4,320 research outputs found

    A fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM)

    Full text link
    © 2017 IEEE. In the spirit of twin parametric-margin support vector machine (TPMSVM) and support vector machine based on fuzzy membership values (FSVM), a new method termed as fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM) is proposed in this paper to reduce the effect of the outliers. In FLTPMSVM, we assign the weights to each data samples on the basis of fuzzy membership values to reduce the effect of outliers. Also, we consider the square of the 2-norm of slack variables to make the objective function strongly convex and find the solution of the proposed FLTPMSVM by solving simple linearly convergent iterative schemes instead of solving a pair of quadratic programming problems as in case of SVM, TWSVM, FTSVM and TPMSVM. No need of external toolbox is required for FLTPMSVM. The numerical experiments are performed on artificial as well as well known real-world datasets which show that our proposed FLTPMSVM is having better generalization performance and less training cost in comparison to support vector machine, twin support vector machine, fuzzy twin support vector machine and twin parametric-margin support vector machine

    Extraction of the Major Features of Brain Signals using Intelligent Networks

    Get PDF
    The brain-computer interface is considered one of the main tools for implementing and designing smart medical software. The analysis of brain signal data, called EEG, is one of the main tasks of smart medical diagnostic systems. While EEG signals have many components, one of the most important brain activities pursued is the P300 component. Detection of this component can help detect abnormalities and visualize the movement of organs of the body. In this research, a new method for processing EEG signals is proposed with the aim of detecting the P300 component. Major features were extracted from the BCI Competition IV EEG data set in a number of steps, i.e. normalization with the purpose of noise reduction using a median filter, feature extraction using a recurrent neural network, and classification using Twin Support Vector Machine. Then, a series of evaluation criteria were used to validate the proposed approach and compare it with similar methods. The results showed that the proposed approach has high accuracy

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Investigating Brain Functional Networks in a Riemannian Framework

    Get PDF
    The brain is a complex system of several interconnected components which can be categorized at different Spatio-temporal levels, evaluate the physical connections and the corresponding functionalities. To study brain connectivity at the macroscale, Magnetic Resonance Imaging (MRI) technique in all the different modalities has been exemplified to be an important tool. In particular, functional MRI (fMRI) enables to record the brain activity either at rest or in different conditions of cognitive task and assist in mapping the functional connectivity of the brain. The information of brain functional connectivity extracted from fMRI images can be defined using a graph representation, i.e. a mathematical object consisting of nodes, the brain regions, and edges, the link between regions. With this representation, novel insights have emerged about understanding brain connectivity and providing evidence that the brain networks are not randomly linked. Indeed, the brain network represents a small-world structure, with several different properties of segregation and integration that are accountable for specific functions and mental conditions. Moreover, network analysis enables to recognize and analyze patterns of brain functional connectivity characterizing a group of subjects. In recent decades, many developments have been made to understand the functioning of the human brain and many issues, related to the biological and the methodological perspective, are still need to be addressed. For example, sub-modular brain organization is still under debate, since it is necessary to understand how the brain is functionally organized. At the same time a comprehensive organization of functional connectivity is mostly unknown and also the dynamical reorganization of functional connectivity is appearing as a new frontier for analyzing brain dynamics. Moreover, the recognition of functional connectivity patterns in patients affected by mental disorders is still a challenging task, making plausible the development of new tools to solve them. Indeed, in this dissertation, we proposed novel methodological approaches to answer some of these biological and neuroscientific questions. We have investigated methods for analyzing and detecting heritability in twin's task-induced functional connectivity profiles. in this approach we are proposing a geodesic metric-based method for the estimation of similarity between functional connectivity, taking into account the manifold related properties of symmetric and positive definite matrices. Moreover, we also proposed a computational framework for classification and discrimination of brain connectivity graphs between healthy and pathological subjects affected by mental disorder, using geodesic metric-based clustering of brain graphs on manifold space. Within the same framework, we also propose an approach based on the dictionary learning method to encode the high dimensional connectivity data into a vectorial representation which is useful for classification and determining regions of brain graphs responsible for this segregation. We also propose an effective way to analyze the dynamical functional connectivity, building a similarity representation of fMRI dynamic functional connectivity states, exploiting modular properties of graph laplacians, geodesic clustering, and manifold learning

    Facial expression recognition in the wild : from individual to group

    Get PDF
    The progress in computing technology has increased the demand for smart systems capable of understanding human affect and emotional manifestations. One of the crucial factors in designing systems equipped with such intelligence is to have accurate automatic Facial Expression Recognition (FER) methods. In computer vision, automatic facial expression analysis is an active field of research for over two decades now. However, there are still a lot of questions unanswered. The research presented in this thesis attempts to address some of the key issues of FER in challenging conditions mentioned as follows: 1) creating a facial expressions database representing real-world conditions; 2) devising Head Pose Normalisation (HPN) methods which are independent of facial parts location; 3) creating automatic methods for the analysis of mood of group of people. The central hypothesis of the thesis is that extracting close to real-world data from movies and performing facial expression analysis on movies is a stepping stone in the direction of moving the analysis of faces towards real-world, unconstrained condition. A temporal facial expressions database, Acted Facial Expressions in the Wild (AFEW) is proposed. The database is constructed and labelled using a semi-automatic process based on closed caption subtitle based keyword search. Currently, AFEW is the largest facial expressions database representing challenging conditions available to the research community. For providing a common platform to researchers in order to evaluate and extend their state-of-the-art FER methods, the first Emotion Recognition in the Wild (EmotiW) challenge based on AFEW is proposed. An image-only based facial expressions database Static Facial Expressions In The Wild (SFEW) extracted from AFEW is proposed. Furthermore, the thesis focuses on HPN for real-world images. Earlier methods were based on fiducial points. However, as fiducial points detection is an open problem for real-world images, HPN can be error-prone. A HPN method based on response maps generated from part-detectors is proposed. The proposed shape-constrained method does not require fiducial points and head pose information, which makes it suitable for real-world images. Data from movies and the internet, representing real-world conditions poses another major challenge of the presence of multiple subjects to the research community. This defines another focus of this thesis where a novel approach for modeling the perception of mood of a group of people in an image is presented. A new database is constructed from Flickr based on keywords related to social events. Three models are proposed: averaging based Group Expression Model (GEM), Weighted Group Expression Model (GEM_w) and Augmented Group Expression Model (GEM_LDA). GEM_w is based on social contextual attributes, which are used as weights on each person's contribution towards the overall group's mood. Further, GEM_LDA is based on topic model and feature augmentation. The proposed framework is applied to applications of group candid shot selection and event summarisation. The application of Structural SIMilarity (SSIM) index metric is explored for finding similar facial expressions. The proposed framework is applied to the problem of creating image albums based on facial expressions, finding corresponding expressions for training facial performance transfer algorithms

    Land use/land cover classification using machine learning models

    Get PDF
    An ensemble model has been proposed in this work by combining the extreme gradient boosting classification (XGBoost) model with support vector machine (SVM) for land use and land cover classification (LULCC). We have used the multispectral Landsat-8 operational land imager sensor (OLI) data with six spectral bands in the electromagnetic spectrum (EM). The area of study is the administrative boundary of the twin cities of Odisha. Data collected in 2020 is classified into seven land use classes/labels: river, canal, pond, forest, urban, agricultural land, and sand. Comparative assessments of the results of ten machine learning models are accomplished by computing the overall accuracy, kappa coefficient, producer accuracy and user accuracy. An ensemble classifier model makes the classification more precise than the other state-of-the-art machine learning classifiers

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie
    corecore