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Abstract

Deep convolutional neural networks (DCNNs) have shown impressive perfor-

mance improvements for object detection and recognition problems. However,

a vast majority of DCNN-based recognition methods are designed with two

key assumptions in mind, i.e., 1) the assumption that all categories are known

a priori and 2) both training and test data are drawn from a similar distribu-

tion. However, in many real-world applications, these assumptions do not

necessarily hold and limit the generalization capability of a recognition model.

Generally, incomplete knowledge of the world is present at training time,

and unknown classes can be submitted to an algorithm during testing. If

the visual system is trained assuming that all categories are known a priori,

it would fail to identify these cases with unknown classes during testing.

Ideally, the goal of a visual recognition system would be to reject samples

from unknown classes and classify samples from known classes. In this thesis,

we consider this constraint and evaluate visual recognition systems under

two problem settings, i.e., one-class and multi-class novelty detection. In the

one-class setting, the goal is to learn a visual recognition system from a single

category and reject any other category samples as unknown during testing.

Whereas, in multi-class classification the visual recognition system aims to
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learn from multiple-categories and reject any other category sample that is not

part of the training category set as unknown. With experiments on multiple

benchmark datasets we show that the proposed recognition systems are able

to perform better compared to existing approaches.

Furthermore, we also recognize that in many real world conditions training

and testing data distributions are often different. Due to this, the performance

of a visual recognition system drops significantly. This is commonly referred

to as dataset bias or domain-shift which can be addressed using domain

adaptation. In particular, we address unsupervised domain adaptation in

which the idea is to utilize an additional set of unlabeled data sampled from a

particular domain to help improve the performance in that respective domain.

Various experiments on multiple domain adaptation benchmarks show that

the proposed strategy is able to generalize better compared to existing meth-

ods in the literature.

Primary Reader and Advisor: Prof. Vishal M. Patel

Secondary Reader: Prof. Rama Chellappa
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Chapter 1

Introduction

The success of deep learning has been greatly beneficial for various fields

such as natural language processing [130], [19], [9], robotics [76], [116], [134],

computer vision [58], [53], [40], etc. This is especially evident in the case of

computer vision, where majority of the progress can be largely attributed

to the advancements in deep convolutional neural networks (DCNN) [58].

Owing to their learning capacity, DCNN models have achieved state-of-the-

art performance in many vision tasks such as object classification ( [40], [45],

[43]), semantic segmentation ( [69], [144], [15]), and object detection ( [102],

[101], [67]). This has led to DCNN’s increased popularity in several real

world applications as compared to the classical computer vision techniques.

However, these systems suffer from three major issues, the problem of 1)

unknown instance detection, 2) dataset distribution shift, and 3) data privacy.

The first problem of unknown instance detection stems from the fact that

existing visual recognition models are trained with the assumption that label

set during training and testing are exactly same. This limits the model into

identifying any unknown categories as known, which can result in erroneous
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predictions when deployed in real-world scenario. The second problem of

dataset distribution shift is caused due to the dynamic nature of the real-

world visual data. For example, data collected in one weather conditions

are visually distinct from other weather conditions (clean weather vs hazy

weather). Hence, a visual recognition model trained on supervised data of one

condition does not generalize well to other conditions, and results in reduced

performance. Lastly, the third problem stems from the fact that all existing

visual recognition models are trained on a central server assuming all the data

is available at once in a single location. However, this is not possible in many

cases where data is distributed across multiple locations and can not be shared

with a central server. For example, in the case of device user authentication

sending user data from phone to a server would violate user privacy. Hence,

in such cases the model training at central server would not be possible and

would need to devise a training strategy that can adjust to these challenges.

Hence, addressing these problems is of utmost importance for real-world

deployment of any visual recognition system. In what follows, we discuss

each of these problems in detail.

1.1 Unknown instance detection

As discussed earlier, the recent advancements in computer vision have re-

sulted in significant improvements specifically for the classification task [40],

[123]. The rise of deep convolutional neural network has resulted in error

rates surpassing the human-level performance [39]. These promising results,

enable their potential use in many real world applications. However, when
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deployed in a real world scenario, such systems are likely to observe samples

from classes not seen during training. Since, the traditional training methods

follow this closed-set assumption, the classification systems observing any

unknown class samples are forced to recognize it as one of the known classes.

As a result, it affects the performance of these systems. The Fig. 1.1 illustrates

this with the example of unknown instance detection for COIL100 dataset [80].

Here, the full dataset is divided into 15 known categories and 85 unknown

categories. A deep neural network based visual recognition model is trained

on only the known categories and is tested on both known and unknown

categories. We threshold the softmax scores of the visual recognition model

to predict if a test sample belongs to known category or unknown category.

As we can see from the Fig. 1.1, the visual recognition model drops in perfor-

mance as we increase the number of unknown categories in the test set. This

shows the effect a closed-set training strategy has on the visual recognition

system when tested with unknown categories.

(a) (b) (c) (d)
Figure 1.1: Closed-set vs. open-set recognition. (a) Closed-set testing results on the
COIL100 dataset. (b) Sample images used for training the algorithm. (c) Samples im-
ages used for testing the algorithm (also includes instances from unknown categories).
(d) Open-set testing results on the COIL100 dataset.

Hence, it becomes critical to correctly identify test samples as either known
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or novel/unknown for a visual recognition model. The problem of unknown

instance detection is studied in two different settings, namely, 1) one-class and

2) multi-class. In the one-class problem setting, the task is to learn a visual

recognition model from data available of a single category, and during testing

the model should be able to identify any unknown categories from the given

single category. In the multi-class problem setting, the task is to learn a visual

recognition model from a dataset having multiple categories, and the task is to

enclose all the categories as one and detect any test samples coming from any

unknown categories, i.e., categories that were not present in the training data.

In the following sections, we will discuss these problem settings in detail.

1.1.1 One-class problem setting

Multi-class classification entails classifying an unknown object sample into one

of many pre-defined object categories. In contrast, in one-class classification,

Figure 1.2: The figure illustrates how one-class setting differs from a multi-class
setting. Specifically, in the one-class classification setting the model has to learn from
data available from only one category. Here, unknown instances are indicated as
question mark, as we don’t have it available during training.
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the objective is to identify objects of a particular class (also known as positive

class data or target class data) among all possible objects by learning a classifier

from a training set consisting of only the target class data. The absence of

data from the negative class(es) makes the one-class classification problem

difficult. This difference is also illustrated in Fig. 1.2 with an example of

animal classification task. As we can see from the Fig. 1.2, in the case of

one-class problem setting during training the data from only one category

(e.g. penguin) is available, whereas in the case of multi-class setting data from

multiple categories (e.g. penguin, seal, dog, blue jay) is available.

(a) Baseline: 0.85

Proposed: 0.83

Baseline: 0.76

Proposed: 0.19

In-class

Novel

class

(b)

Novelty Detector

In-class Data

Novel-class Data

In-classNovel

Figure 1.3: (a) Typical example of a multiple class novelty detection scenario, where
a novelty detector is used to differentiate between in-class and novel class data. (b)
Baseline and the proposed method are able to produce high scores for in-class data.
However, for novel class data the proposed approach does is better at assigning low
scores compared to the baseline. Here, the “Baseline" refers to the novelty detection
using traditional deep convolutional neural network with penultimate layer scores.
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1.1.2 Multi-class problem setting

Unlike one-class, in the case of multi-class problem setting there are more

than one known categories to learn from [7, 65, 83, 97]. The goal in the case

of multi-class problem setting is then to detect data samples of unknown

categories instances and improve the robustness for the model against such

cases. This is useful in many real-world vision applications. For example,

in the case of autonomous navigation systems, it is important to stop and

re-plan the navigation path by detecting an object as unknown category rather

than wrongly classifying it and risking a potential crash. This is illustrated in

Fig. 1.4(a) with a toy example. The known category data have three categories,

namely, blue-circle, orange-triangle, and green-square. The goal would be

then to learn a decision boundary enclosing these categories shown in the

figure as novelty detector which can identify any test sample coming from

categories like pentagon, half-moon, or star categories as unknown by giving

it a low score as shown in Fig. 1.4(b).

1.2 Domain shift

Most DCNN-based models need to be trained in a supervised fashion, which

has been made possible due to the availability of large datasets having thou-

sands of images annotated with ground-truth labels [18], [25], [64]. As dis-

cussed earlier, one of the major drawbacks is the poor generalization capability

of DCNN models to visually distinct images compared to the training images.

For instance, a detection model trained with a dataset collected in Rome may
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Cityscapes → FoggyCityscapes

Rome → Tokyo

Correct Detection Missed Detection
Figure 1.4: Left: Source trained model on source domain, Right: Source trained model
on the target domain. Top row: A detection model trained on the Cityscapes dataset,
when evaluated on the FoggyCityscapes dataset, it fails to detect cars and pedestrians
due to the domain shift caused by fog. Bottom row: A model trained in Rome, when
evaluated on another city such as Tokyo, performs poorly due to differences in scene
appearances, weather, objects, etc. These examples show that the detection models
generalize poorly under the domain shift.

not necessarily perform well on images from Tokyo due to the changes in

the appearance of scenes/objects and/or weather between them, as illus-

trated in bottom row of Fig. 1.4. A similar example is shown for cases such

as sunny to foggy weather in Fig. 1.4 top row. Fig. 1.5 shows quantitatively

the performance drop of different deep learning based object detectors that

are trained on one particular dataset, when evaluated on different datasets.

This problem where models, trained on one particular dataset (also known

as source dataset), do not generalize well to a dataset that has a different

distribution (also known as target dataset) is commonly referred to as domain
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shift or distribution shift in the literature [4], [92], [31].
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(a) Cityscapes → FoggyCityscapes (b) Pascal VOC → Clipart

Figure 1.5: Illustration of detector performance; In (a), the model is trained on
Cityscapes and evaluated on FoggyCityscapes and in (b), the model is trained on
Pascal VOC and evaluated on Clipart. We can observe a significant drop in the
performance of the detector when there is a distribution shift in the training and test
data.

A straightforward approach to solve this distributional shift problem is

annotating the target dataset images with ground-truth detection labels. How-

ever, this might prove to be infeasible considering that the labor cost of the

annotation process is prohibitively expensive for all visually distinct con-

ditions. To circumvent this issue, many methods rely on the principles of

unsupervised domain adaptation [4], [92], [86] which involves training the

DCNN model with both labeled source dataset and unlabeled target dataset

having visually distinct appearance.

In this thesis, we study this problem of domain adaptation for the task

of multi-class novelty detection and object detection under adverse weather

conditions, respectively in Chapter 6 and Chapter 8.
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1.3 Data privacy

As we discussed earlier, traditional deep network training assumes that all

training data are available at a single data center location for training. Further-

more, these data centers may not allow a direct sharing of their data due to

privacy concerns. Federated learning [75] and split learning [36] frameworks

were specifically proposed to address these issues. Federated learning enables

such decentralized deep network training by effectively combining models

trained by the individual data centers in a central server [75]. Additionally,

such decentralized training protects the privacy of data at individual data

centers. This enables a safe collaboration among the data centers to learn a

better deep network model without sacrificing user privacy. We will study

this issue for the case of user authentication model in Chapter 9.

1.4 Outline

The rest of this thesis is organized into the following chapters:

In Chapter 2, we discuss existing works in the field of one-class classi-

fication, multi-class novelty detection, domain adaptative object detection,

federated learning etc.

In Chapter 3, we briefly discussed concepts related to one-class classifica-

tion, domain adaptation, federated learning etc.

In Chapter 4, we present a strategy to train a convolutional neural network

in an end-to-end manner for a one-class classification problem setting. We

show the benefits of such training compared to just utilizing pre-trained

9



features and off-the-shelf one-class classifiers like OC-SVM and SVDD.

In Chapter 5, we extend the one-class convolutional neural network pro-

posed in the Chapter 4 by adding a regularization constraint and show its

effectiveness in one of the one-class classification application of face-based

active user authentication.

In Chapter 6, we study the identification of unknown instances in the

multi-class classification setting. Specifically, we explore the use of patch-level

activity patterns to identify unknown/novel category instances during testing.

In Chapter 7, we consider the domain shift problem for the multi-class

novelty detection task. We study the behavior of existing novelty detection

methods under the dataset distribution shift and propose different techniques

to mitigate the domain gap issue.

In Chapter 8, we study the domain shift problem for the case of general

object detection task. Specifically, we target the use of domain-specific prior

information to aid the domain adaptation training for generalizing object

detection models to unlabeled data degraded by adverse weather conditions

like rain and haze.

In Chapter 9, we tackle the issue of data privacy and decentralized training

for the case of face-based user active authentication. Specifically, we devise

a training strategy that can learn an authentication model from multiple

user/client-devices connected to a central server, without sharing any user

data with the central server.

Finally, we conclude the thesis in the Chapter 10. We briefly discuss the

takeaways from the thesis. Also, we present potential directions for the future

10



research on the topics discussed in the thesis.
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Chapter 2

Related Work

2.1 One-class classification

Various methods have been proposed in the literature for one-class classifica-

tion [93]. In particular, many of the one-class classification methods are based

on the Support Vector Machines (SVM) formulation [115], [74], [23]. SVMs

are based on the concept of finding a boundary that maximizes the margin

between two classes and are shown to work well for binary and multi-class

classification. However, in one-class problems the infromation regarding the

negative class data is unavailable. To deal with this issue, Scholkopf et al. [113]

proposed one-class SVM (OC-SVM), which tackles the absence of negative

class data by maximizing the boundary with respect to the origin. Another

popular approach inspired by the SVM formulation is Support Vector Data

Description (SVDD) introduced by Tax et al. [124], in which a hypersphere

that encloses the target class data is sought. Various extensions of OC-SVM

and SVDD have been proposed in the literature over the years. Another
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Figure 2.1: A graphical illustration of popular statistical one-class classification meth-
ods. Green circles show the target class data, red crosses show the unknown data (i.e.
anomaly, novelty, outlier etc.), blue doted lines/circles show the decision boundaries
captured by the respective methods. Pink dotted line in Fig. 2.1(c) shows the bound-
ary of zero error of probability. (a) OC-SVM, maximizing the margin of a hyperplane
with respect to the origin. (b) SVDD, finding a hypersphere that encloses the given
data. (c) MPM, finding a hyperplane that minimizes the misclassification probability.

approach for one-class classification is based on the Minimax Probability Ma-

chines (MPM) formulation [56]. Single class MPM [32], [95] seeks to find a

hyper-plane similar to that of OC-SVM by taking second order statistics of

data into consideration. Hence, single class MPM learns a decision boundary

that generalizes well to the underlying data distribution. Fig. 2.1 presents

a high-level overview of different one-class classification methods. Though,

these approaches are powerful tools in identifying the decision boundary for

target data, their performance depends on the features used to represent the

target class data.

In recent years, several attempts have been made to counter the prob-

lem of training a neural network for one-class classification [105], [104], [14],

[57], [100], [146], [13], [96]. These approaches can be broadly classified in to

two categories, generative approaches [100], [146], [13] and discriminative
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approaches [14], [96]. Generative approaches use generative frameworks

such as auto-encoders or Generative Adversarial Networks (GAN) [33] for

one-class classification. For example, Ravanbakhsh et al. [100] and Sabokrou

et al. [104] proposed deep auto-encoder networks for event anomaly detection

in surveillance videos. However, in their approaches the focus is mainly on

the image-level one-class classification. Work by Lawson et al. [57] developed

a GAN-based approach for abnormality detection. Sabokrou et al. [105] ex-

tended that idea for detecting outliers from image data using an auto-encoder

based generator with adversarial training. In general, these generative models

such as GANs are very difficult to train as compared to the discriminative

classification networks [111].

Compared to the generative approaches, discriminative approaches for

one-class classification have not been well explored in the literature. One

such approach by Perera and Patel [96] utilize an external reference dataset

as the negative class to train a deep network for one-class classification using

a novel loss function. In contrast to this method, we do not make use of any

negative class data in our approach. In another approach, Chalapathy et al. [14]

proposed a novel SVM inspired loss function to train a neural network for

anomaly detection. With some inspirations from other statistical approaches

for one-class classification (i.e. taking origin as a reference to find the decision

boundary), we propose a novel method called, One-Class CNN (OC-CNN), to

learn representations for one-class problems with CNNs trained end-to-end

in a discriminative manner.
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2.2 Multi-class novelty detection

Some of the earlier methods proposed for multi-class novelty detection in-

clude [7, 65], which utilize use the feature encoding of in-class data to learn

a subspace (referred to as null space of training data in [7, 65]), and during

inference the novelty score is calculated based on the distance of a test sample

projected onto that subspace with the learned in-class data projections. How-

ever, these methods can not be integrated with deep convoluitonal neural

networks (DCNN) to perform end-to-end training.

Over the years many novelty detection methods have been proposed some

the earliest methods include principle component analysis-based [42,128], sup-

port vector machine-based [114, 124], sparse representation-based [133, 138],

nearest neighbors-based [24, 37, 52]. In some of the recent works, Bodesheim

et al. [7] proposed a kernel-based method that projects all in-class data onto a

subspace (referred to as null-space of training data), where all in-class cate-

gories are forced to have zero intra-class variance. Specifically, they employ

a special case of linear discriminant analysis formulation, called Null-space

Foley-Shannon Transform (NFST), to achieve zero intra-class variance. The

smallest distance between the test sample projection with the class projections

is used to decide whether an input is from a known class or a novel class.

Liu et al. [65] pointed out that NFST training does not scale well with the

increase in dataset size due to its high computation cost. To counter that, they

proposed an incremental addition of classes to learn NFST subspace, which

results in improved scalability with increased dataset size. Bodesheim et al. [6]

proposed another variant of NFST-based novelty detection method which
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rather than using all in-class data samples, learns the NFST model based on

the k nearest neighbor samples. This selective sampling helps to locate the

local manifold on the feature space and learn specific models for each test

sample.

However, all of these methods provide a general framework for novelty

detection and none of them are specifically designed for DCNNs. Schultheiss

et al. [117] proposed a DCNN-based novelty detection method by examining

the extreme signatures observed in the penultimate layer. More precisely,

depending on the input data there are specific dimensions in the penultimate

layer of DCNNs, which produce high activation values (referred to as extreme

value signatures) if the input is from novel class. Recently, Perera et al. [97]

proposed a DCNN-based training method using a reference dataset. Instead

of just utilizing pre-trained models trained on some reference dataset, they

propose to use samples from the reference dataset as well. They show that

having access to these additional data samples acts as a novel class proxy

and benefits the novelty detection aspect of DCNNs. The reference dataset

used during training, enables learning of negative filters which forces low

activations at penultimate layer, when the input data is not from a novel class.

2.3 User active authentication

In this thesis, we also focus on face-based user active authentication which is

one of the most useful applications of unknown user detection.

User active authentication has been considered by many works in the
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literature [95], [94]. Most conventional approaches utilize off-the-shelf one-

class classification models such as one-class support vector machine (OC-

SVM) [113], support vector data descriptor (SVDD) [124], mini-max probabil-

ity machine (MPM) [56] etc. These one-class classifiers are trained on either

hand-crafted features or features extracted from a pre-trained deep neural

network. Few recent works attempt to extend these basic one-class classifier

formulations by adding more constraints to their objective functions. Notice-

ably, the work by Perera and Patel [95] extends single mini-max probability

machine (SMPM) formulation [32] with additional hyperplane constraint

to propose a better one-class classifier called dual-minimax probability ma-

chines (DMPM). Many works have explored the use of different biometric

modalities such as touch patterns, keystrokes, voice, face for user authenti-

cation [20], [55], [28], [120]. More recent works have focused on face-based

authentication systems [95], [94].

2.4 Domain adaptation

The domain shift problem has been well-studied in the literature for the image

classification task. It is studied specifically in the context of unsupervised

domain adaptation. In unsupervised domain adaptation, it is assumed that

images in the source dataset are available with category labels, while no label

information is provided for the target images. The most popular approaches

for this task are based on CNNs. Some of these approaches include feature

distribution alignment [129], [30], [122], [108], similarity learning [98], residual

transfer [70], [71], and generative adversarial network-based methods [44],
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[78], [41], [112]. These methods mostly consider a setting where both source

and target datasets have equal number of categories and also consider the

classification task. Unlike these methods, we consider the task of multi-class

novelty detection and object detection in adverse weather conditions. For

each of these tasks there exist a few similar works in the literature.

2.4.1 Multi-class novelty detection under domain shift

Some works have started to consider different settings where the number

of categories in the source dataset and the target dataset are not the same.

These extensions include partial domain adaptation [11], universal domain

adaptation [136] and open-set domain adaptation [87]. Partial domain adapta-

tion assumes that target domain categories are a subset of the source domain

categories and hence only a part of the source dataset is useful during adapta-

tion. Whereas open-set domain adaptation assumes that the source domain

categories are a subset of the target domain categories and hence only a part

of the target data is useful for the adaptation. Universal domain adaptation

brings both open-set and partial settings together into a single framework. All

of these modifications to the original domain adaptation problem setting are

designed to improve the domain adaptation performance on more practical

scenarios. The most related problem to the proposed scenario available in

the literature is open-set domain adaptation proposed by Busto and Gall et

al. [87]. However, we would like to point out that there are some key dif-

ferences between open-set domain adaptation and the proposed approach.

Specifically, in open-set domain adaptation, the target categories are a superset
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of the source categories, i.e., there are some unknown categories available in

the target dataset. Since, no labels are provided for the target domain, the

challenge for open-set domain adaption method is to separate out the samples

belonging to known and unknown categories in the available target dataset.

This extends the domain adaptation capability to a real-world scenario where

the target category set will be a superset of the source. In the domain adap-

tive multi-class novelty detection problem, we do not modify the domain

adaptation setting like the open-set domain adaptation, but on the contrary,

utilize the domain adaptation techniques to improve generalization of nov-

elty detection methods on different data domains. Specifically, in the case of

domain adaptive multi-class novelty detection, we have labeled data from the

source domain and unlabeled data from the target domain and both of these

domains share the same category set. Also, unlike open-set domain adapta-

tion, where unknown category data samples are accessible during training,

here, unknown category data samples are only observed during testing. The

end goal for the proposed problem is to utilize the source domain information

to create a better novelty detection model for the target domain data. Since

both methods follow different problem settings, either of the methods would

not be optimal for the other problem setting.

2.4.2 Object detection under adverse-weather conditions

Earlier methods considering adaptation of object detector models for adverse

weather conditions include [16, 49, 107, 121]. Specifically, Chen et al. [16]

assumed that the adversarial weather conditions result in domain shift, and
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they overcome this by proposing a domain adaptive Faster-RCNN approach

that tackles domain shift on image-level and instance-level. Following the

similar argument of domain shift, Shan et al. [121] proposed to perform joint

adaptation at image level using the Cycle-GAN framework [147] and at feature

level using conventional domain adaptation losses. Saito et al. [107] proposed

to perform strong alignment of the local features and weak alignment of

the global features. Kim et al. [49] diversified the labeled data, followed by

adversarial learning with the help of multi-domain discriminators. Cai et

al. [10] addressed this problem in the semi-supervised setting using mean

teacher framework. Zhu et al. [148] proposed region mining and region-

level alignment in order to correctly align the source and target features.

Roychowdhury et al. [103] adapted detectors to a new domain assuming

availability of large number of video data from the target domain. These

video data are used to generate pseudo-labels for the target set, which are

further employed to train the network. Most recently, Khodabandeh et al. [48]

formulated the domain adaptation training with noisy labels. Specifically, the

model is trained on the target domain using a set of noisy bounding boxes

that are obtained by a detection model trained only in the source domain.

2.5 Federated learning

Federated Averaging (FedAvg) is one of the most widely used federated

learning algorithm to train deep network models [75], [77]. In FedAvg, a

model is initialized at a central server and sent to all data centers, which

then train their individual models with their locally available data. These
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local models are then sent back to the central server, where all local models’

parameters are averaged to create a global model. This global model is then

again sent back to the individual data centers for another round of local

training and the process is repeated until the global model converges.

Split learning also enables training of deep network when data is shared

across multiple devices. Gupta et al. [36] first introduced split learning where,

the whole deep model is divided into two parts. The first part remains on

the local device and the second part is kept on the server. The whole model

is trained through backpropagation by passing gradient information from

server to local devices. Vepakomma et al. [131] and Poirot et al. [99] utilized

split learning framework to train a deep model network on patient data from

multiple institutions without having to share the raw patient data. Addition-

ally, Thapa et al. [125] proposed an approach that utilizes the principles of

both FL and SL to create a fusion method for distributed learning.

21



Chapter 3

Background

3.1 One-class classification

3.1.1 One-class Support Vector Machines (OC-SVM)

One-class SVM is a special case of Support Vector Machine (SVM) formulation.

In a binary SVM, the hyper-plane that separates the two classes with that

largest possible margin is found. The hyper-plane is defined by support vec-

tors. In the case of one-class classification, there exists only positively labeled

data during training. In One-class SVM (OCSVM), hyperplane corresponding

to negative class are set to be the origin of the coordinate system [113]. There-

fore, the objective of OCSVM boils down to finding a hyper-plane furthest

away from the origin, where positively labeled data exists in the positive half

space of the hyper-plane. When this constraint is relaxed using slack variables,

the optimization objective can be written as:

min
w,ξ,b

1
2 ||w||2 +

1
νN ∑i ξi − b

s.t. ⟨w, Φ(xi)⟩ ≥ b− ξi, ξi ≥ 0,
(3.1)
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where, the column vector ξ = [ξi, ξ2, . . . , ξN] and each ξi is the slack vari-

able corresponding to the ith training sample (i.e. vectorized image), Φ is

a mapping function that maps xi to a kernel space where dot products are

defined using a kernel function K(·, ·), b is the bias term and ν is a trade-off

parameter, and N is number of training examples. When the optimization

is solved, inference on a query sample xtest can be done using the condition

sgn(⟨w, ϕ(x)⟩ − b).

Eq. 3.1 can be modified with the help of Lagrange multipliers αi, βi ≥ 0 as

follows:

L(w, ξ, b, α, β) =
1
2
||w||2 + 1

νN ∑
i

ξi− b−∑
i

αi(⟨w, Φ(xi)⟩− b+ ξi)−∑
i

βiξi,

(3.2)

where the column vectors α = [αi, α2, . . . , αN]
T and β = [βi, β2, . . . , βN]

T.

Setting derivatives with respect to primal variables to zero, it can be shown

that w = ∑i⟨αi, Φ(xi)⟩, αi =
1

νN − βi ≤ 1
νN and ∑i αi = 1. By substituting

these values in Eq. 3.1, the dual optimization problem can be derived as:

min
α

1
2 ∑i ∑j αiαjK(xi, xj)

s.t. 0 ≤ αi ≤ 1
νN , ∑i αi = 1.

(3.3)

Furthermore, it can be shown that when 0 ≤ αi ≤ 1
νN is satisfied the bias term

can also be expressed as:

b = ⟨w, Φ(xi)⟩ = ∑
j

αjK(xi, xj). (3.4)

With the dual form of the problem, as shown in Eq. 3.3, the optimal values

of parameters in problem shown in Eq. 3.1 can be found using the kernel

23



function K(·, ·) without explicitly defining the mapping function Φ(·). The

decision for any test image xtest that is vectorized as xtest can also be expressed

in terms of the kernel function using the dual variables and vectorized training

images as follows:

sgn(∑
i

αiK(xi, xtest)− b), (3.5)

3.1.2 Support Vector Data Descriptor (SVDD)

The SVDD [124] formulation closely follows the OCSVM objective. However,

instead of learning a hyper-plane to separate data from origin, Tax et al.

[124] propose to find the smallest hyper-sphere that can fit given training

samples. The hyper-sphere is characterized by its mean vector (or centroid of

hyper-sphere) o and radii rd > 0. The volume of hyper-sphere is minimized

by minimizing rd ∈ R while making sure hyper-sphere encloses most of

the training samples. This objective can be written down in the form of

optimization problem as:

min
o,ξ,rd

r2
d + λ ∑i ξi

s.t. ∥xi − o∥2 ≤ r2
d + ξi, ξi ≥ 0 ∀i.

(3.6)

Parameter λ controls the trade-off between errors and the objective. Similar

to the OCSVM, the above objective can be modified with the help of the

Lagrangian multipliers and the updated optimization problem can be re-

formulated as:

L(rd, o, α, γ, ¸) = r2
d +λ ∑

i
ξi−∑

i
αi(r2

d + ξi− (∥xi∥2− 2⟨o, xi⟩+ ∥o∥2))−∑
i

γiξi,

(3.7)
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where, the column vectors α = [αi, α2, . . . , αN]
T and γ = [γi, γ2, . . . , γN]

T.

By setting derivatives of primal variables to zero, it can be shown that ∑i αi =

1, o = ∑i αixi and λ− αi − γi = 0. By substituting to Equation 3.7, the dual

form can be obtained as:

min
α

∑i ∑j αiαj⟨xi, xj⟩ −∑i αi⟨xi, xi⟩
s.t. 0 ≤ αi ≤ λ, ∑i αi = 1.

(3.8)

A given test sample xtest, is assigned a positive label if it is inside the

identified hyper-sphere. More precisely, if the following condition is met:

∥xtest − o∥2 = ⟨xtest, x⟩ − 2 ∑
i

αi⟨x, xi⟩+ ∑
i

∑
j

αiαj⟨xi, xj⟩ ≤ r2
d. (3.9)

Since, the dual form and the inference equation both include inner product

terms of xi and x, SVDD can be extended to a kernel formulation by simply

replacing product terms by a kernel function that corresponds to some map-

ping function Φ as, ⟨Φ(xj), Φ(xi)⟩ = K(xi, xj). The kernalized version of the

optimization problem of dual form then can be expressed as:

min
ff

∑i ∑j αiαj(K(xi, xj)−∑i αi(K(xi, xi)))

s.t. 0 ≤ αi ≤ C, ∑i αi = 1.
(3.10)

Here, due to ∑i αi = 1, that in the case where the kernel function only

depends on the difference between the two vectors, i.e., when K(x1, x2) de-

pends only on x1 − x2, the linear term of the dual objective function becomes

constant and the optimization becomes equivalent to the dual form of OCSVM

in Equation 3.3 discussed in the previous section.
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3.2 Domain adversarial training

Let us denote the source dataset as, S = {Xi
s, Yi

s}Ns
i=1, and it consists of Ns

number of images. Here, Xi
s denotes ith image and Yi

s denotes the correspond-

ing bounding box annotations with category label. Similarly, let us denote the

target dataset as, T = {Xi
t}

Nt
i=1 having Nt number of target domain images

with no ground-truth annotations. Ben et al. [4] proposed a framework to

perform domain adaptation for the given setup, i.e., labeled source dataset

and unlabeled target dataset, with theoretical upper bounds on the target per-

formance. Ben et al. [4] designed aH∆H-distance to measure the divergence

between two sets of samples that have different data distributions, as is the

case for the domain adaptation problem. Let us consider an arbitrary source

domain image Xs ∈ S and an arbitrary target domain image Xt ∈ T . Further-

more, let us consider a domain discriminator denoted as, D : X → {0, 1}, that

takes in any image X ∈ {S ∪ T } and predicts the domain of the input image.

classifies source domain image Xs ∈ S as label 0, and target domain image

Xt ∈ T as label 1. ConsideringH to be a set of possible domain discriminators,

theH∆H-distance can be defined as follows:

dH∆H(S , T ) =2 sup
(D,D′)∈H2

⃓⃓⃓
E

X∼S
[D(X) ̸= D′(X)]

− E
X∼T

[D(X) ̸= D′(X))]
⃓⃓⃓
,

(3.11)

where EX∼S and EX∼T denotes the expected domain classification errors over

the source and target domain dataset, respectively. More precisely, the Eq. 3.11

measures the divergence by the disagreement of the hypothesis sampled from
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H. The ideal joint hypothesis is defined as:

D∗ = argmin
D∈H

ErrS(D∗) + ErrT (D∗). (3.12)

Here, the terms ErrS and ErrT denote the expected prediction errors on

the source and target domain data samples, respectively. This distance is often

used in the domain adaptation literature to measure the adaptability between

any give source and target domain datasets. Ben et al. [4] present a theorem

that further defines the upper bound on the target error as:

∀D ∈ H, ErrT (D) ≤

ErrS(D) +
1
2

dH∆H(S , T ) + Const.
(3.13)

We can note from the Eq. 3.13, the target error is upper bounded by three terms,

namely expected prediction error on the source domain, domain divergence

denoted in Eq.3.11, and few constant terms. More details regarding both

Eq. 3.11 and Eq. 3.13 are provided in [4]. A majority of the domain adaptation

works in the literature rely on this formulation and focus on minimizing the

upper bound on the target error by reducing the domain divergence between

the source and target domain.

The adversarial feature learning is built on this theory. Specifically, the

overall strategy involves minimizing the upper bound given in Eq. 3.13 by

directly minimizing theH∆H-distance. As we can notice fromH∆H-distance

given in Eq. 3.11, this distance is inversely proportional to the error rate

of the domain classifier D. The goal in a domain adaptation scenario is

to reduce this distance, i.e., increase the domain classifier error. Ganin et
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Figure 3.1: Domain adaptation by backpropagation as proposed in [31] with the
example of classification task.

al. [31] exploited this and proposed a novel gradient reversal approach to

train any neural network model for domain adaptation. The overall goal is to

achieve a domain invariant feature space of a backbone neural network with

the help of a neural network-based domain classifier. Suppose we denote a

domain classifier network as D and the backbone feature extractor network

as F. In that case, the feature extractor network also tries to increase the

domain classifier loss. The network F tries to minimize the task-specific

loss (classification/segmentation/detection loss) and maximize the domain

classification loss in the overall training pipeline. The network D is trained to

minimize domain classification loss. In addition to the task-specific loss, an

additional loss involving domain classification is added. This loss is termed

as adversarial loss [31] and it can be written as:

max
F

min
D∈H
{ES(D) + ET (D)} , (3.14)

whereH denotes the hypothesis space for the domain classifier and F is the
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feature extractor network. ES(D) and ET (D) denote the expected domain

classification error over source and target domain, respectively. Eq. 3.14 is

implemented with the help of a gradient reversal layer which is applied before

the input to the domain classifier as shown in Fig. 3.1. The gradient reversal

layer during feed-forward acts as an identity function and the gradients are

multiplied with −1 during backpropagation. In effect, this forces feature

extractor F to maximize the domain classification loss while minimizing the

task-specific loss resulting in the domain invariant feature space as proven by

Ben et al. [4].

3.3 Object detection

Over the years, deep convolutional neural network based object detectors

have demonstrated exceptional improvements in performance on a variety

of datasets and have become an integral part of various computer vision

applications. There are a variety of surveys [66], [145], [149] on the topic

covering wide range of techniques proposed over the past decade for object

detection. The most popular frameworks for object detection are Faster-RCNN

[102], You Only Look Once (YOLO) [101] and Single Shot Multi-box Detector

(SSD) [67]. The majority of domain adaptive object detection works are based

on the Faster-RCNN and a few others use SSD. Other recent frameworks

include, Fully Convolutional One Stage (FCOS) Object Detection [126] and

DEtection TRansformer (DETR) [12]. However, these frameworks have been

only scarcely used for the domain adaptive object detectors. In what follows,

we briefly describe the widely used detection frameworks in the domain
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adaptive detection literature.

3.3.1 Faster-RCNN

The Faster-RCNN framework, proposed by Ren et al. [102], follows a two-

stage object detection approach and it consists of three major components:

1) a backbone CNN, 2) a Region Proposal Network (RPN), and 3) a Region-

of-Interest (RoI) based classifier (RCN). Fig. 3.2(a) shows an overview of

the Faster-RCNN architecture. Consider a dataset, D = {Xi, Yi}N
i=1, having

N images, with each image Xi with ground-truth annotation Yi. Here, the

ground-truth annotation Yi denotes both bounding boxes and respective object

categories in the corresponding image Xi. As shown in Fig. 3.2(a), an input

image (Xi) is forwarded through the backbone network resulting in a set of

feature maps. These feature maps are then fed to the RPN network which

generates a set of candidate object proposals. The RPN network relies on pre-

defined anchor boxes of multiple sizes and aspect ratios in order to effectively

learn to generate the candidate proposals. Subsequently, each proposal is then

transformed into fixed-size features using RoI-pooling. Finally, the pooled

features are then forwarded through the RCN, which predicts the category

RoI Align

FC layers

FC layers

(a) Faster-RCNN (b) SSD

RPN

RCN

Backbone Network Extra Feature Layers

Backbone Network

Figure 3.2: Illustration of popular detection frameworks: (a) Faster-RCNN [102], (b)
Single Shot Multi-Box Detector (SSD) [67].
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label for each candidate proposal in addition to refining its bounding box.

For training the RPN candidate, a category-agnostic binary label (of being an

object or not) is assigned to each anchor. The jth anchor is assigned a label,

denoted as yj
b ∈ {0, 1}, as positive (or 1) if it has the highest Intersection

over Union (IoU) overlap with one of the ground-truth boxes or if it has

an IoU overlap higher than 0.7 with any of the ground-truth boxes in the

corresponding image. Similarly, a negative label (or 0) is assigned to the

anchor if IoU ratio is lower than 0.3 for all ground-truth boxes. The RPN is

then tasked to perform a binary classification to identify whether the candidate

bounding box proposal corresponds to one of the objects in the image and

learn the offset between the ground-truth bounding box, denoted as bj, and

respective anchor box to get final bounding box prediction, denoted as b̃j. The

offset learning is supervised with the help of a regression loss applied on the

bounding box parameters. Both these losses are combined together to obtain

the final loss for region proposal network as shown below:

Lrpn =
1

Nb
∑

j
Lbce

rpn(y
j
b, pj

b)

+ λrpn
1

Nbbox
∑

j
pj

bL
reg
rpn(bj, b̃j

),

(3.15)

where j is the index of an anchor box in the mini-batch and pj
b is the probability

assigned to the respective anchor box being an object. The loss, Lreg
rpn, computes

the smooth-L1 distance between the given ground truth bounding box and

the predicted bounding box b̃j.

Next, the RCN network is trained to perform classification of RoI-pooled

features using cross entropy loss with K+ 1 class classification, denoted asLce
rcn.
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Here, K denotes the number of categories in the dataset and an additional

class to represent the background category. Additionally, the RCN is also

tasked to predict the bounding box offset through regression loss similar to

the RPN network.

The overall loss function used to train the entire Faster-RCNN network is

trained is defined as:

L f rcnn
det = Lrpn + Lrcn. (3.16)

More details regarding the anchor boxes, regression losses, training, and

architecture can be found in the [102].

3.3.2 Single Shot Multi-Box Detector

Liu et al. [67] proposed a single shot object detection framework which consists

of forwarding the image through a single stage as opposed to two stages in

the Faster-RCNN detector. Fig. 3.2(b) illustrates the SSD detection architecture.

By following this approach, SSD eliminates the need for an object proposal

stage, making it simpler and computationally efficient as compared to the

Faster-RCNN approach. The SSD framework employs VGG16 as the backbone

network which is used for extracting feature map of size H×W from an input

image X. For each feature map location, SSD discretizes the output space of

the bounding boxes into a set of default bounding boxes. A convolutional layer

is added that for each feature map location predicts a score for a category or

offsets relative to the default box coordinates. The set of default boxes contain

bounding boxes of multiple pre-defined aspect ratios and scales to match any

object shape in the image better. Furthermore, SSD combines predictions from
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feature maps at multiple scales to better handle the object scales with respect

to the image. Once the model predictions are available, they are matched

with the ground-truth box and category to preform an end-to-end training

with regression (Lreg) and classification (Lcls) loss. The final detection loss is

a combination of both regression and classification losses and is defined as

follows:

Lssd
det = Lreg + Lcls. (3.17)

In the case where there are no predicted bounding boxes that can be matched

with one of the ground-truth bounding boxes, the regression loss is set to zero.

More details regarding the default boxes, box matching algorithm bounding

box regression losses, training procedure, and architecture details can be found

in [67].
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Chapter 4

One-class Convolution Neural
Networks

4.1 Motivation

One of the existing methods for one-class based unknown instance detection

includes Perera and Patel [96], which utilizes an external reference dataset as

the negative class to train a deep network for one-class classification using

a novel loss function. However, the availability of such a reference dataset

is not always guaranteed for one-class classification. Hence, for the method

proposed in this chapter, we do not make use of any negative class data or a

reference data. More precisely, the proposed method circumvents the issue

of unavailability of negative class data by introducing a pseudo-negative

category modelled using Gaussian distribution and enables the end-to-end

model training of any deep convolution neural network in one-class problem

setting. In what follows, we describe the proposed training methodology in

detail.
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4.2 Proposed approach

Fig. 4.1 gives an overview of the proposed CNN-based approach for one-class

classification. The overall network consists of a feature extractor network

and a classifier network. The feature extractor network essentially embeds

the input target class images into a feature space. The extracted features

are then appended with the pseudo-negative class data, generated from a

zero centered Gaussian in the feature space. The appended features are then

fed into a classification network which is characterized by a fully connected

neural network. The classification network assigns a confidence score for each

feature representation. The output of the classification network is either 1 or

0. Here, 1 corresponds to the data sample belonging to the target class and

0 corresponds to the data sample belonging to the negative class. The entire

nework is trained end-to-end using binary cross-entropy loss.

4.2.1 Feature extractor

Any pre-trained CNN can be used as the feature extractor. We use the pre-

trained AlexNet [53] and VGG16 [123] networks by removing the softmax

regression layers (i.e. the last layer) from their networks. During training,

we freeze the convolution layers and only train the fully-connected layers.

Assuming that the extracted features are D-dimensional, the features are

appended with the pseudo-negative data generated from a Gaussian,N (µ̄, σ2 ·

I), where σ and µ̄ are the parameters of the Gaussian and I is a D×D identity

matrix. Here, N (µ̄, σ2 · I) can be seen as generating D independent one

dimensional gaussian with σ standard deviation.
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Figure 4.1: Block diagram of the proposed approach. Here, µ̄ and σ are mean and
standard deviation parameters of a Gaussian, respectively and I is the identity matrix.

4.2.2 Classification network

Due to the appending of the pseudo-negative data with the original features,

the classifer network observes the input in the batch size of 2. A simple fully-

connected layer followed by a softmax regression layer is used as the classifier

network. The dimension of the fully-connected layer is kept the same as the

feature dimension. The number of outputs from the softmax layer are set

equal to two.

4.2.3 Loss function

The following binary cross-entropy loss function is used to train the entire

network

Lc = − 1
2K

2K

∑
j=1

(y log(p) + (1− y) log(1− p)), (4.1)

where, y ∈ {0, 1} indicates whether the classifier input corresponds to the

feature extractor, (i.e. y = 0), or it is sampled from N (µ̄, σ2 · I), (i.e. y = 1).
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Here, p denotes the softmax probability of y = 0.

The network is optimized using the Adam optimizer [50] with learning

rate of 10−4. The input image batch size of 64 is used in our approach. For all

experiments, the parameters µ̄ and σ are set equal to 0̄ and 0.01, respectively.

Instance normalization [22] is used before the classifier network as it was

found to be very useful in stabilizing the training procedure.

4.3 Experimental results

We evaluate the performance of the proposed approach on three different

one-class classification problems - abnormality detection, face-based user

authentication, and novelty detection. Abnormality-1001 [110], UMDAA-

02 [73] and FounderType-200 [65] datasets are used to conduct experiments for

the abnormality detection, user authentication and novelty detection problems.

For all methods compared here, the data is aligned such that objects are at the

center with minimal background.

The proposed approach is compared with following one-class classification

methods:

• OC-SVM: One-Class Support Vector Machine is used as formulated

in [115], trained using the AlexNet and VGG16 features.

• BSVM: Binary SVM is used where the zero centered Gaussian noise is

used as the negative data. AlexNet and VGG16 features extracted from

the target class data are used as the positive class data.

• MPM: MiniMax Probability Machines are used as formulated in [56].
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Table 4.1: Comparison between the proposed and other methods using AlexNet as
the base network. Results are mean of performance on all classes. Best and the second
best performance are highlighted in bold fonts and italics, respectively.

Dataset OC-SVM BSVM MPM SVDD OC-NN-lin OC-NN-sig OC-NN-relu OC-CNN OC-SVM+

Abnormality-1001 0.6057 0.6126 0.5806 0.7873 0.8090 0.6391 0.7372 0.8264 0.8334
UMDAA-02 Face 0.5746 0.5660 0.5418 0.6448 0.6173 0.6452 0.5943 0.7017 0.6736
FounderType-200 0.7124 0.7067 0.7085 0.8998 0.8884 0.8696 0.8505 0.9303 0.9350

Table 4.2: Comparison between proposed and other methods using VGG16 as the
base network. Results are mean of performance on all classes. Best and the second
best performance are highlighted in bold fonts and italics, respectively.

Dataset OC-SVM BSVM MPM SVDD OC-NN-lin OC-NN-sig OC-NN-relu OC-CNN OC-SVM+

Abnormality-1001 0.6475 0.6418 0.5909 0.8031 0.7740 0.8373 0.5821 0.8424 0.8460
UMDAA-02 Face 0.5829 0.5751 0.5473 0.6424 0.6193 0.6200 0.5788 0.7350 0.7230
FounderType-200 0.7490 0.7067 0.7444 0.8885 0.8986 0.8677 0.8506 0.9290 0.9419

Since, the MPM algorithm involves computing covariance matrix from

the data, Principal component analysis (PCA) is used to reduce the

dimensionality of the features before computing the covariance matrix.

• SVDD: Support Vector Data Description is used as formulated in [124],

trained on the AlexNet and VGG16 features.

• OC-NN: One-class neural network (OC-NN) is used as formulated in

[14]. Here, for fair comparison, instead of using the feature extractor

trained using an auto-encoder (as per [14] methodology), AlexNet and

VGG16 networks, the same as the proposed method, are used. As

described in [14], we evaluate OC-NN using three different activation

functions - linear, Sigmoid and ReLU.

• OC-SVM+: OCSVM+ is another proposed in this section, where OC-

SVM is utilized on top of the features extracted from the network trained

using OC-CNN. However, since it uses OC-SVM for classification, it is

not end-to-end trainable.
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Figure 4.2: Sample images from the datasets used for conducting experiments. (a)
Abnormality-1001 (b) UMDAA-02 Face (c) FounderType-200.

4.3.1 Abnormality detection

Abnormality detection (also referred as anomaly detection or outlier rejec-

tion) deals with identifying instances that are dissimilar to the target class

instances (i.e. abnormal instances). Note that, the abnormal instances are

not known a priori and only the normal instances are available during train-

ing. Such problem can be addressed by one-class classification algorithms.

The Abnormality-1001 dataset [110] is widely used for visual abnormality

detection. This dataset consists of 1001 abnormal images belonging to six

classes such as Chair, Car, Airplane, Boat, Sofa and Motorbike which have

their respective normal classes in the PASCAL VOC dataset [25]. Normal

images obtained from the PASCAL VOC dataset are split into train and test

sets such that the number of abnormal and normal images in test set are equal.

Reported results are averaged for all six classes.

4.3.2 User active authentication

Active authentication refers to the problem of identifying the enrolled user

based on his/her biometric data such as face, swipe patterns, and accelerome-

ter patterns [90]. The problem can be viewed as identifying the abnormal user
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behaviour to reject the unauthorized user. The active authentication problem

has been viewed as one-class classification problem [3]. The UMDAA-02

dataset [73] is widely used dataset for user active authentication on mobile

devices. The UMDAA-02 dataset has multiple modalities corresponding to

each user such as face, accelerometer, gyroscope, touch gestures, etc. Here,

we only use the face data provided in this dataset since face is one of the

most commonly used modality for authentication. The face data consists of

33209 face images corresponding to 48 users. As can be seen from this figure,

the images contains large variations in pose, illumination, appearance, and

occlusions. For each class, train and test sets are created by maintaining 80/20

ratio. Network is trained using the train set of a target user and tested on the

test set of the target user against the rest of the user test set data. This process

is repeated for all the users and average results are reported.

4.3.3 Novelty detection

The FounderType-200 dataset was introduced for the purpose of novelty

detection by Liu et al. in [65]. The FounderType-200 dataset, contains 6763

images from 200 different types of fonts created by the company FounderType.

For experiments, first 100 classes are used as the target classes and remaining

100 classes are used as the novel data. The first 100 class data are split into

train and test set having equal number of images. For novel data, a novel set

is created having 50 images from each of the novel classes. For each class,

train set from the known data is used for training the network and known

class test set and novel set data are used for evaluation. For example, class
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i (i ∈ {1, 2, .., 100}) train set is used for training the network. The trained

network is then evaluated with class i test set tested against the novel set

(containing data of class 101-200). This is repeated for all classes i where,

i ∈ {1, 2, .., 100} and average results are reported.

4.4 Results and discussion

The performance is measured using the area under the receiver operating char-

acteristic (ROC) curve (AUROC), most commonly used metric for one-class

problems. The results are tabulated in Table 4.2 and Table 4.1 corresponding to

the VGG16 and AlexNet networks. AlexNet and VGG16 pretrained features

are used to compute the results for OC-SVM, BSVM, SVDD and MPM. The

OC-NN results are computed using the linear, sigmoid and relu activations

after training on the target class data. The OC-CNN results are computed after

training on the target class and for OC-SVM+, an one-class SVM is trained on

top of the features extracted from the trained AlexNet/VGG16, and AUROC

is computed from the SVM classifier scores.

From the Tables 4.1 and 4.2, it can be observed that either OC-CNN or

OC-SVM+ achieves the best performance on all three datasets. MPM and

OC-SVM achieve similar performances, while BSVM with Gaussian data as

the negative class doesn’t work as well. With the BSVM baseline, we show that

similar trick we used for proposed algorithm doesn’t work well for statistical

approaches like SVM. Among the other one-class approaches, OC-NN with

linear activation performs the best. However, OC-NN results are inconsis-

tent. For couple of experiments, SVDD was found to be working better than
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OC-NN. The reason behind this inconsistent performance can be due to the

differences in the evaluation protocol used for OC-NN in [14]. The ratio of

the number of target class images to novel/abnormal class images in our

evaluation protocol is much higher than the ratio used by Chalpathy et al. [14].

When the ratio is close to one, as is the case for Abnormality-1001 dataset, the

OC-NN performs better than SVDD for both AlexNet and VGG16. However,

when the ratio is increased (which is more realistic scenario), as is the case for

UMDAA-02 and FounderType-200, the performance of OC-NN becomes in-

consistent. Whereas, using the proposed approach performs consistently well,

providing∼4%,∼10% and∼5% improvements over OC-NN for Abnormality-

1001, UMDAA02- Face and FounderType-200 datasets, respectively. Since,

the proposed approach is built upon the traditional discriminative learning

framework for deep neural networks, it is able to learn better features than

OC-NN.

Also as expected, methods based on the VGG16 network work better than

the methods based on the AlexNet network. Apart from the FounderType-

200 dataset where, OC-CNN with AlexNet works better than VGG16, for all

methods VGG16 works better than AlexNet. However, it should be noted that

better OC-SVM+ performance for VGG16 indicates that features learned with

the proposed approach for VGG16 are better than AlexNet for FounderType-

200. Overall, VGG16 gives ∼2% improvement over AlexNet.

Another interesting comparison is between OC-SVM and OC-SVM+. OC-

SVM uses features extracted from a pre-trained AlexNet/VGG16 network.

On the other hand, OC-SVM+ uses features extracted from AlexNet/VGG16
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network trained using the proposed approach. OC-SVM+ performs ∼18%

and ∼17% better than OC-SVM on average across all datasets for AlexNet

and VGG16, respectively. This result shows the ability of our approach to

learn better representations. So, apart from being an end-to-end learnable

standalone system, our approach can also be used to extract target class

friendly features. Also, using sophisticated classifier has shown to improve

the performance over OC-CNN (i.e., OC-SVM+) in majority of cases.

4.4.1 Conclusion

We proposed a new one-class classification method based on CNNs. A pseudo-

negative Gaussian data was introduced in the feature space and the network

was trained using a binary cross-entropy loss. Apart from being a standalone

one-class classification system, the proposed method can also be viewed

as good feature extractor for the target class data (i.e. OCSVM+) as well.

Furthermore, the consistent performance improvements over all the datasets

related to authentication, abnormality and novelty detection showed the

ability of our method to work well on a variety of one-class classification

applications. In this section, experiments were performed over data with

objects centrally aligned. In the future, we will explore the possibility of

developing an end-to-end deep one class method that does joint detection and

classification.
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Chapter 5

Auto-encoder Regularized
One-class CNNs

5.1 Face-based active authentication

A simple approach for face-based active authentication (AA) would be to use

face images correspoinding to all users and train a system to classify each

user in a multi-class fashion. However, such an approach becomes counter-

intuitive for AA since it requires the storage of all face images at a centralized

location, raising data privacy issues [91]. Hence, one must consider only the

data collected from the enrolled user to develop an AA system. In other words,

we need to explore possibilities of implementing AA systems using only the

user’s enrolled data. This motivates us to view AA as a one class classification

problem [3]. Fig. 5.1 shows a typical face-based AA system, modelled as a one

class classification problem.

Learning a one class classifier based on only the target class data has

been one of the most challenging problems in machine learning. Some of

the earlier works have used statistical methods to tackle this problem. Such
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Figure 5.1: An overview of a typical AA system. (a) Data corresponding to the
enrolled user are used to train an AA system. (b) During testing, data corresponding
to the enrolled user as well as unknown user may be presented to the system. The AA
system then grants access to the enrolled user and blocks access to unknown users.

statistical methods usually seek separating hyperplane/hypersphere in the

feature space to enclose the target class data [113], [124], [32], [47]. These

methods rely on the quality of the representations used for the target class

data. Earlier approaches were based on the hand-crafted features. In recent

years features based on Deep Convolutional Neural Networks (CNNs) have

shown to produce better results than hand-crafted features. Utilizing these

powerful feature representations help in learning good decision boundaries,

feature representations and classifiers are learned separately. In such a dis-

joint approach, classification module doesn’t influence CNNs to modify the

feature representation for a given target class data. Several recent works

have explored joint learning of both features and classifiers [96], [14], [84]

for one class classification. These methods demonstrated that representation

learning together with classifier training results in improved performance.

Based on this motivation, an end-to-end learning approach is proposed in this

paper which jointly learns feature representations and a classifier for one class
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classification. Furthermore, the learned representations are constrained by a

decoder network which regularizes the learned representations by enforcing

them to reconstruct the original data.

5.2 Proposed approach

An overview of the proposed OC-ACNN network architecture is shown in

Fig. 5.2. It consists of three major modules namely, feature extractor network,

classification network and decoder network. The feature extractor network

generates latent space representations for a given target class data. These la-

tent representations are then fed to a classifier and a decoder network. Before

feeding them to the classifier network, they are concatenated with a vector

sampled from a zero centered Gaussian N (µ, σ · I), where σ and µ are the pa-

rameters of the Gaussian and I is the identity matrix. This Gaussian vector acts

as a pseudo-negative class for the classifier. The classifier network is tasked

with discriminating the target class representation from the pseudo-negative

Gaussian vector. The decoder network takes in the same latent representa-

tion to reconstruct the original input. This enforces the latent representation

generated by the feature extractor network to be self-representative i.e., rep-

resentations are required to generate back the original input images. The

classification network and the decoder network are trained end-to-end using

a combination of binary cross entropy loss and L1 loss, respectively.
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Figure 5.2: Here, X is the input. The feature extractor module (E) can be any pre-
trained CNN architecture. Here, AlexNet, VGG16 and VGGFace networks are con-
sidered as feature extractor. The decoder module (D) is a simple four layer fully
convolutional network. The decoder network essentially reconstructs the input image
X, as X̃. The classification network (C ) is a fully connected neural network trained to
distinguish between feature vectors coming from E and the Gaussian vectors sampled
from N (µ, σ · I). The entire network is trained using a combination of classification
loss (Lc) and reconstruction loss (Lr).

5.2.1 Feature extractor

The feature extractor network (E) can be any state of the art network archi-

tecture. Here, pre-trained AlexNet [53], VGG16 [123] and VGGFace [89] are

considered as feature extractor network. Before using these architectures as

feature extractor, the final layer (i.e. softmax regression layer) is removed.

While training, we update weights of only the fully connected layers and

freeze the weights of convolutional layers. AlexNet and VGG16 utilized

here are initialized with the ImageNet pre-trained weights and VGGFace is

initialized with the VGGFace dataset pre-trained weights.
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5.2.2 Classification network

Assuming that the extracted features are D-dimensional, the features are

appended with the pseudo-negative data generated from a Gaussian,N (µ, σ ·

I), similar to [85]. Following We use a simple one layer fully connected

classifier network (C) with sigmoid activation at the end, as shown in Fig. 5.2.

The number of hidden units are the same as the length of the feature vector

representation. Because of the Gaussian vector concatenation at the input, the

network C observes twice the batch size (N) as of the feature extractor.

5.2.3 Decoder network

The decoder network (D) architecture is a simple four layer fully convolu-

tional neural network. This network takes feature representation learned by

the network E and tries to reconstruct the original input. This in effect con-

straints E to generate representation which have self-representation property.

It can be seen as a form of regularization on the feature representation. This

regularization can be controlled with parameter λr given in Eq. 5.3 of total

loss function. Since feature extractor outputs a flattened feature vector, we

reshape it to an appropriate size before feeding it to the decoder network.

Note that E along with D can be viewed as an auto-encoder network.

5.2.4 Loss functions

The entire network is trained using a combination of two loss functions -

classification loss (Lc) and reconstruction loss (Lr). The classification loss is
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defined as follows

Lc = − 1
2N

2N

∑
j=1

[ y · log2(p) + (1− y) · log2(1− p) ], (5.1)

where y ∈ {0, 1} indicates whether classifier input corresponds to feature

extractor (i.e., y = 1), or sampled from N (µ, σ · I), (i.e., y = 0). Here, p is

the probability of y = 1. The classification network C observes twice the

input batch size because we append Gaussian vector in batch dimension with

extracted features, in Eq. 5.1, the summation is over 2N.

The L1 reconstruction loss is defined as follows

Lr =
1
N

N

∑
j=1
∥X− X̃∥1, (5.2)

where X and X̃ are the original input image and the reconstructed image,

respectively.

Finally, the overall loss function is the sum of Lr and Lc defined as follows

Lt = Lc + λrLr, (5.3)

where λr is a regularization parameter. Furthermore, note that X̃ =

D(E(X)) and p = C(E(X)).

The network is optimized using the Adam optimizer [50] with the learning

rate of 10−4 and batch size (i.e. N) of 64. For all the experiments, µ, σ and λr

are set equal to 0.0, 0.01 and 1.0, respectively. The decoder architecture is as

follows

ConvTran(1024, 256) - ConvTran(256, 64) - ConvTran(64, 16) - ConvTran(16, 3),
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where, ConvTran(in, out) denotes the transposed convolutions with in and out

as number of input and output feature channels, respectively. All transposed

convolutions are used with kernels of size 4× 4. ReLU activation is used after

every transposed convolution layer except the fourth, where Tanh activation

is used. Instance normalization [22] is used before the classifier network and

at the end of every transposed convolution layer.

5.3 Experimental results

We evaluate the performance of the proposed approach on three publically

available face-based AA datasets – MOBIO [127], UMDAA-01 [26] and UMDAA-

02 [73]. The proposed approach is compared with the following one-class

classification methods:

• OC-SVM: One class SVM as formulated in [113] is used. OCSVM is

trained on features extracted from AlexNet, VGG16 and VGGFace.

• SMPM: SMPM is used as formulated in [56]. In SMPM formulation,

to utilize the second order statistics, covariance matrix computation is

required. Hence, before applying SMPM, we reduce the dimensionality

of the features extracted from AlexNet, VGG16 and VGGFace using

Principle Component Analysis (PCA).

• SVDD: Support Vector Data Description is used as formulated in [124],

trained on the AlexNet,VGG and VGGFace features.

• OC-NN: One-class neural network (OC-NN) is used as formulated in

[14]. The encoder network described in [14] is replaced with a pretrained
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CNNs, i.e. AlexNet, VGG16 and VGGFace to have a fair comparison

between the methods. Apart from this change, the training procedure is

exactly the same as given in [14].

The following ablation baselines are also considered to show the contribu-

tion of each module in the proposed approach:

• Auto-Encoder baseline (only Lr): This is one of the ablation baselines,

where we utilize the feature extractor and the decoder networks, and

train with only Lr loss function given in Eq. 5.2. It can also be seen as a

generative approach baseline. The reconstruction error is used for classi-

fication. In other words, a pre-determined threshold is compared against

the reconstruction error and the input is rejected if the error is greater

than the threshold. Otherwise, the input is declared as corresponding to

the one-class data.

• Classifier baseline (only Lc): Another ablation baseline includes using

classifier and feature extractor networks trained with only Lc loss func-

tion given in Eq. 5.1. The classification network is not regularized by the

decoder network. This baseline is equivalent to the method proposed

in [85]. This ablation study will clearly show the significance of using an

auto-encoder as a regularizer for one-class classification.

• Proposed approach OC-ACNN (both Lr and Lr): OC-ACNN is the

method proposed in this section.

For OC-SVM, SMPM and SVDD distance scores from the hyperplane/hypersphere

are used for performance evaluation. For OC-NN, classifier baseline and the
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proposed approach, scores from the classifier are used for performance evalu-

ation. As mentioned before, the reconstruction error is used for evaluating the

performance of the auto-encoder baseline.

5.3.1 Datasets

MOBIO. The MOBIO dataset is a bi-modal AA dataset containing face images

and voice recordings of 150 users. Here, we only consider face images for

conducting the experiemnts. For each user the recordings are taken in six

sessions at different locations. We combine images from all six sessions.

MOBIO contains less variations in pose, illumination etc., as compared to the

other datasets. For experiments, first 48 users are considered as target users

and the rest are used as unknown users. Target users’ data is split into train

and test set with 85/15 ratio. For each target user, the training set is used to

train the networks. During evaluation, we utilize the test set of the target user

along with the data from all unknown users. This process is repeated for all

48 users and average performance is reported.

UMDAA-01 Face. The UMDAA-01 dataset contains face and touch gestures

recorded from a mobile device. In total 750 video sequences of 50 users are

collected in three different sessions with varying illumination conditions. Data

from different sessions are combined for each user and split into train and test

sets with 80/20 ratio. Considering one user as the target and the remaining 49

users as unknown, networks are trained using target train set and tested with

test set consisting of all 50 users’ data (i.e. 1 target and 49 unknown). This

experimental protocol is followed for all 50 users and average performance is
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reported.

UMDAA-02 Face. Unlike the above two datasets, the UMDAA-02 dataset

has multiple modalities for 44 users e.g. face, gyroscope, swipe patterns, key

strokes etc. all recorded from 18 sensors of a Nexus mobile device. Since

the dataset was collected over a period of two months, it is an extremely

challenging dataset with large variations in pose, illumination, occlusions and

other environmental conditions. The number of sessions for each user ranges

from 25 to 750 providing large number of frontal face images, i.e. more than

10k images on average per user. For each user, train and test splits are created

with 80/20 ratio. We follow similar protocol as that of UMDAA01-Face for all

44 users and report the average performance.

Area Under the ROC curve (AUROC) is used to measure the performance.

This is one of the most commonly used metric in the literature for evaluating

the performance of the one-class classification methods.

5.3.2 Qualitative evaluation

In this section, we present qualitative evaluation of the proposed approach

by comparing the visualizations of feature representations learned by our

method with those corresponding to respective pre-trained networks. Fig. 5.3

shows t-SNE [72] visualizations of the feature representations corresponding

to AlexNet, VGG16 and VGGFace, respectively. These t-SNE plots are ob-

tained from a single user of the UMDAA-02 Face dataset. Fig. 5.3a, 5.3c and

5.3e show the visualizations corresponding to pre-trained AlexNet, VGG16
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Figure 5.3: t-SNE visualizations of feature representations from the feature Extractor
corresponding to a user from the UMDAA-02 Face dataset.

and VGGFace networks, respectively. Fig. 5.3b, 5.3d and 5.3f show the vi-

sualizations corresponding to their counterpart networks trained using the

proposed approach. As can be seen from these figures, the pre-trained net-

works generate features that highly overlap between the target and unknown

users. This makes sense since these networks are trained using a cross-entropy

loss for multi-class classification. As a results, the features from these net-

works overlap significantly and it makes it difficult for a one-class classifier

to correctly identify the separating decision boundary. On the other hand,

the feature representations of the same networks trained using the proposed

approach are quite distinctive. The learned feature representations corre-

sponding to the target and unknown users are very well separated. These

features become extremely useful while identifying the target user against the

unknown users, thereby resulting in improved classification performance.
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Table 5.1 shows the AUROC results corresponding to each plot for the

same user computed using OC-SVM. As can be seen from this table, for all

the networks the features learned using the proposed OC-ACNN provides

better performance compared to the pre-trained features.

Table 5.1: AUROC results corresponding to the study conducted in Fig. 5.3.

Feature Extractor Pre-Trained OC-ACNN
AlexNet 0.5319 0.6780
VGG16 0.5698 0.8194

VGGFace 0.5428 0.8808

Table 5.2: Comparison between the proposed approach and other one-class methods
with AlexNet as the feature extractor network. Results are the mean of performance
on all classes. The performance is measured by AUROC. Best performance is high-
lighted in bold fonts.

Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6578 ± 0.1132 0.7721 ± 0.1185 0.7851 ± 0.1270 0.7504 ± 0.1512 0.7526 ± 0.1075 0.8191 ± 0.1286 0.8633 ± 0.1136

UMDAA-01 0.6584 ± 0.1255 0.7576 ± 0.1149 0.8909 ± 0.0755 0.8684 ± 0.0913 0.6560 ± 0.1066 0.9196 ± 0.0482 0.9276 ± 0.0465
UMDAA-02 0.5746 ± 0.0595 0.5418 ± 0.0382 0.6448 ± 0.0725 0.6542 ± 0.0593 0.5952 ± 0.0869 0.7017 ± 0.1007 0.7398 ± 0.0787

Table 5.3: Comparison between the proposed approach and other one-class methods
with VGG16 as the feature extractor network. Results are the mean of performance on
all classes. The performance is measured by AUROC. Best performance is highlighted
in bold fonts.

Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6607 ± 0.1066 0.7266 ± 0.1046 0.8212 ± 0.1130 0.7822 ± 0.1153 0.7457 ± 0.1072 0.8177 ± 0.1132 0.8705 ± 0.1278

UMDAA-01 0.6777 ± 0.0946 0.8664 ± 0.0765 0.9011 ± 0.0592 0.8802 ± 0.0976 0.8494 ± 0.0844 0.9348 ± 0.0384 0.9486 ± 0.0336
UMDAA-02 0.5828 ± 0.0757 0.5473 ± 0.0447 0.6424 ± 0.0677 0.6199 ± 0.0693 0.6042 ± 0.0939 0.7349 ± 0.0845 0.8457 ± 0.0581

5.3.3 Quantitative evaluation

Tables 5.2, 5.3 and 5.4 show the performance on all three datasets based on

AlexNet, VGG16 and VGGFace as feature extractors, respectively. The per-

formance of other methods is inconsistent across the experiments. SMPM

was found to perform better than OCSVM, while SVDD achieves better per-

formance in many cases beating OC-NN. This may be due to the evaluation
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Table 5.4: Comparison between the proposed approach and other one-class methods
with VGGFace as the feature extractor network. Results are the mean of perfor-
mance on all classes. The performance is measured by AUROC. Best performance is
highlighted in bold fonts.

Dataset OC-SVM SMPM SVDD OC-NN Auto-encoder (only Lr) Classifier (only Lc) OC-ACNN (Lc+Lr)
Mobio 0.6702 ± 0.1268 0.6619 ± 0.1068 0.7975 ± 0.1250 0.7673 ± 0.1380 0.7339 ± 0.1095 0.8347 ± 0.1324 0.8859 ± 0.1042

UMDAA-01 0.6763 ± 0.1237 0.7334 ± 0.1241 0.8745 ± 0.0794 0.8257 ± 0.1381 0.8237 ± 0.0923 0.9432 ± 0.0654 0.9772 ± 0.0213
UMDAA-02 0.5712 ± 0.0644 0.5671 ± 0.0597 0.5898 ± 0.0647 0.5987 ± 0.0652 0.6343 ± 0.0723 0.6393 ± 0.0946 0.8946 ± 0.0535

protocol difference compared to the one proposed in OC-NN [14]. In OC-NN

evaluation protocol, the number of unknown classes used during evaluation

are much less than the number of unknown classes used for evaluation (i.e.,

MOBIO(96), UMDAA-01 Face(49) and UMDAA-02 Face(43)). This can be a

reason for the poor performance from OC-NN as compared to SVDD. OC-

NN however, manages to perform better than SMPM and OCSVM, and in

couple of cases SVDD. Meanwhile the proposed approach achieves superior

performance across all the datasets and for different feature extractor models.

Comparing the performance across models, VGGFace outperforms both

VGG16 and AlexNet models. This makes sense since face images (i.e. VG-

GFace dataset) were used to train the original VGGFace model and the corre-

sponding weights are better suited for face-based AA application considered

here. In contrast, the VGG16 and AlexNet networks were trained using gen-

eral object dataset (i.e. ImageNet dataset) for object recognition task. The

highest performance for all these networks is achieved for UMDAA-01 Face,

since this dataset only contains illumination variations. Though MOBIO

contains least variations in image samples, it has large number of unknown

classes to compare against. While UMDAA-02 is the most difficult dataset

since it contains very unconstrained face images. As a result, the performance

on this dataset is lower than the other two datasets. In summary, the proposed
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approach observes improvement of ∼6%, ∼9% and ∼16% on average across

all datasets corresponding to AlexNet, VGG16 and VGGFace, respectively.

Comparing ablation baselines, the auto-encoder baseline using only the

reconstruction loss performs the poorest, while only the classifier baseline

performs reasonably well. Auto-encoder and classifier baselines can be cat-

egorized as generative and discriminative approach, respectively. Since the

discriminative approach can learn better representation, it helps the classifier

baseline to improve its performance. However, when the decoder is added

to the classification pipeline to regularize the learned representations, it im-

proves the overall performance by ∼6%. This clearly shows the significance of

enforcing the self-representation constraints to regularize the learned feature

representations for one-class classification.

5.3.4 Conclusion

We proposed a new approach for single user AA based on auto-encoder

regularized CNNs. Feature representations are jointly learned with classi-

fier influencing the generated representations. A pseudo-negative Gaussian

vector was utilized to train the fully connected classification network. De-

coder was introduced to regularize the generated feature representation by

enforcing it to be self-representative. Experiments were conducted using the

AlexNet, VGG16 and VGGFace networks, which showed the adaptability of

the proposed method to work with different types of network architectures.

Ablation study was conducted to show the importance of both classification
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loss and feature regularization. Moreover, visualizations of the learned repre-

sentations showed the ability of the proposed approach to learn distinctive

features for one-class classification. Furthermore, the consistent performance

improvements over all the datasets related to AA showed the significance of

the proposed one-class classification method.
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Chapter 6

Utilizing Patch-level Activity
Patterns for Multi-class Novelty
Detection

6.1 Patch-level activities of a recognition model

Deep convolutional neural networks have the ability to learn high-quality

representations that are class-discriminative, making them the most successful

tool for image recognition. These representations are learned by an end-to-end

training and are computed by aggregating patch-level convolution responses

(or activation maps) through non-linear activation functions and pooling

process. Furthermore, these activation maps are aggregated depending on

the strength of the activation to predict the probability scores for each class.

The classes are ranked based on the predicted probability score and the class

having the maximum score (i.e. rank-1 class) is predicted as the label. Fig. 6.1

illustrates this point with grad-cam [119] visualizations of top-3 classes. Here,

the classes are ranked based on the predicted probability scores. The visual-

izations in Fig. 6.1 are not limited to top-3 classes and can be shown for all
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categories in the training set. This figure shows that given an image, a DCNN

produces activation maps that has some contribution from all known classes.

For novel class test samples, none of the predictions would be correct,

since the training set did not contain these classes. Furthermore, as shown

Ground Truth: USA Flag Rank-2 Class: Hoop

Score: 0.10

Rank-3 Class: Hammock

Score: 0.08

Rank-1 Class: USA Flag

Score: 0.78

Ground Truth: Billiards Rank-2 Class: Hot-tub

Score: 0.13

Rank-3 Class: Coffin

Score: 0.10

Rank-1 Class: Billiards

Score: 0.75

(a) (b) (c) (d)

Figure 6.1: (a) Original image with corresponding ground truth label. (b), (c) and (d)
represent grad-cam visualizations for rank-1, rank-2 and rank-3 classes and predicted
probability scores.

Ground Truth: Rotary-Phone Rank-1 Class: Doorknob

Score: 0.93

Ground Truth: Doorknob Rank-1 Class: Doorknob

Score: 0.90

Ground Truth: Diamond Ring Rank-1 Class: Diamond Ring

Score: 0.89

Ground Truth: Tambourine Rank-1 Class: Diamond Ring

Score: 0.85

(a) (b)

(c) (d)

In-class Novel Class

Figure 6.2: (a)-(b) In-class samples from Doorknob and Diamond Ring classes with
grad-cam visualizations and the predicted scores. (c)-(d) Novel class samples from
Rotary-Phone and Tambourine are mis-classified as Doorknob and Diamond Ring as
shown with grad-cam visualizations and predicted scores.
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in Fig. 6.2, often the rank-1 prediction scores for novel classes are very high,

making it difficult for DCNNs to identify them as novel. However, looking at

the examples shown in Fig. 6.2, one can notice that the patch-level activation

patterns for both known class samples and novel class samples are different,

even when both images are classified as the same class with high scores. The

activation patterns for in-class (i.e. known class) samples are focused on

the underlying object, whereas for novel class data the patterns are spread

out across the image producing high activations at multiple image-patch

locations. Given this information, we make an assumption that this type of

discrepancy in the patch-level activation pattern exists across all novel class

samples. Based on this assumption, we propose a novelty detection algorithm

that learns to detect novel class samples by identifying discrepancy in the

patch-level activation patterns.

6.2 Proposed method

Let us first consider a multi-class novelty detection problem setup. Here, we

have access to only in-class data samples, {xi, yi}i=n
i=1 , where yi ∈ {1, 2, ..., K} is

the class label corresponding to the data point xi, n is the total number of data

samples and K is the total number of classes. In the following subsections, we

provide details of the each individual components of the proposed novelty

detection method.
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6.2.1 Global inference network

The global inference network can be decomposed in to two parts, feature

extractor (G) and classifier (C). The feature extractor (G), processes the image

through stacked convolutional, pooling and activation layers to produce

a global feature encoding of the object present in the image, as shown in

Fig. 6.3(a). The classifier (C), uses this global feature encoding to classify the

image into one of K classes. The cross entropy loss used to train such network

can be defined as follows

Lglobal =
1
n

n

∑
i=1

Lce(C(G(xi)), yi), (6.1)

where yi is the ground truth class label for the input xi, n is total number of

images from known classes and C(G(xi)) is the predicted probability vector.

6.2.2 Local inference network

For local inference, the network needs to process individual image patches

and provide predictions at patch-level as opposed to the global inference

network where the predictions are provided at the image level. To achieve

this, we utilize a recently proposed BagNet architecture [8] as local inference

network. Specifically, BagNet processes the input image using a series of

convolutional layers with 1× 1 convolutions and 3× 3 convolutions. The

limiting of receptive field size restricts the network to perform patch-level

processing and produce patch-level feature encodings. These patch-level

encodings are used to produce patch-level prediction scores for all K classes,

here referred to as local feature encodings. All these predictions are average

62



pooled to produce the final prediction score, which is trained using the cross

entropy loss in an end-to-end fashion. This process is illustrated in Fig. 6.3(b).

The local feature encodings provide us with information regarding what

each image-patch corresponds to and also the details regarding patch-level

activation patterns for a particular class. This information is particularly

useful in our approach and is utilized in the next section to train the novelty

detection network. The local inference network is trained using the following

loss function

Llocal =
1
n

n

∑
i=1

Lce(gap(R(xi)), yi), (6.2)

where R denotes the local inference network, R(xi) denotes the prediction

map having all patch-level prediction scores corresponding to all K classes

and gap represents global average pooling operation along the height and

width of the prediction map (shown in Fig. 6.3).

6.2.3 Novelty detection network

The proposed novelty detection method utilizing global and local inference is

illustrated in Fig. 6.3(c). As discussed earlier, the proposed approach relies on

two assumptions, 1) the activation patterns for a particular global predictions

are different in the case of in-class sample and novel class sample, and 2)

for each image from in-class data belonging to a particular class (yi), DCNN

produces activation maps that has some contribution from all known classes.

Based on these assumptions, we train the novelty detection network to

model the probability of mis-match (discrepancy) between the predicted label

by the global inference and corresponding patch-level activation patterns
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Figure 6.3: (a) The global inference network processes the image to produce a global
feature encoding which is used by the classifier to predict the class label. (b) The
local inference network architecture provides patch-level features which are used to
produce class-wise local feature encoding for all K classes, providing information
regarding the presence of all classes at the patch-level. (c) Both global and local
network information are combined in a novel training strategy for novelty detection,
specifically to model mis-match between local activations and global predictions.
For given any image xi, the global and local features of the predicted class ỹi are
concatenated to create a positive example. Local feature of the predicted class ỹi for
another randomly sampled image xj from a different class is combined with the same
global feature to create a negative example. The novelty detection network is trained
to distinguish between these positive and negative examples. The Global and Local
inference networks are trained using the cross entropy classification loss on their
respective predictions. Note that, both xi and xj are sampled from in-class data.

predicted by the local inference. This modeling should help during testing

to detect novel samples by detecting the mis-match between the activation

patterns and the prediction. Specifically, consider two randomly sampled

images xi and xj having corresponding labels yi and yj, such that yi ̸= yj. The

predicted label and global feature encoding for image xi is denoted as ỹi =

arg maxi C(G(xi)) and gi = G(xi), respectively. The local feature encoding

belonging to the predicted class ỹi for both images xi and xj are denoted

as ri = R(xi)ỹi
and rj = R(xj)ỹi

, respectively. This process is illustrated
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in Fig. 6.3(c). The following loss is used for training the novelty detection

network

Lnovelty =
1
n

n

∑
i=1,yi ̸=yj

j∼{1,..,n}

Lce(N (cat(gi, ri)), 0)

+ Lce(N (cat(gi, rj)), 1),

(6.3)

where N denotes the novelty detection network and cat represents reshape

and concatenation operations. Also, j ∼ {1, .., n} and yi ̸= yj denote that

for every training image xi an index j is randomly sampled from the given

in-class data, such that both xj and xi have different labels. During, testing

the novel samples are identified by using predictions from network N . The

overall objective for the proposed approach can be written by combining

Eq. (6.1)-(6.3) as follows

min
N , G, R, C

Lglobal + Llocal + Lnovelty. (6.4)

Details regarding the network architectures and training procedures are pro-

vided in supplementary material.

6.2.4 Leveraging a reference dataset

The proposed method can be easily extended in the case where the reference

dataset is available. We apply regularization on penultimate activations of the

global inference network, similar to the loss function proposed in [21]. Such

regularization of the final layer activations penalizes the high activations of

any input from the reference dataset. Let us denote the reference dataset as

Dre f having m number of images, then the regularization loss can be expressed
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as follows

Lreg =
1
m ∑

x∈Dre f

∥C(G(x))∥2. (6.5)

The final objective function in this case is updated by adding Lreg, in Eq. 6.4

as,

min
N , G, R, C

Lglobal + Llocal + Lnovelty + λLreg. (6.6)

Here, the parameter λ controls the effect of regularization on the final ac-

tivations, and is chosen using the validation accuracy of the dataset. In

experiments, we set parameter λ equal to 0.001.

6.3 Experiments and results

6.3.1 Novelty detection datasets

Caltech-256. The Caltech-256 dataset contains 256 object classes and a total

of 30607 images. The dataset has a minimum of 80 images to a maximum of

827 images per category. Based on the protocol defined in [97], we first sort all

classes into the alphabetical order according to their class name. The first 128

classes and the last 128 classes are considered as in-class and novel categories,

respectively. The in-class categories are further divided into 50-50 splits to

create training and test sets.

Caltech-UCSD Birds-200. The Caltech-UCSD Birds (CUB-200) is a fine-grained

bird classification dataset. It contains 200 distinct bird categories and 6033

images in total. Similar to the protocol used before, the first 100 classes in the

alphabetical order are picked as in-class categories and the last 100 classes

in the alphabetical order are considered as the novel classes. The in-class
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Table 6.1: Network architecture for novelty detection network.
Input

Conv, 7 × 7, 16, BatchNorm, LkyReLU
MaxPool, 2 × 2, stride 2

Conv, 7 × 7, 32, BatchNorm, LkyReLU
MaxPool, 2 × 2, stride 2

Conv, 7 × 7, 64, BatchNorm, LkyReLU
Fully Connected, 1280 × 128, BatchNorm, LkyReLU

Fully Connected, 128 × 2, SoftMax

categories are further divided into 50-50 splits to create training and test sets.

As before, we make sure that both novel and in-class categories have equal

number of images.

Stanford Dogs. This is another fine-grained classification dataset, containing

120 distinct dog breeds and a total of 20580 images. After sorting the dog

breed classes in the alphabetical order, we pick the first and the last 60 breed

categories as in-class and novel class, respectively. The in-class categories are

further divided into 50-50 splits to create training and test sets. The number

of images are the same for both in-class and novel classes during testing.

FounderType-200. The FounderType-200 dataset contains 200 different font

types corresponding to the Chinese characters. Each font type category con-

tains 6763 images. Similar to the other datasets, the first 100 font types are

used as in-class categories and the last 100 font types are used as the novel

class categories. We keep 50% of the image samples per category as the train-

ing set and the remaining 50% are used for testing. The number of images are

the same for both in-class and novel classes during testing.
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6.3.2 Training details

We first separately fine-tune the global and local inference networks with

given in-class data. The global inference network is fine-tuned for 20000

iterations using SGD with 0.9 momentum, batch size of 64, initial learning

rate of 0.001 which is decreased by a factor of 10 every 5000 iterations. The

local inference network is fine-tuned till 40000 iterations using SGD with 0.9

momentum, batch size of 128, initial learning rate of 0.01 which is decreased

by a factor of 10 every 10000 iterations. Both these fine-tuned networks then

used to train the novelty detection network as described in this section. The

novelty detection network is trained using SGD for 30000 iterations with 0.9

momentum, batch size of 32 and initial learning rate of 0.01 which is decreased

by a factor of 10 every 10000 iterations. Images were resized to 256×256 pixels

and a randomly cropped of size 224×224 pixels. Due to lack of enough images

for each category we utilize data augmentation to increase the number of

images for training. Specifically, for Caltech-256 and Dog-120 we use random

flip, for CUB-200 we use random flip and horizontal-vertical translation of 10

pixels. Since for FounderType-200 dataset, each class contains approximately

7000 images and hence, no augmentation was used.

6.3.3 Network architecture

For global inference network we use AlexNet and VGG16 architecture as

previously used in the literature [97]. For local inference network we used

BagNet-33 architecture [8]. The BagNet architecture details can be found in [8].

It modifies the ResNet-50 architecture by replacing most 3×3 convolutions
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Table 6.2: Novelty detection performance measured using the Area Under the receiver
operating characteristic Curve evaluation metric (AUC). The best performing method
for each dataset is shown in bold. The second best method is shown in italics. Here,
symbol † indicate that reference dataset was used during training for that method.

Method Caltech CUB Stanford Dogs FounderType Overall
PerformanceVGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet

Fine-tune 0.827 0.785 0.931 0.909 0.766 0.702 0.841 0.650 0.801
K-extremes [117] 0.546 0.521 0.520 0.514 0.610 0.592 0.557 0.512 0.546

OC-SVM [114] 0.576 0.561 0.554 0.532 0.542 0.520 0.627 0.612 0.567
KNFST [7] 0.743 0.688 0.891 0.748 0.633 0.602 0.870 0.678 0.732

Local KNFST [6] 0.712 0.628 0.820 0.690 0.626 0.600 0.673 0.633 0.673
OpenMax [5] 0.831 0.787 0.935 0.915 0.776 0.711 0.852 0.667 0.809

Fine-tune† [97] 0.848 0.788 0.921 0.899 0.780 0.692 0.754 0.723 0.800
DTMND† [97] 0.869 0.807 0.958 0.947 0.825 0.748 0.893 0.741 0.848

Proposed 0.859 0.826 0.972 0.952 0.827 0.751 0.876 0.798 0.857
Proposed† 0.870 0.847 0.979 0.965 0.873 0.812 0.898 0.801 0.879

with 1×1 convolutions and changing the stride values to achieve independent

patch-wise processing of input image. The network architecture used for

novelty detection network is shown in Table 6.1. Here, LkyReLU denotes

LeakyReLU activation with 0.2 negative slope and after every convolutional

layer we apply dropout of with 0.2 probability 0.2.

6.3.4 Quantitative analysis

6.3.4.1 Novelty detection performance

We evaluate the performance of our method and compare it with several recent

novelty detection methods. Each method provides a score to quantify the

novelty of a test image. The lower the score, the higher the probability of input

being from a novel class and vice versa. Following the protocol proposed

in [97], we compare all methods using AlexNet [53] and VGG16 [123] as the

global inference network architectures. In our approach, BagNet-33 [8] is

used as the local inference network. Below is the list of methods used for

comparison:
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• Fine-tune: In this baseline, the pre-trained DCNN models are fine-tuned on

the in-class data samples. The scores from penultimate layer of the models are

used to evaluate novelty detection performance.

• OC-SVM: One-class SVM [114] is trained on the fine-tuned features and the

SVM scores are used to evaluate the novelty detection performance.

• KNFST: KNFST as proposed in [6]. It uses fine-tuned deep features to learn

a subspace for in-class data. The distance from the subspace is used to evalu-

ate the performance.

• Local KNFST: Local KNFST [6] is an extension of the previous baseline,

where a local region of in-class data are used to compute the score for perfor-

mance evaluation.

• OpenMax: OpenMax [5] uses penultimate layer scores of a fine-tuned

DCNN and distance from class-wise mean vectors combined with extreme

value modeling for performance evaluation.

• K-extremes: This baseline focuses on the penultimate activations where top

10% of the sorted activations are binarized to find extreme signatures, which

are later used to compute the normalized scores for performance evaluation.

• Fine-tune†: This is another fine-tuning baseline proposed in [97]. Here,

during fine-tuning DCNN on any given novelty detection dataset, a reference

dataset is used to improve the quality of the features. During testing, the

maximum score from the penultimate layer of a DCNN, extracted from the

in-class categories (excluding the reference dataset) is used for performance

evaluation.

• DTMND: Recently proposed novelty detection method, where a reference

dataset is utilized in a novel training strategy to learn better model that can
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respond negatively to the novel classes. Maximum activation from the penul-

timate layer of the model is used for evaluating the novelty detection perfor-

mance.

The evaluation protocol proposed by [97] considered two more baselines,

namely KNFST-pre and Local KNFST-pre. However, we excluded these from

comparison here as they do not observe any improvement over the KNFST and

Local KNFST baselines. More details regarding these baselines are provided

in [97]. For the proposed method, we use addition of scores from the global

inference and the novelty detection networks to evaluate the performance.

The performance of different methods are evaluated using the area under

the receiver operating characteristic curve (AUC) metric. The results are re-

ported in Table 6.2. As can be seen from this table, OC-SVM and K-extremes

methods have the lowest performances. Local KNFST performs better than

both OC-SVM and K-extremes for all four datasets. KNFST provides better

performance compared to Local KNFST on average, and has consistently bet-

ter performance on all datasets. On average Fine-tune and Fine-tune† have

similar performances. However, their performances are inconsistent across

datasets and network architectures. For the Caltech-256 dataset, Fine-tune†

performs better than Fine-tune for both AlexNet and VGG16, while for CUB-

200 the trend is reversed. For both the Stanford Dogs and the FounderType-200

datasets, Fine-tune† performs better when the VGG16 architecture is used

and the reverse trend is observed when the AlexNet architecture is used. The

performance obtained by Fine-tune† baseline shows that simple fine-tuning is
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not an efficient way to utilize a reference dataset for novelty detection. Open-

Max performs better than both Fine-tune and Fine-tune† baselines, resulting

in 1% overall improvement. Except for the FounderType-200 dataset using the

VGG16 architecture, OpenMax consistently performs better than OC-SVM,

K-extremes, Local KNFST, KNFST, Fine-tune and Fine-tune† baselines. Out of

all the baselines, DTMND yields the best performance. DTMND on average

performs 3% better than the next best performing baseline and performs ap-

proximately 5% better than Fine-tune† on average. Even-though both of these

baselines have access to a reference dataset, DTMND utilizes this additional

data more efficiently, resulting in the better performance. The performance

of DTMND is largely attributed to their approach for fine-tuning using the

reference dataset.

In the absence of reference dataset, the best method in the literature

DTMND would become similar to that of fine-tune baseline and the per-

formance will drop by ∼5% to 0.80. Whereas the proposed approach without

the reference dataset during training provides approximately 6% improve-

ment over the DTMND without reference dataset. This is due to the fact

that the performance gain for DTMND is mainly due to the fact that it uses

an external reference dataset for training the network. When the reference

dataset is utilized during the training of the proposed approach (described in

Eq. 6.5), the proposed approach consistently performs better than DTMND for

all datasets and network architectures. Overall, when the proposed approach

is trained with the help of reference dataset it improves by ∼2% and provides

∼4% improvement over the DTMND. The performance improvement with
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the proposed† method shows that our approach can be easily extended to a

scenario where a reference dataset is available to further enhance the novelty

detection performance. On the other hand, DTMND becomes sub-optimal for

the cases where a reference dataset is not available. Especially in such cases

the proposed approach is a better alternative for DCNN-based multi-class

novelty detection compared to DTMND.

6.3.4.2 Ablation analysis

In this section, we provide an ablation analysis showing the significance of

combining patch-level information with global in our approach. For abla-

tion experiments, we consider all four novelty detection datasets and the

corresponding protocol proposed in Sec. 6.3.1. For all experiments, VGG16

is used as the global inference network. The following ablation baselines are

considered:

•Global Only: This baseline is similar to Fine-tune as described in Sec. 6.3.4.1.

The in-class data samples are used to fine-tune the VGG16 network. The maxi-

mum activation score from the penultimate layer of VGG16 is used to evaluate

the novelty detection performance.

• Local Only: Fine-tuning only the local inference network using the given

in-class data. The maximum activation score from the penultimate layer of the

local inference network is used to evaluate the novelty detection performance.

• Global+Local: Here, we perform a straight forward concatenation of infor-

mation from the global and local inference networks. The novelty detection

performance is evaluated based on the addition of scores from both networks.
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Table 6.3: Ablation analysis using AUC. The best performing method is shown in
bold.

Method Caltech CUB Stanford Dogs FounerType Overall
Performance

Global Only 0.827 0.931 0.766 0.841 0.841
Local Only 0.799 0.785 0.598 0.773 0.739

Global+Local 0.831 0.943 0.741 0.835 0.837
Proposed 0.859 0.972 0.827 0.876 0.883

• Proposed: This is the method proposed in this section, where instead of a

straight-forward fusion we utilize novel training strategy proposed in Sec. 6.1,

to train a novelty detector network, which can better identify the mismatch of

local activity patterns for global feature of a given category.

The performance of all three ablation baselines are reported in Table. 6.3.

The lowest performance is obtained by local only baseline. The local inference

network processes image patches and classifies images based on the local

image features. This leads to relatively poor classification of in-class samples,

which in turn hurts the novelty detection performance. On the other hand,

the global inference network processes the entire image with a cascade of

convolutional, pooling and fully connected layers to get a feature encoding

for the entire image. This helps the global only baseline perform better classifi-

cation and generates high prediction scores for the in-class samples. However,

the problem with the global only baseline is that it ends up providing high

prediction scores for the novel class samples as well, hurting the novelty detec-

tion performance. In the proposed approach, the novelty detection network

is trained using both local and global inference networks. The combined

information and novel training strategy helps the trained novelty detection

network to perform better in identifying novel classes. Specifically, the local
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inference network provides patch-level activation information correspond-

ing to the prediction provided by the global inference network. The novelty

detection network identifies the mismatch between the patch-level activa-

tion patterns and global feature encoding to predict whether the input image

belongs to either in-class or novel class. As a result, the proposed method

performs approximately 14% and 4% better than the local and the global

baselines, respectively. We also compare the performance of our method with

a naive fusion baseline, i.e. Global+Local, where the information from global

and local networks are directly concatenated and the performance evaluation

is done using the added scores. From Table. 6.3, it can be observed that the

proposed approach is able to perform better than the Global+Local baseline.

6.3.5 Qualitative analysis

6.3.5.1 Fine-tune baseline vs proposed method

To show the effectiveness of the proposed approach, we provide a qualitative

comparison with the Fine-tune baseline (i.e. traditional DCNN) in Fig. 6.4.

Specifically, we provide image examples, prediction from the global inference

network, their corresponding local class-activation heat-maps and scores

assigned by both baseline and the proposed method. The heat-maps are

generated by normalizing the local feature encodings of the class predicted

by the global inference network. The images presented here are from two

novel classes, namely, ‘Tambourine’ and ‘Treadmill’, as shown in Fig. 6.4(b),

Fig. 6.4(d), respectively. These images are wrongly identified by the baseline

as in-class data, and assigned the category ‘Backpack’, and ‘Ladder’ with high
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Ground Truth: Backpack Ground Truth: Tambourine

Ground Truth: TreadmillGround Truth: Ladder

Prediction: Backpack

Prediction: LadderPrediction: Ladder

Prediction: Backpack

Baseline: 0.76

Proposed: 0.19

Baseline: 0.67

Proposed: 0.13

Baseline: 0.93

Proposed: 0.81

Baseline: 0.85

Proposed: 0.83(a) (b)

(c) (d)

In-class Novel-class

Figure 6.4: Image examples of in-class (a) & (c) and novel class (b) & (d) data with
corresponding class activation heat-maps as predicted by local inference network and
scores assigned using both baseline and proposed.

scores. Additionally, we show the images from the corresponding in-class

categories ‘Backpack’ and ‘Ladder’ and their corresponding class activation

heat-maps in Fig. 6.4(a) and Fig. 6.4(c), respectively. This figure shows the

difference in class activation heat-maps for the case where the image samples

are from in-class data and the case where the image samples are from novel

classes. For example, in Fig. 6.4(a), the image sample is from a known class

with category label ‘Backpack’ and the network is able to correctly identify it

by assigning a high score. The patch-level class activation patterns shown in

heat-map focuses on highly discriminative patch locations providing strong

presence of the given class. On the other hand, in Fig. 6.4(b), the image sample

is from a novel class, but the network wrongly identifies it as ‘Backpack’ with

a high score. However, if we look at the class activation patterns, there are
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Category : Rifle

Prediction: AK47

Baseline: 0.99

Proposed: 0.96

(a)

(b)

Category: Unicorn

Prediction: Horse

Baseline: 0.91

Proposed: 0.92

Category: Toad   

Prediction: Frog

Baseline: 0.93

Proposed: 0.97

Category: Sword   

Prediction: Knife

Baseline: 0.95

Proposed: 0.89

Category: Mandolin  

Prediction: Guitar

Baseline: 0.99

Proposed: 0.81

Figure 6.5: Examples of images from novel classes that are wrongly identified as
in-class samples with high scores.

moderate to high activations all over the image, as opposed to in-class image in

Fig. 6.4(a). The novelty detector of the proposed method is specifically trained

to identify this mis-match in activation patterns and predicted label. This helps

the proposed approach correctly predict a high score for the image sample of

‘Backpack’ and a low score for the image sample of a novel class, ‘Tambourine’.

Similar observations can be made for the other example provided for ‘Ladder’

in Fig. 6.4(c) and Fig. 6.4(d).

Though the proposed approach exhibits reasonable novelty detection per-

formance, there are some cases where it fails to predict low scores when the

samples are from novel classes. Some of these examples are illustrated in

Fig. 6.6 with their corresponding class activation heat-maps and the predicted

scores using the Fine-tune baseline (i.e. traditional DCNN) and the proposed

method. The image sample from novel category ‘Toad’ is identified as in-class

category ‘Frog’. In this case, the novelty detector network fails to detect any

mis-match between the local patch-wise activation patterns and the predicted

label. Similarly, the novel categories ‘Unicorn’, ‘Rifle’ and ‘Mandolin’ are
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Category : Baseball

Prediction: Ladder

Baseline: 0.56

Proposed: 0.48

(a)

(b)

Category: Billiards

Prediction: Kangaroo

Baseline: 0.41

Proposed: 0.59

Category: Pisa-Tower   

Prediction: Pisa-Tower

Baseline: 0.73

Proposed: 0.57

Category: Dice   

Prediction: Golfball

Baseline: 0.35

Proposed: 0.29

Category: Telescope  

Prediction: Telescope

Baseline: 0.55

Proposed: 0.63

Figure 6.6: Examples of images and their corresponding patch-level activity patterns,
from in-class categories that are wrongly identified as novel class samples with low
prediction scores.

identified as in-class categories ‘Horse’, ‘AK47’ and ‘Guitar’, respectively. For

all of these examples presented here, the reason for failure can be due to

very subtle differences between these novel categories with their respective

mis-classified in-class categories.

Here, we provide examples of in-class samples that are miss-identified

as novel with low prediction score. In some cases the image examples are

miss-classified as in the case of Baseball, Billiards and Dice where network has

high activation from wrong local-patches of the image. In other cases such as

Telescope and Pisa-tower, the miss-identification happens due to the difficulty

of image examples. E.g., in Pisa-tower image example the tower of Pisa is

around cluster of other buildings and hence results in low prediction score. In

the case of Telescope example the telescope is occluded by Person in the front

and hence receives low activation across informative image patches, resulting

in low prediction score for the image.
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6.3.6 Conclusion

We proposed a novel DCNN-based multi-class novelty detection method, that

is end-to-end trainable. Unlike recent methods, the proposed approach does

not rely on the availability of a reference dataset and is flexible enough to work

on both scenarios, when the reference dataset is available and when it is not.

We discussed assumptions regarding patch-level activation patterns of DC-

NNs when the test image is from novel classes. Based on these assumptions,

we proposed a novel training methodology which utilizes both global level

predictions from the traditional DCNNs and a local inference network, which

processes image at patch level. Furthermore, we show how the proposed ap-

proach can be extended when a reference dataset is accessible by regularizing

the reference data penultimate activations. Experimental results, evaluated on

four multi-class novelty detection datasets, show that the proposed method is

able to identify novel class samples better compared to the other DCNN-based

methods.
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Chapter 7

Multi-class Novelty Detection
under Distribution Shift

7.1 Motivation

Most of the existing works tackling the issue of multiple-class novelty detec-

tion, try to learn a decision boundary that encloses the known categories given

in the dataset. However, while trying to enclose the known categories, these

methods also enclose the style/domain of the dataset. As a result, samples

from known categories but having different style/domain, will have increased

risk of false detection as a novel category. For example, a novelty detection

method trained on SVHN digits dataset will be correctly able to detect known

categories from novel, only if the test data follows the same distribution as

SVHN. But, if the test data is from a digits dataset like MNIST, due to the

domain shift, it is highly likely that the novelty detector will not be able to

distinguish between novel and known categories accurately. This problem is

also illustrated in Fig. 7.1. Most of the earlier novelty detection methods work

on the assumption that the test data would follow a similar distribution as the
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training data.

We also provide a preliminary experimental analysis to show the effect of

dataset distribution shift on the performance of novelty detection. For this

experiment, we consider a novelty detector [105], referred to as Adversarially

Known

Categories

Train Data

Novelty

Detector

(a) Training Novelty Detector

Known Categories

Test Data

Novel Categories

Test Data

Novelty

Detector

(b) Testing : Standard Protocol (Known vs Novel)

Known Categories

Test Data 

(Distribution Shift)

Novel Categories

Test Data

(Distribution Shift)

Novelty

Detector

(c) Testing : Distribution Shift (Known vs Novel)

Figure 7.1: An overview of the proposed problem setting. (a) We have a training
data with samples from multiple known categories. Here, we have used the SVHN
dataset with digits 0, 1 and 2 as known categories. These data samples are used to
learn a novelty detector to enclose the known categories. (b) In a standard novelty
detection testing protocol, the test data follows the same distribution as the training
data. As shown in the figure, typically the novelty detector is able to distinguish
between known categories and novel categories. Here, digits 7, 8 and 9 sampled
from the SVHN dataset are used as novel categories. As illustrated in the figure, the
learned novelty detector is able to differentiate between known and novel digits from
the SVHN dataset correctly. (c) This figure illustrates the scenario where the test data
does not follow the distribution of the training dataset. When tested with known (0,
1, 2) and novel (7, 8, 9) digits from the MNIST dataset, due to the distribution shift,
the learned novelty detector performs poorly. This problem arises due to the fact that
while training any novelty detector to enclose the known categories of a particular
dataset, it also encloses the style/domain of that dataset. This creates a problem as
shown in this figure, where the data from known categories, which follow a different
distribution will have high risk of being detected as novel category.
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Figure 7.2: (a) Area under the ROC plot when a novelty detector is evaluated on the
MNIST and USPS datasets. (b) Histogram of scores corresponding to the MNIST
dataset. (c) Histogram of scores corresponding to the USPS dataset.

learned One-Class Classifier (ALOCC). The ALOCC method is trained on the

MNIST dataset. For training, we consider digits 0 to 4 as known categories

and the remaining digits as novel categories. Fig. 7.2(a) shows the ROC

curve illustrating the performance of the novelty detector when evaluated on

the MNIST data (Blue curve). The novelty detector achieves area under the

curve of 0.81. In order to simulate the data distribution shift, we evaluate the

novelty detector on the USPS dataset, again considering 0 to 4 digits as known

categories and the remaining digits as novel categories. As we can see from

Fig. 7.2(a), the performance on the USPS dataset (red curve) drops by ∼20%

compared to the MNIST dataset. Also, by looking at the histogram of score

predictions in Fig. 7.2(b) and Fig. 7.2(c), it is clear that compared to MNIST,

USPS scores for both known and novel categories on average are shifted

towards the left. This shows that the novelty detector trained on MNIST has

high risk of detecting USPS known categories as novel. This is due to the shift

in the distribution between MNIST and USPS datasets.

Hence, in this section, we consider the problem of multiple-class novelty

detection under dataset distribution shift. Since no prior work has been done
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for this specific problem, we first describe the problem statement in detail and

provide trivial baselines for this task based on novelty detection and domain

adaptation approaches. Furthermore, we propose a novelty detection method

that can address the data distribution shift problem and help improve over

the trivial baselines. Moreover, we discuss the differences between the closely

related problem setting such as open-set domain adaptation [87] and also

provide experimental analysis to show that their performance is sub-optimal

in the problem setting considered in this paper.

7.2 Robust novelty detection under distribution shift

In this section, we first formulate the problem and then discuss some baseline

methods. Finally, we present the proposed method in detail.

7.2.1 Problem setting

Typically, a novelty detection model is developed using a training dataset

having multiple categories which we refer to as the source dataset. This trained

model is then tested in the real-world where the goal is to detect any test input

samples belonging to novel categories. However, these models have high risk

of detecting any test samples belonging to known categories as unknown,

when the test samples are from a different distribution than that of the training

dataset. The goal of the proposed problem setting is to generalize the novelty

detection models on a dataset having different distribution, which we refer to

as the target dataset. The terminology of referring labeled dataset as source

and unlabeled dataset as target is borrowed from the domain adaptation
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literature. Formally, in the proposed problem setting, we have access to the

source dataset, Ds = {Xsi}Ns
i=1 and their corresponding label set Ys = {ysi}Ns

i=1.

There are in total C categories and each ysi takes a value from the label set

{1, 2, ..., C}. Similarly, we have access to the target dataset, Dk
t = {Xti}Nt

i=1,

having different distribution than the source dataset. Both source (Ds) and

target (Dk
t ) datasets share the same C categories. However, for Dk

t we do not

have access to the corresponding labels. Here, the superscript k denotes that

the dataset contains only the known categories, i.e., all data samples in the Dk
t

belong to one of the categories from the label set {1, 2, ..., C}. During training,

the goal is to learn a novelty detector that generalizes well on the target dataset

with the help of the information available in the source dataset, i.e., Ds and

Ys. The learned novelty detector is evaluated using a test set from the target

dataset (Dk:test
t ) having known categories and a target set containing data

from unknown categories (Du
t ). Here, superscript u denotes that the dataset

contains only novel categories. Note that data from Du
t is not utilized during

training but only used while evaluating the novelty detection performance on

the target set.

7.2.2 Simple approaches

As shown by preliminary experiment in Sec. 7.1 the dataset distribution shift is

one of the unexplored problems in novelty detection. Following the problem

setting and notations described in previous section, in this section, we explore

some potential solutions for tackling this problem. Since there are no prior

works available in the literature on this problem, we develop a few baselines
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Figure 7.3: Illustration of multiple potential solutions to address the distribution
shift problem for novelty detection. (a) Softmax: Simplest approach which utilizes
the labeled source data to train a classification network. The maximum softmax
probability can be used as the novelty score. (b) ALOCC: Another approach which
directly utilizes the unlabeled target data to train an off-the-shelf novelty detector. We
utilize, a novelty detection algorithm proposed in [105]. Here, η denotes the Gaussian
noise added to the input image. (c) GRL: Uses labeled source and unlabeled target
data to learn a domain invariant feature space using a gradient reversal layer [30].
The maximum softmax prediction probability can be used as the novelty score. (d)
ALOCC+GRL: A combination of both novelty detector [105] and domain invariant
feature learning [30] in an ad-hoc manner. (e) Proposed method: A shared feature
space is learned through cross-domain mappings. The corss-domain mappings helps
to learn a better feature space which is especially useful for novelty detection.

by considering similar works from the literature. The block diagrams of these

methods are illustrated in Fig. 7.3(a)-(d). In what follows, we describe these

baseline approaches in detail.

Softmax. The most simple baseline would be to utilize the labeled source

data to train a feature extractor and classifier network to perform multi-class

classification. However, classification networks are prone to novel classes even
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in the source domain, hence would not translate well for the target domain

novelty detection.

ALOCC. Another approach would be to disregard the source domain informa-

tion and only use the target domain unlabeled data to train any off-the-shelf

novelty detector algorithm. For this baseline, we utilize ALOCC method

for novelty detection proposed in [105]. Specifically, ALOCC trains an auto-

encoder which aims to reconstruct a clean image from the input image using

Gaussian noise. This auto-encoder network is trained in generative adver-

sarial framework and the score from the discriminator of the reconstructed

image is used for novelty detection. The dataset will have multiple categories,

however ALOCC remains agnostic to that by considering multiple categories

as one.

GRL. Gradient reversal layer [30] has been widely used to reduce the domain

gap between two datasets having different distributions for the classification

task. GRL baseline can be considered as an extension to the Softmax baseline

such that the domain gap issue between source and target is addressed by the

gradient reversal layer.

ALOCC+GRL. This is the final baseline which combines the gradient reversal

training to reduce the domain gap between source and target, together with the

novelty detection training specified in the ALOCC. This ad-hoc combination

provides a strong baseline for the proposed setting, since GRL is able to take

care of the domain gap and with the help of domain invariant feature space,

the ALOCC is able to learn a more general novelty detector which is likely to

perform better on the target domain.
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7.2.3 Proposed method

ALOCC+GRL is the most related method out of all the methods described

above. Also, it is able to exploit both novelty detection training and domain

adversarial loss to learn a domain invariant feature space. This should help

the novelty detector mitigate the effects of distribution shift and perform

reasonably well on the target domain. However, such method is an ad-hoc

combination of the domain adaptation and novelty detection algorithms. To

get the best out of the information available in the proposed problem setting,

we need a unified approach where novelty detection training inherently mit-

igates the distribution shift. Fig. 7.3(e) gives an overview of the proposed

approach, where the cross-domain decoders trained for novelty detection task

guides the shared feature extractor to learn a common feature space. As op-

posed to the method with ad-hoc combination, the proposed way of learning

can benefit from the unified training strategy, since the novelty detection task

guides the feature space learning. Here, we discuss the training methodology

used for proposed approach.

Let’s consider images Xs and Xt sampled from the source and target do-

main, respectively. The feature encoder network (F ), takes these samples and

generates latent representations zs and zt. Since, for the source domain, we

have access to the class labels, the classifier (C) is trained to classify latent

representations of source domain in to respective categories. As discussed ear-

lier, the feature extractor network F is learned with the help of two generator

networks Gs and Gt for source and target domain, respectively.

For the source domain discriminator Ds, a conditional GAN [82] based
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approach is used. This specifically helps the generator networks when datasets

contain multiple categories. Following the conditional GAN formulation

proposed by [82], the discriminator network Ds has two parts. The first part

referred to as, Db
s , identifies whether the samples generated by Gs are real or

fake by a binary classification. On the other hand, the second part referred to

as, Da
s , classifies the generated images into one of the known categories. Gs

takes in the latent representations zs and zt to generate images X̂s2s and X̂t2s,

respectively. This process can be described as follows,

zs = F (Xs), zt = F (Xs)

X̂t2s = Gs(zt), X̂s2s = Gs(zs). (7.1)

For the target domain discriminator Dt, a binary classifier based on the cross

entropy loss is used. The generator network Gt generates the image samples

from the source and the target domain, using latent representations zs and zt,

respectively. This process can be described as follows,

X̂s2t = Gt(zs), X̂t2t = Gt(zt). (7.2)

The classifier loss function can be defined as follows

Lce = E{X,y}∼{Ds,Ys}[ℓce(C(F (X)), y)], (7.3)

where, Lce is the overall classification loss computed on the labeled source

data and ℓce is the categorical cross entropy loss. Considering ŷ = C(zs) as the

predicted probability vector, ℓce can be expressed as follows

ℓce(ŷ, y) = −
C

∑
j=1

yj log[ŷj]. (7.4)

To train the source discriminator in the conditional GAN framework, we need
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to perform real/fake classification and categorical classification, which can be

expressed as

LDs
cGAN = EX∼Ds [log(1− Db

s (X))] + EX∼Ds [log(Db
s (X̂t2s))]

+ EX∼Dk
t
[log(Db

s (X̂s2s))] + EX∼Ds,y∼Ys [ℓce(Da
s (X̂s2s), y)], (7.5)

where, the first term in the equation trains the discriminator Db
s to identify

data sampled from the source dataset Ds as real images. The second and third

term train the discriminator to identify images generated by Gs, i.e., X̂t2s and

X̂s2s, as fake. The fourth term is a classification loss similar to Eq. 7.3, where

the generated images X̂s2s are classified in to the category corresponding to

the source input images using Da
s .

After the discriminator update, the source generator is trained to generate

images such that the discriminator network is fooled into identifying the

generated images, X̂s2s and X̂t2s as real source images. To further improve the

image generation quality, we add L1 reconstruction loss, denoted as ℓr, on

the generated source images, X̂s2s. The loss functions described above can be

mathematically formulated as

LGs
cGAN = EX∼Ds [log(1− Db

s (Gs(X)))] + EX∼Dk
t
[log(1− Db

s (Gs(X)))], (7.6)

LGs
rs = EX∼Ds [ℓr(X̂s2s, X)], (7.7)

where

ℓr(X̂, X) = ∥X− X̂∥1. (7.8)

Similar to the source domain discriminator and generator, we apply the same
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GAN losses for the target domain discriminator Dt, and generator Gt. Since,

the target domain labels are not available, a traditional GAN formulation is

used [33], instead of the conditional GAN formulation [82] used for source

domain. Additionally, similar to the source domain, we add L1 reconstruc-

tion loss on the generated target images, X̂t2t, to further improve the image

generation quality in the target domain. These losses can be written as follows

LDt
GAN = EX∼Dt [log(1− Dt(X))] + EX∼Ds [log(Dt(X̂s2t))]

+ EX∼Dk
t
[log(Dt(X̂t2t))], (7.9)

LGt
GAN = EX∼Dk

t
[log(1− Dt(Gt(X)))] + EX∼Ds [log(1− Dt(Gt(X)))], (7.10)

LGt
rt = EX∼Dk

t
[ℓr(X̂t2t, X)]. (7.11)

Finally, the loss function for the feature encoder network consists of both the

classification loss on the source and the adaptation loss from the conditional

GAN module. The final loss for the network F can be expressed as

LFtotal = Lce + λ1 LGs
cGAN + λ2 LGt

GAN, (7.12)

where λ1 and λ2 are parameters. The loss functions defined above, LGs
cGAN,

LDs
cGAN, LGt

GAN, LDt
GAN, LCce, LFtotal, L

Gt
rt and LGs

rs , are minimized iteratively to

update the parameters of their respective networks. The overall training

procedure for the proposed method is summarized in Algorithm 1.

7.3 Experiments and results

For experiments, we consider all the baseline methods discussed in Sec. 7.2.2

and the proposed method described in Sec. 7.2.3. We use SVHN [81], MNIST
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(a)

SVHN MNIST USPS

(b)

Amazon Webcam DSLR

Figure 7.4: Sample images from the datasets used for conducting experiments. (a)
Digits (b) Office-31.

[59] and USPS [46] digit recognition datasets, as well as the Office-31 [106]

object recognition datasets to conduct experiments (see Fig. 7.4). We evaluate

the performance of different methods using the Area Under the ROC (AUROC)

Curve metric, which is the most commonly used evaluation metric for novelty

Algorithm 1 Pseudocode for training proposed method
Require: Network models F , C, Gs, Ds, Gt, Ds
Require: Initial parameters Θ f , Θc, Θgs , Θds , Θgt , Θdt

Require: Source data, Ds, Ys Target data , Dk
t

Require: Hyper-parameters : N, lr, λ1, λ2
1: while not done do
2: for each batch with size N do
3: for i = 1 to N do
4: Feed-forward using Eq. (7.1) – Eq. (7.2)
5: end for
6: Calculate Losses based on Eq. (7.3) – Eq.(7.12)
7: Update Θds , Θds ← Θds − lr ∗ ∇Θds

LDs
cGAN

8: Update Θdt , Θdt ← Θdt − lr ∗ ∇Θdt
LDt

GAN

9: Update Θgs , Θgs ← Θgs − lr ∗ ∇Θgs
LGs

cGAN
10: Update Θ f , Θ f ← Θ f − lr ∗ ∇Θ fL

F
total

11: Update Θc, Θc ← Θc − lr ∗ ∇ΘcLce

12: Update Θgt , Θgt ← Θgt − lr ∗ ∇Θgt
LGt

rt

13: Update Θgs , Θgs ← Θgs − lr ∗ ∇Θgs
LGs

rs
14: end for
15: end while
16: Output: Learned parameters Θ̂ f ,Θ̂s,Θ̂gs ,Θ̂ds ,Θ̂dt ,Θ̂gt
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detection. Each datasets are divided into known and novel categories for

novelty detection. Details regarding the splits are described in the following

sections. The novel categories are not utilized during training and only used

during inference. The following methods are comapred.

• Softmax baseline: In this baseline, only the feature extractor network F and

the classification network C are trained on the labeled source dataset using

the cross entropy loss. This is the simplest baseline and follows the traditional

CNN training for recognition. Maximum softmax probability score is used for

novelty detection.

• ALOCC: ALOCC is a method proposed in [105], which utilizes a feature

extractor network F and a decoder network G supervised in a generative

adversarial framework with the help of a discriminator network Di. The

training is done directly on the unlabeled target data. The input is injected

with a Gaussian noise η and networksF and G are forced to reconstruct a clean

image. The network parameters are learned by optimizing a combination of

GAN and reconstruction losses. The discriminator score of the reconstructed

input D(G(F (X + η))) is used for novelty detection.

• GRL: Gradient reversal baseline extends the softmax baseline by improving

the feature space to be domain invariant. This makes the maximum softmax

probability much more reliable for the novelty detection task on the target

domain. For GRL, feature extractor F and classifier network C are trained

using the cross entropy loss and domain classifier D f is employed with a

gradient reversal layer [30] to enforce the feature space to be domain invariant.

Here, the method utilizes both labeled source data and unlabeled target data
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for training the network parameters.

• ALOCC+GRL: ALOCC+GRL combines the two method described above in

an ad-hoc fashion. The ALOCC training is done as described above, which

involves reconstructing a clean image when the input to the network is injected

with Gaussian noise. For this baseline we add noise to both source and target

data. The feature extractor network F is also trained to perform classification

of labeled source data through classification network C. Additionally, the

feature space of networkF is enforced to be domain invariant through domain

classifier D f and gradient reversal layer. Combination of scores from ALOCC

and maximum softmax probability is used to perform novelty detection. The

training utilizes both labeled source and unlabeled target data.

• Proposed method: The proposed method is used as described in Sec. 7.2.3.

We use addition of maximum softmax probability scores and loss from target

generator (i.e. discriminator score of generated image and reconstruction loss)

for novelty detection.

In all experiments, we use Adam optimizer [51] with the learning rate (η)

of 0.0001 and batch size (N) of 64. The hyper-parameter λ1 and λ2 are both set

equal to 0.03. The parameters are chosen using validation performance from

the source domain data. Details regarding the network architectures used for

F , C, Gs, Gt, Ds and Dt are provided in supplementary material.

7.3.0.1 Digits: SVHN, USPS, MNIST

In the first set of experiments, SVHN, USPS and MNIST digit datasets are used

to create four different scenarios, SVHN→MNIST, SVHN→USPS, USPS→MNIST
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Table 7.1: Performance on the digits datasets - SVHN, MNIST and USPS evaluated
using area under the roc metric. (S), (T) and (ST) respectively denote only labeled
source data, only unlabeled target data and both labeled source-unlabeled target data
used for training.

Method SVHN→MNIST MNIST→USPS USPS→MNIST SVHN→USPS Average Performance
Softmax (S) 0.642 0.602 0.651 0.587 0.620
ALOCC (T) 0.702 0.633 0.702 0.633 0.667

GRL (ST) 0.718 0.863 0.859 0.667 0.776
ALOCC+GRL (ST) 0.851 0.903 0.895 0.845 0.873

Proposed (ST) 0.919 0.945 0.928 0.895 0.921

and MNIST→USPS. First five digits, digits 0 to 4, are used as known categories

and the remaining digits, digit 5 to 9, are considered as novel categories. Only

the known categories are used during training and novel categories are used

only for evaluating the methods. For the problem setting proposed in this

section, we utilize training split provided by the respective datasets to train

the models and test split are used for evaluating the performance. All images

in SVHN, MNIST and USPS are resized to 32× 32. The feature extractor used

in this section is inspired from the LeNet architecture [58] (details are provided

in supplementary material).

The performance of each method is reported in the Table. 7.1. The softmax

baseline performs worst out of all the methods. This is expected as softmax

baseline is trained on only labeled source dataset. Also, it is not specifically

trained for the novelty detection task. ALOCC performs better than softmax

as it is trained on the target dataset and is specifically designed for the task of

novelty detection. GRL baseline learns a domain invariant feature encoder,

and hence is able to produce reasonable softmax probabilities on the target

dataset. ALOCC+GRL combines the ideas from domain adversarial training

and novelty detection training. Specifically, ALOCC learns a good model for

novelty detection task and GRL helps the feature extractor of the ALOCC
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model to learn domain invariant feature. Additional training with classifica-

tion loss on the labeled source data helps the ALOCC+GRL to better utilize

multi-class structure of the dataset, making it the best performing method

among the baselines. All of the above methods are simple extensions or ad-hoc

combinations of the work available in the literature. Whereas, the proposed

approach tackles the distribution shift issue along with novelty detection

training in a single model. This helps the proposed approach perform better

than the ad-hoc solutions, performing ∼ 5% better than ALOCC+GRL.

7.3.0.2 Office31 : Amazon, Webcam, DSLR

Finally, we evaluate the proposed method on the Office31 benchmark [106].

The Office31 benchmark has a total 31 object categories and three different

domains. Image samples for the dataset are acquired in three different do-

mains, i.e. Amazon (A), Webcam (W) and DSLR (D). First 10 categories from

all three domains are considered as known. Categories from 11, 12, ...., 30 are

considered as novel categories for all domains. For all the methods compared,

AlexNet [54] is used as the base feature extractor. During training we freeze

all the convolutional layers of AlexNet and only fine tune the fully-connected

layers. For training the generator networks Gs and Gt we resize the images to

32× 32 and the discriminator architectures are used accordingly (more details

in supplementary material). Three domains of the dataset form in total 6 pairs

of source→target combinations. For each source→target combination, we

report AUROC performance.

The peformance of each method is reported in Table 7.2. Overall the trend
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Table 7.2: AUC performance of different methods on the Office31 [106] datasset.

Methods A→D A→W W→A W→D D→A D→W Average
Softmax 0.719 0.835 0.655 0.862 0.606 0.842 0.737
ALOCC 0.776 0.725 0.608 0.983 0.570 0.884 0.758

GRL 0.766 0.730 0.624 0.988 0.572 0.890 0.762
ALOCC+GRL 0.783 0.759 0.640 0.987 0.576 0.898 0.774

Proposed 0.877 0.863 0.824 0.938 0.807 0.940 0.877

of performance improvements are similar to the digits experiment. Among

all the methods, softmax baseline achieves the lowest performance. ALOCC

improves by ∼ 2% over the softmax baseline, while GRL is able to improve

∼ 1% over ALOCC. Utilizing gradient reversal along with ALOCC training

further improves the performance by ∼ 1%. The proposed approach on

average performs better than the other approaches. Specifically, the proposed

approach on average provides ∼ 9% improvement over the next best baseline

of ALOCC+GRL.

7.3.1 Conclusion

We considered the problem of novelty detection under dataset distribution

shift and showed the challenges it poses with experiments. To the best of

our knowledge, this is the first work to address such problem for novelty

detection. We also discussed the differences between the proposed problem

setting and some of the related problems like open-set domain adaptation.

We also developed a few trivial baseline methods based on the related works

available in the literature by combining the techniques from novelty detection

and domain adaptation. Finally, we proposed an approach to tackle the

distribution shift by learning a shared feature space that can generalize better
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in comparison with the baseline methods.
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Chapter 8

Prior-based Domain Adaptive
Object Detection

8.1 Motivation

Recent methods proposed to perform detection under adverse weather con-

ditions, consider that the images captured under adverse conditions (target

images) suffer from a distribution shift [16, 34] as compared to the images on

which the detectors are trained (source images). It is assumed that the source

images are fully annotated while the target images (with weather-based degra-

dations) are not annotated. They propose different techniques to align the

target features with the source features, while training on the source images.

These methods are inherently limited in their approach since they employ

only the principles of domain adaptation and neglect additional information

that is readily available in the case of weather-based degradations.

We consider the following observations about weather-based degradations

which have been ignored in the earlier work. (i) Images captured under

weather conditions (such as haze and rain) can be mathematically modeled
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Figure 8.1: (a) Weather conditions such as rain and haze can be mathematically
modeled as function of clean image and the weather-specific prior. We use this
weather-specific prior to define a novel prior-adversarial loss for adapting detectors
to adverse weather. (b) Existing domain adaptation approaches use constant target
domain label for the entire image irrespective of the amount of degradation. Our
method uses spatially-varying priors that are directly correlated to the amount of
degradations.

(see Fig. 8.1(a)). For example, a hazy image is modeled by a superposition of a

clean image (attenuated by transmission map) and atmospheric light [27, 38].

Similarly, a rainy image is modeled as a superposition of a clean image and

rain residue [62, 139, 141] (see Fig. 8.1(a)). In other words, a weather-affected

image contains weather specific information (which we refer to as prior) -

transmission map in the case of hazy images and rain residue in the case of

rainy images. These weather-specific information/priors cause degradations

in the feature space resulting in poor detection performance. Hence, in order

to reduce the degradations in the features, it is crucial to make the features

weather-invariant by eliminating the weather-specific priors from the features.

(ii) Further, it is important to note that the weather-based degradations are

spatially varying and, hence do not affect the features equally at all spatial

locations. Since, existing domain-adaptive detection approaches [16, 107, 121]

label all the locations entirely either as target, they assume that the entire

image has undergone constant degradation at all spatial locations (see Fig.

8.1(b)). This can potentially lead to incorrect alignment, especially in the
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regions of images where the degradations are minimal.

Motivated by these observations, we define a novel prior-adversarial loss

that uses additional knowledge about the target domain (weather-affected

images) for aligning the source and target features. Specifically, the proposed

loss is used to train a prior estimation network to predict weather-specific prior

from the features in the main branch, while simultaneously minimizing the

weather-specific information present in the features. This results in weather-

invariant features in the main branch, hence, mitigating the effects of weather.

Additionally, the proposed use of prior information in the loss function results

in spatially varying loss that is directly correlated to the amount of degradation

(as shown in Fig. 8.1(b)). Hence, the use of prior can help avoid incorrect

alignment.

8.2 Proposed method

We assume that labeled clean data ({xs
i , ys

i}
ns
i=1) from the source domain (S)

and unlabeled weather-affected data from the target domain (T ) are avail-

able. Here, ys
i refers to all bounding box annotations and respective category

label for the corresponding clean image xs
i , xt

i refers to the weather-affected

image, ns is the total number of samples in the source domain (S) and nt

is the total number of samples in the target domain (T ). Our goal is to uti-

lize the available information in both source and target domains to learn a

network that lessens the effect of weather-based conditions on the detector.

The proposed method contains three network modules – detection network,

prior estimation network (PEN) and residual feature recovery block (RFRB).
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Fig. 8.2 gives an overview of the proposed model. During source training, a

source image (clean image) is passed to the detection network and the weights

are learned by minimizing the detection loss, as shown in Fig. 8.2 with the

source pipeline. For target training, a target image (weather-affected image) is

forwarded through the network as shown in Fig. 8.2 by the target pipeline. As

discussed earlier, weather-based degradations cause distortions in the feature

space for the target images. In an attempt to de-distort these features, we

introduce a set of residual feature recovery blocks in the target pipeline as

shown in Fig. 8.2. This model is inspired from residual transfer framework

proposed in [70] and is used to model residual features. The proposed PEN

aids the detection network in adapting to the target domain by providing

feedback through adversarial training using the proposed prior adversarial

loss. In the following subsections, we briefly review the backbone network,

followed by a discussion on the proposed prior-adversarial loss and residual

feature recovery blocks.

8.2.1 Detection network

Following the existing domain adaptive detection approaches [16, 107, 121],

we base our method on the Faster-RCNN [102] framework. Faster-RCNN is

among the first end-to-end CNN-based object detection methods and uses

anchor-based strategy to perform detection and classification.For simplicity,

we decompose the Faster-RCNN network into three network modules: fea-

ture extractor network (F ), region proposal network (RPN) stage and region
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Figure 8.2: Overview of the proposed adaptation method. We use prior adversarial
loss to supervise the domain discriminators. For the source pipeline, additional
supervision is provided by detection loss. For target pipeline, feed-forward through
the detection network is modified by the residual feature recovery blocks.

classification network (RCN). The arrangement of these modules are shown in

the Fig. 8.2 with VGG model architecture as base network. Here, the feature

extractor network consists of first five conv blocks of VGG and region classifi-

cation network module is composed of fully connected layers of VGG. The

region proposal network uses output of feature extractor network to generate a

set of candidate object regions in a class agnostic way. Features corresponding

to these candidates are pooled from the feature extractor and are forwarded

through the region classification network to get the object classifications and

bounding box refinements. Since we have access to the source domain images

and their corresponding ground truth, these networks are trained to perform

detection on the source domain by minimizing the following loss function,
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min
F , G

Lsrc
det , where (8.1)

Lsrc
det = Lsrc

rpn + Lsrc
bbox + L

src
rcn. (8.2)

Here, G represents both region proposal and region classification networks,

Lsrc
rpn denotes the region proposal loss, Lsrc

bbox denotes the bounding-box regres-

sion loss and Lsrc
rcn denotes the region classification loss. The details of these

individual loss components can be found in [102].

8.2.2 Prior-adversarial training

As discussed earlier, weather-affected images, contain domain specific in-

formation. These images typically follow mathematical models of image

degradation (see Eq. 8.8 and Eq. 8.9). We refer to this domain specific informa-

tion as a prior. Detailed discussion about prior for haze and rain is provided

later in the section. We aim to exploit these priors about the weather domain

to better adapt the detector for weather affected images. To achieve that, we

propose a prior-based adversarial training approach using prior estimation

network (PEN) and prior adversarial loss (PAL).

Let Pl be PEN module introduced after the lth conv block of F and let Zsrc
il

be the corresponding domain specific prior for any image, xs
i ∈ S . Then the

PAL for the source domain is defined as follows,

Lsrc
palcl

=
1

nsUV

ns

∑
i=1

U

∑
j=1

V

∑
k=1

(Zsrc
il −Pl(Fl(xs

i )))
2
jk, (8.3)

where, U and V are height and width of domain specific prior Zsrc
il and output

103



feature Fl(xs
i ). Zsrc

il denotes the source image prior, scaled down from image-

level prior to match the scale at lth conv block. Similarly, PAL for the target

domain images, xt
i ∈ T , with the corresponding prior Ztgt

il can be defined as,

Ltgt
palcl

=
1

ntUV

nt

∑
i=1

U

∑
j=1

V

∑
k=1

(Ztgt
il −Pl(Fl(xt

i)))
2
jk, (8.4)

where, we apply PAL after conv4 (l=4) and conv5 (l=5) block (as shown in Fig.

8.2). Hence, the final source and target adversarial losses can be given as,

Lsrc
pal =

1
2
(Lsrc

palc5
+ Lsrc

palc4
), (8.5)

Ltgt
pal =

1
2
(Ltgt

palc5
+ Ltgt

palc4
). (8.6)

The prior estimation networks (P5 and P4) predict the weather-specific

prior from the features extracted from F . However, the feature extractor

network F is trained to fool the PEN modules by producing features that are

weather-invariant (free from weather-specific priors) and prevents the PEN

modules from correctly estimating the weather-specific prior. Since, this type

of training includes prior prediction and is also reminiscent of the adversarial

learning used in domain adaptation, we term this loss as prior-adversarial loss.

At convergence, the feature extractor network F should have devoid itself

from any weather-specific information and as a result both prior estimation

networks P5 and P4 should not be able to correctly estimate the prior. Note

that our goal at convergence is not to estimate the correct prior, but rather to learn

weather-invariant features so that the detection network is able to generalize well to

the target domain. This training procedure can be expressed as the following
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optimization,

max
F

min
P
Lsrc

pal + L
tgt
pal. (8.7)

Furthermore, in the conventional domain adaptation, a single label is as-

signed for entire target image to train the domain discriminator. By doing

this, it is assumed that the entire image has undergone a constant domain

shift. However this is not true in the case of weather-affected images, where

degradations vary spatially. In such cases, the assumption of constant domain

shift leads to incorrect alignment especially in the regions of minimal degra-

dations. Incorporating the weather-specific priors overcomes this issue as

these priors are spatially varying and are directly correlated with the amount

of degradations. Hence, utilizing the weather-specific prior results in better

alignment.

8.2.2.1 Haze prior

The effect of haze on images has been extensively studied in the literature

[2, 27, 38, 63, 140, 142, 143]. Most existing image dehazing methods rely on

the atmospheric scattering model for representing image degradations under

hazy conditions and is defined as,

I(z) = J(z)t(z) + A(z)(1− t(z)), (8.8)

where I is the observed hazy image, J is the true scene radiance, A is the

global atmospheric light, indicating the intensity of the ambient light, t is

the transmission map and z is the pixel location. The transmission map is a

105



distance-dependent factor that affects the fraction of light that reaches the cam-

era sensor. When the atmospheric light A is homogeneous, the transmission

map can be expressed as t(z) = e−βd(z), where β represents the attenuation

coefficient of the atmosphere and d is the scene depth.

Typically, existing dehazing methods first estimate the transmission map

and the atmospheric light, which are then used in Eq. (8.8) to recover the

observed radiance or clean image. The transmission map contains important

information about the haze domain, specifically representing the light atten-

uation factor. We use this transmission as a domain prior for supervising

the prior estimation (PEN) while adapting to hazy conditions. Note that no

additional human annotation efforts are required for obtaining the haze prior.

8.2.2.2 Rain prior

Similar to dehazing, image deraining methods [61,62,137,139,141] also assume

a mathematical model to represent the degradation process and is defined as

follows,

I(z) = J(z) + R(z), (8.9)

where I is the observed rainy image, J is the desired clean image, and R is

the rain residue. This formulation models rainy image as a superposition of

the clean background image with the rain residue. The rain residue contains

domain specific information about the rain for a particular image and hence,

can be used as a domain specific prior for supervising the prior estimation

network (PEN) while adapting to rainy conditions. Similar to the haze, we avoid

the use of expensive human annotation efforts for obtaining the rain prior.
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In both cases discussed above (haze prior and rain prior), we do not use

any ground-truth labels to estimate respective priors. Hence, our overall

approach still falls into the category of unsupervised adaptation. Further-

more, these priors can be pre-computed for the training images to reduce

the computational overhead during the learning process. Additionally, the

prior computation is not required during inference and hence, the proposed

adaptation method does not result in any computational overhead.

8.2.3 Residual Feature Recovery Block (RFRB)

As discussed earlier, weather-degradations introduce distortions in the feature

space. In order to aid the de-distortion process, we introduce a set of residual

feature recovery blocks (RFRBs) in the target feed-forward pipeline. This is

inspired from the residual transfer network method proposed in [70]. Let ∆Fl

be the residual feature recovery block at the lth conv block. The target domain

image feedforward is modified to include the residual feature recovery block.

For ∆Fl the feed-forward equation at the lth conv block can be written as,

F̂ l(xt
i) = Fl(xt

i) + ∆Fl(Fl−1(xt
i)), (8.10)

where, Fl(xt
i) indicates the feature extracted from the lth conv block for any

image xt
i sampled from the target domain using the feature extractor network

F , ∆Fl(Fl−1(xt
i)) indicates the residual features extracted from the output

l − 1th conv block, and F̂ l(xt
i) indicates the feature extracted from the lth conv

block for any image xt
i ∈ T with RFRB modified feedforward. The RFRB

modules are also illustrated in Fig. 8.2, as shown in the target feedforward
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pipeline. It has no effect on source feedforward pipeline. In our case, we

utilize RFRB at both conv4 (∆F4) and conv5 (∆F5) blocks. Additionally, the

effect of residual feature is regularized by enforcing the norm constraints

on the residual features. The regularization loss for RFRBs, ∆F4 and ∆F5 is

defined as,

Lreg =
1
nt

nt

∑
i=1

∑
l=4,5
∥∆Fl(Fl−1(xt

i))∥1, (8.11)

8.2.4 Overall loss

The overall loss for training the network is defined as,

max
P

min
F ,∆F ,G

Lsrc
det −Ladv + λLreg, where (8.12)

Ladv =
1
2
(Lsrc

pal + L
tgt
pal). (8.13)

Here, F represents the feature extractor network, P denotes both prior

estimation network employed after conv4 and conv5 blocks, i.e., P={P5,P4},

and ∆F={∆F4, ∆F5} represents RFRB at both conv4 and conv5 blocks. Also,

Lsrc
det is the source detection loss, Lreg is the regularization loss, and Ladv is the

overall adversarial loss used for prior-based adversarial training.

8.3 Experiments and results

8.3.1 Implementation details

We follow the training protocol of [16, 107] for training the Faster-RCNN

network. The backbone network for all experiments is VGG16 network [123].

We model the residuals using RFRB for the convolution blocks C4 and C5 of
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the VGG16 network. The PA loss is applied to only these conv blocks modeled

with RFRBs. The PA loss is designed based on the adaptation setting (Haze or

Rain). The parameters of the first two conv blocks are frozen similar to [16,107].

The detailed network architecture for RFRBs, PEN and the discriminator are

provided in supplementary material. During training, we set shorter side of

the image to 600 with ROI alignment. We train all networks for 70K iterations.

For the first 50K iterations, the learning rate is set equal to 0.001 and for the last

20K iterations it is set equal to 0.0001. We report the performance based on the

trained model after 70K iterations. We set λ equal to 0.1 for all experiments.

In addition to comparison with recent methods, we also perform an ab-

lation study where we evaluate the following configurations to analyze the

effectiveness of different components in the network. Note that we progres-

sively add additional components which enables us to gauge the performance

improvements obtained by each of them,

• FRCNN: Source only baseline experiment where Faster-RCNN is trained

on the source dataset.

• FRCNN+D5: Domain adaptation baseline experiment consisting of Faster-

RCNN with domain discriminator after conv5 supervised by the domain

adversarial loss.

• FRCNN+D5+R5: Starting with FRCNN+D5 as the base configuration, we

add an RFRB block after conv4 in the Faster-RCNN. This experiment enables

us to understand the contribution of the RFRB block.

• FRCNN+P5+R5: We start with FRCNN+D5+R5 configuration and replace

domain discriminator and domain adversarial loss with prior estimation
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network (PEN) and prior adversarial loss (PAL). With this experiment, we

show the importance of training with the proposed prior-adversarial loss.

• FRCNN+P45+R45: Finally, we perform the prior-based feature alignment at

two scales: conv4 and conv5. Starting with FRCNN+P5+R5 configuration,

we add an RFRB block after conv3 and a PEN module after conv4. This

experiment corresponds to the configuration depicted in Fig. 8.2. This

experiment demonstrates the efficacy of the overall method in addition to

establishing the importance of aligning features at multiple levels in the

network.

Following the protocol set by the existing methods [16, 107, 121], we use mean

average precision (mAP) scores for performance comparison.

8.3.2 Adaptation to hazy conditions

In this section, we present the results corresponding to adaptation to hazy

conditions on the following datasets: (i) Cityscapes→ Foggy-Cityscapes [109],

(ii) Cityscapes→ RTTS [60], and (iii) WIDER [135]→ UFDD-Haze [79]. In

the first two experiments, we consider Cityscapes [17] as the source domain.

Note that the Cityscapes dataset contains images captured in clear weather

conditions.

Cityscapes→ Foggy-Cityscapes: In this experiment, we adapt from Cityscapes

to Foggy-Cityscapes [109]. The Foggy-Cityscapes dataset was recently pro-

posed in [109] to study the detection algorithms in the case of hazy weather
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conditions. Foggy-Cityscapes is derived from Cityscapes dataset by simu-

lating fog on the clear weather images of Cityscapes. Both Cityscapes and

Foggy-Cityscapes have the same number of categories which include, car,

truck, motorcycle/bike, train, bus, rider and person. Similar to [16], [107],

we utilize 2975 images of both Cityscapes and Foggy-Cityscapes for training.

Note that we use annotations only from the source dataset (Cityscapes) for

training the detection pipeline. For evaluation we consider a non overlapping

validation set of 500 images provided by the Foggy-Cityscapes dataset.

We compare the proposed method with two categories of approaches: (i)

Dehaze+Detect: Here, we employ dehazing network as pre-processing step

and perform detection using Faster-RCNN trained on source (clean) images.

For pre-processing, we chose two recent dehazing algorithms: DCPDN [140]

and Grid-Dehaze [68]. (i) DA-based methods: Here, we compare with following

recent domain-adaptive detection approaches: DA-Faster [16], SWDA [107],

DiversifyMatch [49], Mean Teacher with Object Relations (MTOR) [10], Se-

lective Cross-Domain Alignment (SCDA) [148] and Noisy Labeling [48]. The

corresponding results are presented in Table 8.1.

It can be observed from Table 8.1, that the performance of source-only

training of Faster-RCNN is in general poor in the hazy conditions. Adding

DCPDN and Gird-Dehaze as preprocessing step improves the performance by

∼2% and ∼4%, respectively. Compared to the domain-adaptive detection ap-

proaches, pre-processing + detection results in lower performance gains. This

is because even after applying dehazing there still remains some domain shift.

Hence, using adaptation would be a better approach for mitigating the domain
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(a) (b)

Figure 8.3: Detection results on Foggy-Cityscapes. (a) DA-Faster RCNN [16]. (b)
Proposed method. The bounding boxes are colored based on the detector confidence.
DA-Faster-RCNN produces detections with low confidence in addition to missing the
truck class. Our method is able to output high confidence detections without missing
any objects.

Table 8.1: Performance comparison for the Cityscapes→ Foggy-Cityscapes experi-
ment.

Method prsn rider car truc bus train bike bcycle mAP
Baseline FRCNN [102] 25.8 33.7 35.2 13.0 28.2 9.1 18.7 31.4 24.4

Dehaze DCPDN [140] 27.9 36.2 35.2 16.0 28.3 10.2 24.6 32.5 26.4
Grid-Dehaze [68] 29.7 40.4 40.3 21.3 30.0 9.1 25.6 36.7 29.2

DA-Methods

DAFaster [16] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SCDA [148] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
SWDA [107] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
DM [49] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
MTOR [10] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
NL [48] 35.1 42.1 49.2 30.1 45.3 26.9 26.8 36.0 36.5

Ours

FRCNN+D5 30.9 38.5 44.0 19.6 32.9 17.9 24.1 32.4 30.0
FRCNN+D5+R5 32.8 44.7 49.9 22.3 31.7 17.3 26.9 37.5 32.9
FRCNN+P5+R5 33.4 42.8 50.0 24.2 40.8 30.4 33.1 37.5 36.5
FRCNN+P45+R45 36.4 47.3 51.7 22.8 47.6 34.1 36.0 38.7 39.3

shift. Here, the use of simple domain adaptation [30] (FRCNN+D5) improves

the source-only performance. The addition of RFRB5 (FRCNN+D5+R5) re-

sults in further improvements, thus indicating the importance of RFRB blocks.

However, the conventional domain adaptation loss assumes constant domain
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shift across the entire image, resulting in incorrect alignment. The use of prior-

adversarial loss (FRCNN+P5+R5) overcomes this issue. We achieved 3.6%

improvement in overall mAP scores, thus demonstrating the effectiveness of

the proposed prior-adversarial training. Note that, FRCNN+P5+R5 baseline

achieves comparable performance with state-of-the-art. Finally, by perform-

ing prior-adversarial adaptation at an additional scale (FRCNN+P45+R45), we

achieve further improvements which surpasses the existing best approach [48]

by 2.8%. Fig. 8.3 shows sample qualitative detection results corresponding

to the images from Foggy-Cityscapes. Results for the proposed method are

compared with DA-Faster-RCNN [16]. It can be observed that the proposed

method is able to generate comparatively high quality detections.

We summarize our observations as follows: (i) Using dehazing as a pre-

processing step results in minimal improvements over the baseline Faster-

RCNN. Domain adaptive approaches perform better in general. (ii) The

proposed method outperforms other methods in the overall scores while

achieving the best performance in most of the classes. See supplementary

material for more ablations.

Cityscapes → RTTS: In this experiment, we adapt from Cityscapes to the

RTTS dataset [60] . RTTS is a subset of a larger RESIDE dataset [60], and it con-

tains 4,807 unannotated and 4,322 annotated real-world hazy images covering

mostly traffic and driving scenarios. We use the unannotated 4,807 images

for training the domain adaptation process. The evaluation is performed on
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Table 8.2: Performance comparison for the Cityscapes→ RTTS experiment.

Method prsn car bus bike bcycle mAP
Baseline FRCNN [102] 46.6 39.8 11.7 19.0 37.0 30.9

Dehaze DCPDN [140] 48.7 39.5 12.9 19.7 37.5 31.6
Grid-Dehaze [68] 29.7 25.4 10.9 13.0 21.4 20.0

DA
DAFaster [16] 37.7 48.0 14.0 27.9 36.0 32.8
SWDA [107] 42.0 46.9 15.8 25.3 37.8 33.5

Ours Proposed 37.4 54.7 17.2 22.5 38.5 34.1

Table 8.3: Results (mAP) of the adaptation experiments from WIDER-Face to UFDD
Haze and Rain.

Method UFDD-Haze UFDD-Rain
FRCNN [102] 46.4 54.8
DAFaster [16] 52.1 58.2
SWDA [107] 55.5 60.0
Proposed 58.5 62.1

the annotated 4,322 images. RTTS has total five categories, namely motor-

cycle/bike, person, bicycle, bus and car. This dataset is the largest available

dataset for object detection under real world hazy conditions.

In Table 8.2, the results of the proposed method are compared with Faster-

RCNN [102], DA-Faster [16] and SWDA [107] and the dehaze+detection base-

line as well. For RTTS dataset, the pre-processing with DCPDN improves the

Faster-RCNN performance by ∼1%. Surprisingly, Grid-Dehaze does not help

the Faster-RCNN baseline and results in even worse performance. Whereas,

the proposed method achieves an improvement of 3.1% over the baseline

Faster-RCNN (source-only training), while outperforming the other recent

methods.

WIDER-Face→ UFDD-Haze: Recently, Nada et al. [79] published a bench-

mark face detection dataset which consists of real-world images captured
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Table 8.4: Performance comparison for the Cityscapes→ Rainy-Cityscapes experi-
ment.

Method prsn rider car truc bus train bike bcycle mAP
Baseline FRCNN 21.6 19.5 38.0 12.6 30.1 24.1 12.9 15.4 21.8

Derain DDN [29] 27.1 30.3 50.7 23.1 39.4 18.5 21.2 24.0 29.3
SPANet [132] 24.9 28.9 48.1 21.4 34.8 16.8 17.6 20.8 26.7

DA DAFaster [16] 26.9 28.1 50.6 23.2 39.3 4.7 17.1 20.2 26.3
SWDA [107] 29.6 38.0 52.1 27.9 49.8 28.7 24.1 25.4 34.5

Ours

FRCNN+D5 29.1 34.8 52.0 22.0 41.8 20.4 18.1 23.3 30.2
FRCNN+D5+R5 28.8 33.1 51.7 22.3 41.8 24.9 22.2 24.6 31.2
FRCNN+P5+R5 29.7 34.3 52.5 23.6 47.9 32.5 24.0 25.5 33.8
FRCNN+P45+R45 31.3 34.8 57.8 29.3 48.6 34.4 25.4 27.3 36.1

under different weather-based conditions such as haze and rain. Specifically,

this dataset consists of 442 images under the haze category. Since, face detec-

tion is closely related to the task of object detection, we evaluate our frame-

work by adapting from WIDER-Face [135] dataset to UFDD-Haze dataset.

WIDER-Face is a large-scale face detection dataset with approximately 32,000

images and 199K face annotations. The results corresponding to this adapta-

tion experiment are shown in Table 8.3. It can be observed from this table that

the proposed method achieves better performance as compared to the other

methods.

8.3.3 Adaptation to rainy conditions

In this section, we present the results of adaptation to rainy conditions. Due to

lack of appropriate datasets for this particular setting, we create a new rainy

dataset called Rainy-Cityscapes and it is derived from Cityscapes. It has the

same number of images for training and validation as Foggy-Cityscapes. First,

we discuss the simulation process used to create the dataset, followed by a

discussion of the evaluation and comparison of the proposed method with
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other methods.

Rainy-Cityscapes: Similar to Foggy-Cityscapes, we use a subset of 3475

images from Cityscapes to create synthetic rain dataset. Using [1], several

masks containing artificial rain streaks are synthesized. The rain streaks are

created using different Gaussian noise levels and multiple rotation angles

between 70◦ and 110◦. Next, for every image in the subset of the Cityscapes

dataset, we pick a random rain mask and blend it onto the image to generate

the synthetic rainy image. More details and example images are provided in

supplementary material.

Cityscapes→Rainy-Cityscapes: In this experiment, we adapt from Cityscapes

to Rainy-Cityscapes. We compare the proposed method with recent meth-

ods such as DA-Faster [16] and SWDA [107]. Additionally, we also evaluate

performance of two derain+detect baselines, where state of the art methods

such as DDN [29] and SPANet [132] are used as a pre-processing step to the

Faster-RCNN trained on source (clean) images. From the Table 8.4 we observe

that such methods provide reasonable improvements over the Faster-RCNN

baseline. However, the performance gains are much lesser as compared to

adaptation methods, for the reasons discussed in the earlier sections (Sec.

8.3.2). Also, it can be observed from Table 8.4, that the proposed method

outperforms the other methods by a significant margin. Additionally, we

present the results of the ablation study consisting of the experiments listed in

Sec. 8.3.1. The introduction of domain adaptation loss significantly improves
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(a) (b)

Figure 8.4: (a) DA-Faster RCNN [16]. (b) Proposed method. The bounding boxes are
colored based on the detector confidence. DA-Faster-RCNN misses several objects.
Our method is able to output high confidence detections without missing any objects.

the source only Faster-RCNN baseline, resulting in approximately 9% im-

provement for FRCNN+D5 baseline in Table 8.4. This performance is further

improved by 1% with the help of residual feature recovery blocks as shown

in FRCNN+D5+R5 baseline. When domain adversarial training is replaced

with prior adversarial training with PAL, i.e. FRCNN+P5+R5 baseline, we

observe 2.5% improvements, showing effectiveness of the proposed training

methodology. Finally, by performing prior adversarial training at multiple

scales, the proposed method FRCNN+P45+R45 observes approximately 2%

improvements and also outperforms the next best method SWDA [107] by

1.6%. Fig. 8.4 illustrates sample detection results obtained using the proposed

method as compared to a recent method [16]. The proposed method achieves

superior quality detections.

WIDER-Face→UFDD-Rain: In this experiment, we adapt from WIDER-Face

to UFDD-Rain [79]. The UFDD-Rain dataset consists of 628 images collected

under rainy conditions. The results of the proposed method as compared to
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the other methods are shown in Table 8.3. It can be observed that the proposed

method outperforms the source only training by 7.3%.

8.3.4 Conclusion

We addressed the problem of adapting object detectors to hazy and rainy

conditions. Based on the observation that these weather conditions cause

degradations that can be mathematically modeled and cause spatially varying

distortions in the feature space, we propose a novel prior-adversarial loss

that aims at producing weather-invariant features. Additionally, a set of

residual feature recovery blocks are introduced to learn residual features that

can aid efficiently aid the adaptation process. The proposed framework is

evaluated on several benchmark datasets such as Foggy-Cityscapes, RTTS and

UFDD. Through extensive experiments, we showed that our method achieves

significant gains over the recent methods in all the datasets.
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Chapter 9

Federated Learning-based User
Authentication

9.1 Federated average vs non-IID data

We illustrate the challenges in detail by considering a case study with FedAvg

algorithm to show how the performance changes when the IID assumption of

the FL/SL framework does not hold. Subsequently, we discuss the proposed

solution FAA which overcomes these challenges to provide an improved user

authentication system.

The key challenge in Federated Active Authentication (FAA) is the non-IID

nature of the data distribution across mobile devices. This issue directly affects

the user authentication performance. First, let us briefly discuss the definition

of independent and identically distributed data. In the context of federated

learning, when data is said to be distributed in an IID manner, it means that

each device has equal number of data samples from all users. This is the most

common assumption in federated learning and is very crucial to train a model

using the FedAvg algorithm. To show how deviation from this assumption
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affects the performance of FedAvg algorithm, let us quantify the IID-ness of

the data distributed among devices. Let us assume that there are N devices

containing data from K users. Let Ki be the number of users contained in

the ith device dataset having sufficient number of data samples. Let qI ID

denote the quantification of “IID-ness” of the distributed data in the federated

framework. For simplicity, let us assume that each device has equal number

of data samples. Given these assumptions, the qI ID can be formally written

as:

qI ID =
1
N ∑N

i=1
Ki
K −

1
K

1− 1
K

, (9.1)

where qI ID = 1 when the data distribution across devices is the most IID

and it decreases as the distribution deviates from IID. The value qI ID = 0

represents the most non-IID data distribution across devices. The proposed

FAA problem operates on a specific value of qI ID = 0, where the number

of devices are equal to the number of users, i.e., N = K. To show how the
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Figure 9.1: Performance of federated averaging (FedAvg) algorithm with varying
value of qI ID representing the way data is distributed among devices.
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Figure 9.2: Block diagram describing the training of the proposed method for feder-
ated active authentication. (a) Step-1 of the proposed method: training a model on
base dataset, (b) Step-2 & Step-3 of proposed method: local mobile devices compute
feature statistics of the user, the central server trains a classifier using these statistics,
the classifier is then sent to the individual devices and together with the feature
extractor, it is used as an authentication model.

performance of FedAvg algorithm changes when the IID assumption is vio-

lated, we perform identification experiments using the UMDAA-01 dataset

by changing the qI ID value from one to zero. As evident from Fig. 9.1, the

FedAvg performance heavily relies on the IID assumption. The more distri-

bution of data among devices in the federated learning framework deviates

from the IID assumption, the performance of FedAvg degrades significantly.

The reason for this reduction in performance is due to averaging of weights at

the central server. This makes sense as the individual models are trained on

the data with similar data distributions. Interestingly, for the case of federated

active authentication, where the distribution of data among devices is the most

non-IID, i.e., qI ID = 0, the performance is almost close to random guessing

baseline.
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9.2 Federated active authentication

9.2.1 Proposed training methodology

Step-1. Let us first consider a randomly initialized deep network model

M at the central server. Furthermore, let us denote a publicly available

face recognition dataset as, Dbase = {xbase
i , ybase

i }Nbase
i=1 . Here, xbase

i are the face

images having corresponding labels ybase
i where the dataset contains a total of

Nbase images. Note that, Dbase does not have any category that overlap with

data available in the individual mobile devices. As shown in Fig. 9.2(a), the

deep network modelM is then trained at server side on the datasetDbase with

the help of the following loss:

Lbase =
1

Nbase

Nbase

∑
i=1
Lc(M(xbase

i ), ybase
i ), (9.2)

where, Lc is the cross-entropy loss function. Once the modelM is trained, it

is further divided into two networks, namely, feature extractor network (F )

and classifier network (C). The central server sends feature extractor network

F to all the mobile devices connected to the central server.

Step-2. Assume that there are K mobile devices (i.e. K users) and the ith

device has the corresponding dataset Di containing ni face images of the user.

All K devices are connected to the central server. With the help of network F ,

each device estimates the feature mean and variance of the corresponding user,

which we refer to as user impressions. For the ith device, the user impressions
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Figure 9.3: Toy example with three users to show the effectiveness of the proposed
method compared to one-class modeling based methods. (a) Feature space location
(mean µi) and shape (variance Σi) estimated for each user. (b) Modeling as a one-class
classification problem to learn a decision boundary for user-1. When such a model
is tested there are many samples from user-2 and user-3 that are mis-classified as
user-1. (c) Learning a decision boundary using the proposed method to train the
authentication model for user-1 using user-1, user-2 and user-3’s mean and variance.
This model does not make the same mistake of mis-classifying user-2 and user-3
data as user-1 similar to one-class based method. As can be seen from the figure, the
learned decision boundary is also better in comparison to one-class method.

can be estimated as:

µi =
1
ni

∑
xj∈Di

F (xj),

Σi =
1
ni

∑
xj∈Di

(F (xj)− µi)(F (xj)− µi)
T,

(9.3)

where xj is the jth face image in Di. Each user impression (µi, Σi), provides

a reasonable estimate regarding the location and the shape of the ith user

distribution in the feature space of network F . Once all devices have finished

estimating user impressions, they are sent to the central server, which creates

a Gaussian approximated feature space model of each user as N (µi, Σi). This

approximation is inspired by the work of Seddik et al. [118], which showed

that the feature space of deep networks can be well approximated with only

first and second order statistics of the features.

Step-3. With the help of Gaussian approximated feature space models of all

users, we create a combined dataset as, D = { f j ∼ N (µi, Σi), yj = i}. We
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make sure that each user has exactly M number of samples, resulting in total

K×M samples. As shown in the Fig. 9.2(b), we fine-tune the identification

network using the loss given as:

L =
1

K×M

K×M

∑
j=1
Lc(C( f j), yj), (9.4)

where, yj is the corresponding user id of feature f j and Lc is the cross-entropy

loss. Once the classifier C is trained, its architecture and weights are sent to

all mobile devices. Both F and C together form the authentication system.

Furthermore, in Fig. 9.3 we illustrate how the proposed approach is able

to utilize user-impressions to improve the authentication with the help of

a toy example with three users. The current algorithms model the active

authentication problem as one-class classification. Due to this, the classifier

learned for a particular user still has some risk of failing to restrict the device

access to other users, illustrated in Fig. 9.3(b). However, as shown in Fig. 9.3(c),

the proposed approach is able to utilize user impressions from other users

to learn a more compact decision boundary and improve the authentication

performance.

9.2.2 Testing

For any test face image xj, we compute the authentication score corresponding

to the ith user as,

Si
j = I[yj˜ =i] H[C(F (xj))] + I[yj˜ ̸=i] H[q], (9.5)

where, ỹj is the predicted label of the test image xj, i.e., argmax C(F (xj)).

The I[c] is an indicator function which is 1 when condition c is satisfied and
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0 otherwise. Vector C(F (xj)) is a K× 1 prediction vector. The function H[·]

calculates the entropy of the input probability vector. The vector q is K × 1

probability vector with q1 = q2 = ... = qK = 1
K . When the predicted-id from

the authentication model matches the user-id, the first term assigns the score

Si
j as the entropy of the prediction vector, i.e., C(F (xj)). When the predicted-id

does not match the user-id, the second term penalizes the input for this mis-

classification by assigning high entropy value to the score Si
j. When both the

terms are added together they encode the score of an input image belonging

to the authorized user. Higher score indicates potentially unauthorized user

and vice versa.

9.3 Experiments and results

9.3.1 Implementation details

For all experiments, we utilize the VGG16 [123] trained on the VGGFace

dataset [88]. We consider all conv blocks of VGG16 as the feature extractor F

and all fully-connected layers as the classifier C. The mean and variance for

each user are estimated by flattening the output of F , later used in the server

to fine-tune C. For training, we utilize SGD optimizer with learning rate 0.001

and momentum 0.9. We train till 100 epochs with the batch size of 64. For all

methods, the hyper-parameters are selected based on a validation set. The

performance of all methods is evaluated using the average detection accuracy

(ADA), defined as:

ADA = 0.5 ∗ (TPR + TNR),
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(a) MOBIO (b) UMDAA-01 (c) UMDAA-02

Figure 9.4: Sample face images from the (a) MOBIO, (b) UMDAA-01 and (c) UMDAA-
02 datasets.

where, TNR and TPR represent true negative rate and true positive rate,

respectively.

9.3.2 Datasets

MOBIO. The MOBIO [35] dataset contains face and voice data from 150

individuals collected in six different sessions and locations. It is collected

using smart phones and/or laptop. For experiments, we only consider the

face data. Out of the three datasets, MOBIO is relatively easy as it contains

only front facing face images captured in well-lit conditions. Sample images

are shown in Fig. 9.4(a). The figures provide a reasonable illustration of

the variations present in the dataset. For the experiment, we consider the

first 75 individuals as the enrolled users and the remaining 75 individuals as

unknown/unauthorized users. We create a 50/50 split of data for training

and testing for all 150 individuals.

UMDAA-01. The UMDAA-01 [26] contains face images of 50 different in-

dividuals collected using iPhone 5s in three different sessions with varying

lighting conditions. Apart from varying illumination conditions, the dataset

also contains multiple other variability in the form of pose, occlusion, facial
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Table 9.1: Performance comparison with state-of-the-art active authentication meth-
ods evaluated in terms of average detection accuracy. The best performing method
for each dataset is shown in bold fonts.

1SVM k1SVM SVDD kSVDD kNFST 1vSet 1MPM DMPM OC-ACNN Proposed

MOBIO 0.632
(0.004)

0.748
(0.004)

0.582
(0.007)

0.763
(0.013)

0.560
(0.003)

0.670
(0.005)

0.768
(0.003)

0.825
(0.007)

0.938
(0.005)

0.998
(0.003)

UMDAA-01 0.622
(0.002)

0.731
(0.009)

0.615
(0.018)

0.701
(0.009)

0.567
(0.012)

0.593
(0.017)

0.816
(0.003)

0.869
(0.001)

0.891
(0.002)

0.954
(0.005)

UMDAA-02 0.614
(0.008)

0.649
(0.004)

0.515
(0.007)

0.550
(0.007)

0.556
(0.003)

0.538
(0.003)

0.722
(0.006)

0.760
(0.007)

0.735
(0.009)

0.813
(0.006)

expressions etc. Sample images are shown in Fig. 9.4(b). We consider the

first 25 individuals as the enrolled users and the remaining 25 users as un-

known/unauthorized. Similar to MOBIO, we create a 50/50 train-test split

and use the train split for training.

UMDAA-02. The UMDAA-02 [73] contains information from 18 different

sensors such as touch pattern, face images, accelerometer readings from 44

individuals collected using Nexus5 across two months. For this experiment,

we only utilize face images of all users. As can be seen from Fig. 9.4(c), out

of all three datasets, UMDAA-02 contains the most variability in the data

samples, proving it to be the most challenging dataset. We consider the first

22 individuals as the enrolled users and the remaining as unknown.

9.3.3 Experiments

We consider the following methods from the active authentication literature

for comparison:

1. Linear OCSVM (1SVM): One-class SVM (OC-SVM) as formulated in [113]

is trained with a linear kernel on features of given user..

2. Linear SVDD (SVDD): Support vector data descriptor (SVDD) with a
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linear kernel as formulated in [124] is trained on features of given user.

3. Kernel OCSVM (k1SVM): OC-SVM as formulated in [113] is trained on

the given features with a radial basis function (RBF) kernel.

4. Kernel SVDD (kSVDD): SVDD with RBF kernel as formulated in [124] is

trained on given features.

5. One-class kNFST (kNFST): Kernel null foley-sammon transform is used

as proposed in [7]. kNFST finds a single null-space direction in feature space

where intra-class distance of the class is low.

6. One-vs-set Machines (1vSet): As proposed in [5], two hyper-planes are

optimized to enclose given category features within a slab in feature space.

7. Single-MPM (1MPM): Proposed in [32], 1MPM considers second order

statistics to learn a better hyperplane that separates origin from the one-class

data in the feature space.

8. Dual-MPM (DMPM): Proposed in [95], DMPM extends the 1MPM formu-

lation by learning an additional hyperplane that better encloses given features.

9. OC-ACNN: Method proposed in [84], develop a deep convolutional neu-

ral network based one-class classifier by using Gaussian as pseudo-negative

samples and regularizing the feature space with a decoder network.

Table. 9.1 compares the performance of the proposed method with the

state-of-the-art active authentication models. Out of all methods, 1SVM’s

and SVDD’s performances are the lowest. Both of these methods are able

to improve the performance when the kernel trick is incorporated into their

formulations as shown by k1SVM and kSVDD, respectively. 1vSet and kNFST

prove competitive against the classical one-class formulations such as 1SVM
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Table 9.2: Impact on average detection accuracy with increasing the number of
unknown/unauthorized users for the UMDAA-01.

Number of
Unknown User 10 15 20 25

UMDAA-01 0.983
(0.003)

0.976
(0.003)

0.963
(0.002)

0.954
(0.005)

and SVDD. Out of all the methods based on hyperplane optimization formu-

lation, the MPM-based methods clearly outperform all the others. Specifically,

DMPM is able to outperform 1MPM by ∼5%, ∼6% and ∼4%, respectively

on MOBIO, UMDAA-01 and UMDAA-02 datasets. OC-ACNN provides a

considerable improvement compared to DMPM on MOBIO and UMDAA-01,

but under performs on UMDAA-02. The proposed method outperforms all

the other methods. More precisely, the proposed method observes ∼6%, ∼6%

and ∼5% improvement over the next best baseline on MOBIO, UMDAA-01

and UMDAA-02, respectively. This improvement can be largely attributed

to the fact that federated learning framework enables privacy preserving col-

laboration among devices that results in a better active authentication system

compared to the traditional one-class modeling based methods.

Impact of Number of Unknown. Table. 9.2 shows the impact of varying the

number of unknown/unauthorized users on the authentication system. For

the experiment, we consider the UMDAA-01 dataset with all the implementa-

tion detail kept the same as described in Sec. 9.3.1 and the number of enrolled

users are fixed to 25. As evident from the table, the performance decreases as

we increase the number of unknown/unauthorized user during testing.
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9.3.4 Fedarated/split learning vs proposed method

We compare the performance of FL and SL approaches with the proposed

method. We evaluate these methods on all three datasets using the experimen-

tal protocol described in Sec. 9.3.2. As can be seen from Fig. 9.5, the proposed

method is able to perform much better compared to both FedAvg and Split

Learning Approach (SLA) [36] on all three datasets. In the case of MOBIO,

both FedAvg and SLA perform the best compared to the other two datasets,

providing average detection accuracy of 61.2% and 92%, respectively. In com-

parison, the proposed approach is able to achieve 99.8% average detection

accuracy, resulting in nearly 38% and 7% improvement on the MOBIO dataset,

respectively. For the slightly challenging UMDAA-01 dataset, when the au-

thentication model is trained using FedAvg and SLA, the model achieves the

performance of 52.4% and 89%, respectively. Compared to FedAvg and SLA,

the proposed approach achieves 95.4% average detection accuracy. Similarly,

A
D

A

0.00

0.25

0.50

0.75

1.00

MOBIO UMDAA-01 UMDAA-02

FedAvg Split Learning Proposed

Figure 9.5: Comparing the performance between FedAvg, Split Learning [36] and the
proposed method on the MOBIO, UMDAA-01 and UMDAA-02 datasets.
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FedAvg and SLA perform about 51% and 62%, respectively on the most chal-

lenging UMDAA-02 dataset. Whereas, the proposed approach achieves 81.2%

average detection accuracy, resulting in respective 29% and 19% improvement.

As discussed in Sec. 9.1, the major reason why FL/SL methods perform poorly

is due to the highly non-IID nature (i.e. qI ID = 0) of the federated active

authentication problem. Though SLA comes very close to the performance

of the proposed method, it still requires multiple rounds of communication

between device and server. In contrast, the proposed approach requires only

one round of communication between device and server.

9.3.5 Conclusion

We proposed a novel approach for user active authentication based on feder-

ated and split learning frameworks, called Federate Active Authentication.

We point out the limitations of existing active authentication methods that

model it as a one-class classification problem. The proposed method utilizes

the federated/split learning framework to go beyond the one-class assump-

tion for user active authentication. We also show that existing federated/split

learning algorithms perform poorly on the federated active authentication

setting. To address these issues, we proposed a novel method that extracts

feature statistics of each user and trains a classification network to perform

a multi-class classification, resulting in an efficient training strategy and im-

proved authentication model. The proposed method is evaluated on three

publicly available datasets and it is shown that it can perform better com-

pared to both one-class modeling based active authentication methods and
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existing federated/split learning approaches. Furthermore, we analyze the

effectiveness of the proposed method under varying number of enrolled and

unknown/unauthorized users.
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Chapter 10

Conclusion and Future Work

In this thesis, we attempted to address two key issues with existing visual

recognition systems, namely, ability to detect unknown/novel instances dur-

ing testing, and ability to generalize to novel visual domains without super-

vision. These two factors are very critical to a visual systems’ real-world

performance and we explore different techniques to overcome respective chal-

lenges. Specifically, we explore the problem of detecting unknown instances

in both one-class and multi-class setting. For one-class setting, we show that

it is possible to perform an end-to-end training of convolutional neural net-

works to learn better representations. In the end, we also showed how such a

system can be improved with the help of federated learning. For multi-class

setting, we explored the use of patch-level activity patterns and their role in

understanding network behavior under known/unknown category inputs.

We showed that such patch-level activity information is very useful in identi-

fying whether the input test image belongs to a known or unknown category.

We proposed a novel training strategy that utilizes such patch-level activity

information and improves the unknown detection ability of visual recognition
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systems.

Additionally, we study the generalization capability of visual recognition

systems under the dataset distribution shift/domain shift. We explore this

domain shift problem for the task of both multi-class novelty detection and

general object detection. We showed the limited ability of existing novelty

detection methods in generalizing to novel visual domains and proposed

an approach that tackles this issue with the help of generative adversarial

networks. For the task of object detection, we specifically consider the issue of

adverse weather conditions where the detection performance suffers when

images are degraded by haze/rain. We show that leveraging additional

domain information extracted from the mathematical models of hazy/rainy

conditions can guide the adaptation of object detectors and help improve the

performance.

10.1 Future research directions

In this thesis, we explored multiple solutions that tackled many challenges

related to unknown instance detection and domain adaptation. However,

there is still more work required in other challenges related to these problems:

• There is a need to explore unknown instance detection for more challenging

datasets that better mimic the real-world conditions.

• The security of one-class novelty detection models against adversarial

attacks has not been explored, which will be an important real world chal-

lenge for the deployment of these systems.

• It is also important to make unknown instance detection systems more
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explainable. This would help in improving our understanding of what

aspects are important in identifying known/unknown categories.

• The domain adaptive object detection methods have only focused on un-

supervised adaptation scenario. Exploring real world constraints like

open-set/partial/universal domain adaptation, semi-supervised/weakly-

supervised/test-time adaptation, class-imbalance issues, source-free/multi-

source/multi-target conditions would further improve the real-world de-

ployability of these models.
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