different system designs of reliable and survivable
wireless networks to support robust operation in uncon-
trollable environments. .ese studies have proposed system
design methods that can achieve the reliability and surviv-
ability requirements for wireless networks.

In the system design of telecommunications networks,
node failures will result in the complete outage of some
wireless links in the network. .is situation can cause dis-
ruption to the network’s connectivity and loss of availability.
.erefore, several studies have focused on the survivability
of the network systems and how to handle the problem of
failure situations. Correia et al. [28] presented a fault-tolerance
network plan for the wireless optical broadband access net-
work (WOBAN). .eir fault-tolerance model can be applied
to any scenario of optical wireless failure. Liu et al. [29]
presented a reliable mixed-integer programming model for
the IP layer network. .eir system design model was pro-
visioned to support faulty relay nodes caused by hardware
failures or by an overloaded network. Luo et al. [30] presented
a gateway placement approach for wireless mesh networks
(WMNs). .e optimal number and locations of the gateways
are provisioned to reduce the gateway interference and pro-
vide fault-tolerance assurance. Based on the system design
solutions presented in the literature, node failures in a tele-
communications network may cause the network either to
become disconnected or to have unavailable wireless links in
the network. In particular, this may result in complete network
outage. To address this problem, several research studies
have proposed reliable system designs, whereby those de-
veloped systems could still function after some failure of
certain network components, usually based on the provision
of backup links or bandwidth management schemes.

While the worst-case scenario of node failures in a tele-
communications network may result in the network’s un-
availability, the situations are different for indoor positioning
systems. .e faulty RNs in indoor positioning systems may
decrease the location performance accuracy, although the
systems can still provide location estimations. However, the
localization accuracy performance of such systemsmay be less
than half of normal if the system is affected by RN failures
during the online estimation phase. .ere is a significant
difference between the telecommunications systems and
the indoor positioning systems in that the general network
design solutions cannot be used effectively for indoor
positioning systems.

With regard to the system design for indoor positioning
systems, several studies have focused on addressing various
design issues in order to meet performance requirements. In
[12, 32, 33], the authors proposed a system design for indoor
positioning systems based on location fingerprinting tech-
niques. Zhang et al. [12] presented a mathematical formu-
lation of RN placement that aims to minimize the number of
RNs, while ensuring that their locations still have sufficient
coverage of the service area. Sharma et al. [32] proposed an
RN-placement method that aims to minimize the total

number of similar fingerprints so as to achieve better lo-
cation accuracy. Fang et al. [33] presented a framework for
linking the RN placement and the positioning performance.
.e objective of their algorithm was to choose a suitable set
of RN locations so that the signal-to-noise ratio (SNR) was
maximized.

Other research works on system design focused on im-
proving the indoor positioning systems based on a triangu-
lation approach [13–15]. Aomumpai et al. [13] proposed
a system design approach based on a genetic algorithm to find
the optimal solution of RN placement in an RSS-based lo-
calization approach. .ey focused on minimizing the average
localization error and maximizing the signal coverage of the
service area. Redondi et al. [14] presented an RN-placement
method for indoor positioning systems based on the
Cramer-Rao lower bound (CRLB) approach. .e objective
of their system design was to minimize localization errors
when operating with a limited number of RNs due to budget
constraints are fixed. Merkel et al. [15] presented an optimal
RN-placement approach for an indoor positioning system
based on distributed range-free localization..ey focused on
achieving the optimal coverage of a certain area while si-
multaneously minimizing the necessary number of RNs.

In the literature, existing system designs for indoor
positioning systems limit their focuses to the achievement of
location accuracy or the provision of signal radio coverage in
the service area. Furthermore, the major design concern in
the reliability of indoor positioning systems under the faulty
RNs during the online phase has not yet been investigated
in the exiting works. Unfortunately, existing solutions to
survivable network design problems for telecommunications
networks cannot be used effectively for indoor positioning
systems. Based on these knowledge gaps, the design of RN
placement for robust indoor positioning systems is still an
open research issue. .erefore, in this work, we propose
a robust system designmodel for wireless indoor positioning
systems based on location fingerprinting techniques. Our
proposed model aims to place a suitable number of RNs and
to determine their locations whereby their placement is
provisioned to support robust system operation both during
a normal situation and when some RNs have failed.

3. Problem Definition and Formulation

In this section, we describe our mathematical models for the
problem of RN placement in indoor multifloor positioning
systems. First, in Section 3.1, the problem definition of
wireless indoor multifloor positioning systems under RN-
failure scenarios is described. .en, in Section 3.2, we ex-
plain our mathematical formulation for the robust system
design problem. Finally, in Section 3.3, the overall frame-
work of the solution technique is described.

3.1. Definition of System Design for Wireless Indoor Positioning
Systems. In wireless indoor positioning system designs,
placement of insufficient RNs can lead to accuracy perfor-
mance degradation. Furthermore, the system may achieve
less than half of its intended performance levels during the
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online estimation phase in the event of RN failures [27].
Under unexpected situations, such as some RNs being faulty
during the online phase, unreliable location results are
presented because of the unavailability of RSS component(s)
during the location estimation process. For example, Figure 1
illustrates an example of the structure of an indoor posi-
tioning system in a three-story building (e.g., a smart
office building) under the RN-failure scenario in which
two RNs have failed. In this diagram, four RNs are in-
stalled on each floor. .e dashed lines represent the RSS
values that a target node receives from all RNs. In Figure 2,
one RN on the 1st floor and another RN on the 2nd floor
have become unavailable. .is may be caused by hardware
failures or software errors. In either case, the online scanned
RSS values of the target node would not have signals from
these RNs and the faulty RNs could reduce the location es-
timation performance.

To ensure the reliability of indoor positioning systems,
a system design model that can handle situations of signal
unavailability due to RN failure is required. Furthermore,
the RN-placement design model as a major system concern
in the reliability of indoor positioning systems in the event of
some faulty RNs during the online phase has not been
investigated.

3.2. Robust SystemDesignModel. In this section, we describe
the robust system design for wireless indoor positioning
systems. .e proposed system design is called the Robust-
Maximum Summation of Max RSSI (R-MSMR), which is
enhanced from our previous mathematical model presented
in [34]. .e task of the proposed R-MSMR is to place a suf-
ficient number of RNs and determine their optimum loca-
tions, which may be located on a single floor or on multiple
floors. In designing such a system, we focus on the network
planning in terms of the wireless network infrastructure in
which RNs serve as the wireless nodes in the network. .e
number of RNs and their locations are determined to
ensure that the radio signal coverage is sufficient for the
service area. In particular, the robust system design should
result in a design solution that supports robust operation
both during a normal situation and when some RNs have
failed. We formulate the mathematical formulation of the
robust system design problem as a Binary Integer Linear
Programming (BILP) problem..is deals with models that
are the same as linear programming with one additional
restriction. .e variables of BILP have integer values in
which all variables are binary variables [35]. We adopt
Simulated Annealing (SA) based on the heuristic solution
technique to solve the BILP problem for the R-MSMR
because of its simplicity and effectiveness. .e SA is
a variation of a hill-climber heuristic search approach. .e
SA allows the search to move to nonimproving solutions
with a certain probability. .is allows the SA search to
avoid being trapped at local optima [36]. .e R-MSMR
based on BILP consists of two main components: the
objective function and the constraints. .e notations de-
fined and used in the mathematical formulation of the
robust system design problem are summarized in Table 1.

We developed the robust system design in order to solve
the RN-failure problem in wireless indoor positioning
systems. .e proposed system design not only achieves high
positioning accuracy during normal situations but also
yields reliable location results under unexpected situations
such as RN failures. .e main objective of the proposed
R-MSMR is to place a sufficient number of RNs in optimum
locations so that the system can achieve a maximizing
summation of the maximum RSS at the signal test points
(STPs) received from the RNs installed in the service area as
written in the objective function:

Maximize ∑
∀i∈T

max
∀j∈B

SijPij􏼐 􏼑. (1)

.e constraints for the R-MSMR are as follows: constraint
(2) states that STP i is under the coverage of RN j if the signal
strength received at STP i from RN j (Pij) is greater than the
sensitivity threshold PT. .is constraint is used to ensure
a high quality of radio signal propagation in the service area.
Constraint (3) enforces that each STPmust be able to receive a
signal from at least a recommended number of RNs for
a given accuracy and reliability which are specified with
a summation of the accuracy index α and reliability index
R. .e accuracy index α is a minimum number of radio
signals obtained from RNs that should provide a good
performance according to Kaemarungsi [8]. A large value
(more than the recommended value) will result in higher
accuracy and precision while a small value will decrease
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Figure 1: Floor determination schematic diagram.
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performance of both accuracy and precision. However,
a large value of the accuracy index αwill also require a high
cost of node infrastructure installation. .e reliability

index R is a margin of the number of RNs that is acceptable
to fail. Constraint (4) enforces that there is a sufficient
number of RNs (NS) to be utilized in the service area.
Constraint (5) specifies that STP i can receive a signal from
RN j if RN j is installed.

Sij Pij −PT􏼐 􏼑≥ 0, ∀i ∈ T, ∀j ∈ B, (2)

∑
∀j∈B

Sij ≥ α + R, ∀i ∈ T, (3)

∑
∀j∈B

cj � NS, (4)

Sij ≤ cj, ∀i ∈ T,∀j ∈ B. (5)

3.3. Solution Technique for R-MSMR. In this section, we
describe the overall framework of the solution technique.
Figure 2 shows the framework of the solution technique for
the R-MSMR. Initial input data of the solution technique are
divided into two inputs. .e first input involves the physical
properties of the service area (i.e., the floor dimension and
the total number of floors) and the wireless transceiver
information (i.e., the RN-signal coverage area). .e second
input specifies the parameters for fundamental calculations
of the solution technique, including a set of signal test points
(STPs), a set of candidate sites for installing RNs (CS), the
RSS data of all STPs that have been received from RNs in
Watts (ΖRSS), the accuracy index, and the reliability index.
.e output from the solution technique is the optimal
number of RNs installed and their locations that ensure the
continued effectiveness of the system when some RNs in the
system fail. Note that this work considers the discrete
candidate sites for installing RNs in order to reduce the
computational complexity of the system design.

Table 1: Notations.
Sets

B
A set of candidate sites (CS) that are locations for

installing the reference node (RNs)

T
A set of signal test points (STP) that are locations for

testing received signal strength
Decision variables

cj

A binary {0, 1} variable that equals 1 if the RN is
installed at site j, j ∈ B; 0 otherwise

Sij

A binary {0, 1} variable that equals 1 if the STP i is
assigned to RN j, i ∈ T and j ∈ B; 0 otherwise

Constant parameters
Pij .e RSS that STP i receives from RN j, i ∈ Tand j ∈ B
PT .e RSS sensitivity threshold

Ns

.e sufficient number of RNs installed in the service
area

α
.e accuracy index or the recommended number of

RNs that should provide higher accuracy and
precision according to [8]

R
.e reliability index or the number of RNs that

provide reliability performance

Yes No
Are the

constraints
satisfied?

Are the
constraints
satisfied?

Calculate obj. value by
using (1)

Is obj. value
improved?

Stopping
criteria

satisfied?

Optimal RN placement solution

Finish

Update solution

Generate a new solution
by move operation

Ninitial ++

Stopping
criteria

satisfied?
No

No

No

No

No

Yes

Yes

Yes

z = random (0, 1)

z < Pa Yes

Start

Initial input data

Sufficient number of RNs (Ns)

Calculate initial number of RNs (Ninitial)
based on size of service area

Determine initial location of RNs (Sinitial)
with uniform distribution

Generate a new solution
by move operation

Yes

Phase I

Phase II

Figure 2: Framework of the solution technique.
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In the proposed framework, the solution technique
consists of two phases. Phase I aims to generate a good
starting solution that provides a sufficient number of RNs
installed (NS). First, an initial number of RNs (Ninitial) as
a minimum starting number of RNs installed is calculated
based on the size of the service area. .e starting number is
then used to determine the initial location of the RNs
(Sinitial), whereby the RNs are uniformly distributed across
the service area. .en, the process is repeated until the set of
optimization constraints (2)–(5) are satisfied. In each iter-
ation, move operation based on the SA approach is used to
generate the new possible solution (called the neighbor
solution), in which specific attributes of the current solution
are adjusted [36]. After that, a solution that provides
a sufficient number of RNs is obtained.

In Phase II, the SA approach based on the heuristic solution
technique is used to determine the optimal location of the RNs
(So) which is specified with the number of RNs obtained from
Phase I. In this phase, the cost of each RN-placement solution is
calculated by using the evaluation function as written in (1).
Unlike a general heuristic solution techniquewhich onlymoves
to a solution that improves the objective function, SA allows the
search to move to nonimproving solutions with the probability
of accepting. .e acceptance probability for the optimization
problem is written as (6), whereΔcost is the difference between
the cost of a neighbor solution and the cost of the current
solution. .e control temperature τ is used to control search
progresses, in which the temperature is reduced according
to the increasing number of iterations in the annealing
schedule. When a worse solution is met, a random number z
in the ranges [0, 1] is generated and is compared to the
probability of accepting. .e worse solution is rejected when
a random number is lower than the acceptance probability
value (z<Pa) [36]:

Pa � e
−(Δ cos t/τ)

. (6)

.en, the SA process continues until a stopping con-
dition is reached. Finally, the solution that provides the
optimal RN placement for indoor positioning systems is
obtained. In particular, this optimal RN-placement solution
can support the robust operation either during a normal
situation or when there is a failure of some RNs. Figure 3
illustrates an example of the RN-placement solution ob-
tained from the proposed R-MSMR, in which the reliability
index is equal to two.

4. Experimental Setups

To evaluate the R-MSMR results, the positioning performance
of the R-MSMR was analyzed, and the results were compared
with other RN-placement designs under a normal situation and
when some RNs have failed. In particular, the RN-placement
approaches were compared between the proposed R-MSMR
and the following three different designs: the coverage and
uniform placement (Uniform) model, the Maximize-Sum of
MaximumRSS (MSMR)model [34], and Phase I (i.e., sufficient
number of RNs obtained from the proposed design) with the
uniform placement (PhI-Uni). For example, the objective of

the Uniform is to place the RNs in a service area, in which the
whole service area must be able to receive signals from at least
one RN. In order to estimate the target location inside the
multi-story buildings, the RMoS floor algorithm [37] and the
active Euclidean distance technique based on the location
fingerprinting approach are used. Instead of matching the RSS
patterns obtained from all the RNs in the service area as occurs
with the traditional Euclidean distance technique, the active
Euclidean distance technique only considers the RSS values
that are transmitted from the available RNs (i.e., active RNs) for
a matching RSS pattern process. .e RMoS floor algorithm is
used to determine the floor number of the target, while the
active Euclidean distance is used to estimate the target location
in coordinates (x, y), in which the matching process of the
algorithm considers only the available RSS received from any
RN installed. .e core of this study can be divided into two
objectives:

(1) To compare the positioning performance of indoor
positioning systems based on the location finger-
printing technique in which the system is employed
by different system designs (which will be discussed
in Section 5.2).

(2) To analyze the impact of different RN-failure
patterns on the accuracy of indoor multifloor
positioning systems (which will be discussed in
Section 5.3).

4.1. Experimental Settings. Figure 4 illustrates the floor
layouts of a three-story building, which consists of office
zones, classrooms, student lounge, and common rooms. .e
dimension of each floor is approximately 75m (width)×

75m (length). We divided the system design experiment of
the service area into three scenarios. Scenario 1 considers
a single-floor service area in which the service area is
located on the first floor. Scenario 2 considers a two-floor
service area that covers both the first and the second floor
of the building. Scenario 3 considers a three-floor service
area. Note that each floor has open space in the center. In
each scenario, two parameter sets with the same con-
figuration are used, consisting of the signal test points
and the candidate sites for the RN locations as shown in
Table 2.

We assign the grid spacing of the fingerprint locations at
four meters as shown by the blue cross in Figure 4. A total
number of 158, 316, and 474 test points (i.e., target locations)
were randomly selected for all three test scenarios, re-
spectively. Note that these numbers of test points were
obtained by determining the sample size with confidence
intervals [38]. Table 2 shows a summary of the parameters
used in our experiments. We conducted four value tests of
the reliability index R (i.e., R� 1, 2, 3, and 4) to observe how
it impacts indoor positioning performance. Note that we
define the input parameters of the R-MSMR on SA terms
with the cooling ratio φ� 0.9, the stopping temperature
τstop � 0.01, and the maximum count of the no-improvement
iteration nworse_max � 2000. .ese constraints follow the
recommendations of Kirkpatrick et al. [36].
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4.2. Experimental Equipment. Figure 5 illustrates the ex-
perimental equipment installed on each 
oor. �is includes
RNs which are placed at a height of two meters. �e target
node is connected to a computer notebook on which the
localization technique is executed. �e height of the target
node is 0.8 meters. IEEE 802.15.4 wireless transceivers were
deployed in this work. Each device (RNs and target) has
a Freescale MC13224V third-generation chipset with built-
in ARM7TDMI processors. �e antennas of the wireless
transceivers are the inverted F-shape antennas and SMA

antennas [39]. All devices are operated at 2.480GHz
(i.e., channel 26 of IEEE 802.15.4 standard). �is is to avoid
or minimize the interference from Wi-Fi networks in the
area. �e transmit power is +3 dBm, while the typical
sensitivity of the wireless transceivers is −95 dBm. A typical
range (indoors, nonline of sight) is about 30 meters. �e
target node will gather the RSS values that are transmitted
from the RNs in the service area. �ese measured RSS values
are used to estimate the location of the target node. Note that
the proposed solution technique calculates the RSS data in
linear scale (i.e., Watts). �erefore, we did not use dBm in
our calculation because it has limitations in terms of the
multiplication and division of log scales. �e sampling rate
of wireless transceivers in this work is 1 sample for every 3
seconds. Note that we only consider the stationary node in
our experimental study. Table 3 summarizes the speci�ca-
tions of the wireless transceivers used in our experiments.

5. Results and Discussion

In this section, several aspects of the numerical results of the
RN placement are discussed. First, in Section 5.1, the nu-
merical results of di�erent RN-placement designs for indoor
positioning systems are described. Next, in Section 5.2, we
provide a comparative performance evaluation of the
R-MSMR versus other system designs. Finally, in Section 5.3,
the impact of RN-failure patterns on the accuracy perfor-
mance of indoor positioning systems is analyzed.

5.1. System Design Results. Figures 6–8 illustrate the results
of the RN-placement designs for Scenarios 1 to 3, re-
spectively. Each graphic reports the number and the loca-
tions of the RNs obtained from four di�erent system designs,
which are the Uniform, the MSMR, the R-MSMR with R� 2,
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Figure 3: Example of the R-MSMR with R� 2 for the two-story building.
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Figure 4: �e three-story structure with the assigned STPs
location.

Mobile Information Systems 7



and the PhI-Uni. In these results, we found that the Uniform
has the lowest number of RNs installed in all three scenarios,
while the R-MSMR with R� 2 has the highest number of
RNs installed for all three scenarios. .e reason for the
R-MSMR requesting a higher number of RNs to be installed
than other system designs is that the proposed R-MSMR
structure is designed to provide high positioning accuracy
during a normal situation and also achieve reliable location
results when some RNs in the system fail. .erefore, our

algorithm seeks to distribute the RN locations across the
service area while maintaining high quality radio signal
coverage.

5.2. Performance Evaluation of the System Designs. In this
section, we evaluate the location estimation performance of
different system designs. In particular, the proposed
R-MSMR was compared with the Uniform, the MSMR, and
the PhI-Uni under the same experimental settings as shown
in Table 2. .e RMoS floor algorithm and the active Eu-
clidean distance technique based on the location finger-
printing approach were used to estimate the target locations
in coordinates x, y, and floor. Two different RN scenarios
were considered in our experiments. .e first scenario is
a fault-free scenario in which all RNs worked properly. .e
second scenario is a 3RN-failure per floor scenario in which
three of the RNs on each floor fail. .e experimental results
of the 3RN-failure per floor were averaged from four faulty
patterns. For example, we randomly selected and turned off

Table 2: Summary of parameters used in the experiments.

Parameter Details
Floor dimensions 75m× 75m (for 1st, 2nd, and 3rd floor)
RNs placement Uniform, MSMR, R-MSMR, and PhI-Uni
Number of signal test points (STP) and candidate
sites (CS)

328 locations for Scenario 1, 656 locations for
Scenario 2, and 984 locations for Scenario 3

Grid spacing of fingerprint locations 4m× 4m

Number of test points (i.e., target locations) 158 locations for Scenario 1, 316 locations for Scenario 2,
and 474 locations for Scenario 3

.e RSS sensitivity threshold (PT) 0.1 pW (i.e., −100 dBm)
Accuracy index (α) 4 [8]
Reliability index (R) 1, 2, 3, and 4
Floor determination technique RMoS floor algorithm [37]
Localization technique Active Euclidean distance

(a) (b)

Target node

RN

RN

RN RN
RN

RN

RNRN

(c)

Figure 5: Experimental equipment used in this work. (a) Reference node (RN). (b) Target node on a cart with laptop PC. (c) Experimental
equipment used in this work.

Table 3: Specifications of the wireless transceivers.

Specification Details
Manufacturer Freescale
Chipset MC13224V
Frequency range 2.405GHz to 2.480GHz
Operating channel CH 26 (2.480GHz)
Rx sensitivity −95 dBm
Transmit power +3 dBm
Antenna Inverted F-antenna and SMA antenna
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three RNs on each floor to create four patterns of RN failure.
.en, an average accuracy performance was computed from
those four patterns of RN failure.

.e positioning performance results of different system
designs were divided into two sections. In Section 5.2.1, the
results of the correct floor determination are presented.
.en, in Section 5.2.2, the accuracy and the precision of four
different indoor positioning systems that employ different
system designs are compared.

5.2.1. Correct Floor Determination Results. Under the fault-
free scenario, all four indoor multifloor positioning systems
that employ different design structures were able to achieve
results of 100% correct floor determination in both Scenario 2
and Scenario 3 (i.e., inside the two- and three-floor service
area, resp.). Unlike the fault-free scenario, indoor multifloor
positioning systems under the RN-failure scenario encoun-
tered problems from the missing RSS values during the online
phase due to the three faulty RNs on each floor. Figure 9
compares the floor determination accuracy under the 3RN-
failure per floor scenario. .e red bins, gray bins, blue bins,
and yellow bins represent the correct floor determination
percentages for the Uniform, the MSMR, the R-MSMR with
R� 2, and the PhI-Uni, respectively. From these results, we
found that the floor determination accuracy of indoor mul-
tifloor positioning systems that employ the Uniform, the
MSMR, and the PhI-Uni decreased in the event of faulty RNs.

In the results of Scenario 2 and Scenario 3, the Uniform had
the lowest correct floor determination percentage of about
92.01% and 62.34%, respectively. Similar floor determination
results are seen in the MSMR and the PhI-Uni. In particular,
we found that the insufficient RN placement had a significant
effect on floor determination performance. .e floor de-
termination of the PhI-Uni which used a sufficient number of
RNs (NS) had an incorrect floor number. .e PhI-Uni did not
provide 100% correct floor determination in either Scenario 2
or Scenario 3 (98.25% and 91%, resp.). .ese figures are
different from the proposed system design, in which the
R-MSMR with R� 2 was able to achieve the highest correct
floor determination percentage of up to 100% in both Scenario
2 and Scenario 3. Moreover, we found that the floor de-
termination accuracy of the Uniform, theMSMR, and the PhI-
Uni depended on the number of RNs which failed inside the
building; the floor determination accuracy decreased in line
with the rise in the number of RN failures.

.is observation suggests that a larger number of the
RN failures (i.e., considering six and nine RN failures as
large numbers in Scenario 2 and Scenario 3, resp.) degrade
the floor determination accuracy of the Uniform, the
MSMR, and the PhI-Uni. Only the performance of the
proposed R-MSMR was not affected by the increasing
number of RN failures. It succeeded 100% in correct floor
determination in the scenarios of both six and nine RN
failures in the building.
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Figure 6: .e RN placement designed for Scenario 1. (a) Uniform (4 nodes). (b) MSMR (6 nodes). (c) R-MSMR, R� 2 (9 nodes). (d) PhI-
Uni (9 nodes).
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5.2.2. Results of the PositioningAccuracy (x, y). Figures 10–12
report average error distances of indoor positioning systems
that employ four different design structures for Scenario 1 to
Scenario 3, respectively. We first consider the accuracy
performance of the indoor positioning systems under the
fault-free scenario as represented by empty bins. .e pro-
posed R-MSMR with R� 2 shows a better accuracy per-
formance than other system designs in all three scenario
areas. For example, Figure 11 illustrates four different

positioning results under the fault-free scenario in the two-
story building of Scenario 2. .e average error distance of
the R-MSMR is 4.42 meters, while the average error dis-
tances of the Uniform, the MSMR, and the PhI-Uni are 6.35
meters, 5.20 meters, and 5.13 meters, respectively. R-MSMR
has 30.4%, 15.0%, and 13.8% better performance than the
Uniform, the MSMR, and the PhI-Uni, respectively. In
comparing the accuracy performance of all three service
areas under the fault-free scenario, the proposed R-MSMR
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Figure 7: .e RN placement designed for Scenario 2. (a) Uniform (8 nodes). (b) MSMR (12 nodes). (c) R-MSMR, R� 2 (18 nodes). (d) PhI-
Uni (18 nodes).
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Figure 8:.e RN placement designed for Scenario 3. (a) Uniform (12 nodes). (b) MSMR (18 nodes). (c) R-MSMR, R� 2 (27 nodes). (d) PhI-
Uni (27 nodes).
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shows a better performance for location estimation than the
Uniform by about 17.4% to 32.8%, the MSMR by about 5.6%
to 15.0%, and the PhI-Uni by about 9.8% to 13.8%. Addi-
tionally, we found that the accuracy performance trend for
all four system designs under the fault-free scenario follows
the increasing number of RNs installed in the service areas.
A larger number of RNs installed can improve the location
accuracy performance. Notice that this follows the same
trend as in the performance improvement recommendations
by Kaemarungsi [8].

We next consider the performance of the indoor posi-
tioning systems under the 3RN failure per 
oor scenario.
Figure 13 shows an example of the cumulative density
function (CDF) of the error distance for the two-
oor service
area of Scenario 2. �e red lines, the black lines, the blue
lines, and the yellow lines represent the precision perfor-
mance of the Uniform, the MSMR, the R-MSMR with R� 2,
and the PhI-Uni, respectively.�e results indicate that faulty
RNs in the system decrease the positioning performance of
all system designs. However, the R-MSMR with R� 2 also
achieves the highest positioning performance, in which the

performance under the RN-failure scenario is approximately
90% precision within 8.1 meters. �is represents an 85.9%
better performance than the Uniform (i.e., 90% precision
within 57.7 meters), 29.6% better performance than the
MSMR (i.e., 90% precision within 11.5 meters), and 11.4%
better performance than the PhI-Uni (i.e., 90% precision
within 9.14 meters).

Considering the overall accuracy performance under the
3RN-failure per 
oor scenario, Figures 10–12 show that the
R-MSMR with R� 2 provides a better accuracy performance
than the Uniform by about 79.7% to 84.6%, the MSMR by
about 14.5% to 54.7%, and the PhI-Uni by about 8.2% to
32.9%. Furthermore, the fault tolerance of the proposed
R-MSMR under all of the RN-failure scenarios is greater
than that of the other system designs. For instance, Figure 12
shows the positioning performance under the scenario of
nine RN failures inside the three-
oor service area. �e
R-MSMR with R� 2 has a percentage of di�erence between
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an average error distance in the normal situation and the
3RN-failure per 
oor scenario of about 7.1%, whereas the
Uniform, theMSMR, and the PhI-Uni have percentage of up
to 79%, 55%, and 23.1%, respectively. Although the number
of RNs installed in the PhI-Uni is the same as the number of
RNs installed in the proposed R-MSMR, the indoor posi-
tioning performances are di�erent. �e PhI-Uni only pro-
vides a correct 
oor determination score of 91% with a fault
tolerance of 76.9%, while the proposed R-MSMR achieves
a successful correct 
oor determination score of 100% with
a fault tolerance of 92.9%. �e reason why the proposed
R-MSMR with R� 2 can provide better fault tolerance
during the online estimation phase than the other system
designs is that the proposed R-MSMR is speci�cally designed
to guarantee that the localization area (i.e., all STPs) must be
able to receive at least the recommended number of RSS
values with a summation of the accuracy index (α) and the
reliability index (R). �us, the structure of the proposed
system design can tolerate the missing RSS values during
the online estimation phase where some RNs in the system
fail. �is ensures good positioning accuracy during a nor-
mal situation and yields the robustness of the location
estimation under the scenario of RN failures. Furthermore,
the su¤cient number of RNs (NS) that is obtained from
Phase I can also prevent the high cost of node infrastructure
installation. �us, the designers can apply the determining
optimal number of RNs obtained from Phase I to place the
RNs manually in a small service area or an uncomplicated
building.

Figure 14 illustrates the performance improvement of
the R-MSMR when the value of the reliability index is in-
creased while the number of faulty RNs is �xed at six nodes
(i.e., 3RN-failure per 
oor inside a two-
oor service area).
In Figure 14, four of the reliability indices for the R-MSMR
are compared, speci�ed as R � 1 to R � 4. �e results show
that a larger value for the reliability index can improve the

positioning performance of the location estimation. For
example, under the 3RN-failure per 
oor scenario, the
precision performance at 5 meters of the R-MSMR with
R� 1 to R� 4 is approximately 51.1%, 55.6%, 61.1%, and
65.3%, respectively. �is demonstrates that the system can
handle the faulty RNs by utilizing the R-MSMR with the
large value of its reliability index. However, increasing the
reliability index for the R-MSMR requires a greater number
of RNs to be installed in the system. �is leads to higher
installation costs, computation time, and memory space
requirement for the �ngerprint database. �ese factors will
depend on the limitations of the indoor positioning systems
chosen, such as the budget for installing the wireless network
and the performance requirements of the positioning
application.

5.3. Impact of RN-Failure Patterns on Accuracy Performance. In
this section, we analyze the impact of di�erent RN-failure
patterns on accuracy performance. �e system design re-
sults of the Uniform, the MSMR, the R-MSMR with R � 2,
and the PhI-Uni under the two-
oor service area were
considered, in which those RN-placement designs are as
shown in Figure 7. �e experimental settings in this study
were assigned the same con�guration as in Scenario 2. �e
RMoS 
oor algorithm and the active Euclidean distance
technique were used to estimate the target locations. In this
study, two di�erent RN-failure patterns were considered.
�e �rst pattern was a similar RN-failure pattern, in which
all RNs on the 1st 
oor and the 2nd 
oor fail on the same
side of the building. �e second pattern involved an across
RN-failure pattern, in which all faulty RNs on the 1st 
oor
were on the opposite side of the building to the faulty
RNs on the 2nd 
oor. In each RN-failure pattern, the four
cases of the faulty RNs inside the building were divided
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Figure 13: CDF of error distance in Scenario 2.
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according to the cardinal directions (i.e., north, south, west,
and east direction). Figures 15(a) and 15(b) show an ex-
ample of the 1st similar and the 1st across RN-failure
pattern, respectively. In particular, the six cases of the

RN-failure per 
oor situations, consisting of from zero
nodes to �ve nodes, are compared.

Figure 16 shows an example of indoor positioning
systems in the two-story building that employs R-MSMR

1

2

(a)

1

2

(b)

Figure 15: Example of the faulty RNs pattern in this experiment. (a) Similar RN-failure pattern. (b) Across RN-failure pattern.
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Figure 16: Example of the 1st similar RN-failure scenario for the R-MSMR, R� 2.
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with R� 2. .e blue circles represent the location of the RNs
installed, while the red crosses represent the location of the
RN failures. In this figure, it can be seen that the system
encountered the 1st similar RN-failure pattern, in which
three RNs on each floor fail. .ose faulty RNs on each floor
are located in the east section of the service area.

We first consider the impact of the number of RN
failures on performance accuracy in Figure 17. .e results of
each system designs were averaged from the four RN-failure
sections (i.e., the four cardinal directions). Clearly, perfor-
mance accuracy decreases in line with an increase in the
number of RN failures. For example, Figure 17 shows the
trend of the average error distance when the number of
faulty RNs in each floor is increased. .e MSMR under the
similar RN-failure pattern (the black solid line with circles)
has an increasing average error distance of 5.25, 5.50, 5.93,
6.34, 8.59, and 23.88 meters for 0, 1, 2, 3, 4, and 5 failed RNs
on each floor, respectively. .is indicates that the accuracy
performance of the MSMR drops by almost 80% if ten RNs
inside the two-floor service area fail. .ese results are dif-
ferent from those of the proposed R-MSMR with R� 2. Our
proposed design can provide a better fault tolerance than
other system designs. In this case, under the ten RN failure
inside the two-floor service area scenario, the average error
distance of the R-MSMR with R� 2 does not exceed 6
meters.

Moreover, we found that the across RN-failure pattern
(the dashed lines) degrades accuracy performancemore than
the similar RN-failure pattern (the solid lines). For example,
the MSMR under the across RN-failure pattern (black
dashed line with circles) has an increasing average error
distance of 5.25, 5.34, 6.31, 13.95, 18.02, and 26.49 meters for
0, 1, 2, 3, 4, and 5 failed RNs on each floor, respectively. It
resulted in a maximum of 52.4% worse location accuracy
than the similar RN-failure pattern. .is means that the

MSMRmay have poor positioning performance if the across
RN-failure pattern occurs. Similar results were obtained for
the cases of the Uniform, the R-MSMR with R� 2, and PhI-
Uni design under the across RN-failure pattern.

Next, to investigate how the patterns of RN failure in-
fluence accuracy performance, we report the location esti-
mation error performance of the similar and the across
RN-failure patterns as shown in Figures 18 and 19, re-
spectively. In each figure, the indoor two-floor positioning
systems that employ the Uniform and the R-MSMR with
R� 2 were compared under the case of the two RN failure
per floor scenario. .e pink lines denote the error distance
that is greater than eight meters. .e blue circles represent
the actual target locations, while the pink crosses represent
the estimated target locations. We first consider indoor
positioning systems under the similar RN-failure pattern as
shown in Figure 18. Clearly, the Uniform has higher location
estimation error than the R-MSMR with R� 2. .e average
error distance of the Uniform is 10.33 meters, while the
average error distance of the R-MSMR with R� 2 is 4.71
meters. Moreover, Figure 18(a) indicates that most of the
location estimation errors for the Uniform are located on the
opposite side of the floor to the faulty RNs (i.e., at the west
side of the building)..ese results are different from those of
the R-MSMR with R� 2. As shown in Figure 18(b), the
R-MSMR with R� 2 has 54.4% better accuracy performance
than the Uniform. Note that both the Uniform and the
R-MSMR with R� 2 can achieve 100% correct floor de-
termination in the case of the similar RN-failure pattern.

We next consider the indoor positioning systems under
the across RN-failure pattern, as shown in Figure 19. .e
results indicate that the Uniform again has higher location
estimation error than the proposed R-MSMR with R� 2.
.ose location estimation errors are mostly located on the
opposite side of the floor to the faulty RNs. Besides the issue

0

5

10

15

20

25

30

35

Av
er

ag
e e

rr
or

 d
ist

an
ce

 (m
)

1 2 3 4 5 60
Number of faulty RNs per floor

Uniform_similar
Uniform_across
MSMR_similar
MSMR_across

R = 2_similar
R = 2_across
PhI-Uni_similar
PhI-Uni_across

Figure 17: Effect of different numbers of RN failures per floor on average error distance.
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of location estimation errors, incorrect 
oor determination
also occurredunder the acrossRN-failure pattern. In Figure 19(a),
the red solid lines represent the results of the error distance
when estimating the incorrect 
oor determination. �e
Uniform shows the lowest 
oor accuracy performance under
the across RN-failure pattern (with an average error distance
of 20.3 meters). �e Uniform provides 74.0% correct 
oor
determination, with most of the 
oor determination errors
located on the same side of the 
oor as the faulty RNs. �ese
results are di�erent from those of the proposed system
design. �e R-MSMR with R� 2 also has an average error
distance of 4.72 meters, but it yields 100% correct 
oor
determination. Once again, the overall accuracy perfor-
mance of the Uniform under the across RN-failure pattern

was up to 49.1% worse than the location accuracy for the
similar RN-failure pattern, whereas the overall accuracy
performance of the proposed R-MSMR with R� 2 was al-
most the same under both the similar and the across RN-
failure patterns.

�e results show the advantages of the proposed ro-
bust system design, which not only provides the highest
performance accuracy during a normal situation, but also
yields reliable location results under unexpected situations
such as RN failures.�e reason for this is that themathematical
formulation of the proposed R-MSMR model considers not
only the radio signal coverage requirements but also the ac-
curacy and reliability requirements. Unlike the proposed
system design, existing RN-placement designs limit their
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Figure 18: �e location estimation errors that are greater than 8 meters under the similar RN-failure pattern. (a) �e Uniform. (b) �e
R-MSMR, R� 2.
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focuses to the provision of signal radio coverage in the service
area. �ese are insu¤cient and ine¤cient methods for de-
signing indoor positioning systems in unexpected situations.
�us, we can conclude that an indoor positioning systems that
employ our proposed R-MSMR is fault tolerant and robust in
the RN-failure scenarios considered in our study.

6. Conclusion

In this article, we have considered the problem of wireless
indoor positioning system design, for systems based on the
location �ngerprinting technique. We proposed a novel
mathematical formulation using a Binary Integer Linear
Programming (BILP) approach that employs Simulated

Annealing (SA) based on the heuristic solution technique.
�e task of the proposed system design is to determine and
place a suitable number of RNs and to �nd the optimum
locations which may be located on a single 
oor or on
multiple 
oors. In particular, the proposed system design
has been developed to support robust operation both during
a normal situation and when some RNs have failed. Ex-
perimental results reveal that the proposed robust system
design outperformed other system designs and was able to
achieve the highest location performance accuracy in both
fault-free and RN-failure scenarios. Speci�cally, the proposed
system design delivered 84.6%, 54.7%, and 32.9% better
performance accuracy than the Uniform, the MSMR, and
the PhI-Uni, respectively.
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Figure 19: �e location estimation errors that are greater than 8 meters under the across RN-failure pattern. (a) �e Uniform. (b) �e R-
MSMR, R� 2.
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Our future works will consider a combination of the
major components between the robust system design and
the robust localization algorithm that may be supported
during the normal situation or when some RNs have failed.
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