400 research outputs found

    Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data

    Full text link
    Manual analysis of body poses of bed-ridden patients requires staff to continuously track and record patient poses. Two limitations in the dissemination of pose-related therapies are scarce human resources and unreliable automated systems. This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment. The new method, coupled-constrained Least-Squares (cc-LS), uses multimodal and multiview (MM) data and finds the set of modality trust values that minimizes the difference between expected and estimated labels. The new system, Eye-CU, is an affordable multi-sensor modular system for unobtrusive data collection and analysis in healthcare. Experimental results indicate that the performance of cc-LS matches the performance of existing methods in ideal scenarios. This method outperforms the latest techniques in challenging scenarios by 13% for those with poor illumination and by 70% for those with both poor illumination and occlusions. Results also show that a reduced Eye-CU configuration can classify poses without pressure information with only a slight drop in its performance.Comment: Ten-page manuscript including references and ten figure

    Active Authentication using an Autoencoder regularized CNN-based One-Class Classifier

    Full text link
    Active authentication refers to the process in which users are unobtrusively monitored and authenticated continuously throughout their interactions with mobile devices. Generally, an active authentication problem is modelled as a one class classification problem due to the unavailability of data from the impostor users. Normally, the enrolled user is considered as the target class (genuine) and the unauthorized users are considered as unknown classes (impostor). We propose a convolutional neural network (CNN) based approach for one class classification in which a zero centered Gaussian noise and an autoencoder are used to model the pseudo-negative class and to regularize the network to learn meaningful feature representations for one class data, respectively. The overall network is trained using a combination of the cross-entropy and the reconstruction error losses. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. Effectiveness of the proposed framework is demonstrated using three publically available face-based active authentication datasets and it is shown that the proposed method achieves superior performance compared to the traditional one class classification methods. The source code is available at: github.com/otkupjnoz/oc-acnn.Comment: Accepted and to appear at AFGR 201

    High-probability minimax probability machines

    Get PDF
    In this paper we focus on constructing binary classifiers that are built on the premise of minimising an upper bound on their future misclassification rate. We pay particular attention to the approach taken by the minimax probability machine (Lanckriet et al. in J Mach Learn Res 3:555–582, 2003), which directly minimises an upper bound on the future misclassification rate in a worst-case setting: that is, under all possible choices of class-conditional distributions with a given mean and covariance matrix. The validity of these bounds rests on the assumption that the means and covariance matrices are known in advance, however this is not always the case in practice and their empirical counterparts have to be used instead. This can result in erroneous upper bounds on the future misclassification rate and lead to the formulation of sub-optimal predictors. In this paper we address this oversight and study the influence that uncertainty in the moments, the mean and covariance matrix, has on the construction of predictors under the minimax principle. By using high-probability upper bounds on the deviation between true moments and their empirical counterparts, we can re-formulate the minimax optimisation to incorporate this uncertainty and find the predictor that minimises the high-probability, worst-case misclassification rate. The moment uncertainty introduces a natural regularisation component into the optimisation, where each class is regularised in proportion to the degree of moment uncertainty. Experimental results would support the view that in the case of with limited data availability, the incorporation of moment uncertainty can lead to the formation of better predictors

    LEARNING FROM INCOMPLETE AND HETEROGENEOUS DATA

    Get PDF
    Deep convolutional neural networks (DCNNs) have shown impressive performance improvements for object detection and recognition problems. However, a vast majority of DCNN-based recognition methods are designed with two key assumptions in mind, i.e., 1) the assumption that all categories are known a priori and 2) both training and test data are drawn from a similar distribution. However, in many real-world applications, these assumptions do not necessarily hold and limit the generalization capability of a recognition model. Generally, incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. If the visual system is trained assuming that all categories are known a priori, it would fail to identify these cases with unknown classes during testing. Ideally, the goal of a visual recognition system would be to reject samples from unknown classes and classify samples from known classes. In this thesis, we consider this constraint and evaluate visual recognition systems under two problem settings, i.e., one-class and multi-class novelty detection. In the one-class setting, the goal is to learn a visual recognition system from a single category and reject any other category samples as unknown during testing. Whereas, in multi-class classification the visual recognition system aims to learn from multiple-categories and reject any other category sample that is not part of the training category set as unknown. With experiments on multiple benchmark datasets we show that the proposed recognition systems are able to perform better compared to existing approaches. Furthermore, we also recognize that in many real world conditions training and testing data distributions are often different. Due to this, the performance of a visual recognition system drops significantly. This is commonly referred to as dataset bias or domain-shift which can be addressed using domain adaptation. In particular, we address unsupervised domain adaptation in which the idea is to utilize an additional set of unlabeled data sampled from a particular domain to help improve the performance in that respective domain. Various experiments on multiple domain adaptation benchmarks show that the proposed strategy is able to generalize better compared to existing methods in the literature

    Automatic Defect Detection for TFT-LCD Array Process Using Quasiconformal Kernel Support Vector Data Description

    Get PDF
    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms
    • …
    corecore