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ABSTRACT 

A distributed parameters modeling and control framework for flexible solid-state 

hysteretic actuator is presented in this work. For the simplicity of analysis, the actuator dynamic 

behavior is decoupled and treated separately from the hysteresis nonlinearity. To include the 

effects of widely-used flexural mechanisms, a mass-spring-damper boundary condition is 

considered for system. Moreover, the effect of electromechanical actuation is included as a 

concentrate force at the boundary. The problem is then divided into two parts: first part deals 

with free motion analysis of system in order to obtain eigenvalues and eigenfunctions using the 

expansion theorem and a standard eigenvalue problem procedure. The effects of different 

boundary mass and spring values on the natural frequencies and mode shapes are demonstrated, 

which indicate their significant contribution to system performance.  

In the second part, forced motion analysis of system and its state-space representation are 

presented. A frequency based control strategy utilizing widely used Lyapunov theorem is 

designed to obtain an accurate control over the actuator motion. A robust variable structure 

control is incorporated into the developed controller for compensation of ever-present plant 

structural uncertainties. A full order state feedback observer is designed to accurately mimic the 

states of an unobservable plant. An optimization algorithm is developed to compute the optimal 

observer gain matrix. Various frequency tracking simulations are performed using feedback 

controller-observer model to observe the effect of modes deficiency on the tracking frequency 

bandwidth of the controller.  

Finally, for the accurate prediction of nonlinear multi-loop hysteresis effect, a major 

source of inaccuracies at quasi-static frequency, a recently developed hysteresis model based on 

three hysteric properties of piezoelectric material namely targeting of turning points, curve 
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alignment and the wiping-out effect is used. Initially, the hysteresis nonlinearity is decoupled 

from the looping effect and modeled separately using an exponential function. The obtained 

exponential function is then utilized in a nonlinear mapping procedure, where it is mapped 

between consequent turning points recorded in model memory unit. This mapping also uses four 

constant shaping parameters - two for the ascending and two for the descending hysteresis 

trajectories. A proportional integral (PI) controller is used for the compensation of hysteresis 

nonlinearity. Performance of PI controller is validated using several numerical simulations. 

Finally, the method of combining robust feedback control strategy with the feedforward 

hysteresis compensation technique is presented to accomplish the precise control over actuator 

motion.  

.      
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background and Literature Review 

Until the past few years, most of the technological developments were linked to the 

invention of materials. Materials used in most of these applications were either passive or not 

functional, as they do not sense or respond in a predictable manner to the change in the 

environment. The recent technological innovations in material science engineering have resulted 

in materials that can change their physical properties in a predictable or controllable manner by 

application of external stimuli are referred as smart materials 1,2 . The utilization of smart 

materials in today’s world ranges from very small NEMS (Neno Electro-Mechanical Systems) 

and MEMS (Micro Electro-Mechanical Systems) applications 3,4 to large aerospace applications 

5,6 . Piezoelectric materials, ferromagnetic materials and shape memory alloys are some of the 

examples of smart materials.   

Piezoceramics are one of the most widely used smart materials due their sub-micro meter 

resolution with large bandwidth and few gigahertzes operating frequency. Piezoelectric actuators 

made up of lead zirconate titanate (PZT) are used in various fields. However, the fatigue and 

aging phenomenon associated with piezoelectric actuators limits their usage 7,8 . Due to these 

limitations, ferromagnetic actuators made up of Galfenol and Terfenol-D are becoming 

increasingly popular. Terfenol-D, an alloy of terbium, dysprosium and iron metals developed by 

U.S. Naval ordnance laboratory has very high magnetostriction property at room temperature, 

when compared to other ferromagnetic materials 9 . It generates 2-5 times greater strains than 
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traditional piezoceramics and 20 times more than any other ferromagnetic material 9 . The 

applications of Terfenol-D are restricted due to brittleness as well as lower tensile and sheer 

strength at room temperature.   

Galfenol, a new Fe-Ga alloy was developed in 1998 by magnetic materials group at 

NSWC-CD (Naval Surface Warfare Center) 9 . “Galfenol possesses key additional advantages; 

that is, unlike most active materials, Galfenol is malleable and machinable 10, and can be safely 

operated under simultaneous tension, compression, bending and shock loads. As a consequence 

of the unique combination of metallurgical and mechanical properties of Galfenol, this material 

can enable smart load-carrying Galfenol devices and structures with innovative 3-D 

manufactured by welding, extrusion, rolling, deposition, or machining. Furthermore, the 

unprecented control of anisotropies through manufacturing and post-processing methods made 

possible with Galfenol 11 can lead to innovative devices with fully coupled 3-D functionality12.”* 

Due to  micrometer resolution, fast frequency response and capability to withstand high stresses, 

Galfenol actuators are rapidly replacing other ferromagnetic and piezoelectric actuators used for 

micro-positioning, active vibration damping and sensing applications in the field of aerospace 

engineering 13 , medical technology, atomic force microscopy 14,15 , microscale manufacturing, 

etc. However, these immerging applications in various fields require precise control of the 

Galfenol actuator.  

The control performance of Galfenol actuators is limited by two main factors: (i) 

material-level nonlinearities such as hysteresis and creep, and (ii) dynamical effects of system 

 
*Bashash S., Vora K., Jalili N., Evans P. G., and Dapino M., “Memory-based hysteresis compensation and nonlinear 
modeling of Galfenol-driven micro-positioning actuators,” in Proceedings of 1st ASME Dynamic Systems and 
Control Conference, October 2008, Ann Arbor, MI.  
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inertia, flexibility and damping 16 . Many methods have been developed to deal with hysteresis 

nonlinearity 17-21 . Some of these works have considered hysteresis effect and dynamic behavior 

simultaneously by introducing the rate-dependent hysteresis modeling 19, whereas majority of 

them have filtered the hysteresis nonlinearity using various approaches and controlled the 

dynamic behavior of the actuator, independently from the hysteresis nonlinearity. However, in 

order to achieve precise control over the actuator dynamics, an accurate modeling framework is 

very essential. For the simplicity in analysis and control strategy development, many works have 

considered the lumped-parameters representation of the actuator 20,21 . Although such a lumped- 

parameter model is valid below the first natural frequency of system, it starts to deviate if the 

operational frequency passes over the first mode. Therefore, a distributed-parameters 

representation is preferred in higher operational frequencies. The, rod-like Galfenol actuators 

have distributed-parameters dynamics; that is, their equations of motion are described by partial 

differential equations with appropriate boundary conditions 22,23 . The approximate methods such 

as finite element or finite difference schemes have been utilized to solve these partial differential 

equations of motion.  

Apart from these dynamic effects caused by internal and external forces, most smart 

actuators also suffer from the material level hysteresis nonlinearities. Several hysteresis 

frameworks are developed to predict these hysteresis nonlinearities. Most of these frameworks 

are either based on constitutive approach 24,25 or based on phenomenological approach 26,27. The 

constitutive hysteresis models use the physics behind the hysteresis phenomenon whereas the 

phenomenological models utilize the mathematical structure for prediction of hysteresis28. The 

most widely used Preisach model 29 which is based on phenomenological approach, has very 

accurate hysteresis prediction capability without providing any physical insight of the hysteresis 
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phenomenon 28 . However, the constitutive models based on nonlinear mapping technique and 

utilizing intelligent properties of hysteresis phenomenon developed by Bashas et al.30 have 

almost the same hysteresis prediction accuracy with much lesser mathematical parameters.  

Along with actuator characterization, much research work is emphasized in achieving the precise 

control of the distributed-parameters actuator model as well. Control schemes for these systems 

are mainly categorized into two control methods: (i) feedforward control and (ii) feedback 

control. However, for many applications, feedback control schemes are combined with the 

feedforward methods to achieve the high frequency tracking control of these actuators. 

Various inverse hysteresis modeling frameworks are developed for the feedforaward 

compensation of hysteresis nonlinearity. Most of these models are built based on two 

fundamental methods: (i) inverse hysteresis curve identification using different numerical 

techniques 31, and (ii) analytical approach that computes the inverse hysteresis curve using 

identified hysteresis model 28,32 . The performance of theses feedforward hysteresis 

compensation strategies highly depends on the hysteresis prediction accuracy of forward as well 

as inverse hysteresis models.  

Different feedback control strategies such as Proportional Integral Derivative (PID) 

control 33, robust adaptive control 34 and feedforward neural network controller with a fixed-gain 

feedback control35 are used in order to achieve the control over dynamic behavior of the 

actuators.  The PID controller is utilized to control the lumped-parameters system models. Due to 

its inability to place more than two poles of the system at their desired locations, PID control 

fails to control the higher order (higher than second order) systems for high frequency 

applications. On the other hand, Lyapunov based control strategies are utilized for controlling 
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higher order distributed-parameters systems. Robust and adaptive features are incorporated into 

these controllers for compensation of structural uncertainties as well as ever present unmodeled 

dynamics. The neural networks based feedback controllers are also known for the precise micro- 

positioning and control applications. The online feedforward neural network based control 

strategy is developed that utilizes a fixed gain feedback control to train neural network controller 

such that it forces the output of feedback controller to be zero. In this way neural network 

controller learns the inverse dynamics of the system and forces it to follow the desired 

trajectory35 . 

1.2 Research Motivation 

Although several modeling and control frameworks have been proposed by the 

researchers for characterization and precision control of the smart actuators, most of them have 

modeled these smart actuators as lumped or distributed-parameters beams and not as rods. The 

sensitivity of the techniques used for control of these actuators become much more significant, 

when they are used for micro-positioning applications, and any further improvement in the 

accuracy is highly desirable. Also, most previous works have rarely given any emphasis on the 

development of control strategies for the unobservable plant models. Furthermore, there is real 

need for hysteresis predictive model for accurate hysteresis characterization. The presently used 

hysteresis characterization techniques like Preisach model are much more complicated and need 

much more computations due to large amount of mathematical parameters. The work presented 

here is aimed at modeling of smart actuators as a distributed-parameters rod and controlling them 

using precise and less complicated combined feedforward and feedback robust control strategies. 
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The hysteresis model developed here needs much lesser mathematical computations with 

approximately the same or better amount of modeling accuracy than conventionally used models. 

1.3 Thesis Contributions 

A distributed-parameters modeling and robust control framework for flexible rod-like 

solid-state Galfenol actuator is presented here. The effects of flexure mechanisms are 

incorporated into the model using spring-mass-damper boundary conditions. The 

electromechanical actuation is included as a concentrated force at the boundary. The free as well 

as force motion analyses are performed to understand the dynamic behaviour of the actuator. A 

unique frequency based robust variable structure control strategy is built using Lyapunov theory. 

A full order state feedback observer is designed to mimic the states of the unobservable plant. An 

optimization algorithm is then developed to computes the optimal observer gain matrix. Several 

frequency tracking simulations are performed to observe the effect of modes deficiency on 

tracking frequency bandwidth of the controller. Recently developed piezoelectric hysteresis 

model utilizing memory based nonlinear mapping technique is used for the hysteresis prediction 

of Galfenol actuator. The accurate hysteresis predictive ability with much less mathematical 

computations compared to other hysteresis models is verified using simulations. A proportional 

integral (PI) control strategy is utilized for the compensation of hysteresis nonlinearity. Finally, 

numerical simulations using PI controller are carried out to validate its hysteresis compensation 

performance for 500 and 1000Hz sinusoidal desired input. 

1.4 Thesis Overview 

The development and analysis of distributed-parameters model of rod-like solid-state 

actuator is presented in the immediately following chapter. For the simplicity of analysis, 
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dynamic behavior of the actuator is decoupled from the hysteresis nonlinearity and treated 

separately. Effects of widely-used flexural mechanisms are incorporated into the actuator using a 

mass-spring-damper boundary condition. Moreover, the effect of electromechanical actuation is 

included as a concentrate force at the boundary. To observe the contributions of boundary mass 

and spring on the actuator dynamic properties, the effects of different end mass and spring values 

on the natural frequencies and mode shapes are demonstrated using simulations. 

Chapter 3 represents the control strategy for distributed-parameters actuator model 

developed in Chapter 2. A frequency based robust variable structure controller utilizing 

Lyapunov theory, a full order state feedback observer for replication of the states of 

unobservable plant and an optimization algorithm for computation of optimal observer gain 

matrix are designed in this chapter. Various high frequency tracking simulations are performed 

to validate the performance of the controller-observer model. 

A feedforward hysteresis compensation technique is presented in Chapter 4. For the 

accurate hysteresis prediction, the hysteresis nonlinearity is decoupled from the looping effect 

and modelled utilizing an exponential function. This function is then used in a hysteresis 

predictive model utilizing memory based mapping technique. The three intelligent hysteresis 

properties, target of turning points, curve alignment and wiping-out effect, are incorporated in 

the model for further hysteresis prediction accuracy. A proportional integral control is used for 

control of hysteresis nonlinearity. Hysteresis control results of for the 500 as well as 1000Hz 

desired sinusoidal input are presented.  

Finally the conclusion and future directions for present work are described in Chapter 5. 

Developed robust variable structure control (for the control of actuator dynamics) and 
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proportional control (for the hysteresis compensation) can be combined the in future to achieve 

the precise positioning control over the actuator motion. The inverse hysteresis model utilizing 

the similar mapping technique as forward model can be designed and utilized in future for the 

hysteresis compensation. Also, a hysteresis minor loops shape changing mechanism can be 

incorporated in the hysteresis modeling framework for achieving the better accuracy in hysteresis 

minor loop prediction.  



CHAPTER 2 

DISTRIBUTED PARAMETERS MODELING OF ROD-LIKE SOLID STATE 

ACTUATORS†

2.1 System Configurations and Modeling 

The importance of state-space modeling for the actuator is very important in the 

availability of standard controllers for obtaining the desired motion of actuator. The work 

presented here is aimed at (i) obtaining the modal characteristics including natural frequencies 

and mode shapes of the free vibrating actuator, (ii) observing the effect of the end mass ‘m’ and 

spring ‘k’ on the natural frequencies and mode shapes of the actuator, and (iii) obtaining state-

space representation by carrying out the forced motion analysis of system. 

Figure 1 depicts the schematic configuration as well as representative model of a typical 

rod-like actuator. The actuator has a mass per unit length ρ , stiffness E, viscous damping 

coefficient B, length L, and cross-sectional area A which is modeled as a distributed-parameters 

rod subjected to a compound boundary condition of a mass m, damper C and spring k as shown 

in Figure 1. Moreover, the effective excitation force ( )f t , which comes from a distributed 

internal stress, can be applied at the boundary as a concentrate actuation force. 

 

Figure 2.1 Schematic representation of a rod-like actuator (left) and its representative 

distributed-parameters model (right) 
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†The content of this chapter may have come directly or indirectly from our joint publication: [ Vora K., Bashash S., 
and Jalili N., “Distributed parameters modeling of rod-like solid-state actuators,” in Proceedings of 1st ASME 
Dynamic Systems and Control Conference, October 2008, Ann Arbor, MI. ] 



2.2 System Governing Equations 

The governing equation for the longitudinal (axial) vibrations of the actuator subjected to 

axial force ( )f t  at the end is derived using the extended Hamiltonian principal given by:  

( )(
2

1

0
t

ext
t

T V W dtδ δ )− +∫ =                                                (2.1) 

where T , V  and  are respectively the kinetic energy, potential Energy and the external work 

of the rod in the presence of longitudinal time varying force 

extW

( )f t . The longitudinal displacement 

 is assumed to be varying over the entire length of the actuator.  ( , )u x t

The kinetic energy of the actuator having length L, fixed mass per unit density ρ  and the end 

mass m can be given by: 

2 2

0

1 ( , ) 1 ( , )
2 2

L u x t u L tT dx m
t t

ρ ∂ ∂⎛ ⎞ ⎛= +⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝∫ ⎞
⎟
⎠

                                  (2.2)                         

The potential energy of the actuator with fixed Young’s modules of elasticity E and cross-

sectional area A is given by: 

2
2

0

1 ( , ) 1 ( , )
2 2

L u x tV EA dx ku L
x

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ t                                      (2.3)                         

The external work done by excitation force ( )f t , uniformly-distributed damping force and the 

damping force at the boundary is represented as:  

0

( , ) ( , )( ) ( , ) ( , ) ( , )
L

ext
u x t u L tW f t u L t B u x t dx C u L t

t t
δ δ δ δ∂ ∂⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫                 (2.4)    
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Substituting the derived kinetic energy (2.2), potential energy (2.3) and variation of external 

work by (2.4) into Eq. (2.1), applying variational principle and by rearranging all the terms, it 

yields:  

2

1

2

1

2 2

2 2
0

2

2

( , ) ( , ) ( , )( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

t L

t

t

t

u x t u x t u x tu x t EA u x t B u x t dx dt
t x t

u L t u L t u L tm u L t EA u L t C u L t
t x t

ku L t u L t

ρ δ δ δ

δ δ δ

δ

⎧ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎛ ⎞− + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎭⎝ ⎠ ⎝ ⎠⎩

⎧ ⎛ ⎞∂ ∂ ∂⎪ ⎛ ⎞ ⎛ ⎞+ − − −⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎩
− +

∫ ∫

∫
}( ) ( , ) 0f t u L t dtδ =

⎫

        (2.5)  

Since the integral from  to  must vanish, the integrant must vanish. Hence, Eq. (2.5) can be 

written as: 

1t 2t

2 2

2 2

2

2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( ) ( , ) 0

u x t u x t u x tEA B u x t
t x t

u L t u L t u L tm EA C ku L t f t u L
t x t

ρ δ

δ

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎛ ⎞− + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎛ ⎞∂ ∂ ∂ ⎫⎪ ⎛ ⎞ ⎛ ⎞+ − − − − + =⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎭⎝ ⎠⎩

t

           (2.6)       

Since ( , )u x tδ  and ( , )u L tδ  are arbitrary variables, we have: 

( , ) 0u x tδ ≠  and ( , ) 0u L tδ ≠                                                  (2.7) 

Consequently, Eq. (2.6) reduced to: 

2 2

2 2

( , ) ( , ) ( , ) 0u x t u x t u x tEA B
t x t

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞− +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

=                                (2.8)                       

And  

2

2

( , ) ( , ) ( , ) ( , ) ( )u L t u L t u L tm EA C ku L t
t x t

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
f t=                (2.9) 
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Eqs. (2.8) and  (2.9) represent the equation of motion and the boundary condition for the system, 

respectively.    

2.3 Free Motion Analysis 

Modal characterization of the system is performed using a standard procedure for the free 

and undamped equations. The equation of motion is modified to: 

2 2

2

( , ) ( , )u x t u x tEA
t x

ρ
⎛ ⎞ ⎛∂ ∂

=⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝
2

⎞
⎟
⎠

                                                 (2.10) 

Let’s assume that solution of Eq. (2.10) is separable in time and space domains. By applying 

separation of variable, the longitudinal displacement function of rod can be written as: 

( , ) ( ) ( )r ru x t x q tφ=                                                       (2.11) 

where ( )r xφ  is the spatial mode shape function and   represents the generalized time 

dependant coordinate.  

( )rq t

Substituting Eq. (2.11) into Eq. (2.10) yields: 

2( ) ( )
( ) ( )

r r
r

r r

q t xEA
q t x

φ ω
ρ φ

⎛ ⎞ ′′⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

&&
                                           (2.12) 

where rω  is a constant parameter that represents the natural frequency for the mode of 

actuator. Hence, Eq. (2.12) can be split into two time-domain and spatial equations as follows:   

thr

2( ) ( ) 0r r rq t q tω+ =&&                                                   (2.13) 

2( ) ( ) 0r r rx xφ β φ′′ + =                                                 (2.14) 

where rβ  is represented as: 
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2
2 r

r EA
ρωβ =                                                           (2.15) 

The general solution of the equation of motion in spatial domain can be written as: 

( ) sin cosr r r r rx C x D xφ β β= +                                        (2.16) 

At the fixed end of the actuator we have (0) 0rφ = , hence 0rD = . Therefore, the mode shapes of 

the actuator are modified to: 

( ) sinr r rx C xφ β=                                                   (2.17) 

Now applying the separation of variable to the free and undamped boundary condition of the 

actuator yields: 

( ) ( ) ( ) ( ) ( ) ( ) 0r r r r r rm L q t EA L q t k L q tφ φ φ′+ +&& =                             (2.18) 

By substituting Eq. (2.13) and Eq. (2.17) into Eq. (2.18) and simplifying it further, the 

characteristics equation is obtained as follows:  

               ( )2 cot 0r r r
EA m EA L kβ β β
ρ

⎛ ⎞
− + +⎜ ⎟
⎝ ⎠

=                                        (2.19)                         

The numerical solution of (2.19) yields infinite solutions for rβ . Natural frequencies 

corresponding to each rβ  can be found using Eq. (2.15). 

Based on natural frequencies, the mode shapes for the mode can be calculated as: thr

( ) sinr r rx C
EA
ρφ

⎛ ⎞
= ⎜⎜

⎝ ⎠
xω ⎟⎟                                                (2.20)                         

where  is a mode-dependant constant and can be calculated using normalization with respect 

to mass (for derivation of the normalization condition, refer to appendix A) which can be given 

as: 

rC
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rs
0

( ) ( ) ( ) ( )
L

r s r sx x dx m L Lρ φ φ φ φ δ+ =∫                                     (2.21)     

rsδ  is the knonecker delta defined as 1rsδ =  if  r s=  and  0rsδ =  otherwise. 

                              

Substituting Eq. (2.20) into Eq. (2.21) and simplifying it, can be obtained as: rC

1
2

2 2

0

sin sin
L

r r rC x dx m
EA EA
ρρ ω ω Lρ

−
⎡ ⎤⎛ ⎞ ⎛

= +⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∫

⎞
⎟⎟
⎠

}

                          (2.22)  

 

2.4 Forced Motion Analysis  

By applying the expansion theorem to the longitudinal displacement of actuator the 

displacement can be written as: 

1
( , ) ( ) ( )r r

r
u x t x q tφ

∞

=

=∑                                                   (2.23)                         

Substituting Eq. (2.23) into the partial differential equation of motion of the actuator, Eq. (2.8) is 

written as:  

{
1

( ) ( ) ( ) ( ) ( ) ( ) 0r r r r r r
r

x q t EA x q t B x q tρφ φ φ
∞

=

′′− +∑ && & =                               (2.24)                        

Taking integral over the entire length of rod, multiplying it by ( )s xφ  and applying integral by 

parts, Eq. (2.24) is converted to: 
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=

1 0

0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

L

r r s r r s
r

L L

r r s r r s

q t x x dx EAq t L L

EAq t x x dx Bq t x x dx

ρ φ φ φ φ

φ φ φ φ

∞

=

⎧⎪ ′−⎨
⎪⎩

⎫⎪+ + ⎬
⎪⎭

∑ ∫

∫ ∫

&&

&                             (2.25)       

Now substituting Eq. (2.23) into the boundary condition at x L= , Eq. (2.9) yields:  

{ }
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r r r r r
r

m L q t EA L q t C L q t k L q t f tφ φ φ φ
∞

=

′+ + +∑ && & =                (2.26)  

Substituting ( ) ( )r rEA L q tφ′  from Eq. (2.26) into Eq. (2.25) and simplifying it further one can get,   

]

1 0 0

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L L

r s r s r r s
r

L

r s r r s r s r s

x x dx m L L q t B x x dx

C L L q t EA x x dx k L L q t L f t

ρ φ φ φ φ φ φ

φ φ φ φ φ φ φ

∞

=

⎧⎡ ⎤ ⎡⎪ + +⎨⎢ ⎥ ⎢
⎪⎣ ⎦ ⎣⎩

⎫⎡ ⎤ ⎪+ + + =⎬⎢ ⎥
⎪⎣ ⎦ ⎭

∑ ∫ ∫

∫

&&

&

    (2.27)  

Applying the orthogonality conditions with respect to mass and stiffness (refer to Appendix A 

for the derivations) given as: 

0

( ) ( ) ( ) ( )
L

r s r sx x dx m L L rsρ φ φ φ φ δ+ =∫                                          (2.28)   

and                                       

   2

0

( ) ( ) ( ) ( )
L

r s r s rEA x x dx k L L rsφ φ φ φ ω′ ′ + =∫ δ                                   (2.29)                         

Eq. (2.27) is simplified to: 

}2

1 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L

rs r r s r s r r rs r s
r

q t B x x dx C L L q t q t L f tδ φ φ φ φ ω δ φ
∞

=

⎧ ⎡ ⎤⎪ + + + =⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

∑ ∫&& &      (2.30)  

Where  1, 2,...r =



Eq. (2.30) can be recast as:  
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r{ } 2

1
( ) ( ) ( ) ( )r rs s r r

s
q t c q t q t f tω

∞

=

+ + =∑&& &                                           (2.31) 

where 

   ,                                         (2.32)                         
0

( ) ( ) ( ) ( )
L

rs r s r sc B x x dx C L Lφ φ φ φ= +∫

( ) ( ) ( )r rf t L f tφ=                                                      (2.33) 

The truncated k-mode description of Eq. (2.31) can be presented in the following matrix form: 

  ( ) ( ) ( )q t q t q t u+ + =M C K F&& &                                               (2.34)                         

where     

         [ ] [ ] 2, ,rs r rsk k k k k k
I c ω δ

× × ×
⎡ ⎤= = = ⎣ ⎦M C K ,                             (2.35) 

                       [ ]1 2 1
( ), ( ),..., ( ) T

k k
q q t q t q t

×
=                                             (2.36) 

                 1 2 1
( ), ( ),....., ( )

T

k k
L L Lφ φ φ

×
⎡ ⎤= ⎣ ⎦F                                         (2.37) 

               ( )u f t=                                                             (2.38) 

The state-space representation of Eq. (2.34) is given by: 

                              x x u= +A B&                                                        (2.39)                         

where 

1 1
2 2k k

− −
×

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

0 I
A

M K M C
, 1

2 1k
−

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
B

M F
                               (2.40)            

            
2 1k

q
x

q
×

⎧ ⎫
= ⎨ ⎬
⎩ ⎭&

                                                            (2.41) 



2.5 Numerical Simulations and Results 

To study the effect of end mass and spring on the natural frequencies and mode shapes of 

the actuator, a set of numerical simulations is carried out which is presented in the following 

subsections. 

2.5.1 Effect of end mass and spring on natural frequencies of the actuator 

The first four natural frequencies of the system are plotted in Figure 2.2(a) versus 

different values of spring constant k, setting m to zero, and in Figure 2.2(b) versus increasing 

values of end mass m taking k as zero. All other parameters used for the numerical simulations 

are listed in Table 2.1. 

Table 2.1 Actuator parameters used in the simulations for calculating natural frequencies of the 

actuator 

ρ 

(kg / ) 3m

d 

(m) 

L 

(m) 

E 

(Gpa) 

6000 0.01 0.1 100 

 

 

a b

Figure 2.2 Natural frequencies of first four modes versus (a) increasing values of spring stiffness 

‘k’ and (b) increasing values of end mass ‘m’. 
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It can be observed from the Figure 2.2 that at initial stage of the simulations, as the 

stiffness of the spring increases, the natural frequencies of all the actuator modes increase 

exponentially and eventually converge to some specific values. This happens because of the fact 

that rod with a large spring constant at the end behaves similar to the rod that has both its ends 

clamped. The similar phenomenon occurs in a reverse way with increasing values of the end 

mass. That is, as the value of end mass increases, natural frequencies decrease until they get 

saturated.     

2.5.2 Effect of end mass and spring on the mode shapes of the actuator 

To observe the behavior of actuator mode shapes with the change in spring stiffness and 

end mass of actuator, first four actuator mode shapes are plotted with four different end mass and 

spring stiffness configurations as: (i) zero end mass, high spring stiffness, (ii) zero end mass, 

zero spring stiffness, (iii) moderate end mass, moderate spring stiffness, and (iv) high end mass, 

high spring stiffness. Results of the simulations are depicted in Figure 2.3, with the selected 

parameters for the simulations listed in Table 2.2. 

 

Table 2.2 Actuator parameters used for numerical simulations to calculate mode shapes 

Configuration 
m 

(kg)

k 

(N/m)

ω1 

(kHz)

ω2 

(kHz)

ω3 

(kHz)

ω4 

(kHz) 

C1    0 1010  20.25 40.5 60.76 81 

C2      0 0 10.21 30.62 51.03 71.44 

C3     0.02 410  7.31 24.09 43.04 62.79 

C4    1 0 1.39 20.5 40.87 61.27 
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Other Actuator parameters: 

Viscous damping coefficient: B = 0.1 (N.sec/ ), 2m

Discrete damping coefficient: C = 0.05 (N.sec/m), 

 

 

a b

 

c d

Figure 2.3 (a) First, (b) second, (c) third and (d) fourth mode shape of actuator for four different 

configurations of end mass and spring (C1   , C2  , C3  , C4  ) 

The significant changes in all the four mode shapes are observed as we switch from one 

end mass and spring configuration to another. By carefully observing the mode shapes, one can 

see that mode shapes associated with C1 configuration (zero end mass, high spring stiffness) are 

similar to the mode shapes of the actuator having both ends clamped. It can be also seen from the 

figures that the mode shapes of C4 configuration (high end mass, zero spring stiffness) follow 

the mode shapes of C1 configuration with one mode shift. 
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distributed parameter modeling and dynamic behavior analysis of the rod-like solid-state actuator 

in this Chapter, the Lyapunov theorem based state-space robust control strategy utilizing variable 

structure control is developed in Chapter 3.      

Distributed parameter modeling and dynamic behavior analysis of the rod-like solid-state 

actuator is performed in this Chapter. Utilizing the state-space representation of the actuator 

developed in Chapter 2, the frequency based robust variable structure control strategy utilizing 

Lyapunov theorem is developed in Chapter 3.      
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CHAPTER 3 

TRACKING CONTROL OF ROD-LIKE SOLID STATE ACTUATORS‡

 

The frequency based feed-back control strategy utilizing Lyapunov theorem is designed 

in this chapter. In order to mimic the actuator states the full order state observer developed for 

the unobservable plant. A least square optimization algorithm is developed to compute the 

optimal observer gain matrix. A robust variable structure control is incorporated in to the 

controller design for compensation of ever-present plant structural uncertainties. The tracking 

simulations for various frequency sinusoidal desired inputs are carried out to validate the 

performance of combined controller-observer strategy to achieve the precise control over the 

actuator motion. Finally, the effect of mode deficiency on the tracking bandwidth of the state-

space frequency based controller is shown using several numerical simulations.          

3.1 State-space Controller Development 

Development of a straightforward state-space controller for asymptotic output tracking 

control of linear systems not only can benefit the present rod-like actuator, but also can be 

applied to a variety of dynamic systems. In this chapter, a new form of state-space control law is 

proposed for output tracking control of SISO mechanical systems and applied for precision 

control of rod-like actuators for a high bandwidth tracking application. Moreover, the 

development and integration of an optimally tuned state observer is presented and discussed. 
 

‡The content of this chapter may have come directly or indirectly from our joint publication: [ Bashash S., Vora K., 
Jalili N., “Distributed-parameters modeling and control of rod-type solid-state actuators,” Submitted to Journal of 
Vibration and Control, October 2008. ] 
 



3.1.1 State-space controller design 

For actuator tip to follow the desired trajectory dy , the tracking error is defined as:                                     

( ) ( ) ( )de t y t y t= −                                                           (3.1) 

where y(t) represents the tip displacement of the actuator. Taking the time derivative of (3.1) 

yields: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d de t y t y t y t Cx t y t CAx t CBu t= − = − = − −& & & & & &                     (3.2)                      

It is shown below using Example 1 that for rod-like actuators or other flexible structures (e.g. 

beams, plates, shells) the coefficient of , termCB , is always zero.  ( )u t

Example 1: For the truncated k-mode description of equation of motion given by given by Eq. 

(2.34) as below: 

( ) ( ) ( )q t q t q t u+ + =M C K F&& &                                             (3.3)             

For k = 2, 

Mass matrix , damping matrix C, stiffness matrix K and force matrix  can be given as: M F

   
2 2

11 12 1 11 1 12
2 2

21 22 2 21 2 22

1 0
, C , K

0 1
c c
c c

ω δ ω δ

ω δ ω δ

⎡ ⎤⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M  and  1 2( ), ( )L Lφ φ⎡ ⎤= ⎣ ⎦F               (3.4) 

The state-space representation of Eq. (3.3) can be given as: 

x x u
y x u
= +
= +

A B
C D

&
                                                              (3.5) 

where state-space system matrices A, B and output displacement matrix C can be given as:  

2 21 1
1 11 1 12 11 12
2 2

21 222 21 2 22

0 0 1 1
0 0 1 1

c c
c c

ω δ ω δ

ω δ ω δ

− −

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− − − −− −⎣ ⎦ ⎢ ⎥
− −− −⎢ ⎥⎣ ⎦

0 I
A

M K M C
,                              (3.6) 
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1 21

0
0,0, ( ), ( )

T
L Lφ φ−

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦
B

M F
 and [1,1,0,0]=C                                 (3.7)             

Product of output matrix C and system matrix B and can be given as: 

1 2[1,1,0,0] 0,0, ( ), ( ) 0
T

L Lφ φ⎡⋅ = ⋅ =⎣C B ⎤⎦                                          (3.8) 

This implies that first order state-space controller cannot be used for tracking of desired 

trajectory in the form of displacement.  Hence, letting CB = 0 and differentiating one more time 

from (3.1) yields:  

2( ) ( ) ( ) ( ) ( ) ( )d de t y t CAx t y t CA x t CABu t= − = − −&& && & &&                            (3.9) 

Similarly, it can be shown using Example 1 that the term CAB  in Eq. (3.9) cannot be zero for the 

flexible mechanical structures. Product of output matrix C, system matrices A and B given by 

Eqs. (3.6) and (3.7) can be computed as: 

1 22 2
1 11 1 12 11 12
2 2

21 222 21 2 22

1 2

0 0 1 1
0 0 1 1

[1,1,0,0] 0,0, ( ), ( )

2[ ( ) ( )] 0

T
L L

c c
c c

L L

φ φ
ω δ ω δ

ω δ ω δ

φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⋅ ⋅ = ⋅ ⋅ ⎣ ⎦⎢ ⎥− − − −
⎢ ⎥

− −− −⎢ ⎥⎣ ⎦

= + ≠

C A B

             (3.10) 

Hence, the second order state-space controller can be used to control the motion of the actuator. 

Claim 3.1: For the Single-Input Single-Output (SISO) state-space system given in (2.39) which 

satisfies CB = 0 and , the following control law leads to asymptotic convergence of the 

tracking error, i.e. . 

0CAB ≠

0 ase t→ →∞

{ } ( )1 2
1 2 1 2( ) ( ) ( ) ( ) ( ) ; , 0du t CAB y t CA x t k e t k e t k k−= − + +&& & >                 (3.11) 
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Proof: Substituting the control law given by Eq. (3.11) into Eq. (3.9), the second order error 

dynamics equation is obtained as: 

1 2( ) ( ) ( ) 0e t k e t k e t+ + =&& &                                            (3.12) 

As k1 and k2 are chosen as positive coefficients, Eq. (3.12) represents a stable second order 

differential equation with its roots located in the left half s-plane. This implies the asymptotic 

convergence of the tracking error  as t . In the next section, the proposed control law is 

numerically implemented on the actuator model.   

( )e t →∞

3.1.2 Numerical validation of the state-space controller 

In order to validate the derived state-space control law, Simulink model of the state-space 

plant/controller has been developed. Since the actuator is modeled as a distributed-parameters 

system, any desired number of modes can be included in the model. To simulate a realistic model 

with high bandwidth accuracy, first four modes of the actuators are included in the model. For 

the precise tracking, the controller is also designed based on the first four modes of the actuator.   

   

 

Figure 3.1 State-space controller-plant block diagram for desired trajectory tracking 

Figure 3.1 depicts the block diagram of the implemented controller. As seen, for tracking the 

desired trajectory, controlled input is applied to the plant state-space model and the state 
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feedback from the plant is fed back to the controller. For accurate tracking control, selection of 

controller gains (k1 and k2) is a crucial step. In order to achieve the exponential stability with 

minimum oscillations of the error trajectory, the values of gains should be selected in such a way 

that roots of Eq. (3.12) remain on real axis, concentrated at one point, far from the imaginary 

axis and in the left half plane. These specifications generate a critically damped error dynamics 

which posseses the fastest settling time with no undesirable oscillations for a given natural 

frequency.  

To verify the tracking performance of developed controller, a set of simulations with 

different tracking frequencies are carried out.  The values of k1 and k2 and the sampling time 

selected for the simulations are 70000, 91.225 10x , and 810− sec, respectively. This renders a 

critically error dynamics with the natural frequency of 35000 rad/sec. Figure 3.2 depicts the 

tracking control and the corresponding error trajectories for 1, 20, 50 and 100 kHz desired 

trajectories.  It can be observed from the figure that by proper selection of controller gains, the 

tracking error associated with all the four desired trajectories converge exponentially with a 

settling time as low as 0.2 ms. 

 

     

a b

25 

 



   

dc

   

fe

    

hg

Figure 3.2 Tracking control results for 1, 20, 50 and 100 kHz sinusoidal desired trajectories 

using the proposed state-space controller. 

3.1.2.1 Effects of tracking frequency on the controller performance 

In practice, if there are no parametric uncertainties or unmodeled dynamics in the plant, 

the performance of the controller will be independent of the frequency of the desired trajectory; 

however, due to the ever-present numerical integration error in the simulations, the amplitude of 

tracking error increases with the frequency. Figure 3.3 depicts the steady state error trajecotries 
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for 1, 20, 50 and 100 kHz desired trajectoreis. A linear increase with respect to frequency is 

observed for the tracking error as listed in Table 1.   

 

 

Figure 3.3 Steady state tracking error comparison, for 1, 20, 50 and 100 kHz sinusoidal 

trajectories. 

Table 3.1 Steady state error at different tracking frequencies 

Tracking frequency 1 kHz 20 kHz 50 kHz 100 kHz 

Steady-state error 
41.46 10x − ( )mμ  

(0.0015%) 

0.0247( )mμ

(0.247%) 

0.0625( )mμ  

(0.625%) 

0.125( )mμ

(1.250%) 

 

3.1.2.2 Effect of control gains on the tracking performance 

Controller gains have significant effect on the transient response as well as amplitude of 

the steady-state tracking error. As discussed in the previous subsections, the values of k1 and k2  

are better to be selected in such a way that the error dynamics represent a critically damped 

behavior. Further increase in the values of k1 and k2 while keeping the error dynamics critically 
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damped shifts the poles further toward left on the s-plane. This suppresses the amplitude of 

steady-state error and decreases the settling time by making error dynamics stiffer. In practice, 

the gain values are limited by the actuator bandwidth and chattering; hence, poles cannot be 

shifted more toward left after a certain value.  

Numerical simulations for the100 kHz frequency tracking with three different pairs of 

control gains are carried out to demonstrate the effect of gains on the controller performance. It 

is clearly observed from Figure 3.4 that the steady-state amplitude as well as the settling time of 

tracking error decreases as the controller gains increases.  

 

         

a b

Figure 3.4 100 kHz frequency tracking errors using three different pairs of controller 

3.2 Observer Development 

For precise tracking control of the actuator displacement, the controller needs to have the 

accurate state feedback from the actuator. Since the states are the generalized coordinates of the 

rod and their time derivatives, it is impractical to directly measure them. However, state 

observers can to be employed to estimate these unknown states. Since the system is stable, an 

open-loop observer can be the first attempt in the observer design. However, the presence of 

uncertainties and disturbances and large oscillations in the transient time necessitates the 
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implementation of feedback observers. This section discusses the development of optimal 

feedback observers for precise state estimation.  

3.2.1 Observer design 

For the stable state-space system given by Eq. (2.39), the following open-loop observer 

can be considered as an option for actuator states estimation: 

ˆ ˆ( ) ( ) ( )x t Ax t Bu t= +&                                                      (3.13) 

where x̂  represents the estimated actuator state vector. Due to the presence of parametric 

uncertainties in the plant, it is practically impossible to obtain accurate values of  and A B  

matrices. This limitation of open loop observer eliminates its feasibility for accurate prediction of 

actuator states. 

To minimize the state estimation error associated with inaccuracies in  and A B  matrices, 

the implementation of feedback observer is proposed as follows:  

   ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))x t Ax t Bu t L y t Cx t= + + −&                                        (3.14) 

where A  and B  are the nominal state and input  matrices respectively  and y (t)  is the axial tip 

displacement of the actuator, introduced as a feedback to the observer.  

Appropriate selection of gain matrix L in Eq. (3.14) can leads to effective state estimation. To 

demonstrate the effects of matrix L on the closed-loop observer performance, the state estimation 

error is defined as: 

ˆ( ) ( ) ( )x t x t x t= −%                                                         (3.15) 

By substituting the expression of real and estimated state derivatives from Eqs. (2.39) and (3.13) 

into equation (3.14), one can obtain: 
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( )
( ) ( ) ( )

( )( )
( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

x t Ax t Ax t Bu t Bu t L y t Cx t

Ax t A A x t Bu t B B u t L Cx t Cx t

A LC x t x t Ax t Bu t

A LC x t P t

= − + − − −

= − − + − − − −

= − − + +

= − +

&%

% %

% %

%

               (3.16)  

where  and A% B%  represent the error between the actual and nominal state and input matrices 

respectively, and  represents the collective effect of system uncertainties which appears as a 

disturbance input to the closed-loop dynamics of observer error.    

( )P t

In order to minimize the amplitude and oscillations of the state observation error and to 

suppress the effect of the parametric uncertainties, the gain matrix L should be selected in such a 

way that all the eigenvalues of matrix ( )A LC−  lie on the real axis, concentrated at one point and 

far from the imaginary axis in the left half-plane. Such an arrangement of eigenvalues represent a 

critically damped stiff error dynamics which suppresses the oscillations induced by uncertainties 

and decreases settling time of the estimation error. Appropriate selection of observer gain matrix 

is a critical step in achieving accurate estimation of the states. 

    3.2.2 Optimal selection of observer gain matrix  

In practice, the rank of observability matrix  of the actuator 

is less than  (number of rows or columns of matrix ). Hence, the actuator is considered as 

unobservable system and there does not exist any observer gain matrix L which can force all 

poles of the system to be placed at any desirable location on the left half of s-plane. As a solution 

to this problem, a method for optimal placement of observer poles is proposed here. For this, an 

optimization algorithm is developed using Matlab to find a fairly good gain matrix L that forces 

all the eigenvalues of the observer to be as close as possible to desired location on the left half s-

2 1[ | |.......|( ) ]T T T T k TC A C A C−

2k A
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plane. The cost function, on which the performance of the optimization algorithm depends, is a 

weighted function of real and imaginary distances of observer poles from the desired location.  

Figure 3.5 depicts the results obtained from the optimal placement of observer poles at around -

1000, -25000, and -50000 using the optimization algorithm.  It is clear from Figure 3.5 that due 

to the unobservable plant, optimization algorithm is not able to concentrate all the eigenvalues, 

accurately at the desired locations. 

 

 

Figure 3.5 Results using optimization algorithm for concentrating the poles of the system at -

1000, -20000 and -50000 on the real axis. 

In order to reduce the settling time of the state estimation error, gain matrix (L) should be 

selected in such way that the poles of observer error dynamics are placed far from the imaginary 

axis in the left half s-plane, but in practice, the locations of these poles are restricted by the 

sampling time of the data acquisition system. As the poles move away from the imaginary axis in 

the left half s-plane, smaller sampling time is required to solve the observer differential equation. 

In the next section, numerical simulations are carried out for testing the credibility of the 

proposed observer design method.  
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3.2.3 Numerical validation of the observer 

For the numerical validation of the observer, a combined four modes plant-observer 

Simulink model is developed as shown in Figure 3.6. The axial tip displacement ‘y(t)’ is given to 

the observer for accurate actuator state estimation. A numerical simulation has been carried out 

with the gain matrix L that concentrates the observer poles at -25000, and a 20 kHz sinusoidal 

input is applied to the plant. The results as shown in Figure 3.7 indicate the convergence of all 

observed states to those of the plant. 

3.2.3.1 Effect of gain matrix on the observer performance 

As discussed earlier, three different observer gain matrices L are determined using 

optimization algorithm, to place the eigenvalues of the observer at -10000, -25000 and -50000. 

Numerical simulations using these L matrices are performed to illustrate their effect on the 

observer performance. Figure 3.8 depicts the observation error for the 1st state of the system 

using three different observer gain matrices. The frequency of the applied plant input is set to 20 

kHz. 

 

 

Figure 3.6 Observer/plant diagram for the accurate state estimation 
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Figure 3.7 Convergence of the observer state estimation errors to zero. 

     

ba

Figure 3.8 state estimation for three different observer gain matrices. 

It is clear from Figure 3.8 that as the poles of the observer are moved toward left through the 

proper selection of observer gain matrix, the settling time of the observer error decreases, but as 

mentioned earlier, it will be limited by the sampling time of data acquisition system in practice.  
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3.3 State-Space Controller with Observer 

In practice, both controller and observer need to be assembled togather for real-time 

control of the plant. Figure 3.9 depicts the controller-observer diagram developed for the actuator 

control. In this strategy, the axial tip dispclacement of the actuator is input to the observer and 

the observer estimated states are fed back to the controller to generate the desired controlled 

input.  

3.3.1 Numerical validation of the assembled controller and observer 

For validation of combined controller-observer design,  numerical simulations with four 

different tracking frequencies are caried out. In order to incorporate the parametric uncertainity 

in the simulations, the controller and the observer were built based on 5% perturbed plant 

parameters.  

 

 

Figure 3.9 Integrated controller/observer diagram for precise plant control. 

Figure 3.10 depicts the tracking results for 1, 20, 50 and 100 kHz sinusoidal desired trajectories. 

The controller gains (k1 and k2 ) and sampling time used for the simulations are set to 70000, 

91.225 10x , and sec, respectively. The observer gain matrix L is selected in such a way that 810−
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the poles of the observer placed close to -25000 on the real axis. As seen from Figure 3.10, all 

the trajectories converge to their desired reference.  

The steady-state errors associated with 1, 20, 50 and 100 kHz sinusoidal reference inputs 

are enlarged and depicted in Figure 3.11. Because of the present 5% parametric uncertainities in 

the controller and observer design, the steady-state tracking error amplitude shown in Figure 

3.11 increases with increse in frequency of the reference input. In order to decrese the steady-

state error amplitude and to supress the effect of parametric uncertainities on the tracking error, 

the values of controller gains should be incresed, and consequently the observer gain matrix 

should be selected in such a way that the observer poles move more away from the imaginary 

axis in the left half s-plane. 

 

     

a b

   

c d
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Figure 3.10 Tracking control results for 1, 20, 50 and 100 kHz sinusoidal reference inputs using 

combined controller/observer strategy. 

 

Figure 3.11 Steady state tracking error comparison for 1, 20, 50 and 100 kHz sinusoidal desired 

trajectories. 
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3.3.2 Effect of modes defeciancy on the tracking performance 

In order to demonstrate the effect of the number of modes on the tracking  performance 

over a frequency range, a set of numerical simulations have been carried out with modes 

defeciant controller/observers. The frequency response of the four-mode plant is compared with 

its one, two and three-mode approximations in Figure 3.12 (a), (c), (e), and (g), respectively. 

Sinusoidal desired trajectories  having frequencies ranging from 1 to 80 kHz are applied to these 

four different controller/observer schemes  that are developed based on 1, 2, 3 and 4 modes 

approximation of the plant. Results are depicted in Figure 3.12 (b), (d), (f), and (h), respectively.  

 The frequency response of the single mode approximation of the plant matches the four-mode 

plant frequency response till 12 kHz as shown in Figure 3.12(a). It can be also observed from the 

error plot depicted in Figure 3.12(b) that the tracking bandwidth of controller/observer developed 

based on the single mode approximation is approximately 12 kHz which includes the first natural 

frequency of the actuator. The system is unable to precisely track the desired trajectory after 12 

kHz. 

The steady-state error peaks at second, third and fourth natural frequencies in Figure 

3.12(b) depict the poor control performance of the single mode controller/observer for 

frequencies above the first resonance. Similarly, the tracking bandwidth of the two and three 

modes controller-observer model is approximately limited to 30 kHz and 50 kHz, respectively. It 

can, therefore, be concluded that precise tracking control of flexible rod-like actuators for any 

desired bandwidth is attained through the proposed control law, provided that all the resonant 

modes within that bandwidth are included in the state-space matrices used in the control 

structure.  



3.3.3 Effect of controller gains on the steady state tracking error 

To demonstrate the effect of controller gains on the amplitude of steady state tracking 

error, the controller/observer structure developed based on the first two modes of plant is 

simulated with two different sets of controller gain values for 1-80 kHz frequency range.  As 

depicted in Figure 3.13, a considerable decrease in the steady-state tracking error is observed as 

the natural frequency of the error dynamics is increased from 500,000 rad/sec to 1,50,0000 

rad/sec through the controller gains. 

 

     

ba

     

dc
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Figure 3.12 Different approximations and tracking control results for a (a, b) 1-mode; (c, d) 2- 

mode; (e, f) 3-mode; (g, h) 4-mode (full) reprwsentation of the system 

 

Figure 3.13 Steady-state tracking error comparisons for two different sets of controller gains for 

controller/observer based on two modes approximation. 
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3.4 Robust Control of the Galfenol Actuator 

Due to the present inaccuracies in the plant parameters, the controller error dynamics 

given by Eq. (3.12) is modified as: 

1 2( ) ( ) ( )e t k e t k e t Gd+ + =&& &                                              (3.17) 

Because of the parametric uncertainty  in Eq. (3.17), the steady-state tracking error of the 

actuator cannot converge to zero with the use of the control law given in Eq. (3.11). In order to 

ensure zero convergence of steady-state error, a robustness feature needs to be incorporated into 

the controller design.  

'Gd '

A hard switching sliding mode control that forces the steady-state error to be zero in the 

presence of parametric uncertainties is developed in this section. Due to the infeasibility of 

sliding mode control in practical implementation, it is replaced with a soft switching variable 

structure control. Robustness condition for the variable structure controller is defined in the form 

of controller gains and numerous simulations are carried out to tune these gains.  

 3.4.1 Sliding mode controller design 

The state space representation of the plant with parametric uncertainty can be given as: 

( ) ( ) ( ) ( )
( ) ( )

x t Ax t Bu t Gd t
y t Cx t

= + +
=

&
                                             (3.18) 

where ( )y t  represents the axial tip displacement of the actuator,  and A B are plant state space 

matrices, C is the output matrix and  represents the plant parametric uncertainty. ( )Gd t

For actuator tip to follow the desired trajectory dy , the tracking error of the closed loop system 

can be represented as: 

     ( ) ( ) ( )de t y t y t= −                                                   (3.19) 
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The first order time derivative of Eq. (3.12) yields:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d de t y t y t y t Cx t y t CAx t CBu t CGd t= − = − = − − −& & & & & &         (3.20)                         

As discussed in the previous section, for rod-like actuators, the coefficient of control input 

(termCB in Eq. (3.9)) always remains zero. Therefore, the first order state-space controller 

cannot be used for the accurate tracking of actuator tip displacement. 

( )u t

The second order time derivative of the tracking error represented in Eq.(3.19) can be 

represented as: 

                       (3.21)                        2( ) ( ) ( ) ( ) ( ) ( )de t y t CA x t CABu t CAGd t CGd t= − − − − &&& &&

Claim 3.2: For the plant given by Eq. (3.18), the control law  that ensures the asymptotic 

zero convergence of steady-state tracking error despite the plant parametric uncertainties is 

represented as: 

( )u t

1 2
1 2( ) ( ) ( ( ) ( ) ( ) ( ) sgn( ))du t CAB y t CA x t e t s t sσ η η−= − + + +&& &                        (3.22) 

To achieve both robustness and tracking control of the actuator simultaneously, condition 

1 2, , 0σ η η >  and 2( ) ( )CGd t CAGd t η+& ≤  should be satisfied. 

The sliding manifold , present in Eq. (3.22) is selected as: ( )s t

( ) ( ) ( )s t e t e tσ= +&                                                       (3.23) 

where constant σ  in the Eq. (3.23) represents the slope of the sliding manifold while 1η  and 2η  

are the controller gains.  

 Proof: By substituting of the control law given by Eq. (3.22) into the second order error 

dynamics (3.21), it can be modified as: 

1 2( ) ( ) ( ) sgn( ( )) ( ) ( ) 0e t e t s t s t CAGd t CGd tσ η η+ + + + + =&&& &                           (3.24) 
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To prove the asymptotic stability of the closed loop system, a positive definite Lyapunov 

function is defined as: 

21 ( )
2

V s t=                                                         (3.25) 

First order time derivative of the Lyapunov function represented in Eq. (3.25) is given as: 

( ) ( ) ( ) ( )( ( ) ( ))V t s t s t s t e t e tσ= = +& & && &                                       (3.26)                        

Substituting second order time derivative of error from Eq. (3.24), into Eq. (3.26) yields: 

2
1 2( ) ( ) ( )sgn( ( )) ( ( ) ( )) ( )V t s t s t s t CAGd t CGd t s tη η= − − − + &&                 (3.27) 

2
1 2( ) ( ) ( ) ( ( ) ( )) ( )V t s t s t CAGd t CGd t s tη η= − − − + &&                         (3.28) 

If the controller gains are chosen in such a manner that 2( ) ( )CGd t CAGd t η+ ≤&   

1 2,and 0η η >  remains true in the first order time derivative of positive definite Lyapunov 

function given by Eq. (3.28), conditions 2 ( ) ( ( ) ( )) ( )s t CAGd t CGd t s tη ≥ + & and  are 

satisfied and  remains negative semi definite (

2
1 ( ) 0s tη ≥

( )V t& ( ) 0V t ≤& ) for all . This ensures the 

asymptotic zero convergence of  and  using invariant set theorem. 

0t >

( )e t ( )e t&

 

.  

42 

 

Figure 3.14 Graphical representation of sliding mode control 



Graphical representation of the sliding mode control depicted in Figure3.14 represents the zero 

convergence of  and  starting from an initial location along the sliding manifold ( )e t ( )e t&

( ) ( ) ( ) 0s t e t e tσ= + =&  with the decreasing rate of σ . 

3.4.2 Replacement of sliding mode control by soft switching variable structure control 

The hard switching signum function used in the sliding mode control law given by Eq. 

(3.22) causes chattering of the error along the sliding manifold as depicted in Figure 3.14. In 

order to remove this chattering phenomenon, the signum function is replaced with the soft 

switching saturation function, equipped with the small positive coefficient ε  that controls the 

chattering rate.  

Claim 3.3: For the plant represented in Eq. (3.18), the variable structure control law that ensures 

the asymptotic stability of the closed loop system in the presence of parametric uncertainty is 

defined as: 

( )( )1 2
1 2( ) ( ) ( ) ( ) ( ) ( ) ( )du t CAB y t CA x t e t s t sat s tσ η η ε−= − + + +&& &              (3.29) 

 The saturation function used in above control law is given as: 

( )
sgn( )

s for s
sat s

s for s

ε ε
ε

ε

⎧ <⎪= ⎨
≥⎪⎩

                                         (3.30) 

If the robustness conditions 1 2, , 0σ η η >  and 2( ) ( )CGd t CAGd t η+ ≤&  are satisfied, then the 

steady-state tracking error must be bounded in the region, defined as 2

1 2

( )s t η ε ε
η ε η

< <
+

 at 

. t →∞

Proof: Assuming that the sliding variable  starts from an initial location depicted in 

Figure.3.15. 

( )s t
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Figure 3.15 Graphical representation of variable structure control 

As  starts from a point outside the boundary of ( )s t ε , condition s ε≥  in Eq. (3.30) is satisfied. 

In this situation the variable structure control law given by Eq. (3.29) behaves the same as the 

sliding mode control presented in Eq. (3.22), that forces the sliding function towards the origin 

into the region defined by ( )s t ε= ± , as depicted in Figure 3.15. As the sliding function reaches 

inside the boundary ε , the structure of the control law given by Eq. (3.29)  modified to: 

( )1 2
1 2( ) ( ) ( ) ( ) ( ) ( ) ( )du t CAB y t CA x t e t s t s tσ η η−= − + + +&& & ε                   (3.31) 

The first order time derivative of the positive definite Lyapunov function for the control law 

given by Eq. (3.31) is defined as:  

2 2
1 2( ) ( ) ( ) ( ( ) ( )) ( )V t s t s t CAGd t CGd t s tη η ε= − − − + &&                      (3.32) 

( )1 2( ) ( ) ( ( ) ( )) ( )V t s t CAGd t CGd t s tη η ε⎡ ⎤= − + + +⎣ ⎦
&&                       (3.33) 

If sliding function stays inside the boundary of ε  such that condition 

1 2

( ) ( )
( )

CAGd t CGd t
s t

ε
ε

η ε η

+
≤ ≤

+

&
 is satisfied, then the first order time derivative of Lyaponov 

44 

 



function given by Eq. (3.33) will remain negative semi definite ( ( ) 0V t ≤& ) and will force  to 

move further toward origin. As  enters inside the region 

( )s t

( )s t

2

1 2 1 2

( ) ( )
( )

CAGd t CGd t
s t

ε η ε ε
η ε η η ε η

+
< ≤

+ +

&
< , the first order time derivative of Lyapunov function 

can become positive and will try to throw the sliding function out of this region. Outside this 

region, again the condition will be satisfied and  will be again forced towards the 

origin. Sliding function  will finally settle down in to the region of convergence defined by 

( ) 0V t ≤& ( )s t

( )s t

2

1 2

( )s t η ε ε
η ε η

< <
+

.  

3.4.3 Numerical validation of the variable structure control 

To experimentally validate the variable structure control, a 50 kHz sinusoidal input 

tracking is carried out using Matlab/Simulink. The simulation results are depicted in Figure 3.16. 

In order to satisfy the robustness condition as well as to achieve the rapid error reduction rate, 

controller gain 2η  and slope σ  of the sliding plane are chosen to be 55000 and 200000, 

respectively. To entrap the steady state error within a small range, the value of ε  is selected as 

0.01.  
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a b

Figure 3.16 50 kHz sinusoidal desired input tracking using variable structure control, (a) controll 

input applied to the plant, and (b) tracking result 

 

It is clear from Figure 3.16 that the variable structure control gives accurate tracking results for 

high frequency desired input in the presence of parametric uncertainties.    

3.4.4 Comparison of variable structure control with the sliding mode control 

To compare the performance of variable structure controller with the sliding mode 

control, numerical simulations with 50 kHz sinusoidal input tracking are performed. Figure 3.17 

(a, b) depicts the tracking result using sliding mode control. Phase portrait results using both the 

controllers are depicted in Figure 3.17(c). 

      

a b
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Figure 3.17 50 kHz sinusoidal reference input tracking using sliding mode control; (a) control 

input applied to the plant, (b) tracking result, and (c) phase portrait comparison of variable 

structure control with hard switching sliding mode control 

 

It is clear from the limit cycle in case of variable structure control depicted in Figure 3.17 (c), 

that the hard switching sliding mode control has the definite advantage over variable structure 

control with soft switching because of the zero convergence of the steady-state error, but the 

chattering of the error due to the abrupt switching of control input depicted in Figure 3.17 (a) 

limits its practical implementation.   

3.4.5 Gain tuning of variable structure controller 

For the high frequency desired input tracking, appropriate gain tuning of the variable 

structure controller is very essential. In order to obtain the accurate tracking results, controller 

gain 2η  should be chosen large enough in order to satisfy the robustness condition given by 

2 0η >  and 2( ) ( )CGd t CAGd t η+& ≤ . Numerical simulations with two different 2η  values are 

carried out using Simulink. The value of 1η  for the simulations is chosen to be zero.  

Figure 3.18 depicts the phase portrait results for 2η = 35000 and 55000 respectively. It is 

clear from Figure 3.18(a) that because of not satisfying the robustness condition, the sliding 
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plane  goes out of the bounds of( )s t ( )s t ε= ± . By increasing the magnitude of 2η from 35000 to 

55000 in Figure 3.18(b), the robustness condition of the controller is satisfied and sliding plane 

converges to limit cycle that is in to the zone of ( )s t ε= ± . The other controller parameters ,ε σ  

used in the simulation are chosen as 0.01 and 200000, respectively. 

 

      

a b

Figure 3.18 Effect of robustness condition on the  variable structure control; (a) phase portrait 

when robustness condition is satisfied, and (b) phase portrait when robustness condition is not 

satisfied 

Apart from satisfying the robustness condition, performance of variable structure control 

with soft switching depends on the value of ε . As proved in Claim 3.2 if the robustness 

condition of the controller is satisfied, the steady-state tracking error of the closed loop system 

always converges to the limit cycle bounded in the region of convergence given as 

2

1 2

( )s t η ε ε
η ε η

<
+

< . To observe the effect of ε , a set of simulations for 50 kHz sinusoidal 

frequency tracking are carried out with two different values of ε  as 0.05 and 0.1, respectively. 
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Figure 3.19 Effect of ε  on the soft switching variable structure control 

 

The decreasing radius of the limit cycle for lesser value of ε  depicted in Figure 3.6 implies the 

improvement in the steady-state error. The values of 1 2,η η  and σ  for the simulations are kept 

constant as 0, 55000 and 200000, respectively. 

In order to observe the effect of σ on the performance of variable structure controller, 50 

kHz sinusoidal input tracking is carried out with two different values of σ . Figure 3.20 depicts 

the phase portrait with values of σ  as 15000 and 25000, respectively. 

 

Figure 3.20 Effect of  σ  on the soft switching variable structure control 
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Due to the fact of heaving sliding manifold as ( ) ( ) ( ) 0s t e t e tσ= + =& , the zero convergence rate 

of the error in Figure 3.20 increases with increase in σ . The controller gains 1 2,η η  and ε  for the 

simulations are chosen to be 0, 55000 and 0.01, respectively. 

In order to achieve precise motion-control of the rod-like solid state Galfenol actuator, 

the multi-loop hysteresis nonlinearity is controlled along with actuator dynamic behavior control. 

Hysteresis predictive modeling framework utilizing memory based nonlinear mapping technique 

is developed in Chapter 4. Also, the hysteresis compensation technique utilizing Proportional-

Integral (PI) control is used in order to achieve accurate hysteresis control. 
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CHAPTER 4 

HYSTERESIS MODELING AND COMPANSATION§

4.1 Introduction 

Despite of all the advantages, Galfenol does exhibit magnetic saturation, magnetic 

hysteresis and magnetomechanical nonlinearities, and hence accurate models describing the 

effect of magnetic field on strain are necessary for device design and control.  To that end, a set 

of descriptive memory-based properties has been recently proposed providing sufficient 

knowledge for precise prediction of major and minor hysteresis loops. This approach has been 

validated for hysteresis nonlinearity in piezoelectric actuators. It has been shown that for precise 

prediction of hysteresis, a number of memory units must be included in the model to record key 

points of past hysteresis trajectories and use them for prediction of future paths. The proposed 

model has shown to offer better accuracy and improved computational efficiency compared to 

other existing methods.     

Building on the memory-based approach, a generalized framework is proposed in this 

chapter for modelling the highly nonlinear multiple-loop hysteresis behaviour of Galfenol micro-

positioning actuators. The model separates the nonlinearity from the hysteresis looping effect, 

and approximates it with an exponential average function. Using the memory-based properties of 

hysteresis, a formulation is then derived in which the average function is incorporated in 

 
§The content of this chapter may have come directly or indirectly from our joint publication:[Bashash S., Vora K., 
Jalili N., Evans P. G., and Dapino M., “Memory-based hysteresis compensation and nonlinear modeling of 
Galfenol-driven micro-positioning actuators,” in Proceedings of 1st ASME Dynamic Systems and Control 
Conference, October 2008, Ann Arbor, MI. ] 
 



development of hysteresis loops. The proposed model is experimentally identified and validated 

for a Galfenol actuator. Results indicate good agreement of the model response with the 

experimental data in predicting both major and minor loops. The advantages of the model over 

the existing methods include computational and parametric efficiency, simplicity of 

identification, and accuracy of response. 

4.2 Experimental Setup and Results 

To investigate the memory-based behavior of Galfenol actuators, a set of experiments has 

been carried out. An experimental setup comprising a Galfenol-driven actuator is used as shown 

in Figure 4.1.   

 

Figure 4.1 Experimental setup for a Galfenol-driven micro-positioning actuator. 

This setup was prepared and developed at Ohio state university as a part of ongoing 

collaboration. A unimorph beam consisting of a Galfenol laminate bonded to a brass laminate is 

placed in a magnetic circuit composed of steel flux paths driven by a copper coil.  Both laminates 

have dimensions 1  and were bonded with Armstrong A12 adhesive.  The 0.25 0.015′′ ′′ ′′× ×
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Galfenol is research grade Fe81.6Ga18.4 which has been stress-annealed in order to pre-align 

magnetic domains perpendicular to the length of the beam thereby providing optimal 

magnetostriction (~200 ppm) along the beam length.  When the coil is energized, a magnetic 

field causes the Galfenol to elongate while the brass laminate causes it to bend by restricting its 

elongation along the contact face. The coil is driven by an AE Techron LVC 5050 Linear 

Amplifier operated in voltage control mode. Current measurements are provided by the amplifier 

at a gain of 20 A/V and displacements are measured by a linear variable differential transformer 

(LVDT) instrument having a gain of 0.0124742 in/V.  The LVDT instrument comprises a Lucas 

Schaevitz MHR025 sensor and ATA-101 amplifier.  A SignalCalc ACE dynamic signal analyzer 

from Data Physics Corporation simultaneously controls the drive coil amplifier and acquires the 

displacement and current measurements.  Major and nested minor loop tests were conducted 

using ramp inputs with a rate of 6 V/sec and sampling frequency of 40 Hz.  Closure of the minor 

loops suggests that dynamic effects are negligible at the frequency tested. Figure 4.2 depicts the 

response of the actuator to an input current signal with a triangular profile. 

    

a b
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Figure 4.2 Nonlinear hysteretic response of Galfenol actuator: (a) Input current profile, (b) 

actuator displacement, and (c) butterfly-like hysteresis loops. 

As seen in Figure 4.2(b)-(c), the response is nonlinear with a butterfly-shaped configuration and 

the looping effect due to magnetic hysteresis. While the saturation nonlinearity dominates over 

the hysteresis, precision control requirement requires that both be taken into account. From 

Figure 4.2(c), which shows the hysteresis loops between the applied current and the resulting 

displacement, two important characteristics are observed which will be applied to the modeling 

framework: (i) the hysteresis loops are symmetric with respect to the vertical axis, and (ii) the 

centre of the loops, where the ascending and descending curves cross each other, is located at the 

origin. Therefore, the butterfly configuration can be reduced to a single-sided hysteresis 

configuration without the loss of generality and for the sake of simplicity. 
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4.3 Modeling Nonlinearities using Average Curve Model 

In this section, an exponential average curve fitting procedure is used to identify the best 

fit for the combined ascending and descending hysteresis curves. This method only predicts the 

nonlinearity of the response without considering its hysteresis looping effect. However, the 

obtained average function can be directly utilized in a generalized memory-based hysteresis 

modeling framework, as discussed in section 4.4. 

 

4.3.1 Average Curve Model 

A straightforward approach for eliminating the main source of inaccuracies due to the 

nonlinearities is to find an average curve between the ascending and descending reference curves 

as shown in Figure 4.3(a). Therefore, the model simply reduces to a single function between the 

applied current and the resulting displacement. The following exponential formulation precisely 

approximates the hysteresis average curve:  

 

 ( )1

1 1
( ) 1 exp

n m
i

i
i j

x f v a v b v−

= =

k
k

⎡ ⎤⎛ ⎞
= = −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑                                                   (4.1)    

                        

where v and x respectively represent the input current and output displacement, and ai and bj are 

constant shaping coefficients. Choosing appropriate polynomial orders m and n, a least square 

optimization can be used to identify the unknown shaping parameters based on a set of given 

experimental data. 
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4.3.2 Experimental Results and Numerical Simulations 

Letting  in Eq. (4.1) to precisely approximate the experimental data, the 

following expression is obtained for the average function:  

5n m= =

 

( )2 3 4
1 2 3 4 5

2 3 4 5
51 2 3 4( )( ) 1 b v b v b v b v b vx f v a a v a v a v a v e + + + +⎛ ⎞= = + + + + −⎜ ⎟

⎝ ⎠
               (4.2) 

                                     

The response of the average model with the input shown in Figure 4.2(a) is compared to the 

experimental response in Figure 4.3. The maximum error percentage and the average error are 

5.0232% and 1.7602 µm, respectively. The induced error is due to the multi-path hysteretic 

response of the actuator; hence, a precise hysteresis model must be incorporated for acquiring 

higher precision, as will be discussed next. 

 

 

ba

Figure 4.3 Response of average curve model: (a) the average curve between the ascending and 

descending hysteresis curves, and (b) comparison with the actuator response. 
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4.4 Memory-based Hysteresis Modeling 

The memory-based hysteresis modeling framework, developed for piezoelectric 

actuators5-7, is proposed here to investigate the modeling feasibility of the Galfenol hysteretic 

behavior. This framework is based on three important properties: targeting of turning points, 

curve alignment and the wiping out effect, which enable precise prediction of the multiple-loop 

hysteresis response of active materials. To develop the memory-based hysteresis model for a 

Galfenol actuator, the nonlinearity of the response is separated from its looping behavior. Figure 

4.4(a) demonstrates that ascending and descending hysteresis trajectories can share the 

nonlinearity from a single average curve that passes through them. However, to include the 

hysteresis effect, a mathematical mapping is utilized to split the average curve into appropriate 

ascending and descending trajectories. Before representing a mathematical formulation, a 

summary of hysteresis properties is reviewed in the following paragraph.  

Starting from the origin, the initial hysteresis trajectory, when moving upward, targets the 

upper threshold point corresponding to the maximum possible input. Likewise, the first 

descending trajectory targets the lower threshold point corresponding to the minimum allowed 

input. When the direction of the input changes, the information of that turning point is recorded 

to be utilized for the prediction of future hysteresis paths. A hysteresis trajectory starting from a 

turning point approaches the closest recorded turning point on the opposite side. This property, 

termed targeting of turning points, enables the prediction of the hysteresis path between two 

subsequent turning points. When the trajectory hits a target point, the minor hysteresis loop 

associated with that point is closed and the properties of wiping-out and curve alignment occur 

simultaneously. The wiping-out effect implies that when a minor loop is closed, it is no longer 

useful for the prediction of future hysteresis paths. Therefore, the information of that loop and its 



associated turning points can be eliminated from the memory unit. This property is advantageous 

as it helps to vacate the memory units from unnecessary information and keep them for recording 

the forthcoming turning points. Another advantage of the proposed framework is the curve 

alignment property observed at the turning points; that is the hysteresis trajectory changes path 

slightly and aligns to the previously broken curve associated with that turning point, and 

continues its path towards the next target point.  

 

4.4.1 Mathematical formulation 

To mathematically model a nonlinear and hysteretic response, we first focus on 

predicting a hysteresis track between a starting turning point (v1, x1) and its target point (v2, x2). 

The following nonlinear mapping is proposed for this hysteresis track: 

 

( ) ( )( ) ( ) ( )(12 1, 1 2 2 1 1
1( ) ( , , , ) 1 e

f v f v )x v x v v x v x x k a f v f v
τ −⎛ ⎞

= = + + −⎜ ⎟
⎝ ⎠

                     (4.3) 

                                         

where v represents the operator input (applied current in the case of a Galfenol actuator), a and τ 

are the mapping coefficients being separately identified for the ascending and descending curves, 

and f  stands for the average function given by Eq. (4.1). Coefficient k represents the relative 

slope of mapping and is expressed as: 

 

( ) ( )2

2 1

2 1
1( ) ( )

( ) ( ) 1
f v f v

x xk
f v f v ae

τ− −

−
=

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

                                    (4.4)  
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Substitution of Eq.(4.4) into Eq.(4.3) for the hysteresis track between point (v1, x1) and (v2, x2) 

yields: 

 

( ) ( )
( ) ( )2

1

12 1 2 1

2 1

1

1
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( ) ( )

1 ( ) ( )
( ) ( )

1 ( ) ( )
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f v f v

ae f v f v
x v x x x

ae f v f v

τ

τ

− −

− −

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠= + −
⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

                      (4.5)                    

                                                                                                                                      

The fact that the hysteresis trajectory starting from a turning point targets all the previously 

recorded internal turning points enables the prediction of the response utilizing the proposed 

mapping strategy. Figure 4.4(b) depicts a typical hysteresis path originating from point ( )0 0,v x . 

If the input keeps increasing up to the maximum threshold point, the trajectory passes through all 

the internal target points ( ) ( ) ( )1 1 2 2 1 1, , , ,..., ,n nv x v x v x− −  and approaches the upper threshold point 

.  The equation describing this path is given by: ( ,n nv x )
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∑ −           (4.6) 

where 0 ( )nx v  denotes the predicted multi-segment hysteresis path, which will hold until the 

direction of input changes, and H represents the unit bilateral Heaviside function expressed as: 
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By dividing the model into ascending and descending parts, identifying the average function 

parameters and mapping coefficients, assigning a memory organizer to record and wipe out the 

turning points, and initializing the memory units to the upper and lower threshold points, a model 

can be developed based on relationship (4.6) to predict any hysteresis response occur between 

the lower and the upper threshold points. 

 

a b

Figure 4.4 (a) Separation of nonlinearity from the hysteresis loops, and (b) typical multi-

segment internal path. 

4.4.2 Experimental Verification 

A least square error minimization algorithm has been utilized here to identify parameters 

a and τ for the ascending and descending reference curves. Once these parameters are identified, 

they remain unchanged for the internal trajectories. This comes from the fact that all the internal 

hysteresis trajectories adopt their shape from the associated reference curves. The identified 

memory-based model is subjected to the same input profile given in Figure 4.2(a). The response 
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of the model is compared with the experimental data in Figure 4.5. As seen, the butterfly 

hysteresis loops have been precisely predicted through the proposed model. Furthermore, Figure 

4.6 depicts the effectiveness of the model in predicting minor hysteresis loops. It is emphasized 

that to force the average curve to fit  the ascending and descending reference curves only 4 

parameters have been used (2 for ascending and 2 for descending curves). Adding the 10 

coefficients of the average function, a total of 14 parameters are required to model the nonlinear 

behavior of a Galfenol micro-positioning actuator.  

 

ba

Figure 4.5 Performance of the memory based hysteresis model: (a) model vs. experimental time 

responses, and (b) model hysteresis response. 

 

a b

Figure 4.6 Minor hysteresis loops of (a) experimental and (b) memory-based model response. 
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To investigate the performance improvement of the proposed memory-based hysteresis 

framework over the average curve model, the error signals of both models are compared in 

Figure 4.7. Maximum error percentages and the average error values are presented in Table 4.1. 

The results indicate that around 400% improvement is achieved when the hysteresis prediction is 

added to the average curve model. For further demonstration of the actuator response to arbitrary 

input profiles, a numerical simulation is carried out as depicted in Figure 4.8. Results 

demonstrate the ability of the model in predicting multiple-loop hysteresis response for negative 

and positive values of input and for both left and right minor loops.  

It is remarked that only rate-independent hysteresis loops can be modeled through this 

framework. To compensate for the effects of system frequency-dependent dynamics, appropriate 

models must be selected to account for the dynamical effects including system inertia and 

damping.    

 

Figure 4.7 Error comparison of the average curve model and the memory-based hysteresis  

model. 
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a b

 

c d

Figure 4.8 Simulation of hysteresis model: (a) input profile, (b) butterfly hysteresis response, (c) 

left minor loops, and (d) right minor loops. 

Table 4.1 Comparison of the error values for the average curve model and the memory-based 

hysteresis model. 

 Max. error Avg. error 

Average curve model 5.0232 % 1.7602 (µm) 

Memory-based model 1.5431% 0.4364 (µm) 

 

4.5 Proportional - Integral (PI) Hysteresis Control 

The hysteresis nonlinearity in magnetostrictive actuators degrades its performance for the 

accurate positioning applications. Therefore, the hysteresis compensation is very essential while 

using smart actuators in micro-nano positioning.  
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The Proportional-Integral (PI) control is utilized in this section for controlling the 

nonlinear hysteresis behaviour of Galfenol micro positioning actuator. Figure 4.9 depicts the 

schematic of hysteresis compensation strategy using PI control. The hysteresis model developed 

in previous sections is used here for hysteresis compensation strategy development.  

 

Figure 4.9 Hysteresis control using Proportional Integral control strategy 

Numerical simulations for the hysteresis compensation for using PI controller are performed. 

The tracking results for 500 and 1000Hz desired input frequencies are depicted in Figure 4.10.  

             

ba

               

dc

Figure 4.10 Hysteresis control results: (a) and (b) for 500Hz sinusoidal desired input, (c) and (d) 

for 1000Hz sinusoidal desired input 
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The proportional and integral gains, used in the numerical simulations are depicted in Table 4.2.   

Table 4.2 Proportional and Integral gain values for 500 and 1000Hz sinusoidal desired input 

Desired input frequency 

( Hz ) 

Proportional gain 

( kp ) 

Integral gain 

( ki ) 

Max. Error 

( N ) 

500 0.001 100,000 0.053 

1000 0.001 50,000 0.05 

  

After achieving the precise control of actuator dynamic behaviour and hysteresis nonlinearity 

independently, methods for combining them together are discussed in the next chapter. Also, 

further improvements in minor hysteresis loop prediction as well as hysteresis hysteresis 

compensation technique are described in the future works. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusion 

The work presented here is focused on modeling and control framework of rod-like solid 

state Galfenol actuator. To achieve the simplicity in dynamic analysis and controller 

development, dynamic behavior of the actuator was modeled separately from the hysteresis 

nonlinearity. In order to get the insight of actuator dynamics, a distributed-parameters model of 

the actuator was developed. The free and the forced motion analyses were carried out to obtain 

the state-space representation of the actuator. Numerical simulations using different boundary 

mass and spring were carried out to emphasize their effect on the mode shapes and natural 

frequencies of the actuator.  

A frequency based state space feedback controller utilizing Lyapunov theory was 

designed for achieving precise tracking control over the actuator motion. A full order state 

observer was developed to predict the states of the unobservable plant.  A least square 

optimization method was used to obtain the optimal observer gain matrix. A robust, variable 

structure control was incorporated into the controller design to overcome the effects of plant 

structural uncertainties on tracking performance of the controller. Several numerical simulations 

were performed to observe the effect of modes deficiency on tracking frequency bandwidth of 

the controller. 

In order to predict the nonlinear multi-loop hysteresis effect in the Galfenol actuator, the 

hysteresis nonlinearity was decoupled from the looping effect and modeled using an average 
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function. A hysteresis predictive model, based on intelligent hysteresis properties named as 

targeting of turning points, curve alignment and the wiping-out effect was developed utilizing a 

memory-based nonlinear mapping technique. The obtained average function was utilized in the 

hysteresis model for the accurate prediction of major as well as minor hysteresis loops. 

Numerical simulations for the hysteresis prediction were carried out using Matlab/Simulink 

model. A total of 14 parameters, 10 for average curve prediction and 4 more for forcing the 

average curve to accurately fit the ascending and descending hysteresis loops, were used in the 

model. Finally, a Proportional-Integral (PI) control strategy was used for the accurate hysteresis 

compensation. The tracking simulations for 500 and 1000Hz desired frequency input were 

carried out to validate the performance of the PI controller.    

 

5.2 Future Works and Directions 

In the work presented here, the problem of controlling the rod-like solid state Galfenol 

actuator is divided into two parts: The first half of the thesis describes the modeling and control 

of the actuator dynamics behavior while the second half deals with modeling and control of 

hysteresis nonlinearity. The combined control scheme that can control the actuator dynamic 

behaviour together with the hysteresis nonlinearity can be developed as future work. The 

schematic of the combined actuator dynamics and hysteresis control strategy using developed 

robust variable structure control and PI control is depicted in Figure 4.11. 



 

Figure 5.1 Combined hysteresis and actuator dynamics control scheme using combination of 

state-space and PI controller 

As depicted in Figure 4.11, for combined dynamic and hysteresis control of the actuator, the 

output of the state-space feedback controller is fed as an input to the PI controller and output of 

the PI controller is applied as a controlled input to the plant. 

In order to improve the accuracy in prediction of minor hysteresis loops, a mechanism 

can be incorporated into the hysteresis predictive model such that the shape of the minor 

hysteresis loops can be changed by varying few parameters in the hysteresis predictive model. 

Also, instead of using the PI control, an inverse hysteresis model utilizing the similar mapping 

technique as forward model can be developed for compensation of hysteresis. The schematic of 

combined actuator dynamics and hysteresis control is depicted in Figure 4.12. Instead of 

applying the output of state-space controller to PI controller, it is applied to the inverse hysteresis 

model and the output of the inverse hysteresis model is than applied to the plant as depicted in 

Figure 4.12.  
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Figure 5.2 Combined hysteresis and actuator dynamics control scheme using combination of 

state-space and inverse hysteresis controllers 

The hysteresis prediction results using inverse hysteresis model with 14 mathematical parameters 

10 average curve parameters and 4 shaping parameters are depicted in Figure 4.13. The accuracy 

of inverse hysteresis prediction can be significantly increased by increasing the number of 

mathematical parameters in the inverse model used for the inverse hysteresis prediction in the 

model. 

 

Figure 5.3 Hysteresis prediction using inverse hysteresis model 

The modeling and control framework presented in this work can be implemented on most of the 

rod-like solid-state smart actuators.  The proposed control strategy for the smart actuators will  

widen their usage for the precision-positioning applications. 
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Derivation of Orthogonality Conditions for Mode Shape Functions 

In order to obtain the orthogonality condition, the separation of variable is applied to un-

damped free boundary condition of actuator as: 

( ) ( ) ( ) ( ) ( ) ( ) 0r r r r r rm L q t EA L q t k L q tφ φ φ′+ +&& =                                    (A.1)                         

Substituting Eq. (2.13) into Eq. (1) and rearranging the required terms, Eq. (1) yields:  

( )( ) r
r

LL
EA

γφφ′ =                                                                (A.2) 

where 

                           2(r rm kγ ω )= −                                                                (A.3) 

The equation of motion in the spatial domain for and mode of the actuator can be 

represented as: 

thr ths

2( ) ( )r r rx xφ β φ′′ = −                                                            (A.4) 

and 

2( ) ( )s s sx xφ β φ′′ = −                                                            (A.5) 

Multiplying Eq. (A.4) by ( )s xφ  and Eq. (A.5) by ( )r xφ , integrating over the actuator length and 

taking integral by parts, they can be rewritten as:                                  

2

0 0
( ) ( ) ( ) ( ) ( ) ( )

L L

r s r s r r sL L x x dx x x dφ φ φ φ β φ φ′ ′ ′− = −∫ ∫ x

x

                                   (A.6) 

2

0 0
( ) ( ) ( ) ( ) ( ) ( )

L L

s r s r s s rL L x x dx x x dφ φ φ φ β φ φ′ ′ ′− = −∫ ∫                                  (A.7)                         

Subtracting Eq. (A.7) from Eq. (A.6) and using Eq. (A.2), one can obtain: 

{ }2 2

0
( ) ( ) ( ) ( ) ( ) 0

L

r s r s r sx x dx m L Lβ β ρ φ φ φ φ− +∫ =                                     (A.8)                         
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sFor the two distinct and modes, i.e.,thr ths rω ω≠ , Eq. (A.8) can be restated as: 

0
( ) ( ) ( ) ( ) 0

L

r s r sx x dx m L Lρ φ φ φ φ+ =∫                                         (A.9)                         

when r sω ω= . 

Hence we have: 

0
( ) ( ) ( ) ( ) 0

L

r s r sx x dx m L Lρ φ φ φ φ+ ≠∫                                        (A.10)                         

Integrating (A.9) and (A.10) and applying the normalization condition for the mode shapes, 

yields:  

   
0

( ) ( ) ( ) ( )
L

r s r sx x dx m L L rsρ φ φ φ φ δ+ =∫                                        (A.11)                         

Eq. (A.11) represents the orthogonality condition for the longitudinal vibrations of the actuator 

with respect to mass. In order to obtain the orthogonality condition with respect to stiffness, we 

substitute Eq. (A.2) into Eq. (A.6), and rearrange the required terms to get: 

2

0
( ) ( ) ( ) ( )

L

r s r s rEA x x dx k L L rsφ φ φ φ ω′ ′ + =∫ δ                                      (A.12) 

Eq. (A.12) represents the orthogonality condition with respect to stiffness. 
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