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Abstract In this paper we focus on constructing binary classifiers that are built on the
premise ofminimising an upper bound on their futuremisclassification rate.We pay particular
attention to the approach taken by the minimax probability machine (Lanckriet et al. in J
Mach Learn Res 3:555–582, 2003), which directly minimises an upper bound on the future
misclassification rate in a worst-case setting: that is, under all possible choices of class-
conditional distributions with a given mean and covariance matrix. The validity of these
bounds rests on the assumption that themeans and covariancematrices are known in advance,
however this is not always the case in practice and their empirical counterparts have to be used
instead. This can result in erroneous upper bounds on the future misclassification rate and
lead to the formulation of sub-optimal predictors. In this paper we address this oversight and
study the influence that uncertainty in the moments, the mean and covariance matrix, has on
the construction of predictors under the minimax principle. By using high-probability upper
bounds on the deviation between true moments and their empirical counterparts, we can re-
formulate the minimax optimisation to incorporate this uncertainty and find the predictor that
minimises the high-probability, worst-case misclassification rate. The moment uncertainty
introduces a natural regularisation component into the optimisation, where each class is
regularised in proportion to the degree of moment uncertainty. Experimental results would
support the view that in the case of with limited data availability, the incorporation of moment
uncertainty can lead to the formation of better predictors.
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1 Introduction

In this paper we examine the problem of constructing classifiers that are built to minimise
upper bounds on the future misclassification rate of a predictor. This is a fundamen-
tal problem in machine learning providing practitioners with a guarantee on the future
performance of a trained predictor. Given its importance, there has been a significant
amount of research that seeks to address this problem, one of the most prominent direc-
tions being a theory on the uniform convergence of empirical quantities to their mean
(Vapnik and Chervonenkis 1971; Vapnik 1995). This theory provides a way of estimat-
ing the future misclassification rate of a predictor based on its empirical performance and
some measure of the complexity of the predictor function e.g. the Vapnik-Chervonenkis
dimension (Vapnik and Chervonenkis 1971) or the fat-shattering dimension (Alon et al.
1997). Further work in this direction (Marchand and Shawe-Taylor 2002; Sokolova et al.
2002) has been based on the prior assumption that the decision boundary can be con-
structed as a logical combination of a small set of data derived features. The analysis of
these algorithms considers class-conditional error bounds that can be used for unequal loss
functions. Class-conditional error bounds also inspire the approach described in the next
paragraph.

In this paperwe view the problemof generalisation fromadifferent perspective by building
upon the minimax probability machine (MPM) framework introduced in Lanckriet et al.
(2003). In this setting, rather than trying to trade off the error over the training sample
with the complexity of the function, we directly minimise an upper bound on the future
misclassification rate. This minimisation takes place in a worst-case setting by considering
all possible class-conditional distributions that have a particular mean and covariance matrix.
These class-conditional means and covariance matrices play a key role in determining the
optimal predictor and deriving upper bounds on its future misclassification rate. However
when it comes to implementing these algorithms in practice, the true moments are not known
and their empirical counterparts have to be used instead.

In this paper we seek to address the problems caused by the uncertainty of empirical
moments by presenting the high-probability minimax probability machine (HP-MPM). The
HP-MPM incorporates high probability upper bounds on the deviation of true moments from
their empirical counterparts into the minimax problem to ensure that the future misclassifica-
tion rate guarantees hold truewith high-probability. The incorporation ofmoment uncertainty
introduces a natural regularisation component into the optimisation scheme. We see that a
smaller number of observations for a particular class results in greater uncertainty regard-
ing its distribution, thus warranting additional regularisation. This is an often overlooked
component of binary classifiers, where the class-conditional distributions are traditionally
jointly regularised, ignoring the relative amount of information that is available for each
class.

This paper follows with an introduction to the original MPM in Sect. 2, providing
much of the technical details that will be required for the formulation of the HP-MPM.
In Sect. 3 we present high-probability bounds on the deviations of true moments from
their empirical counterparts, and show how they give rise to the HP-MPM optimisation
scheme. In Sect. 4 we discuss the alternating optimisation that was designed to solve
the problem, and deal with the kernelisation of the algorithm in Sect. 5. We present the
results of our experiments in Sect. 6, and conclude in Sect. 7 with some final remarks
regarding how best to use the newly proposed algorithm and where future research should
focus.
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2 Minimax probability machines

We consider the problem of constructing a binary classifier (predictor) by using some labelled
training set consisting of inputs {x1, . . . , xm} ∈ X ⊆ R

d , and their corresponding class
labellings {y1, . . . , ym} ∈ {0, 1}. For each class j = 0, 1, we assume that the input obser-
vations belonging to this class are generated according to some underlying distribution D j

where the mean x̄ j ∈ R
d and covariance matrix Σ j ∈ R

d×d of the distribution are known,
but is otherwise arbitrary. The goal of theMPM is to find the linear decision boundary (hyper-
plane) that minimises the probability that future observations from these distributions will
lie on the wrong side of this boundary.

Central to the derivation of the minimax program used in the MPM is the following
theorem, a multivariate extension of the Chebyshev Inequality (Marshall and Olkin 1960),
which was popularised for convex optimisation in Bertsimas and Popescu (2005):

Theorem 1 (Marshall and Olkin 1960; Bertsimas and Popescu 2005)

sup
x∼D

Pr{x ∈ S} = 1

1 + d2
, with d2 = inf

x∈S (x − x̄)TΣ−1(x − x̄),

where x is a random vector, S is a given convex set, and where the supremum is taken over
all distributions D for x that have mean x̄ and covariance matrix Σ .

This theorem relates the maximum probability of a random vector x ∼ D belonging to a
convex set S to the minimumMahalanobis distance d2 from the centre of the distribution x̄ to
that set. Motivated by finding a linear decision boundary, Lanckriet et al. (2003) showed that
whenS is the upper half-space defined the separating hyperplaneH(w, b) := {x | wT x = b},
the distance d2 admits a closed form expression given by

d2 = inf
wT x≥b

(x − x̄)TΣ−1(x − x̄) =
{

(b−wT x̄)2

wT Σw
if wT x̄ < b

0 if wT x̄ ≥ b
. (1)

This expression enables us to upper bound the probability that an observation drawn from a
class-conditional distribution will lie on the wrong side of the separating hyperplane, alterna-
tively it provides a lower bound on the probability that the observation will lie on the correct
side of the hyperplane. This results in the following optimisation problem:

max
w,b,α

α s.t. inf
x1∼D1

P(wT x1 ≥ b) ≥ α

inf
x0∼D0

P(wT x0 ≤ b) ≥ α,

whereα ∈ [0, 1] is theminimumprobability that examples are labelled correctly in the future.
To see this, let our classifier predict that x belongs to class 1 if wT x ≥ b. The maximum
probability that a point drawn fromD1 resides on the wrong side of this hyperplaneH(w, b)
is given by

sup
x1∼D1

P(wT x1 < b) = 1

1 + d2
= 1 − α.

Therefore the minimum probability that a random vector x1 resides on the correct side of the
hyperplane is greater than α. Using the closed form expression for the Mahalanobis distance
given in (1), and assuming thatwT x̄1 > b, we derive the following key equivalence statement

inf
x1∼D1

P(wT x1 ≥ b) ≥ α ⇐⇒ −b + wT x̄1 ≥ κ(α)
√
wTΣ1w, (2)
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where κ(α) = √
α/(1 − α). A similar but opposite formulation for class 0 allows the opti-

misation problem to be written as

max
w,b,α

α s.t. − b + wT x̄1 ≥ κ(α)
√
wTΣ1w

b − wT x̄0 ≥ κ(α)
√
wTΣ0w.

Further reductions led to the second-order cone program given by the following theorem:

Theorem 2 (Lanckriet et al. 2003) If x̄1 = x̄0 then the minimax probability decision problem
does not have a meaningful solution and the worst case misclassification probability is given
by 1 − α∗ = 1. Otherwise an optimal hyperplane H(w∗, b∗) exists and can be determined
by solving the convex optimisation problem

κ−1∗ := min
w

√
wTΣ1w +

√
wTΣ0w s.t. wT (x̄1 − x̄0) = 1, (3)

and setting b to the value

b∗ = wT∗ x̄1 − κ∗
√
wT∗ Σ1w∗, (4)

where w∗ is the optimal solution to (3). The optimal worst-case misclassification probability
is given by

1 − α∗ = 1

1 + κ2∗
=

(√
wT∗ Σ1w∗ + √

wT∗ Σ0w∗
)2

1 +
(√

wT∗ Σ1w∗ + √
wT∗ Σ0w∗

)2 . (5)

If either Σ1 or Σ0 is positive definite, the optimal hyperplane is unique.

Lanckriet et al. (2003) showed that it was possible to solve the optimisation (3) using an
iterative least-squares scheme, which has a worst-case complexityO(d3). Furthermore, their
empirical results show that the MPM approach to classification is competitive with the state-
of-the-art support vector machine (SVM) (Boser et al. 1992; Cortes and Vapnik 1995), thus
providing evidence in support of the MPM as an efficient and effective approach for binary
classification. These encouraging results resulted in the MPM approach being applied to
both novelty-detection (Ghaoui et al. 2002) and regression (Strohmann and Grudic 2002),
with some degree of success. In Huang et al. (2004) the authors identified an oversight in the
originalMPMformulation: that is, it implicitly assumes that the prior probability of each class
is the same.The authors showed that if the prior probabilities of the classes differed, then itwas
no longer optimal to minimise a single worst-case future misclassification rate but rather one
should minimise a weighted combination of class specific worst-case misclassification rates.
The weights correspond to their prior class probability and this formulation became known as
the minimum error MPM (ME-MPM). An alternative approach for dealing with imbalanced
data was presented in Osadchy et al. (2015), where the authors optimised an objective that
used the SVM hinge loss for the less frequent class and the minimax loss formulation for
the abundant class. A transductive minimax probability machine was proposed in Huang
et al. (2014), here unlabelled test points were assigned classes based upon their ability to
minimise the worst case error bound and it was shown to be especially competitive with the
transductive SVM on semi-supervised learning tasks. Similar to the transductive setting, in
Huang et al. (2015) the authors focus on the problem of clustering by assigning unlabelled
data to clusters in an attempt to optimise criterion defined by the MPM framework.
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3 High-probability MPMs

The bounds on the future misclassification rate presented in (5) are valid when the true
moments of the class-conditional distributions are known in advance. However this is not
often the case, and in practice the true moments have to be substituted for empirical ones dur-
ing the algorithm’s implementation. This can result in the derivation of sub-optimal predictors
and lead to bounds on the future misclassification rate that are invalid. In this section wemake
use of high-probability bounds on the deviation of true moments from their empirical coun-
terparts, and use this to derive an optimisation scheme that directly takes into consideration
the uncertainty of the empirical moments when constructing the predictor.

We begin by reviewing the robustness results presented in the original MPM (Lanckriet
et al. 2003), where the authors sought to address the use of empirical moment estimates using
a specific uncertainty sets, U0 and U1, for the value of the true moments. More specifically,
for each j = 0, 1, the optimisation scheme considered all values of the true moments, x̄ j and
Σ j , that resided within the uncertainty set

U j =
{
(x̄ j , Σ̂ j ) : (x̄ j − x̂ j )

TΣ−1
j (x̄ j − x̂ j ) ≤ ν2, ||Σ j − Σ̂ j ||F ≤ ρ

}
,

where x̂ j and Σ̂ j , are the empirical estimates of the mean and covariance matrix of class j ,
derived from the training sample i.e.

x̂ j = 1

m j

m j∑
k=1

x j and Σ̂ j = 1

m j

m j∑
k=1

(xk − x̂ j )(xk − x̂ j )
T

where m j is the number of observations belonging to class j . The value of ν ≥ 0 and ρ ≥ 0
control the size of the uncertainty set, and have to be set at the practitioner’s discretion.
It can be argued that this specific uncertainty set chosen more for its numerical tractability
rather than its statistical accuracy, and in what follows of this section, we derive a statistically
motivated approach for incorporating the uncertainty of the moments into the optimisation
scheme.

Shawe-Taylor and Cristianini (2003) present high-probability upper bounds on the devi-
ation of true moments (x̄,Σ) from their empirical counterparts (x̂, Σ̂): high-probability in
the sense that the probability that the true value of the moment deviates from the empirical
one by more than ε ∈ R is less than δ ≥ 0. They showed that the following holds true with
probability at least 1 − δ:

||x̄ − x̂||2 ≤ R√
m

(
2 +

√
2 log

1

δ

)
and ||Σ − Σ̂ ||F ≤ 2R2

√
m

(
2 +

√
2 log

2

δ

)
, (6)

where || · || and || · ||F denote the L2 and Frobenius norms, respectively, R > 0 is the radius
of the smallest sphere containing the support of X i.e. for all x ∈ X , ||x|| ≤ R, and m is
the number of observations that were used to construct the empirical moment. The authors
examined the implications of the these deviation bounds on the MPM guarantees, showing
that the high-probability worst-case estimate for the future misclassification errors can differ
significantly from that found using (5). Their focus was on finding what the high-probability
worst-case future misclassification rate was, given that the predictor was constructed using
the originalMPM formulation (3).Whereas our focus is on designing an optimisation scheme
that directly minimises the high-probability bound on future misclassification by taking into
consideration the uncertainty in the empirical moments.
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To do this we begin by reviewing how moment uncertainty affects the key equivalence
relationship given in (2). To simplify the analysis, we assume that the weight vector lies
within the unit-ball defined by the L2-norm i.e. ||w|| ≤ 1. We want to find a high-probability
bound on the deviation of the values in the inequality (2) when using empirical and true
moments in the expression. We do this by using the following adaptation of the proposition
presented in Shawe-Taylor and Cristianini (2003).

Proposition 1 Let x̂ and Σ̂ be the empirical mean and covariance matrix of a sample of
m points drawn independently according some probability distribution D with mean x̄ and
covariance matrix Σ . The weight vector ||w|| ≤ 1 where w �= 0, and b ∈ R are given such
that wT x̂ ≤ b. Then if

b − wT x̂ ≥
√

κ(α)2wT Σ̂w + T (7)

where

T = 4R2

√
m

(
2 +

√
2 ln

2

δ

)
+ κ(α)2

2R2

√
m

(
2 +

√
2 ln

2

δ

)

then with probability at least 1 − δ over the draw of the random sample

b − wT x̄ ≥ κ(α)
√
wTΣw and inf

x∼D
P(wT x ≥ b) ≥ α.

Proof To prove this we show that if

(b − wT x̂)2 − κ(α)2wT Σ̂w ≥ T

then with probability at least 1 − δ

(b − wT x̄)2 − κ(α)2wTΣw ≥ 0.

We do this by bounding the high-probability differences in the value of the expressions on
the left hand side of the inequalities∣∣∣(b − wT x̂)2 − κ(α)2wT Σ̂w − (b − wT x̄)2 + κ(α)2wTΣw

∣∣∣
≤ ||x̂ − x̄|| (2b + ||x̂ + x̄||) + κ(α)2

∣∣∣wT Σ̂w − wΣw
∣∣∣

≤ ||x̂ − x̄||4R + κ(α)2||Σ̂ − Σ ||F .

The proof is completed by using the bounds on the empirical moments presented (6) with δ

replaced with δ/2,∣∣∣(b − wT x̂)2 − κ(α)2wT Σ̂w − (b − wT x̄)2 + κ(α)2wTΣw
∣∣∣

≤ 4R2

√
m

(
2 +

√
2 ln

2

δ

)
+ κ(α)2

2R2

√
m

(
2 +

√
2 ln

2

δ

)
.

Note that the bound comes into play when we consider

(b − wT x̂)2 − κ(α)2wT Σ̂w ≥ (b − wT x̄)2 − κ(α)2wTΣw,

and it holds true regardless of the bound if the inequality is reversed. �
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To formulate the HP-MPM optimisation scheme we use each classes corresponding
inequality (7), where the class specific uncertainty is captured by the term Tj for j = 0, 1
with

Tj = 4R2

√
m j

(
2 +

√
2 ln

2

δ

)
+ κ(α)2

2R2

√
m j

(
2 +

√
2 ln

2

δ

)

= 2A j + κ(α)2A j ,

where

A j = 2R2

√
m j

(
2 +

√
2 ln

2

δ

)
. (8)

We can drop the dependence of the optimisation on α by noting the monotonic relationship
it has with κ(α), and by introducing the constraint that ||w|| ≤ 1 and using the inequalities
(7), the minimax program becomes

max
w,b,κ

κ s.t. ||w|| ≤ 1

−b + wT x̂1 ≥
√
2A1 + κ2

(
wT Σ̂1w + A1

)

b − wT x̂0 ≥
√
2A0 + κ2

(
wT Σ̂0w + A0

)
.

Corollary 1 For j = 0, 1, let x̂ j and Σ̂ j be the empirical mean and covariance matrix of
m j points drawn independently from distributions D j with true mean x̄ j and covariance
matrix Σ j , and let A j be defined according to (8). If ||x̂1 − x̂0|| ≤ √

2A1 + √
2A0 then the

high probability MPM decision problem does not have a meaningful solution and the worst-
case misclassification probability is given by 1 − α∗ = 1. Otherwise an optimal hyperplane
H(w∗, b∗) exists and can be determined by solving the optimisation problem given by

max
w,κ

κ s.t. ||w|| ≤ 1

wT (x̂1 − x̂0) =
√
2A1 + κ2

(
wT Σ̂1w + A1

)
+

√
2A0 + κ2

(
wT Σ̂0w + A0

)
,

(9)

and setting b to the value

b∗ = wT∗ x̂1 −
√
2A1 + κ2∗

(
wT∗ Σ̂1w∗ + A1

)
= wT∗ x̂0 +

√
2A0 + κ2∗

(
wT∗ Σ̂0w∗ + A0

)
,

wherew∗ and κ∗ are the optimal solutions to (9). Then with probability at least 1−δ over the
draws of the random sample, the optimal worst-case misclassification probability is given by

1 − α∗ = 1

1 + κ2∗
.

When presented with a new input observation x′, we make our prediction according to what
side of the optimal hyperplane the point resides i.e. we predict that y′ = 1 if wT∗ x′ − b∗ ≥ 0,
and that y′ = 0 otherwise.
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4 Optimisation scheme

The optimisation problem given in (9) can not be solved using the same approach taken in
Lanckriet et al. (2003) because of the unit L2-norm restriction on w, and the presence of the
uncertainty terms A j under the square root. To solve this problem we propose the use of an
auxiliary function h(w, κ) in conjunction with an alternating update scheme over w and κ .
The auxiliary function is given by

h(w, κ) = wT (x̂1 − x̂0)−
√
2A1 + κ2

(
wT Σ̂1w + A1

)
−

√
2A0 + κ2

(
wT Σ̂0w + A0

)
(10)

Note that the class uncertainty terms require the computation of span of the data i.e. find R
such that ||x|| ≤ R for all x ∈ X . During implementation this will have to be estimated from
the training sample or can be enforced by some normalisation scheme that is independent of
the learning algorithm.

Initialisation:To initialise the optimisation, we beginwith κ = 0, and find the value ofw that
maximises h(w, κ) subject to the constraints that ||w|| ≤ 1. This has a closed form solution
(x̂1 − x̂0)/||x̂1 − x̂0|| = argmax||w||≤1 h(w, 0), and provides the conditions necessary for
a meaningful solution to the high probability MPM decision problem i.e. we require that
max||w||≤1 h(w, 0) > 0 in order to be able to find a positive value of κ in the next step of the
optimisation scheme.
w-step:For non-initialisationw-steps, the goal ismaximise the value of the auxiliary function
by performing gradient ascent subject to our constraint ||w|| ≤ 1. It is straightforward to show
that h(w, κ) is a concave in w and therefore every local optimum will be a global optimum.
Therefore we can use standard constrained optimisation tools to solve this intermediate
problem. Note that we do not need to run these constrained optimisations to convergence, we
simply need the value of the auxiliary function to increase, in order to allow for a larger value
of κ in the next step. We view this as a constrained maximisation subject to some implicit
degree of regularisation imposed by the value of κ .
κ-step: In order to continue the optimisation, we require that the w-step results in a strictly
positive value for the auxiliary function, h(w, κ) > 0. If this is not the case then the optimisa-
tion has converged, andwe have reached the optimal solution. If h(w, κ) > 0,we can increase
the value of κ to κ ′ such that the value of the auxiliary function is zero i.e. h(w, κ ′) = 0. This
can be performed using a simple line-search procedure, or by finding the roots of a quadratic
expression involving κ . Note that in order for the optimisation to progress we must find κ ′
such that κ ′ > κ . To simplify the range of the line-search we observe an upper bound on the

value of κ ′, namely κ ′ ≤ κu = ||x̂1 − x̂0||/
(√

wT Σ̂1w +
√
wT Σ̂0w

)
.

Optimal solution: We prove that the optimal solution for the weight vector w∗ will have a
unit L2-norm i.e. ||w∗|| = 1. To do this suppose that ||w∗|| < 1, we know that at optimality
h(w∗, κ∗) = 0 and thatw′ = w∗/||w∗|| is also a feasible solution.We show that h(w′, κ∗) > 0
and that w∗, where ||w∗|| < 1, can not be the optimal solution. To see this observe that

√
2A j + κ2∗

(
w′ T Σ̂ jw′ + A j

)
=

√
2A j + κ2∗

(
1

||w∗||2w
T∗ Σ̂ jw∗ + A j

)

<
1

||w∗||
√
2A j + κ2∗

(
wT∗ Σ̂ jw∗ + A j

)
.
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Algorithm 1 HP-MPM Optimisation Scheme

Input: x̂ j , Σ̂ j , A j for j = 0, 1, tolerance εκ > 0 and εw > 0
Initialise: κ = 0, w = (x̂1 − x̂0)/||x̂1 − x̂0|| and converged = f alse
if ||x̂1 − x̂0|| ≤ √

2A1 + √
2A0 then

while: (not converged)
converged = true
Find by line-search κ ′ ∈ [κ, κu ] such that h(w, κ ′) = 0
w′ = argmax

||w||≤1
h(w, κ)

if: (|κ ′ − κ| > εκ) ∨ (h(w′, κ ′) > εw)

then converged = f alse
end if
w ← w′, κ ← κ ′

end while
end if

w∗ = w, κ∗ = κ and b∗ = wT∗ x̂1 −
√
2A1 + κ2∗

(
wT∗ Σ̂1w∗ + A1

)

Using this inequality in the auxiliary function h(w′, κ∗) we see that

h(w′, κ∗) >
1

||w∗||h(w∗, κ∗),

where we know by the monotonicity of h(w, κ) with respect to κ , that there exists κ ′ > κ∗,
satisfying the constraints in (9). Therefore (w∗, κ∗) can not be the optimal solution to this
problem.
Geometric interpretation: The original MPM can be viewed as looking for the point of
intersection between two ellipsoids centered at the class means, where the shape of the
ellipsoids are determined by the covariance matrices and their size is controlled by the value
of κ i.e. for j = 0, 1

E j (κ) =
{
x = x̄ j + Σ

1/2
j u : ||u|| ≤ κ

}
Clearly as the size of κ increases these ellipsoids will eventually overlap. However, the
optimal hyperplane is given by the common tangent to the ellipsoids at the first point of their
tangency. During our optimisation scheme, we alternate between allowing these ellipsoids,
albeit a penalised verson of them, to intersect i.e. h(w, κ) = 0, and rotating w to provide
additional space for the ellipsoids to expand into at the next stage of the optimisation. We can
view the moment uncertainty as introducing a regularisation component to the covariance
matrices, along with a penalty regarding the location of the means. The regularised ellipsoids
we consider in the high-probability setting are given by

Ê j (κ) =
{
x = x̂ j + Σ̃(κ)

1/2
j u : ||u|| ≤ κ, Σ̃(κ) j = Σ̂ j + Id

(
A j + 2A j

κ2

)}
. (11)

Using the geometrical interpretation, we see that as the value of κ grows, the effective
regularisation on the covariance matrix decreases. This results from a relative reduction in
the role played by the mean uncertainty in the square root term. Intuitively, as we move away
from the means, with increasing values of κ , the point of origin becomes less important and
we focus more on the underlying shape of the ellipsoid. In Fig. 1 we show how the ellipsoids
change as we increase κ up until their point of tangency. The intermediate solutions where
the auxiliary function h(w, κ) = 0, represent hyerplanes that are tangential to the ellipsoids
but where the ellipsoids are not tangential to one another.
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Fig. 1 Geometric interpretation of the high-probability MPM and the intermediate solutions produced during
the optimisation scheme. We can see that in the beginning, for small values of κ , the penalised (regularised)
covariance matrices are almost spherical. As the value of κ increases, and we move away from the class
means, the ellipsoids begin to take on a shape increasingly determined by the sampled covariance matrix,
however there still remains the regularisation caused by the uncertainty in the value of the covariance matrix.
We see that the intermediate solutions h(w, κ) = 0 result in hyperplanes that are tangential to the each classes
ellipsoid, however these ellipsoids are only tangential to one another at the optimal solution. In the samples
used to generate this solution, m1 = 20 and m0 = 200, explaining the larger size of the ellipsoid for class 1

5 Kernelisation

So far we have explored the notion of finding an optimal linear decision boundary. Geo-
metrically we saw that the worst-case bound on the future misclassification rate depends on
both the distance between the class means, and the shape of the ellipsoids that their covari-
ance matrices determine. However, it is often the case that by mapping the inputs into some
higher-dimensional feature space there is a greater degree of separation between the two
classes, and thus we should be able to reduce the worst-case future misclassification rate.
Kernel methods (Vapnik 1998; Shawe-Taylor and Cristianini 2004) are able to take advantage
of these higher-dimensional feature spaces without having to explicitly compute them, and
have proven a useful tool for many classification algorithms. In this section we show that our
optimisation problem can be re-written in terms of the kernel function, which allows us to
efficiently use higher-dimensional feature spaces to represent the input space. To do this we
closely follow the approach taken in Lanckriet et al. (2003).

We begin by introducing the feature mapping φ : X → F where the linear decision
boundary in this space is given by hyperplane H(w, b) = {φ(x) ∈ F : wTφ(x) = b}.
Note that the linear decision boundary in feature space corresponds to a non-linear decision
boundary in the original space X . The data is mapped according to

x1 → φ(x1) ∼ Dφ
1

x0 → φ(x0) ∼ Dφ
0 ,

where distribution Dφ
j , has mean φ̄ j and covariance matrix Σ

φ
j defined in the feature space

F . To find the optimal hyperplane inF we follow the same optimisation problem given in (9),
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where we substitute the original empirical moments with their feature space counterparts φ̂ j

and Σ̂
φ
j for each class j = 0, 1. In order to efficiently use the feature mappings and make use

of the kernel-trick, we have to show that the feature mappings enter the optimisation scheme
only in terms of their inner-product 〈φ(x), φ(x′)〉 = K (x, x′), where K : F ×F is the kernel
function corresponding to the feature mapping φ. This allows us to use high-dimensional
feature spaces without having to explicitly compute them, thus making them tractable to
work with.

To do this, first we have to show that any optimal solution to (9) must lie in the
space spanned by the input data. To prove this, suppose the optimal solution is given by
w∗ = ws + wo, where ws is the projection of w onto the span of the input data and wo

is orthogonal to the space spanned by the input data. We show that the value of wo plays
no role in our ability to satisfy the first constraint in (9), however it does play a part in the
unit L2-norm restriction ||w|| ≤ 1. Therefore if we removed this orthogonal component and
scaled ourws so that it resided on the unit-ball, we have already showed that this will increase
the value of the auxiliary function, thus permitting an increase in the value of κ in the next
round of the optimisation scheme. Therefore a solution containing an orthogonal component
can never be optimal.

The empirical means and covariances are linear combinations of the input data, and it is
straightforward to show that

wT (x̂1 − x̂0) = wT
s (x̂1 − x̂0)

wT Σ̂ jw = wT
s Σ̂ jws for j = 0, 1.

Therefore the value of the auxiliary function evaluated atw andws are the same i.e. h(w, κ) =
h(ws, κ). We know that if we replace w = ws + wo with ws/||ws ||, where ||ws || < 1,then
the value of our auxiliary function increases, and allows for a larger value of κ at optimality.
Therefore a solution containing a component orthogonal to the span of the input data can not
be optimal, and the optimal solution must be given by a linear combination of the input data

w∗ =
m∑
i=1

γixi ,

where γi ∈ R for all i = 1, . . . ,m. To take full advantage of the kernel-trick, and avoid
having to explicitly evaluate the feature mappings, we now have to show that the feature
mappings only appear in the optimisation problem as inner-products.

Let us denote the kernel matrix K where Ki j = K (xi , x j ) for all i, j = 1, . . . ,m. The
first m1 rows and last m0 rows of K are denoted K1 and K0, respectively:

K =
(
K1

K0

)
,

where yi = 1 for i = 1, . . .m1, and yi = 0 for i = m1 + 1, . . . ,m1 + m0. The class row
averages, lT1 and lT0 , are m-dimensional vectors given by

(
lT1

)
i
= 1

m1

m1∑
j=1

K (x j , xi ) and
(
lT0

)
i
= 1

m0

m∑
j=m1+1

K (x j , xi ).

We create the block-row-averaged kernel matrix L by setting the row average of K1 and K0

equal to zero by:

L =
(
K1 − 1m1 l

T
1

K0 − 1m0 l
T
0

)
=

(√
m1 L1√
m0 L0

)
,
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where 1m is a column vector of ones of dimension m. The empirical moment estimates in
the feature space are given by

φ̂1 = 1

m1

m1∑
i=1

φ(xi ) and Σ̂
φ
1 = 1

m1

m1∑
i=1

(
φ(xi ) − ˆ̄xφ

1

) (
φ(xi ) − ˆ̄xφ

1

)T

φ̂0 = 1

m0

m∑
i=m1+1

φ(xi ) and Σ̂
φ
0 = 1

m0

m∑
i=m1+1

(
φ(xi ) − ˆ̄xφ

0

) (
φ(xi ) − ˆ̄xφ

0

)T

We saw earlier that the solution is given byw = ∑m
i=1 γiφ(xi ), and therefore the components

of the optimisation become

wT (φ̂1 − φ̂0) = γ T (l1 − l0) , wT Σ̂
φ
1 w = γ TLT

1 L1γ and wT Σ̂
φ
0 w = γ TLT

0 L0γ .

This allows us to write the kernelised version of the HP-MPM as

max
γ ,κ

κ s.t. ||w||2 = γ TKγ ≤ 1

γ T (l1 − l0) =
√
2A1 + κ2

(
γ TLT

1 L1γ + A1
) +

√
2A0 + κ2

(
γ TLT

0 L0γ + A1
)
.

The same alternating optimisation procedure can be used to find the optimal values κ∗ and
γ∗, and the optimal value of the bias term is given by

b∗ = γ T∗ l1 −
√
2A1 + κ2∗

(
γ T∗ LT

1 L1γ∗ + A1
) = γ T∗ l0 +

√
2A0 + κ2∗

(
γ T∗ LT

0 L0γ∗ + A0
)

As with the linear case, when presented with a new input observation x′, we predict that
y′ = 1 if γ T∗ kx′ − b∗ ≥ 0, where (kx′)i = k(xi , x′), and y′ = 0 otherwise. We should point
out thatwe have no reason to expect that the solution γ∗ will be sparse i.e.many (γ∗)i = 0, and
therefore the computational cost at prediction will be linear in the size of the training sample.

6 Experiments

In this section we examine the performance of the proposed HP-MPM and compare it to the
original MPM, and two other popular binary classification algorithms, Fisher’s discriminant
(FDA) (Fisher 1936), and the support vector machine (SVM). In Table 1 we provide a
summary of the datasets taken from the UCI repository, http://archive.ics.uci.edu/ml/, and
the toy dataset used in Lanckriet et al. (2003), that we have used in our experiments. We
have included details regarding the number of observations, the dimension of the input space
and the relative class frequencies to help support our argument regarding the importance of
including information regarding the moment uncertainty into the derivation of the predictor.
All of the datasets were normalised so that each feature had zero mean and unit variance. To
handle missing values, as in the vote dataset, we simply computed the means and standard
deviations of each feature using the available data, performed standard normalisation on
them and then set the values of the missing data to zero post-normalisation. Each dataset
was randomly partitioned 50 times into training, validation and test samples, and we report
the average performance over all test samples. During the experiments we varied the size
of the training sample between 10 and 70%, in increments of 10%, of the full dataset to
investigate how the algorithms performed with various amounts of information. The size of
the validation set was fixed at 20% and the remaining data was used for testing. The goal
of these experiments was to evaluate the benefits of considering moment uncertainty in the
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Table 1 Overview of the UCI
datasets used during the
experiments

Dataset Observations Features Class 1

Adult 48,844 123 23.93

Australian 690 14 44.49

BCI 400 117 50.00

Breast 682 10 64.96

Diabetes 768 8 65.10

Digit1 1500 241 48.93

German 1000 24 70.00

Heart 920 13 44.67

Ionosphere 351 32 64.10

Ringnorm 7400 20 49.51

Sonar 208 60 53.37

Splice 3175 60 51.91

Toy 120 2 50.00

Twonorm 7400 20 50.04

Vote 435 16 38.62

construction of the predictor, and to understand the relative gains that its inclusion have as
we change the number of training points.

One of the main motivations of the formulation of the HP-MPM was to correct for overly
confident estimates on the worst-case future misclassification rate. This was done through the
introduction of high-probability bounds on the deviation of the truemoments from the empiri-
cal counterparts. However, we noticed that during the experiments that these high-probability
bounds appeared to be too restrictive in many settings and we were unable to generate mean-
ingful solutions i.e.α∗ = 0. To overcome this deficiencywe propose to use themoment uncer-
tainty terms as a form of regularisation, and during the experiments we use a validation pro-
cedure to choose what fraction of the truemoment uncertainty we should use.More precisely,
rather than using A j we used some fractional amount Â j = νA j of the full uncertainty, where
ν ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1}. For the parameter selection process, in each training
and test sample we had a distinct validation set that was used to evaluate the performance of
the predictor generated for the particular regularisation parameter. For each of these training,
validation and test sets we evaluated the performance of the predictor (parameter) with the
best validation set accuracy on the test sample. The same method to choose the regularisa-
tion parameter for the SVM and FDA, where SVM’s capacity parameter was selected from
C ∈ {10−3, . . . , 103}, and the FDA’s regularisation term chosen from λ ∈ {10−3, . . . , 103}.

In Table 2 we examine the performance of the linear based classification algorithms and
show how their performance varies as we change the size of the training sample used to
construct the predictor. As one would expect, in general the performance on the test samples
improves as more training examples are presented to the algorithm during training. However
in the sonar dataset we see a drop in the performance of the MPM and FDA predictors as
we increase the fraction of the dataset used in training from 0.1 to 0.3. This can be explained
by the relatively small number of observations that were used to construct the empirical
moments, which determine each algorithms decision boundary. On the other hand we see
that the HP-MPM and the SVM are relatively robust to the use of small training samples,
and we observe the benefits of the regularisation scheme implemented by the HP-MPM, and
note the benefits of constructing the decision boundary using peripheral points, as advocated
by the SVM, rather than poorly estimated empirical moments.
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Table 2 Linear experiments: we show how the performance of the classification algorithms on the datasets
vary as the amount of data used during training changes

Training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Australian

MPM 84.21 85.88 85.89 86.08 86.04 86.25 86.39

HP-MPM 85.01 86.29 86.23 86.18 86.43 86.31 86.55

SVM 84.81 86.15 86.07 85.80 85.63 85.87 86.02

FDA 83.85 85.66 85.92 86.13 86.20 86.60 86.87

BCI

MPM 58.30 62.25 56.55 70.81 76.49 79.74 81.55

HP-MPM 61.70 66.84 71.50 77.30 80.18 82.33 82.96

SVM 60.39 66.25 70.83 74.17 75.90 78.82 79.41

FDA 58.66 57.72 53.80 57.12 60.88 63.97 68.03

Breast

MPM 96.20 97.04 97.10 97.22 97.22 97.33 97.23

HP-MPM 97.12 97.10 97.18 97.24 97.24 97.29 97.22

SVM 96.58 96.77 96.85 96.97 97.05 97.07 97.03

FDA 92.54 93.76 94.50 94.50 94.50 94.58 94.46

Diabetes

MPM 72.74 74.12 75.02 75.11 74.99 74.97 74.86

HP-MPM 73.14 73.86 74.76 74.75 74.41 74.49 74.53

SVM 74.40 75.97 76.30 76.29 76.48 76.55 76.74

FDA 73.97 75.32 75.94 76.61 76.51 76.68 76.91

Digit1

MPM 73.47 75.08 85.92 89.53 91.38 92.16 92.90

HP-MPM 92.99 93.80 94.30 94.53 94.63 94.62 94.60

SVM 91.66 93.38 94.20 94.69 95.10 95.25 95.70

FDA 80.09 75.77 85.82 89.35 91.42 92.17 92.83

German

MPM 68.96 70.84 71.55 72.08 72.24 72.49 72.70

HP-MPM 69.54 71.26 71.86 72.34 72.26 72.50 72.79

SVM 71.66 73.82 74.55 74.99 75.51 75.82 76.03

FDA 71.50 73.64 74.45 74.85 75.58 76.10 76.47

Heart

MPM 78.02 79.54 80.20 80.72 81.33 81.84 82.21

HP-MPM 79.36 80.15 80.62 80.87 81.34 81.56 81.96

SVM 78.77 79.62 80.36 80.98 81.29 81.69 81.97

FDA 77.47 79.33 80.01 80.61 81.01 81.64 81.99

Ionosphere

MPM 72.45 78.73 80.49 81.21 81.70 82.29 82.62

HP-MPM 82.18 82.93 83.35 82.88 83.18 83.39 83.11

SVM 80.68 82.91 83.51 83.83 84.18 84.64 84.19

FDA 68.60 74.09 76.41 78.04 79.63 80.06 80.38
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Table 2 continued

Training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ringnorm

MPM 74.43 74.70 74.88 74.93 74.94 74.94 74.86

HP-MPM 76.51 76.71 76.81 76.80 76.86 76.91 76.79

SVM 76.55 76.88 76.88 77.05 77.03 77.09 77.06

FDA 76.19 76.63 76.74 76.82 76.91 77.12 77.07

Sonar

MPM 63.59 61.80 57.42 67.61 70.36 71.76 75.47

HP-MPM 69.88 73.84 74.71 74.93 76.71 76.01 77.41

SVM 67.51 72.95 74.08 75.31 75.84 75.32 77.20

FDA 62.37 59.88 55.11 64.49 68.28 70.44 73.73

Splice

MPM 81.52 83.21 83.83 84.23 84.36 84.55 84.89

HP-MPM 82.15 83.31 83.87 84.20 84.35 84.67 84.80

SVM 81.74 82.96 83.55 84.14 84.37 84.40 84.84

FDA 81.12 82.98 83.68 84.11 84.25 84.56 84.71

Toy

MPM 89.92 93.17 94.00 94.41 94.36 94.45 94.50

HP-MPM 91.16 93.32 94.22 94.57 94.32 94.50 94.89

SVM 90.42 93.13 93.75 94.24 93.50 93.09 93.38

FDA 86.12 90.04 91.10 93.18 92.71 93.18 93.62

Twonorm

MPM 97.59 97.65 97.68 97.68 97.74 97.76 97.80

HP-MPM 97.67 97.69 97.71 97.70 97.75 97.76 97.82

SVM 97.53 97.60 97.67 97.72 97.75 97.77 97.84

FDA 97.53 97.63 97.67 97.67 97.73 97.74 97.81

Vote

MPM 92.86 95.28 95.75 95.71 95.74 95.95 96.03

HP-MPM 94.95 95.42 95.58 95.53 95.37 95.51 95.59

SVM 94.47 95.20 94.99 95.35 95.26 95.41 95.81

FDA 93.37 95.51 95.97 96.00 96.17 96.40 96.19

The best performing results for each dataset and training proportion are reported in bold typeface

From Table 2 we can observe that when using minimal amounts of training data i.e. 10%
of the full dataset, the HP-MPM method is nearly always the top performing algorithm. As
the size of the training sample increases, the advantage of the HP-MPM begins to erode and
its performance comes in line with the original MPM. This is to be expected in the case of
large amounts of available data since we know that the HP-MPM will eventually converge
towards the original MPM solution as moment uncertainty decreases to zero.

In Table 3 we present the performance of the kernelised version of the algorithms. Here
we used the popular Gaussian kernel k(x, x′) = exp(−||x − x′||2/σ), where the width of
the kernel σ ∈ {10−3, . . . , 103} was chosen using the same validation scheme outlined
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Table 3 Kernel experiments: we show how the performance of the classification algorithms on the datasets
vary as the amount of data used during training changes

Series training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Australian

MPM 83.71 85.67 85.71 85.93 86.06 86.12 86.23

HP-MPM 85.06 85.91 86.16 86.01 86.15 86.25 86.49

SVM 84.83 85.84 85.53 85.29 85.30 85.53 85.90

FDA 79.55 81.68 82.22 82.22 81.99 82.21 83.28

BCI

MPM 59.35 62.71 69.88 73.33 75.32 76.10 77.79

HP-MPM 59.14 65.00 69.01 72.23 73.90 74.21 74.89

SVM 59.73 64.65 69.40 72.56 74.07 74.36 75.79

FDA 52.43 53.50 54.41 56.09 58.47 58.62 61.05

Breast

MPM 96.31 97.08 97.19 97.23 97.20 97.17 97.09

HP-MPM 97.07 97.18 97.03 97.12 97.11 97.16 97.09

SVM 96.52 96.76 96.89 96.84 96.91 96.84 96.67

FDA 95.92 96.01 95.97 95.69 96.00 95.72 95.64

Diabetes

MPM 72.50 74.25 74.95 75.08 75.09 74.88 74.98

HP-MPM 73.15 74.43 74.68 74.81 74.44 74.55 74.32

SVM 74.39 75.99 76.21 76.52 76.47 76.76 76.79

FDA 69.32 71.23 72.05 72.70 72.75 72.93 73.56

Digit1

MPM 90.23 92.57 94.52 95.66 96.21 96.19 96.68

HP-MPM 93.73 96.01 96.84 97.23 97.46 97.43 97.58

SVM 92.96 95.85 96.88 97.22 97.51 97.62 97.66

FDA 91.84 94.65 95.94 96.72 97.21 97.34 97.68

German

MPM 69.99 71.24 71.75 72.06 72.37 72.35 72.49

HP-MPM 70.63 71.47 72.07 72.37 72.43 72.65 72.99

SVM 71.62 73.80 74.51 74.90 75.25 75.68 76.43

FDA 69.97 70.15 69.97 69.87 69.89 70.17 70.15

Heart

MPM 78.07 79.66 80.32 80.78 81.14 81.75 82.32

HP-MPM 79.19 80.08 80.14 80.79 80.89 81.58 81.71

SVM 78.84 79.68 80.23 80.82 81.15 81.46 81.57

FDA 76.82 77.91 78.01 78.45 78.90 79.04 78.99

Ionosphere

MPM 80.93 83.14 87.18 89.10 90.25 90.78 91.38

HP-MPM 91.04 93.38 93.89 94.15 94.44 94.61 94.58

SVM 86.76 92.88 93.82 94.00 94.53 95.07 95.62

FDA 86.92 86.47 89.31 91.12 91.98 92.67 93.62
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Table 3 continued

Series training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ringnorm

MPM 97.76 97.82 97.84 97.85 97.83 97.84 97.83

HP-MPM 98.51 98.52 98.53 98.51 98.50 98.51 98.49

SVM 98.47 98.56 98.56 98.57 98.55 98.54 98.55

FDA 96.89 95.68 95.65 95.64 95.61 95.59 95.59

Sonar

MPM 66.37 71.85 76.00 78.52 80.96 82.83 84.60

HP-MPM 70.09 76.37 78.61 81.34 84.00 84.68 86.87

SVM 68.90 75.88 78.94 81.02 83.52 84.54 86.53

FDA 65.66 72.90 76.81 80.16 82.84 84.63 86.80

Splice

MPM 82.90 85.00 85.90 86.51 86.81 86.81 86.81

HP-MPM 85.19 87.87 89.23 89.95 90.40 90.40 90.40

SVM 84.70 87.54 88.87 89.82 90.26 90.26 90.26

FDA 71.25 72.49 79.97 82.46 83.87 83.87 83.87

Toy

MPM 87.92 92.52 93.45 94.24 94.00 94.45 94.50

HP-MPM 91.00 93.57 94.05 94.53 94.71 94.55 95.25

SVM 90.77 93.35 94.15 94.18 94.29 94.00 94.75

FDA 88.08 90.39 91.70 92.29 92.57 92.45 92.62

Twonorm

MPM 97.57 97.64 97.68 97.69 97.69 97.70 97.70

HP-MPM 97.72 97.74 97.76 97.77 97.77 97.77 97.76

SVM 97.69 97.72 97.73 97.71 97.69 97.72 97.70

FDA 97.61 97.64 97.67 97.68 97.67 97.67 97.63

Vote

MPM 92.40 94.95 95.70 95.72 95.76 96.07 96.09

HP-MPM 94.91 95.51 95.72 95.84 95.80 95.88 96.00

SVM 94.42 95.19 95.14 95.64 95.63 95.81 95.66

FDA 92.68 94.01 94.60 94.26 94.31 94.14 93.53

The best performing results for each dataset and training proportion are reported in bold typeface

earlier. We see that in general each algorithm’s performance is similar to its performance in
the linear setting, however there are noticeable improvements on the ionosphere, ringnorm
and sonar datasets when using the Gaussian kernel. This suggests that these input spaces
are better separated with a non-linear decision boundary, whereas for the others a simple
linear decision boundary will suffice. In the kernelised form we see that the MPM approach
to classification , MPM or HP-MPM, is extremely competitive with the SVM, being the top
performing algorithm for a large proportion of the dataset/training set size combinations.

It would appear as though the validation procedure used to determine the parameters
for the kernelised form of FDA failed to ensure that increased training data resulted in
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an improvement in the performance. This could be due to inappropriate values of λ used
during regularisation, however there is very little guidance in the literature on a suitable
degree of regularisation, whereas the HP-MPM has a simple range ν ∈ [0, 1] from which
to choose. Furthermore, it is straightforward to work out what maximum value of ν will
result in κ > 0 i.e. the conditions for non-zero κ require ν ∈ [0, 1] to satisfy ||x̂1 − x̂0|| ≥√
2νA1 + √

2νA0.
The MPM schemes are generally competitive with the other approaches, however they

seem to perform comparatively poorly, some 3%worse than the SVM, on the german dataset.
This weakness of the MPMwas previously identified in Huang et al. (2004), and is due to the
MPMs prior assumption that the prior probability of each class is the same. We know from
Table 1 that this is not the case for the german dataset, and that the probability of belonging
to class 1 is much higher than class 0. One could foresee the HP-MPMmaking this situation
potentially even worse given the nature in which in constructs its solution, and its natural
bias towards placing the decision boundary closer to the mean of the class where moment
uncertainty is lower i.e. the one with more observations. This is illustrated in Fig. 1, where
we see the hyperplane is positioned nearer to the mean of class 0 because the training sample
consists of many more observations from this class. Fortunately this is not the case and we
see that the HP-MPM’s performance is similar to that of the MPM. This is largely a result
of the low levels of confidence in future performance i.e. small κ∗, which results in large
levels of implicit regularisation for both classes as seen in the expression for the ellipsoids
(11). This results in a decision boundary that is not overly biased towards predicting that
new observations belong to the minority class. A simpler explanation of its similar perfor-
mance can be given by the validation procedure that was used to determine what degree ν

of regularisation to choose i.e. more likely that a smaller value of ν was used since it would
place the decision boundary less close to the mean of the more common class, and therefore
not be overly biased towards predicting that a new observation belongs to the less probable
class.

To improve the performance of the HP-MPM on unbalanced training samples, we pro-
pose a simple solution that adjusts the bias term used in the construction of the decision
boundary. During the training step we use the optimal weight vector w∗ found using the
standard HP-MPM algorithm, and then select the bias term to be the one that maximises
the accuracy on the training set. These weight vectors and biases are then evaluated on
the validation sample. Alternatively one could use the validation set to set the bias term,
however this could be thought of as given this a glimpse of additional training samples
and therefore an unfair advantage. Geometrically, this adjustment corresponds to a transla-
tional movement of the hyperplane where its direction w remains the same. In the german
dataset, this corresponds to shifting the decision boundary in the direction of the mean of
class 0, since we want to increase the probability that a new observation is predicted to
belong to class 1. In Table 4 we show the results obtained on the german dataset by select-
ing the value of the bias term, when using the Gaussian kernel. We see that this simple
approach to selecting the value of the bias term b, represented by column bHP-MPM in
Table 4, improves the performance of the HP-MPM, correcting its implicit assumption that
classes are equally likely, and brings its performance in line with the SVM. This would
suggest that the direction w found by the HP-MPM is a useful method for discriminating
between classes, and the bias term can be selected to take into consideration the relative
class probabilities. However in doing so, the worst-case error rates that are found using the
HP-MPM are no longer valid as we have repositioned the location of the separating hyper-
plane.

123



Mach Learn (2017) 106:863–886 881

Table 4 German dataset: we evaluate the performance (classification accuracy) of selecting the bias term for
the HP-MPM according to its performance on the validation set

Fraction MPM (%) HP-MPM (%) bHP-MPM (%) SVM (%) FDA (%)

0.1 69.99 70.63 73.04 71.62 69.97

0.2 71.24 71.47 74.33 73.80 70.15

0.3 71.75 72.07 75.22 74.51 69.97

0.4 72.06 72.37 75.42 74.90 69.87

0.5 72.37 72.43 76.08 75.25 69.89

0.6 72.35 72.65 76.11 75.68 70.17

0.7 72.49 72.99 76.72 76.43 70.15

We see that this simple approach to adjusting the decision boundary, represented in column bHP-MPM,
improves the performance of the HP-MPM, correcting for its implicit assumption that classes are equally
likely, and brings its performance inline with the SVM
The best performing results for each training sample size are reported in bold

Table 5 Adult dataset lines experiment: we evaluate the performance (classification accuracy) of the proposed
algorithm on a large scale dataset

m MPM (%) HP-MPM (%) bHP-MPM (%) SVM (%) FDA (%)

50 60.63 78.13 79.35 78.41 73.01

100 74.63 78.30 81.37 79.87 76.42

200 77.90 79.03 82.37 81.41 78.52

500 79.52 79.63 83.30 82.83 81.08

1000 80.08 80.07 83.79 83.53 82.61

5000 80.47 80.44 84.34 84.46 84.23

10,000 80.56 80.52 84.49 84.65 84.43

The number of training samplesm is varied and we observe the changes in classifier performance. We see that
with a small number of training examples the bHP-MPM tends to outperform the other approaches, with its
relative advantage deteriorating as m increases
The best performing results for each training sample size are reported in bold

We evaluate the performance of the proposed method on the relatively large adult dataset
with the results presented in Table 5. This table reports the performance using the linear
version of all proposed methods. We see that the bHP-MPM approach is the top performing
approach up until 5,000 training examples are provided to the learning algorithm, after
which the SVM becomes the top performing predictor. This supports our argument that in
the case of limited data availability the incorporation of moment uncertainty can improve the
performance of predictors. As the number of data points increases and our information of the
class-conditional distribution improves, the worst-case assumptions and the regularisation
imposed by the HP-MPM, may hinder the construction of predictions, whereas the SVM
is able to take advantage of better knowledge of the true periphery of the class-conditional
distributions.
Currency movement prediction We conclude our experiments by testing the performance
of the different classification algorithms on predicting the daily price movement of four
common currency pairs. The daily foreign exchange (FX) data was freely downloaded from
http://www.dukascopy.com, and ranges from October 2008 to October 2014. The currency
pairs that we investigated were; EUR-GBP, EUR-USD, EUR-GBP and AUD-USD. We now
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Fig. 2 Currency experiments: profit on trading decisions advised by the different algorithms. We see that
the HP-MPM performs consistently well across the majority of settings (training window and regularisation).
However, all of the algorithm seem to struggle with the AUD/USD currency pair

describe the classification setting used in the experiments. Let the opening price of the
currency at day t be given by pt , we represent the input space using a range of n-past log
returns. For example, if n = 3, then the input representation xt at time t is given by

xt = [
log (pt/pt−1) , log (pt−1/pt−2) , log (pt−2/pt−3)

]
.
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Fig. 3 Currency experiments: improvement of accuracy on random guessing i.e. improvement over 50%
correct. The HP-MPM appears to be the most consistently performing algorithm and only does worse than
random guessing on two particular parameterisations. The other algorithms appear to perform quite consid-
erably worse in terms of accuracy, with the SVM only consistently better than random for the EUR/USD
currency pair

Given xt , our goal is to make a prediction whether we believe the price at the next time step
will be higher than the current i.e. yt = 1 if pt+1 ≥ pt , and yt = 0 otherwise. In evaluating
the performance of the algorithms we recorded not only the accuracy of the predictions, but
also the hypothetical profit that would be made had we made a decision according to the
advice of the predictor i.e. if we predicted the price to increase from t to t +1, then our return
rt would be the change in price over this time rt = (pt+1 − pt )/pt . Similarly if we predicted
the price would fall over this time horizon rt = (pt − pt+1)/pt .
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To train the model we implement a simple sliding window procedure that uses a fixed size
number of examples (training window) to construct the predictor, which is then refreshed
after a given number of observations (test window). By updating the predictor over time
it is hoped that the predictor will be able to account for fact that the data is most likely
not identically and independently distributed. Unfortunately we are unable to use the same
validation technique that we used on the previous experiments, as it is likely that the most
recent observations are the most important to the derivation of the predictor and we cannot
make predictions based on observations in the future. Therefore in the results presented in
Figs. 2 and 3 we have shown the performance of all of regularisation parameters for each
classification algorithm. Given the multitude of different settings for these experiments and
the limited space, we present only the results obtained when predictor is refreshed every
10 days, the input space is described using the last 5 log returns and we allow the training
window to vary between 50, 100 and 200 days.

In Fig. 2 we present the hypothetical profits that would have been generated having
traded on the prediction of the algorithms. We see that the HP-MPM approach performs
consistently well across varying degrees of regularisation i.e. ν. It only fails to make profits
on the AUD/USD currency pair, however its returns are often considerably better than those
generated by the FDA or SVM. Similarly the accuracy of the HP-MPM is consistently on
par with, if not exceeding that, of the other algorithms. On these datasets it would appear that
the moment based algorithms, FDA and HP-MPM, perform better in terms of accuracy the
SVM. We believe that this is largely due to the nature in which the solutions are constructed.
The SVM will construct its solutions using points that it believes to lie on the boundary of
the class-conditional distributions, whereas the moment based solutions are defined by the
mean and covariances i.e. the majority of the data, rather than the outliers. Therefore when
it comes to finding predictors in high-noise environments, the SVM will be constructing its
solutions based on these outlying points rather than constructing it using the points that define
the mass of the distribution.

7 Conclusions

In this paper we addressed an oversight of the original minimax probability machine
(Lanckriet et al. 2003): that is, the worst-case future misclassification rates depend on prior
knowledge of each classesmean and covariancematrix. In practice, these truemoment values
have to be substituted with their empirical counterparts, which are finite sample estimates
of their true values. Making use of the high-probability bounds on the deviation of these
estimates from their true values (Shawe-Taylor and Cristianini 2003), we derived a new opti-
misation scheme that takes into account the moment uncertainty and directly minimises the
worst-case future misclassification rate that holds true with high-probability. We observed
that in many experiments the moment uncertainty was so large that it was unable to produce
meaningful results i.e. κ∗ = 0. Therefore, at the expense of statistical correctness, we pro-
posed to use fractional quantities of the true moment uncertainty as a form of regularisation.
This form of regularisation, unlike most traditional schemes, implicitly takes into considera-
tion the relative uncertainties regarding each class i.e. through different values of A1 and A0.
During the experiments we noted that its performancewas competitive with the popular SVM
and FDA approaches, however its advantage was most apparent when minimal amounts of
training data were used to construct the decision boundary thus providing support for this
new approach to regularisation.

123



Mach Learn (2017) 106:863–886 885

Earlier we briefly mentioned other learning algorithms that use the minimax formula-
tion popularised by Lanckriet et al. (2003). Future work should investigate how best to
include notion of moment uncertainty into these approaches. The minimum error MPM
(MEMPM) (Huang et al. 2004) can be thought of as a more principled approach to our pro-
posed bHP-MPM, taking into consideration the relative class probabilities in the construction
of the decision hyperplane. Given its similarities to the original MPM approach, it should be
straightforward to introduce the moment uncertainty into the MEMPM with an additional
high-probability estimate on the prior class-probabilities. This approach could be used in
place of our simple bias selection process, as a more principled approach to handling unbal-
anced training samples. Given that the minimax principle is used for the abundant class in
Osadchy et al. (2015) it would seem unlikely that introducing moment uncertainty would be
particularly beneficial. For the transductive (Huang et al. 2014) and clustering based (Huang
et al. 2015) minimax approaches, the main difficulty of including moment uncertainty exist
stems from the assignment of unlabelled data to classes. This would allow us to have control
over the uncertainty surrounding each class and could inadvertently induce a bias that encour-
ages equal numbers of observations for both classes. Despite these potential difficulties, the
inclusion of moment uncertainty with existing minimax approaches remains an interesting
area of research.

To improve the correctness of this approach, future work should focus on obtaining tighter
bounds on the deviation of empirical moments from their true values. This would lead to
statistically correct worst-case guarantees, whilst also circumventing the problem of having
to use a validation set in order to choose the regularisation terms for the HP-MPM. We
mentioned briefly that we have no reason to expect a sparse kernel based solution, making
it difficult to handle large datasets. Future work should focus on developing specialised
optimisation procedures for updating the weights of the dual variables γ . If we are able to
implement update schemes similar to those used in SVMs thenwe should be able to efficiently
scale the HP-MPM approach to much larger datasets.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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