14,721 research outputs found

    Crone control of a nonlinear hydraulic actuator

    Get PDF
    The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An input-output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this linearization when the parameters of the plant vary is then analyzed using the Volterra input-output representation in the frequency domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the input-output linearized model when parametric variations occur

    System identification and structural control on the JPL Phase B testbed

    Get PDF
    The primary objective of NASA's CSI program at JPL is to develop and demonstrate the CSI technology required to achieve high precision structural stability on large complex optical class spacecraft. The focus mission for this work is an orbiting interferometer telescope. Toward the realization of such a mission, a series of evolutionary testbed structures are being constructed. The JPL's CSI Phase B testbed is the second structure constructed in this series which is designed to study the pathlength control problem of the optical train of a stellar interferometer telescope mounted on a large flexible structure. A detailed description of this testbed can be found. This paper describes our efforts in the first phase of active structural control experiments of Phase B testbed using the active control approach where a single piezoelectric active member is used as an actuation device and the measurements include both colocated and noncolocated sensors. Our goal for this experiment is to demonstrate the feasibility of active structural control using both colocated and noncolocated measurements by means of successive control design and loop closing. More specifically, the colocated control loop was designed and closed first to provide good damping improvement over the frequency range of interest. The noncolocated controller was then designed with respect to a partially controlled structure to further improve the performance. Based on our approach, experimental closed-loop results have demonstrated significant performance improvement with excellent stability margins

    Precise control of flexible manipulators

    Get PDF
    Experimental apparatus were developed for physically testing control systems for pointing flexible structures, such as limber spacecraft, for the case that control actuators cannot be collocated with sensors. Structural damping ratios are less than 0.003, each basic configuration of sensor/actuator noncollocation is available, and inertias can be halved or doubled abruptly during control maneuvers, thereby imposing, in particular, a sudden reversal in the plant's pole-zero sequence. First experimental results are presented, including stable control with both collocation and noncollocation

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design

    High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    Get PDF
    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off

    MODELING, ANALYSIS AND CONTROL OF FLEXIBLE SOLID-STATE HYSTERETIC ACTUATORS

    Get PDF
    A distributed parameters modeling and control framework for flexible solid-state hysteretic actuator is presented in this work. For the simplicity of analysis, the actuator dynamic behavior is decoupled and treated separately from the hysteresis nonlinearity. To include the effects of widely-used flexural mechanisms, a mass-spring-damper boundary condition is considered for system. Moreover, the effect of electromechanical actuation is included as a concentrate force at the boundary. The problem is then divided into two parts: first part deals with free motion analysis of system in order to obtain eigenvalues and eigenfunctions using the expansion theorem and a standard eigenvalue problem procedure. The effects of different boundary mass and spring values on the natural frequencies and mode shapes are demonstrated, which indicate their significant contribution to system performance. In the second part, forced motion analysis of system and its state-space representation are presented. A frequency based control strategy utilizing widely used Lyapunov theorem is designed to obtain an accurate control over the actuator motion. A robust variable structure control is incorporated into the developed controller for compensation of ever-present plant structural uncertainties. A full order state feedback observer is designed to accurately mimic the states of an unobservable plant. An optimization algorithm is developed to compute the optimal observer gain matrix. Various frequency tracking simulations are performed using feedback controller-observer model to observe the effect of modes deficiency on the tracking frequency bandwidth of the controller. Finally, for the accurate prediction of nonlinear multi-loop hysteresis effect, a major source of inaccuracies at quasi-static frequency, a recently developed hysteresis model based on three hysteric properties of piezoelectric material namely targeting of turning points, curve alignment and the wiping-out effect is used. Initially, the hysteresis nonlinearity is decoupled from the looping effect and modeled separately using an exponential function. The obtained exponential function is then utilized in a nonlinear mapping procedure, where it is mapped between consequent turning points recorded in model memory unit. This mapping also uses four constant shaping parameters - two for the ascending and two for the descending hysteresis trajectories. A proportional integral (PI) controller is used for the compensation of hysteresis nonlinearity. Performance of PI controller is validated using several numerical simulations. Finally, the method of combining robust feedback control strategy with the feedforward hysteresis compensation technique is presented to accomplish the precise control over actuator motion

    MIT's interferometer CST testbed

    Get PDF
    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances
    corecore