112 research outputs found

    On Stability and Stabilization of Hybrid Systems

    Get PDF
    The thesis addresses the stability, input-to-state stability (ISS), and stabilization problems for deterministic and stochastic hybrid systems with and without time delay. The stabilization problem is achieved by reliable, state feedback controllers, i.e., controllers experience possible faulty in actuators and/or sensors. The contribution of this thesis is presented in three main parts. Firstly, a class of switched systems with time-varying norm-bounded parametric uncertainties in the system states and an external time-varying, bounded input is addressed. The problems of ISS and stabilization by a robust reliable H∞H_{\infty} control are established by using multiple Lyapunov function technique along with the average dwell-time approach. Then, these results are further extended to include time delay in the system states, and delay systems subject to impulsive effects. In the latter two results, Razumikhin technique in which Lyapunov function, but not functional, is used to investigate the qualitative properties. Secondly, the problem of designing a decentralized, robust reliable control for deterministic impulsive large-scale systems with admissible uncertainties in the system states to guarantee exponential stability is investigated. Then, reliable observers are also considered to estimate the states of the same system. Furthermore, a time-delayed large-scale impulsive system undergoing stochastic noise is addressed and the problems of stability and stabilization are investigated. The stabilization is achieved by two approaches, namely a set of decentralized reliable controllers, and impulses. Thirdly, a class of switched singularly perturbed systems (or systems with different time scales) is also considered. Due to the dominant behaviour of the slow subsystem, the stabilization of the full system is achieved through the slow subsystem. This approach results in reducing some unnecessary sufficient conditions on the fast subsystem. In fact, the singular system is viewed as a large-scale system that is decomposed into isolated, low order subsystems, slow and fast, and the rest is treated as interconnection. Multiple Lyapunov functions and average dwell-time switching signal approach are used to establish the stability and stabilization. Moreover, switched singularly perturbed systems with time-delay in the slow system are considered

    On Nonlinear Control Perspectives of a Challenging Benchmark

    Get PDF

    Nonlinear system identification and control using dynamic multi-time scales neural networks

    Get PDF
    In this thesis, on-line identification algorithm and adaptive control design are proposed for nonlinear singularly perturbed systems which are represented by dynamic neural network model with multi-time scales. A novel on-line identification law for the Neural Network weights and linear part matrices of the model has been developed to minimize the identification errors. Based on the identification results, an adaptive controller is developed to achieve trajectory tracking. The Lyapunov synthesis method is used to conduct stability analysis for both identification algorithm and control design. To further enhance the stability and performance of the control system, an improved . dynamic neural network model is proposed by replacing all the output signals from the plant with the state variables of the neural network. Accordingly, the updating laws are modified with a dead-zone function to prevent parameter drifting. By combining feedback linearization with one of three classical control methods such as direct compensator, sliding mode controller or energy function compensation scheme, three different adaptive controllers have been proposed for trajectory tracking. New Lyapunov function analysis method is applied for the stability analysis of the improved identification algorithm and three control systems. Extensive simulation results are provided to support the effectiveness of the proposed identification algorithms and control systems for both dynamic NN models

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Output feedback sliding mode control for time delay systems

    Get PDF
    This Thesis considers Sliding Mode Control (SMC) for linear systems subjected to uncertainties and delays using output feedback. Delay is a natural phenomenon in many practical systems, the effect of delay can be the potential cause -of performance deterioration or even instability. To achieve better control performance, SMC with output feedback is considered for its inherent robustness feature and practicality for implementation. In highlighting the main results, firstly a novel output feedback SMC design is presented which formulates the problem into Linear Matrix Inequalities (LMIs). The efficiency of the design is compared with the the existing literature in pole assignment. eigenstructure assignment and other LMI methods, which either require more constraints on system structures or are computationally less tractable. For systems with timevarying Slate delay, the method is extended to incorporate the delay effect in the controUer synthesis. Both sliding surface and controller design are formulated as LMI problems. For systems with input/output delays and disturbances. the robustness of SMC is degraded with arbitrarily small delay appearing in the high frequency switching component of the controller. To solve the problem singular perturbation method is used to achieve bounded performance which is proportional to the magnitudes of delay, disturbance and switching gain. The applied research has produced two practical implementation studies. Firstly it relates to the pointing control of an autonomous vehicle subjected to external disturbances and friction resulting from the motion of the vehicle crossing rough terrain. The second implementation concerns the attitude control of a flexible spacecraft with respect to roil, pitch and yaw attitude angles
    • …
    corecore