

George C. Marshall Space Flight Center

111- 10 048243

Meteoroids and Meteor Storms: A Threat to Spacecraft?

April 20, 1999

B. Jeffrey Anderson Electromagnetics and Aerospace Environments Branch NASA Marshall Space Flight Center Huntsville, Alabama, 35812 b.jeffrey.anderson@msfc.nasa.gov

Meteoroid Flux in Geosynchronous Orbit

Hypervelocity Impact Phenomena

George C. Marshall Space Flight Center

Courtesy Johnson Space Center

Left: Flash x-ray sequence. Right: Impact Damage to Graphite Epoxy Honeycomb {1/16" (5.82 mg) Al impact at 6.81 km/s on 24 layer MLI, M60J/954 Honeycomb, 0.040"/0.40"}

Impacts on LDEF Thermal Surfaces

George C. Marshall Space Flight Center

Impact Related Failure Modes

George C. Marshall Space Flight Center

MSTI-2 (9/94) ??

Cables Short

- Cables Cut
- Pressure Vessels (explode/unzip)
- Structure Failure
- Tethers Cut
- Window Damage
- Light Leakage
- Electromagnetic Pulse (Meteoroids only)
- Fluid Line and Heat Pipe Leaks
- Operator Error

CERISE (7/96)

SEDS-2 (after mission) Shuttle (3 replaced / 2 missions)

Olympus (8/93) ?? Shuttle Threat

Zenith Hourly Rate (ZHR)

- Meteor altitude is about 100 km.
- "Standard" Observer.
- Dark, clear sky
 - Magnitude 6.5 stars visible.
- Radiant of shower directly overhead.
- Zenith Hourly Rate is the number counted per hour.
- Background: ZHR ~ 8.
- Typical "Shower": ZHR ~ tens.
- Meteor "Storm": ZHR > 1000.
- For a 300 m² Satellite, storm conditions risk is ~ 0.00001 hr⁻¹ from visible-size meteoroids.

Meteor Showers

		George C. Marshall Space Flight Center			
Meteors	Dates	ZHR Peak	Comet		
Sporadic Background		8			
Quadrantids	Jan 1-6	80	unknown		
April Lyrids	Apr 19-25	15	Thatcher 1861 I		
Pi-Pullids	Apr 21-26	40	Grigg-Skjellerup		
Eta-Aquarids	Apr 24-May 20	35	Halley		
Day Beta-Taurids	Jun 23-Jul 5	20	Encke		
Perseids	Jul 15-Aug 21	75	Swift-Tuttle		
October Draconids	Oct 7-10	20	Giacobini-Zinner		
Orionids	Oct 16-30	25	Halley		
Taullus	Oct 20-Nov 30	12	Encke		
Loonids	Nov 15-20	10	Tempel-Tuttle		
s - ids	Nov 25-Dec 17	60	3200 Phaethon (asteroi		
	Dec 20-24	5	Tuttle		

Orbital Mechanics of Leonid Generating Comet Tempel-Tuttle

George C. Marshall Space Unight Cores

1998 Leonid Visual Observations

40°E

50°W

33 x GEO

120 x GEO

Sun

- Peak Time = 02:20 UT on Nov. 18, 1999.
- Estimated Peak ZHR = 1000 to 2000.
- Width of Peak: Less than 2 hours, but with enhanced activity for several days.

63 x GEO

Risk to Satellite Surfaces

Meteoroid Mess (grams)	1.E-07	1.E-06	1.E-05	1.E-04	1.E-03
· Flack or (h. ⁴)	~ 3 E-5	~ 5 E <i>-</i> 6	~ 9 E-7	~ 1 E-7	~ 2 E-8

Leonid Storm Mitigation Strategies

George C. Marshall Space Flight Center

- Robust Design (Minimize exposed cables and fluid lines. Assure a well grounded system.)
- Understand your system's weaknesses --- plan accordingly.

<u>November 18, 1999, 02:20 UT ± 3 hours:</u>

- Orient satellite to minimize cross-sectional area and vulnerable surface exposure to the stream.
 - No problem for solar arrays since radiant is about 82° from sun.
- Notify system controllers of the enhanced likelihood of spacecraft anomalies. Keep the "Starting Team" on duty.
- Minimize operational changes, software uploads, and complex operations during this period.
- Configure to minimize high voltages on board.

George C. Marshall Space Flight Center

BACK UP SLIDES

Double Wall Penetration Leonid Storm Peak

x 10⁶ 3.5 **Assumptions:** Zenith Hourly Rate = 5000Flux = 2.8e-19 (zhr) $m^{-1.3} [m^{-2} s^{-1}]$ 2.5 One Square Meter at Random Orientation, One Hour Exposure Probability per Bin 0.020 Inch Al Back Wall 0.25 Inch Spacing to Bumper No Earth Shielding **Total Probability of Penetration** 0.5 2.7e-5 [m⁻² hr⁻¹] Critical Mass = 3.6e-6 g. 10.3 10^{.2} 10 10 10 10 MASS (grams)

Double Wall Penetration Taylor-McBride Velocity Distribution

Assumptions:

- 0.020 Inch Al Back Wall
- 0.25 Inch Spacing to Bumper
- One Square Meter, One Year Exposure
- 1000 km Altitude
- Grün / Space Station / TM 4527 Flux
- Taylor & McBride Velocity Distribution (3/97 Darmstadt Conf.)

Total Probability of Penetration = 0.026

Conclusions

- Robust system design is the best protection against meteoroid damage.
- Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare.
- Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain.
- Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is <u>highly unlikely</u>.
- Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.

Results of half inch Al projectile impacting on 0.040 inch Al plates at 6.1 km/s; 4 in. spacing; 0.125 in. back plate.