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ABSTRACT

This thesis considers aspects of deterministic control of uncertain dynami-
cal systems, with particular reference to the design of observers, dynamic com-

pensators and adaptive stabilization.

A major objective in determinisu'c theory is synthesis of feedbacks, based
only on available knowledge of properties and bounds relating to the uncer-
tainty, which guarantee that every member of the underlying class of uncertain
systems exhibits some prescribed stability property. In achieving this objective,
an assumption of full state measurement is frequently made; this is difficult to
justify in practice where, generally, not all components of state can be meas-
ured. With the aim of relaxing this assumption, we consider two approaches to

output-based design for classes of nominally linear uncertain systems.

In the first approach, we employ an observer to reconstruct the migsing
state components. The proposed control consists of a linear part to stabilize the -
nominal linear system and a nonlinear part to counteract uncertainties (non-
linear).

In the second approach, a dynamic output feedback control is proposed.
Using a singular perturbation method, a threshold measure of "fastness" of the
feedback dynamics, to ensure overall system stability, is derived. This threshold
is calculable in terms of known bounds on the system uncertainties, but may be
conservative in practice. Tc; circumvent this drawback and to allow for bounded
uncertainties with unknown bounds, an adaptive version of the proposed design

is then developed.
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The class of controls considered is extended to encompass discontinuous
feedback which is modelled by an appropriately chosen set-valued map and the
feedback controlled system is interpreted as generalized dynamical system. By

using this formulation, we can enlarge the class of allowable uncertainties.

Finally, a class of "relative degree two" systems is considered as a special
case of our general dynamic output feedback design. It is shown that this spe-

cial class of systems can be stabilized by a static output feedback.
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CHAPTER 1

DETERMINISTIC CONTROL OF UNCERTAIN
DYNAMICAL SYSTEMS

1.1 Introduction

The process of mathematically modelling a physical dynamical system, in
order to predict or to control its behaviour, generally induces some degree of
imprecision or uncertainty. Typical uncertainties in the model are internal
parameters, possibly time-varying, which are unknown or imperfectly known;
uncertainties in the input (i.e. extraneous disturbances impinging on the sys-
tem); and uncertainties in the state (i.e. measurement errors). These so-called
uncertain dynamical systems have attracted much research recently, see for
example, Gutman and Leitmann (1976a, b), Leitmann (1977, i979b, 1980,
1981), Gutman (1979), Molander (1979), Corless and Leitmann (1981, 1983,
1984), Thorp and Barmish (1981), Gutman and Palmor (1982), Barmish and
Leitmann (1982), Barmish, Corless and Leitmann (1983), Ryan (1983), Slotine
énd Sastry (1983), Balestrino et al. (1984), Ryan and Corless (1984), Ambro-
sino et al. (1985), Barmish (1985), Chen (1986a, 1988), Petersen and Hollot
(1986), Chen anq Leitmann (1987), Corless (1987), Goodall and Ryan (1988),
and bibliographies therein.

With view to designing controllers for such uncertain systems, there are
essentially two main approaches available to designer. The first approach is sto-
chastic control theory, which is appropriate if a priori statistical characteriza-

tion of the uncertainties in the system dynamics are available (e.g., see Astrom



1970). The second approach is deterministic control theory, which is appropri-
ate in cases for which the available information takes the form of known func-

tional properties and bounds relating to the uncertain elements in the model.

Within the deterministic framework, one seeks feedback control which
attempts to guarantee certain behaviour in the presence of uncertain information
in the sense that every possible trajectory of the uncertain systems exhibits the
desired behaviour. This desired behaviour is frequently asymptotic stability or

ultimate boundedness.

Techniques of deterministic control in the presence of uncertainty separate
into two categories. One category is variable structure systems theory, which
developed initially in the USSR (see e.g. Itkis (1976), Utkin (1977, 1978)).
This theory is based on the concept of an "attractive" design manifold, in the
sense that neighbouring system trajectories are drawn onto the manifold and
subsequently constrained to remain thereon. In addition, variable structure con-
cepts are usefully employed in systems with uncertain and time-varying pa‘ram-
eters in view of the invariance properties of “sliding modes" (Drazenovié
1969). The second approach is Lyapunov-based theory developed by Leitmann
and others, which originated in differential games analysis (see e.g., Leitmann
1976, Gutman and Leitmann 1976, Gutman 1979). In essence, this approach is
based on the construction of a Lyapunov-type function V for the nominal sys-
tem (i.e. the system in the absence of uncertainty). The controllers are syn-
thesized such that they guarantee negativity of the time derivative of V along
the solutions of the uncertain system under the "worst case" uncertainty. Once
a controller has been generated, it guarantees the stability of the feedback sys-
tem for all admissible uncertainty, since it is initially designed based on a
"worst case" assumption. This design is sometimes called "the Lyapunov min-

max" design (Gutman 1979). These two approaches, although historically dis-



tinct, are in fact, closely related. It has been shown (Ryan 1983, Ryan and
Corless 1984 and Goodall and Ryan 1988) that the strengths of both theories
could be exploited in a unified design which guarantees global uniform asymp-
totic stability or global uniform ultimate boundedness of a class of the feedback

systems with bounded uncertainties.

It is often convenient when designing feedback control systems to assume
initially thatr the full state of the system to be controlled is available through
measurement. Thus, one might design a state feedback control law which can
be implemented on the system. This is, for example, the control law that results
from solution of a linear quadratic problem, from pole assignment problem, and
from numerous other techniques that ensure stability and in some sense
improve system performance. This state feedback approach has been success-
fully adopted by many researchers in the context of deterministic control of
uncertain systems, see for example, Leitmann and others and their bibliogra-
phies, in the references cited above. Of particular interest are the approachés of
Corless and Leitmann (1981) and Barmish, Corless and Leitmann (1983). In
the former, it was shown that there exists a class of continuous state feedback
controls which guarantee that every response of the system is uniformly ulti-
mately bounded within an arbitrary small neighbourhood of the zero state.
While in the latter, it was shown that the controller can be selected to be a
linear time-invariant feedback of the state when the nominal system dynamics
happen to be linear time-invariant. Moreover, it was illustrated by an example
that a linear stabilizing controller can sometimes be constructed even when the

system dynamics are nonlinear.

In general, however, not all states are available for measurement. This
may be due to various technical reasons, for example, the measurement is too

expensive, or it is strictly impossible to measure all the states. As a result, the



feedback control law cannot be implemented. If that is the case, i.e. if only
some states are measurable, an output-based controller is desirable. In the
underlying principle of output feedback design, one has to use either "direct
methods" or "indirect methods". A direct method is usually a "new" approach
that directly accounts for inaccessibility of the entire state. Among papers writ-
ten on stabilization of uncertain systems via static output feedback are Stein-
berg and Corless (1985) and Chen (1987c). Meanwhile, in the indirect method,
one has to determine a suitable approximation to the state that can be incor-
porated in the feedback law. In essence, this approach results in a decomposi-
tion of the control design problem into two phases. The first phase is design of
the control law assuming that the full state is available. This may be based on
optimization or other design techniques and typically results in a control law
without dynamics. The second phase is the design of a system that produces
an approximation to the state. This system is called an observer, and was first
developed by Luenberger (1964). Since then, observer theory has been extended
by several researchers to include time-varying systems, discrete systems, and
stochastic systems (see e.g. Luenberger 1971 and O’Reilly 1983). For feedback
control of uncertain systems, observer-based design can be found in, for exam-
ple, Leitmann (1981), Breinl and Leitmann (1983), Galimidi and Barmish
(1986), Barmish and Galimidi (1986), Chen (1986b, 1987d) and Schmitendorf
(1988c).

One of the fundamental issues in stabilization of uncertain systems is:
what a priori assumptions must be imposed on the manner in which the uncer-
tainties enter structurally into the state equations in order to guarantee stabiliza-
bility. In the cases of many previous references, these assumptions were
known as matching conditions. These conditions have been exploited exten-
sively in the literature dealing with stabilization using full state feedback, see

e.g., Leitmann (1977, 1980), Gutman (1979), Corless and Leitmann (1981).



Many attempts have been made to relax these conditions to some extent. For
example, in Leitmann and Barmish (1982), it is shown that ultimate bounded-
ness is still possible as long as a measure of mismatch does not exceed a thres-
hold limit; in Thorp and Barmish (1981), these matching conditions are some-
what generalized leading to a weaker requirement on the system structure; also
in Molander (1979), the structure of the uncertainty was constrained by sub-
space relationships, in which its essentially play the role of matching condi-
tions; and recently, Chen and Leitmann (1987) generalized the threshold

mismatch by introducing the notion of "mismatch envelope”.

A second fundamental issue is the question of robustness with respect to
neglected dynamics. Suppose that a system consists of two subsystems, i.e.
slow and fast dynamics. A desired property is derived for reduced-order system
(i.e. a system in the absence of fast dynamics). The question then to be con-
sidered is essentially that of robustness with respect to neglected dynamics, viz.
how does the presence of fast dynamics affect the performance of the feedback
controlled uncertain system. It has been shown _(Lcitménn et al. 1986, Leit-
mann and Ryan 1987, Corless 1987 and Corless et al. 1989) that, under
appropriate assumptions, the desired property of the reduced-order system is
structurally stable in the sense that it is qualitatively retained by the full system
provided that the neglected dynamics are sufficiently fast. Related questions of
robustness are addressed in, for example, Khalil (1981, 1984), Young and
Kokotovié (1982), Kokotovi¢ (1985), Vidyasagar (1985), O’Reilly (1986),
Garofalo (1988) and Linnemann (1988).

In the approach popularly known as adaptive control, controller parame-
ters are adjusted continuously according to an adaptation law. A survey of the
adaptive control theory and its applications through 1970s was given by Astrém

(1983). The research in the 1980s started by focusing on the robustness of



adaptive schemes with respect to disturbances and unmodelled dynamics (see
discussion by Kokotovié 1985). One active area of research in adaptive cbntnol
recently is called universal adaptive stabilization. These type of stabilizers are
popularly known as "Nussbaum" controllers (Nussbaum 1983). Their applica-
tion to minimum phase plants of relative degree one with unknown high-
frequency gains was analyzed by Willems and Byrnes (1984), Mudgett and
Morse (1985), Owens et al. (1987), Logemann and Owens (1988), and many
others. The emphasis in this new work, essentially is the problem of reducing a
priori information requirements. That is, the issue of concern is to determine
the extent to which one can relax requirements such as that the plants degree
and relative degree are known, the plant is minimum phase, and the sign of
high-frequency gain is known. This research has culminated in necessary and
sufficient conditions for universal adaptive stabilization (see, Byrnes et al.

1986, MZrtensson 1986).

This thesis is concerned with the problem of designing an output stabiliz-
ing controller for several classes of uncertain systems. Our study is restricted to
linear time-invariant nominal systems. In the context of the above discussion,
we will be looking at both methods (i.e. direct and indirect) and adaptive con-

trol. The precise formulation will be given in the next section.

1.2 Problem formulation

In this section, we formulate the general class of uncertain systems to be

studied.

We consider uncertain nonlinearly perturbed linear systems of the general

form

x(t) = Ax(t) + Bu(r) + F(t,x(2), u(t)), (1.1)



where x(1) € IR" is the state, u(r) € IR™ is the control, and F is an unknown
function from the set ¥ of all admissible perturbations to the system. We

assume also that the only available state information is given by the output

y() = Cx(t) + (1), (1.2)

where y(t) € IR? (m < p < n), and w(t) € IR? is bounded measurement noise.
The triple (C, A, B) defines a nominal system (i.e. system in absence of uncer-
tainty).

The problems studied (in general) may be stated as follows:

(i) Observer-based design (Indirect Method)

The objective is to design an observer-based feedback control law, i.e. to deter-

mine a Carathéodory function #: IR" — IR™ such that the control

u(r) = 4(£(1)) (1.3)

where £ is an estimate of the state x, guarantees that, for each uncertainty reali-
zation F € ¥, the zero state of (1.1,1.2) with control (1.3) is ultimately
bounded with respect to an "acceptably small" neighbourhood S of the zero
state, in the sense that the state enters and remains within S after a finite inter-

val of time.

(ii) Compensator-based design (Direct Method)

The objective is to design a dynamic compensator-based feedback control law,
i.e. to determine Carathéodory functions f, ¢: RXIR™xIR? — IR™ such that

the controller

pi(e) = f(t,y(8),2(0)), z() e RY, >0, (1.4a)

u(r) = o(t,y(1), 2(1) (1.4b)



guarantees that, for each uncertainty realization F € ¥, the zero state of
(1.1,1.2) with control (1.4) is globally uniformly asymptotically stable (in the

sense of Lyapunov).

1.3 Design approaches, motivations and contributions

In order to achieve the objectives as given in § 1.2, we describe here the
motivation of method of stﬁdics, the design approaches undertaken, and our
main contributions to deterministic control of uncertain systems, particularly in
design of observers, dynamic compensators and adaptive control. We present
these under separate sub-titles, i.e. observer-based design, dynamic
compensator-based design, adaptive-based design and static output-based

design. We remark that each approach applies to a different class of systems.

1.3.1 Observer-based design

As we have mentioned in § 1.1, the observer-based design is based on an
estimated state. The approach used is first to obtain a feedback control by
assuming that the full state is available and then use an estimated state in the
implementation of the controller. The estimated state is generated via a
reduced-order observer which is based on the nominal system. This idea of
using an observer based on the nominal system is due to Breinl and Leitmann
(1983). The general feature of their approach is that the control consists of two
parts, i.e. linear and nonlinear. The linear part is used to stabilize the nominal
system, whereas the nonlinear part is designed to cope with uncertainties, i.e. it

is designed to guarantee ultimate boundedness of the zero state in the presence



of bounded uncertainties.

Our study is similar in principle to that of the above mentioned paper. we
extend the approach to more general class of system uncertainties. Specifically,
Breinl and Leitmann, consider only cone-bounded uncertainties whereas here

we relax to non-cone-bounded, i.e. quadratically-bounded uncertainties.

Some previous works related to this observer-based design, can be found
in, for example, Barmish and Galimidi (1986), Galimidi and Barmish (1986),
Chen (1986b, 1987d) and Schmitendorf (1988c). However, except for Chen
(1986b, 1987d), their designs are based on other approaches, e.g. based on
"quadratic stabilizability" (see e.g. Barmish 1985) and a Riccati equation
approach (see e.g. Petersen and Hollot 1986).

1.3.2 Dynamic compensator-based design

In this direct method, we propose a new dynamic output feedback control
design for a class of uncertain systems. Our approach is similar in concept to
that of Steinberg and Ryan (1986). The main feature of the approach is that the
positive realness condition, required by the static output feedback design
method of Steinberg and Corless (1985), is not imposed on the class of uncer-

tain systems. Thus, our approach is applicable to a wider class of systems.

In essence, the approach is as follows. The control design is first carried
out by considering a "hypothetical” output y, for the system, to establish a sta-
bilizing static output feedback control (which generally is unrealizable). This
static control is then approximated by a realizable dynamic compensator (with
parameter u 2 0) which filters the actual system output y. Physically, the
parameter uz is a measure of "fastness" for the filter dynamics; analytically, u

plays the role of a singular perturbation parameter. Using a singular
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perturbation analysis akin to that of Saberi and Khalil (1984) and Corless et al.
(1989) (a detailed discussion of the use singular perturbation method as a tool
to resolve many problems and its applications can be found in, e.g. Kokotovié
et al. 1986), a threshold measure i of "fastness" of the compensator dynam-
ics, to ensure overall system stability, is then derived. This threshold is calcul-
able in terms of known bounds on the system uncertainties but corresponds to a
"worst case" value it may be conservative in practice. To counteract this
inherent conservatism and to allow for bounded uncertainties with unknown
bounds, an adaptive version of the compensator is also developed (discussion in

the next sub-section).

In this design, the main aims are threefold. First, to relax the minimum
phase and relative degree 1 conditions of the nominal system. In Steinberg and
Corless (1985), these conditions are imposed on the system, but here we only
need that the "hypothetical" nominal system is minimum phase and relative
degree 1. Thus, our system under consideration has relative degree = 2; relative
degree 1 turns out to be a special case. Secondly, to find a relationship (if any)
between observer-based design and dynamic compensator-based designs.
Thirdly, to generalize to more broader class of uncertain systems by admitting a
discontinuous control. However, when a discontinuous control is coupled with
system (1.1,1.2), the resulting system is governed by a differential equations
with discontinuous right hand side. For such equations, the classical
Carathdodory theory and concepts of solution are inappropriate. Consequently,
the discontinuous feedback system is interpreted in the sense generalized
dynamical system (see, e.g. Gutman 1979, Leitmann 1979), and defined via a
differential inclusion (see, e.g. Aubin and Cellina 1984, Clarke 1983). This last
aim (i.e. generalized feedback control) is achieved by adopting an approach that
essentially of Ryan (1988). In order to include a more general class of system,

i.e. to allow for unknown bounds with bounded uncertainties, the adaptive
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version to this design (i.e. generalized adaptive control), is also developed (dis-

cussion in the next sub-section).

1.3.3 Adaptive-based design

The design approach that has been described in § 1.3.2 will work well if
we are given all information that fulfil the requirements of the design. We now
consider the case for which bound on the uncertainties may be unknown.
Recent developments in adaptive control of uncertain systems containing unk-

nown functions with uncertain bounds has been made by Corless and Leitmann

(1983, 1984).

Our design approach is also in similar spirit to that of Corless and Leit-
mann (1983, 1984), but it is developed by an approach which is essentially
based on Martensson (1986). In that paper, he has used a rather weak assump-
tion, viz. the order of any stabilizing regulator is sufficient a priori information
for universal adaptive stabilization (see also, e.g. Bymes et al. 1986). This
adaptive version has a close relationship with compensator-based design that
proposed in § 1.3.2, since it also has three aims. First, it is designed to coun-
teract the inherent conservatism that results from crude estimates in "worst
case" analysis. Secondly, to allow for bounded uncertainties with unknown
bounds. Thus, this adaptive-based design may be regarded as an extension to
the compensator-based design. Thirdly, to generalize to a more general class of
uncertain systems, viz. by admitting a discontinuous control and analyzed in
generalized sense of controlled differential inclusions (e.g. Aubin and Cellina
1984). We develop a generalized adaptive feedback control which follows that
of Ryan (1988).
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1.3.4 Static output-based design

In § 1.3.2, it was claimed that it is possible to design a stabilizing dynamic
output feedback control for a class of uncertain systems, with "relative degree”
2 2. A natural question one might ask here is: is it possible to stabilize uncer-

tain "relative degree 2" systems by using only static output feedback control?

We address in Chapter 6 the problem of designing static output feedback
for a class of uncertain "relative degree 2" systems. This work has been
motivated by our work developed in § 1.3.2 and the works of Steinberg and
Ryan (1986) and Morse (1985). In Steinberg and Ryan (1986), as we have
mentioned earlier, used a realizable dynamic compensator to stabilize a class
of uncertain systems with relative degree 1 or 2. While, Morse (1985), has
developed an universal controller which can adaptively stabilize any strictly

proper, minimum phase system with relative degree not exceeding two.

However, in both above mentioned papers, they have only considered a
class of single-input single-output systems. In Chapter 6, we extend it to mul-
tivariable case. It will be shown that we can design a static output feedback
control for a class of uncertain systems, by imposing an extra or additional set
of conditions on the system. Apart from the extra conditions, the procedure

"

undertaken is similar to that used in § 1.3.2. Since it is designed on "worst
case" analysis, the proposed feedback control is expected to be conservative.
Thus, an adaptive version of this feedback control is conjectured; however sta-

bility of this remains an open question.
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1.4 Organization of the thesis

The main results are contained in Chapters 3 to 6. Apart from this intro-

ductory chapter, the thesis is organized as follows.

Chapter 2 reviews the fundamental mathematical concepts that serve as
foundations for our work. This includes the existence solutions of ordinary dif-
ferential equations and differential inclusibns, Lyapunov’s stability theory,
structural properties of linear systems (i.e. controllability and observability),
feedback concepts including generalized feedback, observer theory, singular

perturbation theory and universal adaptive stabilization.

We present our first results in Chapter 3. In that chapter, we incorporate
an observer in an output feedback law in order to stabilize a class of uncertain
systems. This observer-based design is preceded by establishing the existence

of a full-state feedback stabilizing control.

In Chapter 4, we address the problem of design of dynamic output feed-
back controls for a class of uncertain systems. Here, we propose a new method
to handle the problem by using singular perturbation theory. The second part of
the chapter constitutes a generalization of the above proposed control design by
admitting a discontinuous control component, modelled by an appropriately
chosen set-valued map and interpreted in the generalized sense of a controlled

differential inclusion.

Our proposed controller presented in Chapter 4 is de§igned by adopting a
"worst case" analysis. Thus, the compensator is expected to be conservative in
practice. To counteract this inherent conservatism and to allow for bounded
uncertainties with unknown bounds, an adaptive version of the compensator is
then developed in Chapter 5. Again, as in preceding chapter, the generalized
adaptive control is developed by admitting a discontinuous control component

modelled by a suitably chosen set-valued map.
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Chapter 6 is devoted to a special class of uncertain systems known as
"relative degree two" systems. We consider the possibility of stabilization of
that special class by a static output feedback. A class of controllers indeed
exists for this type of system by imposing an extra set of conditions on the
nominal system. Since the "worst case" analysis is also adopted, the controller
is expected to be conservative, and consequently an adaptive version is conjec-
tured to allow for bounded uncertainties with unknown bounds and to circum-

vent the conservatism.

The thesis closes with Chapter 7, which gives summary and discussion of
the results obtained, indicating some suggestions for future research and

highlighting some possible extensions and applications.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The present chapter reviews the fundamental concepts that relate to our
work. These ideas and concepts are presented to provide foundations and tools
for our design and analysis. Since we are dealing with stabilization and com-
pensation of a class of dynamical systems, the items of interest are: the
existence of solutions of ordinary differential equations and differential inclu-
sions, Lyapunov’s stability theory, controllability and observability, feedback
concepts, observer theory, singular perturbation theory and universal adaptive

stabilization.

Since this material can be found in standard texts and research publica-

tions, we will not supply proofs for any of the results presented in this chapter.

2.2 Notation

In this section, we introduce notation which is used throughout the thesis.

Unless otherwise stated, small Roman or Latin letters will denote vectors,

and capital Roman or Latin letters will denote matrices.

Let R denote the set of real numbers and let R* = [0, ). Let IR* be the
set of ordered n-tuples of real numbers (Euclidean n-space). Let x € R", then
x=col (xq,-*,x,), ie. x 1is presented as a column vector; and

xT = (x1,° * -, x,) denotes the transpose of x. Let x,y € IR", then the function
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{+,*): R*XIR"® = R is an inner product and defined as follows:
n
(x,y) = in)’.' .
i=1

Then we can define the function |]]: IR® — IR*, known as Euclidean norm

induced by the inner product, which is given by

lIxll = (x,x)}, forallx e IR".

Let R™"™ be the space of all real nxm matrices. If A = [a;] € R™™ is
an arbitrary matrix, then AT denotes the transpose of A. Now, let A € IR™" be
a square matrix. If A is non-singular, then A1 denotes the inverse of A. The
set of eigenvalues of A is denoted by o(A). If all its eigenvalues have negative
real parts, we use o0(A) c €C~, where €~ denotes the open left half the com-
plex plane. If all eigenvalues of A happen to be real, we write o,,,,(A) and
Omin(A) to denote the largest and smallest eigenvalues of A, respectively. The
quadratic form associated with a square matrix A is denoted by (x, Ax) .

If A is a diagonal matrix, we write A = diag [aq,," * *, a,]). The identity
matrix is denoted by 1.

The norm of an arbitrary matrix A, induced by the Euclidean norm, is

given by
ANl = [Omax(ATA) = [max {4: 2 € o(ATA)) L.
Let BB, (r) denotes the open ball of radius r > 0 centred at the origin in
IR" (with closure E,,(r)), ie.
lB,,(rj ={xeR": |xll<r}.
If r = 1, i.e. the open unit ball, we denotes it by B, .

For S ¢ R* and z € IRk, z+ S denotes the set {z+s: s € S} < R*. For

51,8, © RY, S +S, denotes the set {5, +55: 51 € Sy; 55 € S, ).
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Finally, a remark about numbering of equations and theorems (including
definitions, lemmas and corollaries): these are numbered in increasing order
with the chapter indicated. For example, equation (3.2) means equation 2 of

Chapter 3. Likewise, Theorem 5.4 means Theorem 4 of Chapter 5.

2.3 Solution concepts of ordinary differential equations and differential

inclusions

The concept of solution for a given system is a fundamental issue to be
addressed before proceeding to study the problem of stabilization or other prob-
lems. Of particular importance is the question of existence. Here, we summar-
ize basic existence results for systems described by controlled ordinary differen-

tial equations and differential inclusions.

2.3.1 Ordinary differential equations
We consider a system governed by
x(8) = f(t,x(0), u(1)), x(¢) e R*, u(z) e R™, (2.1a)
with initial value
x(fp) =X » (2.1b)

and bounded measurable input u(*).

A function x: [fy, 7) = IR” will be said to be a solution of (2.1) if x is

absolutely continuous and satisfies (2.1a) almost everywhere and (2.1b).
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The following theorem provides conditions that suffice to guarantee the
existence of solutions in respect with the requirements of our study. Before that

we need the following definition.

Definition 2.1 Carathéodory function
A function f: RXIR"XIR™ — IR? is Carathéodory iff:

() f(-, x, u) is Lebesgue-measurable for each fixed (x, ) € R"xXIR™;
(ii) f(z, -, ) is continuous for each fixed ¢t € R;
(iii) for each compact set U c RxXIR"XIR™, there exists a Lebesgue-

integrable function my(*) such that

If (2, x, W)l < my(e), forall (¢,x,u) e U.

Furthermore, if my(c) = my, constant, then f is said to be strongly

Carathéodory.

Now we state the existence theorem for ordinary differential equations

(see Coddington and Levinson 1955).

Theorem 2.1 The existence theorem of Carathéodory

Let f: RxR"XR™ — R" be Carathéodory. For each (fj,x) € RxIR"”

and bounded measurable u(*), the initial value problem (2.1) admits a solution.

Recall that the system (2.1a) is called linear if it is linear in x and u. Then

it can be written as
x(t) = A()x(t) + B(Hu(r) 2.2)

In most cases, system (2.2) arises from the "linearization" of system (2.1a). It is
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well known that, the general solution of (2.2) is given by the variation of

parameters formula (see Coddington and Levinson 1955)
x(t) = O(L, ty)xg + f(D(t,s)B(s)u(s) ds, (2.3)
0
where @(t,1;) is called the transition matrix of the system (2.2), with

D(1y, ty) = I. In case of (2.2) is linear time-invariant system, A and B are con-

stants and equation (2.2) becomes
x(t) = Ax(t) + Bu(t) 24
and @ is given by

(1, 1) = exp [A(t—1p)] . (2.5)

Almost in all parts of our study, we are dealing with this linear time-invariant

system, since the design approach is based on this linear nominal system.

2.3.2 Differential inclusions

Before proceeding, we give the definition of a set-valued map or multi-

Junction.

Definition 2.2

A nultifunction T': R™ — R" is a mapping from IR™ to the subsets of

IR". Thus, for each x in R™, I'(x) is a (possibly empty) set in IR".

The following definition is needed in connection with continuity of com-

pact set-valued maps.
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Definition 2.3

A compact-valued multifunction I': R™ — IR" is upper semi-continuous if
it is upper semi-continuous at each x € IR™ in the following sense: given any
€>0, there exists 6§>0 such that I'(x;) cI'(x) + B,(e) for all

x; € x+1B,,(5).

Consider again the system (2.1a). Suppose, for example, that the control
takes the form of discontinuous state feedback. The resulting differential equa-
tion then has discontinuous right hand side, which renders the classical
Carathéodory theory and concept of solution described in § 2.3.1 inappropriate.
However, by embedding the feedback in a set-valued map (z,x) +— U(¢, x),
the system may be interpreted in the sense of generalized dynamical systems
(see, e.g., Gutman 1979, Leitmann 1979), and defined via a differential inclu-
sion (see, e.g., Clarke 1983, Aubin and Cellina 1984). In fact, the theory of dif-

ferential inclusions, extends many results from differential equations, such as

those concerning the existence and nature of solutions, stability and invariance.

Thus, instead of considering system (2.1a), we now have to consider a dif-

ferential inclusion
A1) € Gt x(1), | 2.6
x(t) = xp (2.6b)
where G is a set-valued map defined as
(j(t,i) = {f(t,x,u): ue U@ x)}. 2.7

We will define precisely the sct-valﬁed map G in Chapters 4 and 5.
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We now give a formal definition of solution of differential inclusion (2.6).
A solution of (2.6) is defined to be an absolutely continuous function

x: [t5, ) = IR™ which satisfies (2.6a) almost everywhere and (2.6b).

The following theorem is sufficient for existence of a solution of a dif-

ferential inclusion (Aubin and Cellina 1984, p. 98).

Theorem 2.2
Let Q c RxIR® be an open subset containing (f5,xp). Suppose that
G: Q — IR" is a set-valued map with the properties:

(1) G is non-empty, compact and convex values;

(ii) G is upper semi-continuous.

Then there exists ¢ > 0 and a solution x(*) of (2.6) defined on [¢;, 7).

2.4 Lyapunov’s stability theory and related results

The present section is devoted in discussing concepts of stability according
to Lyapunov. The direct or second method of Lyapunov is our essential tool in
“analysis of stability of given a system, and is frequently used in subsequent

chapters.

2.4.1 The concepts of stability

A large variety of definitions of stability have been proposed; only those
most suited to our need will be discussed in this section. To state these defini-

tions, we return to the system (2.1a) again but now under feedback control.
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Suppose we choose a continuous feedback control u(t) = u(x(¢)). Then,

with slight abuse of notation, system (2.1) has the form
x(t) = f(1,x(2)), (2.8a)
x(ty) = xp (2.8b)
Under Carathéodory assumption on f, then by Theorem 2.1, a local solution of

(2.8) exists for each (xg, 75) € IRXIR".

Recall that a state x, of the system (2.8) is said to be an equilibrium state
if f(¢,x,) =0, for all z. In other words, a motion passing through an equili-
brium state at any time is actually at the same state at all future times. Any
equilibrium state x, can always be transferred to origin (x = 0) by transforma-
tion z = x —x,. Thus, without any loss of generality, we assume that the system
(2.8) has x, = 0 as an equilibrium state, with f(¢,0) = 0, for all «.

Assume further that the system (2.8) does not possess a finite escape
times. Then, we state the following definitions of stability in the sense of

Lyapunov.

Definition 2.4 Stability

The equilibrium state x = 0 of the system (2.8) is stable, if for any £ > 0

and ¢, there exists § = §(g, tp) > 0 such that

ol €6 = lIx(0)|| <€, foralle > ¢.

Definition 2.5 Attractivity

The equilibrium state x = 0 of the system (2.8) is attractive, if there exists

p > 0 and, to each 77 > O there corresponds a number 7,(7, ) such that

Ixoll <p = [Ix(Oll <7, foralle 21y + T,(n,1).
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If p can be made arbitrarily large, then the equilibrium state x = 0 is said to be

globally attractive.

In above definitions, if § and T are independent of ¢, such stability is called

uniform. Thus, we define the next important concept of stability.

Definition 2.6 Global uniform asymptotic stability

The equilibrium state x = 0 is called globally uniformly asymptotically
stable if it is uniformly stable and globally uniformly attractive.

2.4.2 The direct method of Lyapunov

The direct method of Lyapunov attempts to deduce statements on the sta-
bility properties of equilibrium state of a system, without knowing its solution
explicitly. This method actually has its origin from energy considerations.
Lyapunov’s idea was to generalize the energy arguments by introducing
energy-like functions and evaluating their rate of change along the motion of
the system under consideration. These functions are called Lyapunov function

candidates for the system.

In short, the application of the direct method to stability problems consists
of defining a Lyapunov function candidate with appropriate properties whose
existence implies the desired type of stability. We state the global uniform
asymptotic stability theorem for system (2.8) and define the class of Lyapunov
functions for this case. By weakening various requirements on Lyapunov func-
tions, we obtain other stability results as a by-product (see, Kalman and Ber-

tram 1960).
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Theorem 2.3 (Lyapunov)

Consider the system (2.8) with f(¢,0) = 0, for all z. Suppose there exists a
function V: RxIR" — IR* with continuous first partial derivatives with respect

to ¢ and x such that V(z,0) = 0 and

(i) V is positive definite; i.e. there exists a continuous, monotonically increasing

function @: IR* — IR* such that @(0) = 0, and for all zand x 0
0 <a(lxlh <V, x);

(i) There exists a continuous function y: R* — R* such that y(0) = 0 and for

all rand all x § O,

e, %) := %vu,x) + (VV(t, ), F(t, )} < - 7(lxll) < O;

(iii) There exists a continuous, monotonically increasing function f: Rt — R*

such that g(0) = O, and for all ¢,
V(e x) < B(lixl);

@v) a(llxll) — oo with [jx]| — .

Then, the equilibrium state x, = 0 is globally uniformly asymptotically stable.

V is said to be a Lyapunov function for the system.

Corollary 2.1

The following conditions are sufficient for the various weaker types of sta-
bility:

(a) Uniform asymptotic stability: (i)-(iii).

(b) Uniform stability: (i), (iii) and (ii’): (z,x) < 0, for all ¢, x.

(c) Stability: (i)-(ii’).
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(d) No finite escape time: (i), (iv) and (ii"): Mz, x) < ¢; + ¢, V(¢,x) for

all ¢, x; ¢; and ¢, being positive constants.

In the case of linear time-invariant systems, we have the following result.

Corollary 2.2 (Lyapunov)

The equilibrium state x, = 0 of the system
x(r) = Ax(t) 2.9)

is asymptotically stable if and only if, given any symmetric positive definite
matrix @ there exists a symmetric positive definite matrix P which is the

unique solution of the Lyapunov equation

PA+ATP+0=0. (2.10)

V(x) = {x, Px) is a Lyapunov function for the system (2.9).

2.4.3 Ultimate boundedness

In certain circumstances, the requirement of global uniform asymptotic sta-
bility (in the sense of Lyapunov) is too stringent. Hence, we relax it to global
uniform ultimate boundedness with respect to some compact set S (which con-
tains the zero state) in the sense that the state enters and remains thereafter
within S after a finite interval of time. The following definition is due to Leit-
mann (1981) (see also, Corless and Leitmann 1981 and Barmish, Corless and

Leitmann 1983).
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Definition 2.7 Global uniform ultimate boundedness with respect to S < R"

The system (2.8) is said to be globally uniformly ultimately bounded with

respect to the set S < R” if:

(i) existence of solutions: for each (tp,xy) € RXIR", there exists at least a
solution x: [#5, t;) = IR” of (2.8), with x(2y) = x5, t; > 13

(ii) uniform boundedness: given any r > 0, there exists d(r) > 0, such that for

any solution x: [#5, #;) = IR”, x(%y) = x, of (2.8),

lxll <r = x| <d(r), forallz e [1,1);

hence, every such solution can be continued to a solution over [y, «°);

(iii) uniform ultimate boundedness with respect to S: given any r > 0, there
exists T(S, r) < oo, such that for any solution x: [f3, e0) = R", x(y) = x5 of

(2.8),

Ixpll S r = x(¢r) € S, forallt 21ty + T(S,r).

2.5 Feedback concepts

We discuss here the fundamental concepts of feedback design for linear
(nominal) systems. We also summarized the state feedback control approaches
for uncertain systems, on which our methods are based. First, we state the
structural properties of feedback system, namely, the notions of cox;trollability

and observability.
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2.5.1 Controllability and observability

(A) Controllability

Consider now a system given by (2.2). The main objective in feedback
design is the regulation of the state x(z) to some desired state, by chosen a suit-
able control input. The ability to exert the requlrcd control action is a structural
characteristic of the system (2.2) known as controllability.

Recall that the system (2.2) is completely controllable if, for any t; and
each x, € R”, there exist #; 2 ¢, and control u: [1p,#]— IR™ such that
x(t) =0.

For linear time-invariant system (2.4), we have a simple algebraic criterion
for complete controllability.

The pair (A, B) is completely controllable if and only if rank Wc.= n,

where W, is controllability matrix defined by

W, :=[B,AB,---,A"B].

(B) Observability

Consider the system (2.2) again, but now with the odtput

y@@) = C(0)x(#), y(1) e RP. 2.11)

The concept of observability is concerned with the problem of determining
the initial state, knowing only the output y for some interval of time. Formally,

we may define this as follows.

The linear system (2.2) is said to be completely observable if, for any 1,

there exists f; 2 f; such that, each initial state x(7p) = x5 € R® can be
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uniquely determined from knowledge of the input u: [#;,#;] = IR™ and output
¥: [%, 1] = IR? functions.
Now let us define the matrix M (known as observability Gramian) given

by

Mty, ) i= [ (s, 1) CT(IC()D(s, 1) ds 2.12)

A stronger type of observability is obtained by imposing further conditions

on the systems (see, e.g., Anderson 1977).

Definition 2.8 Uniform complete observability

The system (2.2) is uniformly completely observable if the following three
conditions hold (any two implying the third): there exist £ > Q0 and positive

constants ¢;(r), i = 1, - -, 4, (which may depend on ) such that for all s, ¢,

0 < ()] < M(t,t+7) < ay(2)] (2,13a)
0 < a3(2) < DT (1, 1+ T)M(8, 1+ T)D(8, 1+ 7) < ay(0)]’ (2.13b)
lo@, I < as(|z~s]) | (2.13c)

where function a5: IR* — R is bounded on bounded intervals and ®(-, +) is the

transition matrix generated by A(*).

Like controllability, for a linear time-invariant system, we have a simple

algebraic criterion for complete observability.

The pair (C,A) is completely observable if and only if rank W, = n,

where W, is observability matrix defined by

- -

c
CA

a1 |
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2.5.2 Continuous state feedback

In feedback design, the typical problem is the following: determine a func-
tion @ such that under the control u(t) = @(x(z)) the system exhibits desired

behaviour. First, we discuss the linear state feedback.

(A) Linear state feedback

Now consider linear time-invariant system (2.4). Suppose that its state x(z)

is completely accessible; then a linear feedback law of the form
u(t) = Kx(1) - (2.149)
can be applied to (2.4), results in the closed-loop system described by
x(t) = (A+BK)x(1) (2.15)
The state of (2.15) is asymptotically driven to the desired equilibrium state, if

gain matrix K can be chosen such that the matrix A + BK is stability matrix.

The ability to do this is characterized by the following result (Wonham 1967).

Theorem 2.4

The pair (A, B) is controllable if and only if, for any symmetric set A of a

complex numbers, there exists K such that (A + BK) = A.

The ability to assign any prescribed spectrum A is more than we require,

since we seek only to determine K such that 6(A+BK) c C~.
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Definition 2.9

The pair (A, B) is stabilizable if and only if, there exists K such that
c(A+BK)c C".

(B) Continuous state feedback

Here, we give a summary of two control approaches to stabilize uncertain
systems, which form the basis for constructing the output feedback control pro-
posed in Chapters 3-6. We will discuss this in algorithmic form and in the con-

text of our study, i.e. the design approach is based on a nominal linear system.

(i) Corless and Leitmann approach

This feedback design approach is proposed by Corless and Leitmann
(1981): '
» Choose K such that A := A + BK is a stability matrix, i.e. 6(4) < C".

* Solve Lyapunov equation

PA+ATP+0=0 (2.16)

for a given @ > 0. Then, V(x) = (x, Px) is a Lyapunov function.

* Form a continuous nonlinear control p: IR* — R™ as follows:

(2.17)

—-p()IBTPx||"'BTPx, if p(x)IBTPx| > ¢
P =) )e-'BTPx if p)IBTPx|| < ¢

where € > 0 is a prescribed constant (design parameter), and the function
p: R® 5 R* is strongly Carathéodbry, and determined via known bounds

on the system uncertainties.
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Then the control

u(t) = Kx(t) + p(x(1)) (2.18)

stabilizes the uncertain system.

We will make use this approach in Chapter 3.

(ii) Barmish, Corless and Leitmann approach

This feedback design approach is made by Barmish, Corless and Leitmann
(1983):

The first two steps are similar as in the above design approach. Then
* Form a control

u,(t) = -yBTPx(t), v>0, (2.19)
and choose ¥ such that the corresponding Lyapunov derivative ¥ is nega-
tive.
Then for each fixed ¥ > y*, where 7* is determined from known bounds

on the system uncertainties, the control

u(t) = (K-yBTP)x(t) (2.20)

stabilizes the uncertain system.

We will use the modification form of this type of control in Chapters 4-6.

2.5.3 Discontinuous state feedback

In section 2.3.2, we have discussed the concept of multifunction. Since we
wish to admit a discontinuous control to stabilize the uncertain systems, a class

of generalized feedbacks is defined.
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Definition 2.10 Generalized feedback
A multifunction ¥ is a generalized feedback if:

(i) ¥ is upper semi-continuous with non-empty, convex and compact values;

(i1) V¥ is singleton-valued except on a set Zy of (Lebesgue) measure zero.

For our purpose, we will employ a generalized output feedback control
proposed by Ryan (1988). The control has a linear plus discontinuous output

feedback structure of the form

u(t) € = R[(FCBY 'Fy(s) + N(y(1))] (2.21a)
where y > A((y) € IR™ is a set-valued map which, in essence models a
discontinuous control component and is defined by

{(EMIFCB) 1Fy||~Y(FCB)1Fy}, Fy $ 0
N(y) :=

B0, Fy=o 221D

Then for each fixed £ > x*, where x* is determined by known bounds on the
system uncertainties, the control (2.21) stabilizes the uncertain system, provided
that F € R™P exists such that FCB is known with |FCB| # 0, and
&: IR? -5 R* is a known continuous function. In this approach, the discontinu-
ous control component is used to counteract an extra uncertainty component
which is bounded by the function £ of the system output y. Note further that,
the nonlinear component of control is continuous everywhere except when

Fy = 0 where-it is discontinuous.

We will define this type of control precisely in Chapters 4-5.
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2.6 Observer theory

In the previous section, we introduced state feedback under the assumption
that the full state is available for measurement. This assumption often does not
hold in practice, either because all state components are not accessible for
direct measurement or because the number of measuring devices is limited.
Thus, in order to apply state feedback to stabilize the system, we employ an
observer that will estimate the missing state components, by utilizing the avail-

able inputs and outputs of the system.

2.6.1 Full-order .observer

Consider linear system (2.4) with the output

y(1) = Cx(2), y(r) e R?. (2.22)

Define an observer system given by

2(t) = Dz(t) + Ey(t) + Hu(t), z(1) e R", (2.23)

where D, E and H are determined such that z(t) is asymptotic estimation of a
linear transformation 7x(t), in the sense that if we define e(t) = z(t) — Tx(2),

thene(r) > 0ast — oo,

We first state the following general result.

Theorem 2.5

The state z(t) in (2.23) is an asymptotic estimate of Tx(¢) for some con-
stant T € IR™*" for any (_xo, z9) € R"xIR" and u(r) € R™ if and only if:

(i) TA - DT = EC;

(ii) H = TB;

@iii) o(D) c C~.
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As a special case, if T = I in the above theorem, then the dynamic (2.23)
is called a full-order observer or an identity observer. In this case, constraint (i)
becomes D = A — EC. Thus, an identity observer is uniquely determined by
selection of E. Relating to this issue, we have the following fundamental

theorem.

Theorem 2.6

The pair (C, A) is observable if and only if, for any symmetric set A of n

complex numbers, there exists E such that 6(A — EC) = A.

Definition 2.11

The pair (C,A) is detectable if and only if, there exists E such that
o(A-EC)cC .

2.6.2 Reduced-order observer

The full-order observer we have just described above, although has simple
structure, however possesses some redundancy. It stems from the fact that,
while the observer constructs an estimate of the entire state, part of the state is
already given by the available system outputs. This redundancy can be elim-
inated by building an observer of lower order but of arbitrary dynamics. This

observer is called reduced-order observer or minimal-order observer.

The basic construction of a reduced-order observer is as follows. Since
y(t) has dimension p, an observer of order (n— p) is constructed with state z(t)
that approximates Tx(¢) for some pxn matrix T, as in Theorem 2.5. Then an

estimate £() of x(z) can be determined through



-35-

ANES 224
f(t) = C y(t) (2.24)

provided that the indicated inverse exists.

Suppose now the inverse of the matrix in (2.24) exists, then £(¢) may be

written as
£(2) = S;2(2) + Syy(1) (2.25)
Rewrite an observer (2.23) as

Z(t) = Dz(t) + Ey(t) + TBu(t), z(t) e RY. (2.26)

The following result is needed in Chapter 3, and is taken from Luenberger
(1971) (see also Gopinath 1971).

Theorem 2.7

Define %(t) := x(t) — £(¢). £(¢) is an asymptotic estimation of state x (),
ie. X(t) & 0 as t — oo if and only if the following observer constraints are
satisfied:

Dn-p<q<n;

(ii)) TA - DT = EC;

(i) $iT + S,C =1,;

ivyoD)c C™.

2.6.3 State estimation and state feedback

Consider now the effect induced by using an estimated state (generated by
an observer) in place of the actual value in the implementation of the control

law. Of fundamental importance in this respect is the effect of introducing an
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observer on the closed-loop stability properties of the system. Fortunately,

observers do not disturb stability properties when they are introduced.

It has been shown (Luenberger 1971) that, the eigenvalues of the compo-
site system (i.e. feedback control and observer) are the union of those of state
feedback (by assuming full state is available) and of observer. Thus, the
separation principle is valid here. Consequently, the state feedback and
observer can be designed independently. By combining the results of Theorems
2.4 and 2.6, and Definitions 2.9 and 2.11, we have Theorem 2.8 and Corollary
2.3 below.

Theorem 2.8

If the pair (A, B) is controllable and the pair (C, A) is observable with p
linearly independent outputs, then for any symmetric set A of (2n — p) complex
numbers, there exists an observer of order (n — p), such that the (2n —p) eigen-

values of composite system can be set equal to A.

Corollary 2.3

If the pair (A, B) is stabilizable and the pair (C, A) is detectable with p
linearly independent outputs, then there exists an observer of order (n-—p),
such that (2n —p) eigenvalues of composite system can be placed in open left

half the complex plane.

2.7 Singular perturbation theory

In this section, we will briefly discuss what is known as the problem of

singular perturbations and its relation to our study. The problem may be stated
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as follows.

Suppose we are given the system of nonlinear differential equations

(known as a nonlinear singularly perturbed system)

x(t) = f(t,x(2),2(8)), x(t) e R*, z(t) e R™, (2.27a)
€i(t) = g(t,x(1), z2(2)), (2.27b)

where function f: RxRR"XIR™ - R"?, and function g: RxIR"xXIR™ — IR™.
Note that for any value of € other than zero, the system (2.27) consists of n+m
differential equations. However, if £ = 0, then system (2.27) consists of n dif-
ferential equations and m algebraic equations, because with £ = 0, (2.27b)

reduces to

g(t,x(2),z(1)) = 0. (2.28)

Now suppose it is possible to solve equation (2.28) to obtain an explicit expres-

sion for z(¢) in terms of x(¢), of the form

2(2) = h(t,x(1)), 29
where £: RxIR" — IR™. Then (2.27a) with (2.29) reduce to

x(e) = f(t,x(1), h(,x(2))) (2.30)

which is a system of n differential equations.

The parameter € = 0 in (2.27b) is called a singular perturbation parame-
ter because its value completely changes the nature of (2.27b), i.e. from a dif-
ferential equation if £ § 0 to an algebraic equation if £ = 0. Briefly, the objec-
tive of singular perturbation theory is to examine the simplified system (2.30)

and from this to draw conclusions about the original system (2.27) with £ F 0.

Related discussions of singular perturbation theory relevant to our work is

given by Leitmann et al. (1986) and Leitmann and Ryan (1987) (see also
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Kokotovié¢ er al. 1986 and O’Reilly 1986). Here, an equivalent theory is
developed for the problem of robustness with respect to neglected dynamics.
Thus, in context of this theory, x(2) is the dominant or "slow" state, z(#) is the
state of the parasitic dynamics or "fast” state and &£ > 0 is small scalar
representing the parasitic elements (e.g., small inductances, capacitances, iner-
tias, etc.). Neglecting the parasitic elements by setting € = 0 in (2.27b), and
substitution of z(¢) from (2.29) into (2.27a) yields the reduced-order system

(2.30).

The robustness issue under discussion is whether a feedback control
designed to stabilized the reduced-order (2.30), will in fact stabilize the actual

system (2.27) for ¢ sufficiently small.

We will utilize this concept in Chapter 4.

2.8 Universal adaptive stabilization

In this final section, we will discuss briefly an approach of adaptive stabil-
ization, popularly known as universal adaptive stabilization. Results to date
show that there exist stabilizing adaptive control schqm;s of simple form,
parameterized by a single gain parameter. Here, attention is restricted to the
adaptive stabilization of first-order system by one-dimensional controllers and is

taken from Byrmnes ez al. (1986).

Suppose X is a given class of linear systems (4, B, C) with (fixed) inputs

and outputs, i.e.

x(t) = Ax(¢) + Bu(t), u(t) e R™, (2.31)

y() = Cx(r), y(r) e R?. (2.32)
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By a smooth controller we mean a C* system

i(r) = f(z(@),y(1), z2(1) e R?, (2.33)

u(r) = g(z(1), y(1) . (2.34)

Definition 2.12 Universal adaptive stabilizer

A smooth controller is an universal adaptive stabilizer for X, provided that
for each fixed systtm (A,B,C)e X and for all initial conditions
(x9» 2p) € R"XIR, the closed-loop system (2.31-2.34) satisfies:

(i) lim x(z) = 0;

t—oo

(ii) im z(¢) = z_,.
t—>eo

Remark

Helmke and Pritzel-Wolters (1988) have considered a more general adap-
tive stabilizers. There, dynamic controllers may belong to some function space,
i.e. analytic and piecewise continuous functions. Moreover, condition (ii) is

relaxed to

(iia) there exists M > 0 such that |z(¢)| < M for all ¢ € [0, ).

In context of our study, we will use this approach in Chapters 5-6, and
equations (2.34) and (2.33) is replaced respectively by (as it used in Byrnes et
al. 1984 and Ilchmann et al. 1987)

u(t) = —k(0)y(r), (2.35)

k(@) = lly®l%, k() eR. (2.36)
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Hence, the condition (ii) is replaced by

lim k(t) =k, < oo.

[—>oo
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CHAPTER 3

OBSERVERS FOR A CLASS OF UNCERTAIN SYSTEMS

3.1 Introduction

In this chapter, we present an observer-based design approach for stabili-
zation of a class of uncertain systems. The aim of our study is the construction
of an observer-based feedback control which guarantees that the response of the
system enters and remains within a particular neighbourhood of the zero state

after a finite interval of time.

The controller design adopted here is based on the approach of Breinl and
Leitmann (1983). A salient feature of this approach is that the control consists
of two parts, i.e. linear and nonlinear. The linear part is used to stabilizé the
nominal linear system, while the nonlinear part is designed to cope with uncer-
tainties. We attempt to extend the approach to include a more general class of
systems, by widening the class of allowable uncertainties; this will be precisely

stated in the next section.

Although an observer-based controller design is our aim, we first establish
the existence of a stabilizing state feedback control by assuming that the entire
state is available for measurement. This is presented in § 3.3. Section 3.4 con-
tains the second stage of the design procedure, wherein we employ a reduced-
order observer for state estimation, and then implement the control by feeding
back this estimated state. Under appropriate assumptions on the uncertainties, it
will be shown that it is possible to design the feedback control and observer

separately.
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3.2 Problem statement and assumptions

The uncertain systems to be studied are governed by a differential equa-

tion of the form
x(t) = Ax(t) + Bu(t) + F(t,x(#),u(r)), x(t) e R*, u(t) e R™ (3.1)
with an output equation is given by
y(@) = Cx(t) + w(t), y(t) e RP (3.2)

where m, p < n, F is unknown function from the set ¥ of all admissible uncer-
tainty in the system and «(¢) is bounded measurement noise. The triple
(C, A, B) which defines a nominal linear system is assumed to be known and

satisfies the following assumptions:

A3.1: The pair (A, B) is stabilizable and B has full rank m.

A3.2: The pair (C, A) is observable and C has full rank p.

Next we impose some structural properties on uncertain function F, which

implicitly define the set 7.

A3.3: F: RxIR"XR™ — IR" is a Carathdodory function and satisfies the
"matching conditions", i.e. there exists an unknown Carathéodory function

g: RxR"XIR™ — IR™ such that F(+) = Bg(-) and g satisfies
gt x, Wl < vo + 71 lixll + vz Ixl* + Bllull. (3.3)
B and y; (i = 0, 1, 2) are known constants with

<1 (3.4)



- 43 -

Remark

In Breinl and Leitmann (1983), the condition ||g(z, x, w)]| < 7Iix]l + Bllull
was imposed on the uncertainty. Here, we relax it to (3.3), hence generalize

their work.

Now, we state the problem to be studied which consists of two objectives.
The first is that of designing a full state feedback control law, i.e. we would

like to determine a Carathéodory function uy: IR® — IR™ such that the control
u(t) = up(x(1)) (3.5

guarantees that, for each uncertainty realization F € ¥, the state of closed-loop
system (3.1) and (3.5) is globally uniformly ultimately bounded with respect to
a compact set S, containing the zero state (in the sense of Definition 2.7); this
will be established in Theorem 3.1. Since (3.5) is unrealizable in general (in
view of (3.2)), the second objective is that of designing an observer-based feed-
back control law, i.e. we would like to determine a Carathéodory function

u;: R® = IR™ such that the control
u(r) = uy (£(r)) (3.6)

where £(¢) is an estimate of the state x(¢), guarantees that, for each uncertainty
realization F € ¥, the state of closed-loop system (3.1-3.2) and (3.6) is ulti-
mately bounded with respect to a compact set S; containing the zero state in

the sense that the state enters and remains thereafter within set S; after a finite

interval of time; this will be established in Theorem 3.2.



3.3 Stabilization via full-state feedback

In this section, we present the first stage of our design. Assume now that
the full state is accessible. Under the assumptions A3.1-A3.3, we will show that
there exists a stabilizing state feedback control for this class of uncertain sys-

tems.

Following Breinl and Leitmann (1983), we split the control u(¢) into two

parts, i.e.
u() = w(t) + wy(1) 3.7)

where u(t) is the linear part and u,(¢) is the nonlinear part. In what follows,

we describe the control design procedure for both parts.

(i) Linear control part

This part is merely a linear control, i.e. it is of the form
w(t) = —Kx(1). (3.8)
We design this part to stabilize the nominal linear system, i.e. we want to

choose gain matrix K such that c(A-BK) c C".

It is well known from the linear quadratic optimization problem (e.g.,
Kwakemaak and Sivan 1972) that, in view of A3.2, there exists a feedback

control

u(t) = =BTPx(r) = —=Kx(1), (39
where P > 0 is the unique symmetric positive definite solution of the Riccati
equation :

PA + ATP - 2PBBTP + 0 =0 (3.10)
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for a given Q >0, which stabilizes the nominal system, i.e.

o(A-BBTP) c C".

(ii) Nonlinear control part

The nonlinear control part is designed to cope with the uncertainties and
to guarantee stability of the closed-loop system in the presence of uncertainties.
The construction of this control is based on Corless and Leitmann (1981), thus

W€ use
u, (1) = p(x(0)) (3.11a)

where the function p: R"” — IR™ is defined by

- Kx|7'Kx, if Kx
. :={ P Ke, i pGOlA > e

-p¥(x)e lkx, if pIKx|| < e

where P > 0 is the solution of the Riccati equation (3.10) and function

p: R® - R* is defined as

px) = (1-B)Y[r + nlixll + 7 lIxl® + BlKx|] (3.12)

Now we turn to the problem of constructing a full state feedback control
which assures that, no matter what the uncertainties and initial conditions are,
every solution of feedback controlled system is globally unifomly ultimately

bounded with respect to a set Sp, to be specified in the sequel.

Suppose that the desired set S, of ultimate boundedness is specified as the

closed ball of radius d > 0 in IR, i.c.

So = B,(d) (3.13)
Define n, as

n, = el 1] (3.14)
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Our first task is to establish the following.

Theorem 3.1

Consider system (3.1), satisfying assumptions A3.1-A3.3 and under feed-
back control law (3.7), (3.9) and (3.11). For ¢ sufficiently small and for arbi-
trary uncertainty realization F € ¥, the feedback controlled system is globally
uniformly ultimately bounded with respect to set Sy (in the sense of Definition

2.7).

Proof
In view of A3.3 and control law (3.7), (3.9) and (3.11), the feedback con-
trolled system can be written as

x(t) = (A-BK)x(t) + Bp(x()) + Bg(t,x(t),—Kx(t) +p(x(2))) (3.15)

Now we are going to prove the ultimate boundedness of (3.15) in several

steps (in accordance with Definition 2.7).

(i) Existence of solutions.:
The Carathéodory assumption (A3.3) on the function F ensures that, given
any initial condition (#y,xy) € RxIR", there exists a local solution

x: [#, t;) = R” of system (3.15), with x(#y) = x,, for some #; > ¢,.

(ii) Uniform boundedness:

Consider a solution x: [z, ;) = R", x(#y) = xg, of (3.15) with |xp|| < 7.
We want to prove that this solution is bounded and so does not possess a finite

escape time; hence, every such solution can be extended to a solution over

[to ’ °°)'
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Since P >0, define C! function (Lyapunov function candidate)

V:R* 5 R"as -
V(x) = ¥x, Px), forallx e R*.

Now, consider the associated function 9: RXIR" — IR given by

(3.16)

Nt,x) :={(VV(x),(A-BK)x + Bp(x) + Bg(t,x,— Kx + p(x)))

= (Px, (A -BK)x + Bp(x) + Bg(t,x,— Kx+ p(x)))

Then, in view of (3.3) and (3.10),
Nt x) < - Kx, Ox) - [Kx|lllp()ll + p()IKx]|
Now, from Rayleigh’s principle (Franklin 1968),
Tmin (DX < (x, Ox) < Gex (Q) l1xI1?
or, equivalently,
o=t~ xli? < (x, 0x) < lIQllIIxlI?
Thus, in view of (3.12), (3.18): if p(x)||Kx|| > &,
N1, x) < =310~ 1171 fIxlf2

and if p(x)||IKx}l < &,

e, x) < =377 Il + &
Consequently, for all (¢, x‘) € RxIR?,

e, x) < =7 7 Ixl? + &
Hence,

Wt,x) < 0, forall (1,x) € Rx(R™\IB,(7,))

where 7, is defined as in (3.14).

(3.17)

(5.18)

(3.19)

(3.20)
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Now, along every solution x: [#, #;) — IR" of the feedback system,
V() = At x(1) ae. (3:21)

from which, together with (3.20), uniform boundedness is assured by selecting

a function d: RY — R* defined by

{anuuP-‘mine. if r<m,
d(r) := (3.22)

PP IRr, i 7> 2,

which yields

lx(®| < d(r), forallt2>¢,. (3.23)

Therefore, every local solution x(*) is bounded and hence does not possess a
finite escape times. Thus, every such solution can be extended into a solution

over any compact interval, and hence, over [1;, ).

(iii) Uniform ultimate boundedness:
Let x: [t5, %) = R", x(f3) = X, be a solution of (3.15) with [[x]] < r.
We want to show that there exists a finite T(E, r) > 0 such that J|x(¢)]| < d, for

allt 21y + T(d,r).
Now choose € > 0 sufficiently small so that
d > d(n;) = [IPIIP~ ),

where 7, is defined by (3.14). Define 77 as

| 7 := [IPIIPT I 4. (324)
Then, clearly n > 7, and

dm) =d (3.25a)

or, equivalently,

7=d'(d). (3.25b)
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Now arguing as in Corless and Leitmann (1981), define T(d,r) as
~ 0, if r < [IPIIP~TIT 4
Tdd,r) =7 2 _ pp-tip-ly-2421 . if PP 122
cg UIPIr2 = IPIHIP~HI724%], if r> [IIPHIPT 1]
(3.26)
with
co == LI MIPIIP 17 a” - 2¢ (3.27)

In view of (3.19) and uniform boundedness result (ii), global uniform ultimate
boundedness property (iii) holds. Alternatively, it can be concluded that every
solution x: [#g, ) = R"*, with x(#;) = xg, of the feedback controlled system
(3.15) must enters and thereafter remains within any closed ball containing a
(Lyapunov) ellipsoid {x € R*: V(x) < }]|P||7%} which, in tum, contains the
closed ball BB,(77). One such candidate is the closed ball IB,(d), with d given
by (3.25a), since

B,(d) > {x € R™: V(x) < }||P[|7%} o B,(7).

Hence, the theorem has been established.

3.4 Observer-based controller

In the preceding section, we have established the existence of a stabilizing
full state feedback control for the class of uncertain systems. To realize this, the
full state must be available for feedback. However, in general situations, only
some of the state components are available for measurement; the reason (as we
have mentioned earlier) may be due to either that measuring devices are limited
~ or that particular state components cannot be measured directly. Thus, we
employ a reduced-order observer (Luenberger 1971) developed for a linear sys-

tem as described in § 2.6.
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Before proceeding, as a matter of convenience, we rewrite the observer

equation (2.26) and state estimate (2.25) respectively as

2(t) = Dz(t) + Ey(t) + TBu(t), z(t) € R?, (3.28)

and

£(2) = S;2(2) + Syy(2) (3.29)

where the observer (3.28) satisfies the "asymptotic estimation" constraints as

given in Theorem 2.6, i.e.

() n-p<q<n; (3.30a)
(i) TA - DT = EC; (3.30b)
(i) ST + $,C=1,; (3.30¢c)
(iv) o(D) c C~, (3.30d)

and so |lexp Dz|| < Me® for all +>0 and for some known constants
M,5>0. Recall that (in absence of uncertainty), the matrices
D,E,T,S; and S, are determined such that z(¢) is an asymptotic estimation of

the linear transformation Tx(?), i.e. if we define the estimation error e(t) as

e(t) = z(t) — Tx(1) (3.31)
then,
lim e(t) = 0.
t—oo

Moreover, if and only if the constraints (3.30) are satisfied, then

tlim x(@®)-£() =0,

i.e. £(¢) is an asymptotic estimation of state x(¢) in absence of uncertainty.
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In our case, that is for the uncertain system (3.1), we impose additional

structure on the uncertainty g.

A3.4: For all (¢, x, ) € RxIR"xXR™,

ITBg (s, x, W)l < xr, (332)

where «r is a known constant.

Remark

Breinl and Leitmann (1983) imposed the stronger condition 7B = 0. Here
it is relaxed to (3.32).

To employ this reduced-order observer for the uncertain system (3.1,3.2),
again we adopt an approach of Breinl and Leitmann (1983) where we use
u(t) = 4y(¢) + 4,(z), i.e. we replace the state x(z) by the estimate £(z), which

results in control laws (3.9) and (3.11) respectively replaced by

4(t) = — K£(t) (3.33)
and
4,(1) = p(£(2)) (3.34a)

where the function p: R"® — IR™ is defined by

-5 -1gg, i pWIKE
s ;={ OISR, if PS> & 3t

-5 e~ ke, if PAOIKEl <&
A®) = A =8)"y + ndfl+ 3,) + ndUfl+ 5,)?

+ BIKE + K1l 7] (3.34c)
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where £ > 0 is a design parameter, P > 0 is the solution of the Riccati equa-
tion (3.10) for a given @ > 0, and the parameter g, > 0 will be defined later
(in (3.43b)).

In order to proceed, we define state estimation error X(t) as
() :=£@) - x(2) (3.35)

and, in view of the state estimate (3.29) and observer constraint (3.30c), we

have
X(t) = S1e(t) + S,0(1) (3.36)

Since we are dealing with an asymptotic estimation, it is more convenient
to consider the estimation error e(t¢) rather than observer state z(¢). Thus, the
overall observer-feedback controlled system, i.e. syétem (3.1) under control &(¢)
given by (3.33) and (3.34), which, in view of (3.36), can be expressed in the

form

x(r) = (A= BK)x (1) + Bp(£(1))
+ B[g(t, x(8), — K£(1) + p(£(1))) — Kx(1)] (3.37)

and, in view of (3.30b) and (3.31), we may write the error dynamic equation as

é(t) = De(t) + Ea(t) — TBg(t, x(t), - KE() +F(£(1)))  (338)

Now, we impose additional assumptions on @.

A3.5: The function w: R — IR? is measurable and bounded, i.e.

lo®Oll £ x, , forallt e R,

where «,, is a known constant.
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We are going to investigate the ultimate boundedness property of
(3.37,3.38). We will do this by initially proving existence and continuation of
solutions of (3.37,3.38); this is proved in Lemma 3.1. Then, under the standing
assumptions and two additional assumptions (one will be specified in A3.6
below and the other in due course), it is shown that ultimate boundedness of

(3.37,3.38) is assured in a particular neighbourhood of the zero state.

Suppose (x(*), e(*)) is a solution of (3.37,3.38) (this is a valid assump-
tion, since F is a Carathdodory and @ is measurable and bounded, and will be
phrased precisely in Lemma 3.1). Now recall that since o(D) < €™,

llexp D(t-tp)ll < Me 2" (3.39)
for all ¢t = 1y and for some M, § > 0. Define
Pe = 8T IM(E|Ix, + xp) (3.40)

then, in view of A3.4 and A3.5, along every solution (x(*), e(*)) of (3.37,3.38)
we have

lell < 5, + ¢ S Mlle(t)l| - 5.], forall t> ¢ . (3.41)

Now define
/7 = "SI ‘Ipe + "S2 "Ka) (342)
then, in view of (3.36), (3.41) and (3.42),

IO € p + ce 5(%) , forallz 2 t,, and c-is a constant, (3.43a)

< p + e =: p, for sufficiently large ¢. (3.43b)

Note that (3.42a) will be used in establishing of existence and continuation of
solutions (Lemma 3.1), while (3.42b) will be used for ultimate boundedness

(Theorem 3.2).
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We now impose our final assumption.

A6 1< —UZBL__
4127 K} A,

Before proceeding, we observe that for all ¢ 2 ¢, the following holds
lg (2, x(2), = K£(0) + E®)) - KXO|| < 70 + 71 x| + 72 lx (D)1
+ BIKE(O)] + BISE )
+ IKIp + e
From (3.35) and (3.43a),
lx()ll < 2@ + XD
<|IE@) + p + ce 5(h) , forallz 2> 1¢.
Therefore

llg(t, x(1), — K£(t) + PE®))) =KX (| < 70 + LD+ §) + ra(I£ON + 5)?

+ BIKEON + BIEENI + IKIIp

4 yyce 01 4 4 (26-200-0)

+ 2p5ce Y012 () + )

+ 1K™
Then, using (3.34c), we have

llg (¢, x(2), — K£(2) + p(£(2))) — KX (0)]| < A(£(2))

+ e 20T [e) + 0,7 4 e 12(0)]1]
(3.44)
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where

€ =n +t2n5,
Cy 1 =CYr,

C3 1= 2}'2 .

Now we establish the existence and continuation of solutions of system

(3.37,3.38).

Lemma 3.1

Consider the composite feedback controlled system (3.37,3.38), satisfying
A3.1-A3.5. For arbitrary uncertainty realization F € F and for each
(29, %9, €p) € RxR"XRY, there exists a local solution
(x,e): [1, 1) = R*XIR? of the feedback controlled system (3.3;7,3.38), .with
(x(p), e(1p)) = (xg, €p), for some t; > t;. Moreover, every such solution can

be continued into a solution over [z, °°).

Proof

In view of the Carathéodory -assumption (A3.3) on F ensures that, for each
(%9, X9, €g) € RXR"XIRY, there exists a local solution
(x, ) [, 1;) = R*XIR? of the feedback controlled system (3.37,3.38) with
(x(tg), e(1p)) = (xg, €g), for some #; > 1.

To establish that every such solution can be extended into a solution over
[y, =), the behaviour (along local solutions of (3.37,3.38)) of the function V(*)
(defined by (3.16)) is examined.
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Consider now the associated function #W: RxIR"XIR” — R given by

W(t, x, £) := (VV(x), (A - BK)x + BH(%)
+ B[g(t,x,— K€+ p(£)) — K2])
= (Px, (A - BK)x + Bp(£)
+ B[g(t, x, - K£+ p(£)) - KX])

where & = x — £. In view of (3.10),
W(t,x,f) = —%(xv QX) + (Kx’ﬁ(f))

+ (Kx, [g(t, x, - K2+ p(%)) - KX]) (3.45)

Now in view of (3.35) and (3.44), along every local solution (x(*), e(*)) of
(3.37,3.38),

Wt, x(1), £(D) < - Kx(D), Qx (D)) — IKEDONIPEREN] - AEEN]
+ KRNI EEN N+ A(R(2)]
+ [IKE@)llce™ ¢y + c,e7°C ) 4 5 £ 1]

+ IKZ@) e ey + 0y 4 5 1£(D I
(3.46)

Since ||2(¢)]] < g + c for all ¢ 2 ¢, we have
W(t, x(2), £(1)) < —Kx(1), Qx()) + £ + 2|IK[[(F + c) 5(£(1))

+ clK2(D)I[e; + ¢ + 3 [1£(D]]

+ c|IK|[(F+ )y + cp + 3 lI£(0)]] (3.47)
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But from (3.35),
£ < x| + Iz
SlxOl+ 5+ ¢

and so we can do the following estimation:

AEWD) € a; + g lIx(®]] + a3 lIx(DI2,
KL < a4 + asllx(Of,

IKEOIILON < a5 + a7 llx(D] + agllx(D .

Thus, using these in (3.47) yields

W, x(1), £(0) < kg + ky Ix(DI + K Ix())1%,

for all ¢ > ¢, where k;, i = 0, 1, 2 are positive constants.

(3.48)

Now, along every solution (x(*), e(*)) of the feedback controlled system

(3.37,3.38),
V(x(1)) = M1, x(2),£(2)) ae.
Thus, from the inequality
P X2 < vix) < IPHIxN?
(3.48) can be written as
V(x(D) < ko + k3 VI(x(0) + k,V(x(2))

where k3 = k;2|lP7|) and k, = k,IP7Y):.  Using
Vi(x) < (1+ V(x)), we have

V() € kg + K V(X)) .

where kg = kg + k3 and k1 = k3 + ky.

(3.49)

(3.50)

approximation

3.51)
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Now, by invoking Corollary 2.1(d), we may conclude that every local
solution (x(*), e(*)) of the feedback controlled system (3.37,3.38) does not pos-
sess a finite escape times. Thus, every such solution can be extended into a
solution over any compact interval, and hence can be extended indefinitely.

This completes the proof of lemma.

Let T be sufficiently large so that

IOl < 5, , forallt > T. (3.52)
Then the following holds for all ¢ 2 T,
llg (s, x(8), = K£(2) + RN - KX < 10 + ri(IEDN+ ;) + r2(I£D 1+ 5,)?

+ BIKEWD + BISEE) + IKIA,
< AR (3.53)
Using '
| £ < Ix(O + 1)
< Ix@ll + 5
then
PEM) < =Y [rp + nlx(dl+25,) + r2(llx()ll +25,)
+ BIKIIx()I + 5,) + IKI15,]

= a + bllx()]l + clx(®|?, - (3.54)
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where

a:=0-8)y + Qny +4y, p. + BIKI + IKID 2.1,
b:=(1-8)Y'In +4ns. + BIKI,

c:i=10-8)r,.

Consider now the closed ball IB,(n) of radius

1

5 2 “+|Klpa |2
2[lK K €
LS [u ||ﬁg]b2+ 2

P p (3.55)

where
6 := [Ig~"lI"! - 4Kl p.c] . (3.56)
Note that @ defined above is positive by virtue of A3.6 and definition of ¢ in

(3.54).

We now ready to state the main theorem of this chapter.

Theorem 3.2

For arbitrary uncertainty realization F € ¥, the feedback controlled system
(3.37,3.38) which satisfies A3.1-A3.6 is ultimately bounded with respect to

every Lyapunov ellipsoid which contains the closed ball En(n) in its interior.

Proof

We consider again now the Lyapunov function V() defined by (3.16) and
its associated function MX*) introduce in Lemma 3.1. Thus, from (3.45) and in
view of (3.53), along solutions (x(*), e(*)) of (3.37,3.38) the following holds

for sufficiently large ¢,



W(t, x(1), £(0) < —Kx(r), Ox()) + £ + 2|K| g, p(£(2))  (3.57)
Using (3.18) and (3.54), we have

W, x(1), £(1) < ~3[0lx(I? - 41K 7 blx(n)l -2¢ - 41K ]| 5]
(3.58)

where 0 is defined by (3.56). Hence,

Wt x(2), £(1)) < 0, for all (¢,x) € Rx(R™\IB,(n)) (3.59)

where 7 is defined as in (3.55).

Now, along every solution (x(*), e(*)) of (3.37,3.38), (3.49) holds for suf-
ficiently large ¢, from which, together with (3.59), we may conclude that every
solution (x(*), e(*)) of the feedback controlled system (3.37,3.38) must ulti-
mately enters and thereafter remains within any Lyapunov ellipsoid which con-
tains the closed bal B,(y) in its interior, ie.

S; ={xeR": ¥x,Px) D B, (1)}. This completes the proof of the theorem.
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CHAPTER 4

DYNAMIC OUTPUT FEEDBACK STABILIZATION
OF A CLASS OF UNCERTAIN SYSTEMS

4.1 Introduction

In the preceding chapter, we considered a problem of designing a dynamic
output feedback control for a class of uncertain systems, which is based on the
construction of an asymptotic Luenberger state observer. Here, we will consider
another approach to dynamic output feedback control of uncertain systems, i.e.
a direct method, which we called "dynamic compensator-based design". In this
approach, we propose a new dynamic output feedback control design for a class
of uncertain systems. Our approach is similar in concept to that of Steinberg
and Ryan (1986), and fundamentally based on that of Barmish,. Corless and
Leitmann (1983) and Steinberg and Corless (1985).

The main feature of the approach is that the positive realness condition,
required by the static output feedback design method of Steinberg and Corless
(1985), is not imposed on the class of uncertain system. To be precise, Stein-
berg and Ryan (1986) have considered a stabilizing dynamic output feedback
control for a class of single-input single-output uncertain systems whose nomi-
nal transfer functions have relative degree 2. It is our goal of this chaptér to

extend their approach to a class of multi-input multi-output uncertain systems.
In essence, the approach is as follows. Initially considering a hypothetical
output y, for the system, a (generally unrealizable) stabilizing static output

feedback control is established. This static control is then approximated by a
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realizable dynamic compensator (with parameter x4 > 0) which filters the actual
output y. Physically, the parameter u is a measure of “"fastness” for the filter
dynamics; analytically, g plays fhe role of a singular perturbation parameter.
Using a singular perturbation analysis akin to that of Saberi and Khalil (1984)
and Corless et al. (1989), a threshold measure u* of "fastness" of the compen-

sator dynamics; to ensure overall system stability, is then derived.

The outline of the chapter is as follows. First, in § 4.2, we introduce the
class of systems to be considered. In the next section, we propose a linear
dynamic output feedback compensator for system introduced in § 4.2. Then, by
an analogous approach, in § 4.4, we generalize the control design proposed in
the previous section, to include more general systems by admitting a nonlinear
discontinuous control component, modelled by an appropriately chosen set-
valued map, and the overall controlled system is consequently interpreted in the
generalized sense of a controlled differential inclusion (Aubin and Cellina

1984).

4.2 The system and assumptions

We consider uncertain nonlinearly perturbed linear systems of the form
x(t) = Ax(¢) + Blu(e) + g(t, x(2), u(2))}, x(2)eR”, u(r)eR™ (4.1)
for which the only available state information is providéd by the output
y(@) =Cx(1), y)elR?, m<p<n. 4.2)

The triple (C, A, B), which defines the nominal linear system, is assumed to

satisfy the following.
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A4.1: (A, B) is a controllable pair and B has full rank m.

A42: For some integer r2>1, there exist known matrices

F{,F,, -, F, € R™P, such that

G@fori=1,2,---,r-1,

. r
im CA*1B c N ker F; ;

j=i+l
moreover, the matrix
C, := F{C+ F,CA+ -+ F,CA™!
is such that
@) |C,B| 0;

(iii) the transmission zeros of the m-input m-output linear system

(C,,A,B)liein C".

Example 4.1
If

010 0 100
A=1001 ’ B = 0 N C= 001/
000 1
then the above assumptions hold with r =2, F; = {1 1] and F, =[1 0].

Next, we impose some structure on the uncertain function g.

A4.3: g: RxIR"XR™ — IR™ is a Carathéodory function, with

@) llgt, x, w)| £ allx]l + Bllu|l for all (¢,x, u) e RxIR"XIR™, where «

and B are known constants with 8 < 1;



(ii) if r 2 2, then g is uniformly Lipschitz in its final argument (with
known Lipschitz constant 1), i.e. if r 2 2, there exists known 4, such that,

for each (1, x) e RxR",

llg(t,x,u)—g(t, x,v)|| <Allu-v|, forall u,velR™.

Remark

In the terminology of Corless and Leitmann (1981), Barmish, Corless and
Leitmann (1983) and Ryan and Corless (1984), the matching condition is impli-
cit in (4.1).

4.3 Linear output feedback control

This section is concerned with the problem of designing a (dynamic) out-
put feedback compensator for system (4.1,4.2). This is accomplished by ini-

tially considering system (4.1) with hypothetical output
yu(t) = Cx(1) 4.3)

where C, is defined as in A4.2. Note that, if r = 1 then y,(¢) = Fyy(¢) and
hence is realizable; however, if r 2 2 then y,(¢) is unavailable to the controller,
hence the qualifier "hypothetical”. For the system (4.1,4.3) so defined, (ii) and
(iii) of A4.2 in essence play the role of "relative degree one" and "minimum
phase” conditions on the hypothetical nominal linear system triple (C,, A, B).
Under such conditions, it is known (see, for example, Byrnes and Isidori 1984,
Bymes and Willems 1984, M8rtensson 1985 and Byrnes et al. 1986) that the
zero state of system (4.1,4.3) can be rendered globally uniformly asymptotically
stable by static output feedback; this is considered in § 4.3.1 and is reiterated in

Theorem 4.1. However, with the exception of the case r = 1, such static output
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feedback is unrealizable in the context of the true system (4.1,4.2). Therefore,
in § 4.3.2, a realizable dynamic compensator is constructed for the cases r 2 2,
which filters the actual output y. This filter can be interpreted as providing a
realizable approximation to the static hypothetical output feedback; moreover, it
is shown in Theorem 4.2 that global uniform asymptotic stability of the zero
state of (4.1,4.2) is guaranteed provided that the filter dynamics are sufficiently

fast (a calculable threshold measure of fastness is provided).

The subject of this section, can be found in Ryan and Yaacob (1989).

4.3.1 Stabilizing static output feedback for hypothetical system

For convenience, the following state transformation is introduced. Let

T, e R®#-m)%" be such that ker T, = im B, then

T,

T= (C,B)IC,

with inverse T7! =[S, : B] 4.4)

is a similarity transformation which takes system (4.1,4.3) into the form

(1) = Ap2(1) + Apd(r), 2(eR™™ (4.52)

F(0) = Apx(e) + Apy (1) + u(t) + g(6,2(0), 9(1), u(1)), (1) eR™
(4.5b)

where

[Au Ay

.— -1 ~ i :
Ay Azz]'_ TAT™', §(1,%.5,u) := g(1, 5,2 +By,u) (450

with hypothetical output

() = (C,B)J(2)  @6)



- 66 -

Note that the eigenvalues of A;; coincide with the transmission zeros of
(C,, A, B); thus, by virtue of A4.2(iii), 6(A;;) € C™.
Let P > 0 be the unique symmetric positive definite solution of the

Lyapunov equation

PA; +A[P+1=0 %)

then we state our first result.

Theorem 4.1

Define x* := [|Ay |l + a||B|| + [IIPA}; + AT I+ ]IS, |I]?, then, for each
fixed & > x*(1 — B)71, the static output feedback

u(t) = — R(C,BY ly,(1) = — &9(2) (4.8)

renders the zero state of the hypothetical system (4.1,4.3) globally uniformly
asymptotically stable.

Proof

In view of (4.7), we introduce a function V: R*™xR™ — IR* by
V(2,9) := K2, P2) + 3lI911% . (4.9)

Then, along solutions (X(*), ¥(+)) of (4.5,4.6,4.8) (equivalent to (4.1,4.3,4.8)),

the following holds almost everywhere

7‘11; V@), (1) = = 3IX(OI? + (x(2), [PA, + AL 15(2))
+ (7(0), Apy(1))

+ (9(1), - Ky (0) + §(2, 2(2), y(2), —x9(1))) (4.10)
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In view of A4.3(i), (4.4) and (4.8),

(90, — RY(2) + g1, 2(), 7(2), —=RF(1)) < — [R(1 = B) — || BIF()]|2

+ oIS MIEO O 1 @.11)

and combining (4.10) with (4.11) yields
% V@), (1) < - U, 9()  ae. (4.122)

where
1, (s } | {nru ]
s = — , M , 4.12b
U9 = < [IIYII e lisn |7 (4.12b)
N 1 ~[IPAy + AL 1+ ellS; 1]
R N —[IPA + AJ I+ allS 1N 2[R(1 - B) = llAx |l - «lBI]

(4.12¢)

Noting that M, is positive definite, thus U is positive definite quadratic form,

then the requisite properties of global uniform asymptotic stability may be con-

cluded by standard arguments.

In the context of the true system (4.1,4.2), if r = 1, then the static output

feedback (4.8) is realizable as

u(t) = - R(C,BY ' Fyy(1) (4.13)

whence

Corollary 4.1

Let x* be as in Theorem 4.1. If r = 1 then the static output feedback
(4.13) renders the zero state of the true system (4.1,4.2) globally uniformly

asymptotically stable.
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However, in all other cases (r = 2), the feedback (4.8) is unrealizable for
the true system (4.1,4.2); in its place, we will develop a realizable dynamic

compensator in the next sub-section.

4.3.2 Cases r = 2: Stabilizing dynamic output feedback for the true system

4.1,4.2)

In view of A4.2(i), we note that
Ya(®) = Cx(t) = Fyy (1) + Fpy(t) + -+ + F,y=D(r) (4.14)
which can be interpreted in the frequency domain as
Ya(s) = [Fy + N()Iy(s) , (4.152)
where

N(s) = sFy + s2Fy + -+ + 5" 1F, (4.15b)

is physically unrealizable. Our approach is to replace N(s) in (4.15) by a physi-
cally realizable transfer matrix (filter) of the form G,(s)N(s) with appropri-
ately chosen G”(s). To this end, let §; < r—1 denote the degree of the
highest-degree polynomial in the ith row of N(s). Let -constants
af >0,j=2,--+,8, be such that

-1

x;(s)=s8"+a§is' +--c+ais+1, i=1,2,--,m (4.16)

is Hurwitz (i.e. with all its roots lying in C~). For i = 1,2, - -, m, define

Y¥(s), parameterized by z > 0, as

pi(s) = —L 4.17)

xi(us)

which, interpreted as a transfer function, has minimal realization
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(cF,u14;, p7'b;), where

0 1 o --- 0
0 O 1 --- 0
A= bt T e RPG, (4.182)
o 0 O --- 1
-1 -a} -af --- -—agl,
.0. -l-
0 0
b=|:|eRrR¥, ¢=|:]eR%. | (4.18b)
0 0
e 1 - e 0 -
We now introduce the transfer matrix
G,,(s) := diag {P¥(s)) (4.19)

which clearly has minimal realization (C *, ;l-lA *,u"1B"), where

A" = diag {A;} e R, B* = diag (b;} e R?*™, C* = diag {c])} e R™,
(4.20)

m
with ¢ := Y 8. We note, in passing, that o(A*) c €~ and that

i=1
C*(A*Y1B* =-1I
Let «* be as in Theorem 4.1, then, for fixed & > x*(1 - 8)71, the pro-
posed physically realizable compensator (which filters the actual output y) for
system (4.1,4.2) is parameterized by g, and has frequency domain characteriza-

tion:
H,(s) = = R(C,BY '[Fy + G,(s)N(5)]. 4.21)

For notational convenience, we introduce functions ¢, f;, fo, Afy, and

f3, defined as follows.
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0: (1,9,2) = — R(C,B)"L[F,C[S,x+By] + C*2] (4.22a)
f1: (x, o Au.f + Alzy (4.22b)
f2: (t’-f’y) - A212+ A22y _k\'y + g(t,f,y, —m (40220)

Afp: (1,%,5,2) b k9 + 9(X,7,2) + §(1,%,7, (2,7, 2))
- g(t: X, y’ —’?Y) (4.22d)
f3: ®.9.2) = A*7+ B*[C,By — F,C[5:%+By]] . (4.22¢)

Then it is readily verified that, in the time domain and under state transforma-
tion T, the differential equations governing the dynamic output feedback con-

trolled system may now be expressed in the form:

2@ = 1), 9(2), 2(H)eR™™ (4.23a)
F(0) = f(1,2(1), §(1) + Afa(8,2(1),5(1), 2(1)), §(r)eR™ (4:23b)

HE() = f3(X(),3(0), 2(8)), Z(1)eR?. (4.23c)

In analysing the stability of system (4.23), we regard u as a singular per-
turbation parameter. Recalling that C*(A*)"1B* = —I, we note that system
(4.5) with control (4.8) is recovered on setting # = 0 in (4.23); thus, in the
usual terminology (Saberi and Khalil 1984, Corless et al. 1989 and Kokotovié
et al. 1986), system (4.5,4.8) may be interpreted as the reduced-order system
associated with the singularly perturbed system (4.23). The ensuing approach
is akin to that of Saberi and Khalil (1984) and Corless et al. (1989), our objec-
tive being to determine a threshold value #* > 0 such that, for all z € (0, 1*),

the zero state of system (4.23) is globally uniformly asymptotically stable.

Recalling that 6(A*) ¢ €7, let P* > 0 be the unique symmetric positive

definite solution of the Lyapunov equation
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P'A* + AYTP* +1=0. (4.24)
Define W: R* " xRR™xIR? — R* by
W(x,9,2) = }w(,3,2), P'w(2,9,2) (4.252)
where
w(x,9,2) =2+ (A*)'B*[C,By — F,CI[S;x+By]]
=AY £,9.9). (4.25b)

We now establish some preliminary lemmas.

Lemma 4.1
(VgV(X’y)r fl(fvy)> + (Vyv(j"Y)’ fZ(t’x)y)) < —aoV(f,jf)

where

o = (IMZHI0PI+ 1] > 0.

Proof

This is implicit in the proof of Theorem 4.1. Thus, from (4.12),

(ng(xsyL fl(f’y)) + (VyV(zv y)’ f2(t’ X',Y))

2l 121
<= [nyu}””f [uyub
2
< -3 IMzY

l 1l
151

< =3 IMHIP RN + 1912 (4.26)
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Now, V defined in (4.9) can be written as

wen- 21525

Therefore
V(. 9) < 30PN+ 1 I=l% + 1912 (4.27)

Combining (4.26) and (4.27), the required result follows.

Lemma 4.2
(ng(—f9 y’ 7)1 f3(f1y, f)) < -ﬂOW(i’9 y’ 2.’)
where
Bo =PI >0.
Proof

(V,W(2,9,2), f3%,5,2)) = (P*w(x, 7, 2), (2,9, D))
=(P'w(x,9,2), A*w(x,¥,2))
=~} W@, 3, )2

<-P*I w3, ).

Lemma 4.3

There exists a calculable constant 6; such that, for all

(%, 9,2) € R™™xR™ xR,

<VgW(-¥1 Y9 2')’ fl(f’ y)) < 90V§(fa Y)Wl(f: y: i) .



-73 -

Proof (Sketch)
V.W(&,9,2) = -[(A"Y'B*F\CS)TP*w(%,7,2), and so, in view of
(4.25b), [[V,W(x,9,2)|| is bounded above by a calculable scalar multiple of

W3(z, 9, 2). Clearly, the function ||f;(%, )|l is bounded above by a calculable
scalar multiple of Vi(%, 9). Hence, the required result follows.

Lemma 4.4

There exist calculable constants y;, y, such that, for all

(t,%,¥,2) e RxR"™xR™"xRIY,

(VyW(z9Yv 2)9 fz(t,i',?) + Af2(t1xvy! 2)) < WIW(f,y,Z)

+y, Vi, 7W(R, 3,2) .

Proof (Sketch)

V. W(z.9,7) = (A"Y'B*[C,B-F,CB]]'P*w(2,7,2), and so, in view
of (4.25b), IlVyW(f, ¥, 9|l is bounded above by a calculable scalar multiple of
Wi(x, 7, 2). In view of A4.3(D), [If2(¢, %, 7))l is bounded above by a calculable
scalar multiple of V3(%,$). By A4.3(ii), # is uniformly Lipschitz in its final

argument (with known Lipschitz constant 1); hence,
lAf2 (2, 2,7, DIl < A+ )&y + (2,7, D

for all (t,%,9,2) € RxR*™xIR™xIRY, and, since
&+ o,9,2) = -R(C,BYIC*'w(®,¥9,%) (by using C*(A*)"1B* = -1, it
follows that [|f,(z,%,9)]] is bounded by a calculable scalar multiple of
Wi(i', ¥, 2). Hence, the result follows.
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Lemma 4.5
There exists a calculable constant 7, such that, for all

(t,%,9,2) e RxR""™xRR™xRY,

(Vyv(xv Y), AfZ(t’ X’y’ 2/)) < nOVi(-f’ y)W‘,‘(f, Y’ 2,) .

Procf (Sketch)

VyV(i', ) =9, and so HVyV(f, Ml is bounded above by a calculable
scalar multiple of V}(%,9). From the discussion in Lemma 4.4,
lAf,(¢, 2,9, 2)]] is bounded above by a calculable scalar multiple of
Wi(z, 7, 2). Hence, the lemma follows.

Having established the above preliminary lemmas, we demonstrate in the
next theorem that system (4.23) is globally uniformly asymptotically stable for
all x > O sufficiently small.

Theorem 4.2

Let ¥* be as in Theorem 4.1 and define

Y= %Fo >0
[apy; + n(6p + y2)]

u

Then, for each fixed & > x*(1 - 8)~! and fixed x € (0, 1), the zero state of
system (4.23) is globally uniformly asymptotically stable.

Proof

Define the positive definite quadratic form (Lyapunov function candidate)

W by

M, ¥, 2) := V(Z,5) + n9(6p + v2) ' W(R, 9, 2)



-75 -

then, along solutions (X(+),9(-),2(*)) of (4.23), the following holds almost

everywhere

g;‘w(f(t),)“’(t), 2(1) = (V V(X(0), 7(1)), f1(X(0),9(2)))
+ (Vo V((0), 5(2)), f2(8, X(2), 9 (1))
+ VeV, 7(1), Af2(1, (1), (1), 2(1)))
+ ko KV, W(x(0), (1), 2(1)), f1(X(2), 9(0)))
+ (VW@ (1), 3(0), 2(1)), £,(2, 2(0), (1))
+ Afy (8, 2(2), (2), 2(2)))

+ uTYUV, WD), 70, 28)), f3(R(D), 9(8), (1))

where ky := 179(8; + ¥,)"!. By invoking Lemmas 4.1-4.5, the following holds
almost everywhere along solutions (X(*), y(+), 2(+)) of (4.23),

1 v, ey Vi(n), 7(e)
d%wam,y(n,z'(t»s—([ .y ] ,‘[ 7 )

W), 7(r), 2(2)) wiz(e), 5(0), 2(1))
(4.28a)
where
o= | e 4.28b
B -mp (T By -y @+ ) img | (4.28b)

Noting that M,, is positive definite; hence, the result follows.
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4.4 Discontinuous output feedback control

The aim of this section is to extend the approach proposed in § 4.3, by
generalizing the class of allowable uncertainties. A generalized output feedback
control is developed which renders the zero state globally uniformly asymptoti-
cally stable. The generalized feedback has a linear plus discontinuous output
feedback structure. The discontinuous control component is modelled by an
appropriately chosen set-valued map, and we adopt the analytic framework of

controlled differential inclusions (Aubin and Cellina 1984).

The approach adopted here is essentially that of Ryan (1988) and Leit-
mann and Ryan (1987). In Ryan (1988) and for the case r = 1 only, a wider
class of uncertain functions g is studied. Specifically, he has considered a class

of nonlinear systems with uncertain functions g satisfying
llg(r, x, Wl < elixll + Bllull + ¥5(Cx) (4.29)

for all (¢,x,u) € RxXIR"XR™ with @ and 8 < 1 as in A4.3 and where y is a
known constant and £ is a known continuous function. Thus, in Ryan (1988) a
non-cone-bounded component of uncertainty is allowed but this is required to
be bounded by a function of the system output y. Here, we will consider the
cases r 2 2, by using an approach of Leitmann and Ryan (1987) on decomposi-
tion of the uncertain function g. Thus, the subject consider here may be
regarded as an extension of § 4.3 and Ryan (1988); however, this extension is
achieved at the expense of additional assumptions on the "hypothetical" nomi-
nal system and on the uncertain function g, which are stated in the following

sub-section.

The approach used in the present section is analogous to that described in
§ 4.3, but, in contrast to § 4.3, a discontinuous control component is admitted

and the overall controlled system is consequently interpreted in the generalized
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sense of a controlled differential inclusion (Aubin and Cellina 1984). Thus, in
§ 44.2, we consider a hypothetical output y, defined as in (4.3) for system
(4.1) and establish the existence of a stabilizing generalized static output feed-
back for the hypothetical system; this is stated in Theorem 4.3. Since this gen-
eralized static output feedback is unrealizable in the context of the true system
4.1,4.2) (except for the case r = 1), in § 4.4.3, we will construct a realizable
generalized dynamic compensator for the cases r = 2, which filters the actual
output y. As we have mentioned in § 4.3, this filter can be interpreted as pro-
viding a realizable approximation to the generalized static hypothetical output
feedback; furthermore, it will be shown in Theorem 4.4 that global uniform
asymptotic stability of the zero state of (4.1,4.2) is guaranteed provided that the

filter dynamics are sufficiently fast.

4.4.1 Additional assumptions

Consider again system (4.1,4.2). Here however, we have to impose some

additional conditions on the system. Before that, we need the following.

Let IT denote the matrix of orthogonal projection of R™ onto
r-1 .
$ = (im [(C,B) /(X Fj,1CAHD) € R™ (4.30)
j=1
In the next assumption, additional structural properties are imposed on the

uncertain function g. In particular, we have to replace A4.3(i), however,

A4.3(ii) remains in force. Thus, A4.3(i) is now replacéd by:
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Ad4.4: There exist known non-negative constants «, By, B,7, a
Carathéodory function g;: RxIR® - R™, a continuous function
g2: R™ - IR™, and a known continuous function é: R? — R such that,

for all (¢, x, u) € RxIR*XIR™,

(@) g(t, x, u) = g1(,x) + go(u);

(i) [(I-TDg, (2, x)|| < elix|l;

(iii) [ITIg; (£, X)l < ¥£(Cx);

@) I -IDga (Wl < /I -TDull, B < 1;
V) Mgy ()| < BolITIulf, By < 1.

Example 4.2
If
010 00 10
A=1011|,B=|10}, C= 001l
000 01

then the assumptions A4.1 and A4.2 hold with r = 2,

10 10

Furthermore, S defined as in (4.30) is given by

Cloroflf -
S = [1m [0 0 OH = {(u1, %) | u; =0}

with
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We wish to admit discontinuous control. Clearly, if such discontinuous
control is coupled with system (4.1), the resulting system is a differential equa-
tion with discontinuous right hand side. For such equations, the classical
(Carathéodory) theory and concept of solution are inappropriate; consequently,
the discontinuous feedback system is interpreted in the sense of generalized
dynamical system (Gutman_ 1979, Leitmann 1979) and defined via a differential
inclusion (Aubin and Cellina 1984, Clarke 1983). Now, we are going to recast

the problem in the context of controlled differential inclusions.

From A4.4, we first have the following.

Proposition 4.1
For each function g, satisfying A4.4(ii)-(iii),

g1(t,x) € G(x) := (I - B, (allx]l) + 1B, (7£(Cx)) c R™

for all (¢, x) e RxIR".

Proof

Let g, satisfy A4.4(ii)-(iii). Then
81(t,x) = (I-TDgy(t,x) + g,(¢, x)
=V +
with [lv || < elix]| and [[v; ]| < 7£(Cx). Hence,

v; € {~IDB,(a|x])) and v, € 1B,,(¥£(Cx)) ,

which completes the proof.
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Now, system (4.1) with output feedback (4.2) is replaced by the differen-

tial inclusion system

x(t) € Ax(t) + Blu(t) + Gy(x(1)) + go(u(2)] (4.31)

with output
y(t) = Cx(2) 4.32)
Certainly, for each bounded measurable function u(*), any solution x(*) of (4.1) |

(absolutely continuous function satisfying (4.1) a.e.) is also a solution of (4.31)

(absolutely continuous function satisfying (4.31) a.e.).

It is clearly seen that, G; defined as in Proposition 4.1 has convex and
compact values. Moreover, since £ is continuous then G, is upper semi-

continuous (in fact continuous).

Our first task now is to establish the existence of a generalized output
feedback (y, z) - H,(y, z), which renders the zero state of the feedback .con-

trolled differential inclusion

x(t) € F(x(1)) (4.332)

where

F(x) := Ax + B[H,(Cx, (C,B)‘IC,x) + G (x) + Gzl(x)] (4.33b)

Gy (x) := {ga(u): u € H{(Cx, (C,B)'IC,x)} (4.33¢c)

globally uniformly asymptotically stable.
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4.4.2 Existence of stabilizing generalized static output feedback for

hypothetical system

By using a similarity transformation as introduced in § 4.3.1, then under

transformation T as defined in (4.4) takes system (4.1,4.3) into the form

£(1) = Apx(t) + Apy(e), () eR*™ (4.342)

F(1) € Apx(0) + Apy(0) + u(r) + G (), 9(1) + g2 (u(1), y(1) e R™

(4.34b)
where
An Ap Py
[AZI Azz] =TAT™ 3 Gy(%,9) := Gy(T™) [y]) (4.340)
with hypothetical output
ya(8) = (C,B)y(1) (4.35)

Recalling that the eigenvalues of A;; coincide with the transmission zeros of
(C,, A, B); thus, by virtue of A4.2(iii), 0(A;;) < C~. Hence, the Lyapunov
equation (4.7) has a unique symmetric positive definite solution P > 0. Define

the matrix M 2, by

1 —(m1+m3) -m
M,?d = | =(my+m3) 2[R;(1-P1)—my—my] -my (4.36)
—my —my 2[R4(1-B2)—m;]

with
my = [PAy +AQ\ll, my = Ay ll, m3 = a||S;ll, my = |Bl|.
Let H; be the generalized feedback given by

Hi(y,9) = - R4y + N(y)] (4.372)
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where the set-valued map y — N(y) < IR™ in essence models a discontinuous

control component and is given by

{EMITC,BY 1 Fiyl~'TI(C,BY ' Fyy), TI(C,BY 'Fiy 0

N0 Bagon. . ICBY Ry =0

(4.37b)

Then we state the following.

Theorem 4.3
Define  xj :=inf {R;: M 2, >0).  Then, for each fixed

#; > max (xj,(1-B;) 1y}, the generalized static output feedback H, defined
in (4.37) renders the zero state of the hypothetical system (4.34,4.35) globally

uniformly asymptotically stable.

Proof

Note initially that H; defined in (4.37) is singleton-valued off the sub-
space Xy = ker II( C,B)"1F, c IR? and is upper semi-continuous with convex
and compact values; thus, H; qualifies as a generalized feedback. Now, con-

sider the transformed system (4.34) under feedback control (4.37), viz.
(£(), (1)) € F1(x(2),5(1)) (4.38a)
where
Fi(x,9) := {AX+A;,9)}xD(%,9) € R*™xR™ (4.38b)
with

DR, D) = AnR + Apy + H(2,9) + G2, 9) + G (2,5) (4.38¢)
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N b4 N

H,(x,y) := H(CT"! [ y],y) = — K4y + N(x, 9)] (4.38d)
- b 4

Nz, 9) := N(CT™! [ y]) (4.38¢)
Gy (2, 9) = {g2(w): ueH (2, 9)} . (4.38f)

Clearly, the multifunction F; is upper semi-continuous with convex and com-
pact values. Hence, for each pair (X(#), (%)) € R" "xIR™, there exists a
local solution (X, ¥): [#, %) = R""™xIR™ to the above system (see Aubin and

Cellina 1984).

By considering a Lyapunov function candidate V defined as in (4.9), then
along every local solution (X(-),y(-)) of (4.38), the following holds almost

everywhere

LV, 900 € - HROI? + (20, [Py + AF150)

+ (900, AI(D) + G(), (1))
with
G, 9) := ((F, uy+wy+wy): uy e Hi (R, 9); wy € G (R, 9); wy € Gy (2, 9))

Now, in view of (4.30),

Iy(r) = I(C,B) ' Fyy(¢) = TI(C,B) ' FiCT ™[5, 2(1) + By(1)]  (4.39)
Defining
. b4
£,y :=¢cr? [ ).,]) (4.40)

then, in view of definition of N and by using (¢) = (I - ID9(¢) + IIy(¢z) and
(4.39), for all v € N(x(2), y(0)),
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3@, v) = E&@), YT (@) (4.41)
By direct calculation,

sup G(%,9) < - [R,(1-By) — lBIJIU -IDI? - R,(1-B)ITIy)>
+ lIS I - TFIRI + <IBI( -y IITS]
- [Re(1=B,) - P1ITISIECE, )
< - [R401 - B) ~ alBINIC - DI = R,(1-B)ITIg2

+ allS; [l - IDMIx] + ellBIId - IDFITLY

Hence,
Ly, 500 < - uEo,56) ac. (4.422)
where
1 Izl Izl
u,9) == - [ IC-TOFI |, Mg, | HA-TD3 ), (442b)
Iy Iy

and Mf; is defined as in (4.36). Noting that M 2, is a positive definite matrix

and thus U is a positive definite quadratic form; hence the result follows.

The generalized static output feedback (4.37) is unrealizable for the true
system (4.1,4.2) except for case r = 1. Thus, in this case (r = 1), the general-

ized static output feedback (4.37) is realizable as

u(t) € - &4 [(C,BY"1F y(1) + N(»)] (4.43)

whence:
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Corollary 4.2

Let k; be as in Theorem 4.3. If r = 1 then the generalized static output
feedback (4.43) renders the zero state of the true system (4.1,4.2) globally uni-

formly asymptotically stable.

For all other cases (r 2 2), in the next sub-section we will develop a real-
izable dynamic compensator which filters the actual output y. This filter can be
interpreted as a realizable approximation to the generalized static hypothetical

output feedback (4.37).

4.4.3 Cases r 2 2: Stabilizing generalized dynamic output feedback for the
true system (4.1,4.2)

Recalling from the earlier part of § 4.3.2 that
Yu(t) = Cx(8) = Fyy(1) + Fpy(0) + - - - + Fy"=D()
which can be interpreted in the frequency domain as
Yu(s) = [Fy + N(s)y(s) ,
where
N(s) = sF, . s2F3 4+ -+ + s"IF,

is physically unrealizable. Our approach is to replace N(s) by a physically real-
izable transfer matrix (filter) of the form G‘u ,($)N(s) with appropriately chosen

G,,. We proceed exactly as described in § 4.3.2, so here we just briefly men-

tioned the procedure used.

Recalling from § 4.3.2 that we have chosen G,(s) as
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G,(s) := diag {(W¢)

where Y¥(s) (parameterized by u > 0) is defined as in (4.17) which, inter-
preted as a transfer function, has minimal realization (cf, u~'4;, #71b)),
where A;, b; and c¢; are given by (4.18); and Gﬂ(s) has minimal realization
(C*, u~1A*, u~1B"*), where A*, B* and C* are given by (4.20). Moreover,
we note that 0(4") © €~ and that C*(A*)"1B* = -1I.

Let x; be as in Theorem 4.3, then, for fixed £; > max {x;, (1 - 8,)" 17}
the prdposed physically realizable filter (which filters the actual output y and
forms the linear component of the overall compensator) for system (4.1,4.2) is

parameterized by u,, and has transfer function,
H, (s) = = R4«(C,BY'[F; + G, ,(s)N(s5)] (4.44)
where we have chosen G,, (5) = G, (s), while the discontinuous component is

realizable and modelled by set-valued map N defined by (4.37b).

For notational convenience we introduce multifunctions H,, G,, and D,

as follows.
Hy(y,2) := - 8, [(C,BY 1 (F1y+ C*2) + N(»)] (4.45)
G (3,2) := {go(u): u € Hy(y, 2)} (4.46)

Dy(£,7,2) 1= Ay X + Apy + Hy(2, 9,2 + Hy(2,9) + Cpn(2,9,2)
(4.47a)

where

~ b4
HZ(f’yvi) = H2(CT-1 [Y}’Z)

= - R, [(C,BY \(F,CLS#+B§1 + C* ) + N(, )]
(4.47b)
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b4
Gy (X,9,2) 1= Gyup(T™! [ y],z) = {(gy(u): u € Hy(2,9,2)}) (4.47c)

and N is defined as in (4.38e).

The next proposition shows that, there is a relationship between

ﬁl and ﬁz and between 621 and Gzz.

Proposition 4.2

For all (%,¥,?) € R"™xIR™xIRY,

() Hy(2,9,2) = u,(%,9,2) — w, 0) + 5,2, 9) ;

(il) (';22(2".?’2) c Gz1(15’) + Em(z“ut,(f,y,i)‘"l,(Y)“) ’

where

u, (y) 1= —kzy (4.48a)
u, (%, 9,2) := - R4(C,BY" [F,C[S,%+By] + C*Z] (4.48b)

Proof

@) Let u, € Hy(,¥, 2). Then, from (4.48b),

W = ulz(f'y’i) +Vv, V€ N(f’y)
= u, (19,9 - w9 + u, 3 + v,

= u,(%,9,8) - w, () + w, w € (2,9
Therefore
Hy(%,9,2) c H,(2,9) + u,(2,9,2) - u, (5)

Now, let u € Hy(%,9) + u, (2,5, 2) — u, (). Then,



- 88 -

u=w,(2,9,2) ~ w9 +u, uy e Hi(2,9)
=u,(1,9,2) - w, (@) + u, ) +v, veN&9)
=u (2,9.2)+v, ve N@,9)

Therefore

u, (2,9,2) - u, () + Hj(2,9) < Hy(%,7,2)

Hence, the result follows.

(i) Let wy € Gyy(X,9, 2), then
wy = go(iy), W = u(%,9,2) +v, v e N&,9)

Let u; = u (§) + v, then u; € Hy(%,9). Now,

wy = go(uy) + 82(u2) — 82(1y)

= wy + 8(p) — g2(u1), wy € Gy (2,)

Then, by Lipschitz condition A4.3(ii), we have

ll82(u2) — g2 Cull < Alluy — 1y ||

= Au, (2,9, 2) —u, M,

which proves the assertion (ii).

By using Proposition 4.2, we may replace D, defined in (4.47a) by D5

where D; D D, and

D3(f’y’f) = Dl(fay) + ulz(x’y,i) - ull(y)

+ B, (Allu, (%, 7, 2) = u, M) (4.49)
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Then it can be shown that, in the time domain and under state transformation T,
the differential inclusions governing the dynamic output feedback controlled

system may now be put in the form
(X(0), J(1), #a2(0)) € Fp(X(1),9(8), 2(2)), pa > O (4.50a)
where

F2(fty77) = [fl(f,Y)]XD3(f»5’. fl)x[fS(j"y:f)} c ]Rn—mXIR’nXIRq
(4.50b)

with real-valued functions f; and f; defined as (4.22b) and (4.22¢) respec-

tively, i.e.
12 @) 2 ApX + Ay (4.50c)
f3: (X,9,2) = A*7 + B*[C,By — F,C[S;X+ By]] (4.50d)

In analysing the stability of (4.50), we regard u, as a singular perturbation
parameter. Note that system (4.34) with control (4.37) is recovered on sc.tting
Hq = 0 in (4.50); thus, in the terminology (Saberi and Khalil 1984, Corless et
al. 1989 and Kokotovi¢ et al. 1986) system (4.34,4.37) may be interpreted as
the reduced-order system associated with the singularly perturbed system (4.50).
The ensuing approach is akin to that of Saberi and Khalil (1984) and Corless et
al. (1989), our goal being to determine a threshold value /l; > 0 such that, for
all p,; € (0, p7), the zero state of system (4.50) is globally uniformly asymp-

totically stable.

Recalling again that 6(A*) < €~, thus the Lyapunov equation (4.24) has
a unique symmetric positive definite solution P* > 0. Consider again the

Lyapunov function candidate W defined as in (4.25).

Before proceeding, we impose our final assumption.
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A4.5: B*[C,B - F{CB]II = 0, where II is the matrix of orthogonal pro-

jection of IR™ onto S as defined in (4.30).

We now state some preliminary lemmas (analogous to Lemmas 4.1,4.4-

4.5).

Lemma 4.6

(ng(f,y), fl(i’,Y)) + SUP gl(i’,Y) < _alv(fvy)

where
G1(%.9) := (V,V(£,9), by): by € Dy(%, )
and
o) = [llM;S‘1 iPI+ 1 > 0.
Proof

The proof of this lemma is implicit in the proof of Theorem 4.3. Thus,

(VV(2,9), f1(2,9)) + sup G1(X, 9)

. B
< - | lu-m3i |, Mg, | la-TD31 | )
I Il
Iz
< =HIMHIT | [T
Il

= —3IM I (022 + | (-TD31% + IT1y)|%]
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= —3IMZH 17T ORI + 19112] (4.51)

Now, V defined in (4.7) may be written as
1 b 4 P 0][2’]
VE,9) = [y], [0 |y |?

V(Z,9) < yIPI+ 1101212 + I9112] (4.52)

Therefore

Combining (4.51) and (4.52), we have the required result.

Lemma 4.7

There exist calculable constants 3, y4 such that, for all

2,7, e R*™™xR™ xR,
sup Go(%,9,2) S ysW(R,9,2) + yaVAZ, )W, 9, 2)
where

gz(x,y,Z) = {(VyW(X,y, Z), h3): h3 € D3(f,y, Z)}

Proof (Sketch)
ViW(,5.2) = [(A)'B*IC,B-F,CBI]'P'w(%..2)
= MYP w9, D)

where

M* .= (A*Y'B*[C,B-F,CB] .
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By recalling that D, as defined in (4.49), we may write G, as
92(3',?',2') = {(VyW(f,y, 2), hl +u+h): hl € Dl(f,Y);
h € Bu(Alu(%, 9, DI); u = u,(%,9,2) - u, ()

From the definitions of Dy, fll , (~}1 and Gzl, and making use of A4.5 (i.e. the
inner product of (M P w(x, ¥, 2) with any terms containing "IT" is zero) and
noting that [(M*)TP*w(®, ¥, ?)|| is bounded above by a scalar multiple of
Wi(x, ¥, 2), we may conclude that there exists a calculable constant k, such

that,

sup ((VW(2,5,2), hy): by € D1(X,9)) < ViR, 1WA, 9, 2) (4.53)

Now, from (4.48a) and (4.48b),

u(2,9,2) = u,(£,9,2) — u, (9)

= —Ry(C,BY L [F,CIS,X+By] + C*7] + R;¥

= —R4(C,B) 1 [F,C[S;x+By] + C*Z - C,By]

= —Ry(C,BYIC*w(®,7,2) (4.54)
Thus, there exist calculable constants k3, k4 such that

sup (V,W(%,5,2), h): h € By(Allu(x,3, DD} < s W(E,5,2) (455)

and

(V,W(®,3,2), ux,9,2)) S W(Z,9,2) (4.56)

Combining (4.53), (4.55) and (4.56), the result follows.
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Lemma 4.8

There exists a calculable constant 7y such that for all

(2,9,2) e R""™xR™xIRY,
sup G3(%,7,2) < m Vi, Wi, 9, 2)

where -

G3(%,9,2) 1= (V,V(,9), u+h): h € By(Allu(, 3, D)3

u= ulz(i,’y, 2) _ull (y)}

Proof (Sketch)
VyV(i’, y) =¥, and so ||VyV(i', I is bounded above by a calculable

scalar multiple of Vi(®, 9). From Lemma 4.7 (i.e. equation (4.54)),
u(x,9,2) = w,(%,5,2) — u (9) = = R4(C,BY'C*w(2,3,2)
Thus, there exist calculable constants k5, kg such that
sup ((V,V(2,9), h): h € B,(Allu(2,9, D)} < ksVA(x, )W, 9, 2)
and

(V,V@.9), u®,9,0) < kVHENWHR,9,7)

from which the result follows.

The next theorem establish that system (4.50) is globally uniformly
asymptotically stable for all uz; > 0 sufficiently small.
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Theorem 4.4

Let x; be defined as in Theorem 4.3 and let define

.. o Bo
T oy + m(6p + va)

Then, for each fixed £, > max {xJ, (1—8,)"1y) and fixed g, € (0, py), the

zero state of system (4.50) is globally uniformly asymptotically stable.

Proof

The multifunction F, defined by (4.50b-d) is upper semi-continuous with
convex and compact values. Hence, for each
(Z(19), 7(15), 2(1p)) € R* "xR™xR?, there exists a local solution
9,2 [, 7) > R xXIR"xR? to the system (4.50) (Aubin and Cellina
1984).

Now, define W;: R*"xR™xIR? — R*, a Lyapunov function candidate,

Wy(X,5,2) 1= VX, 9) + 1(6p + vg) ' W(X,9,2),

then, along every local solution (X(), ¥(*), Z(*)) of (4.50), the following holds

almost everywhere

%Wd(f(r). (1), 2(1)) = (V, V), 5(1), f,(X(D), 9(2)))
+ sup Gy (X(1), F(1) + sup G3(X(1), (1), 2(1))
+ by (VW@ (@0), 5(1), 2(1)), f1(X(D), F (1))

+ sup G,(X(1), y(2), 2(1)
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+ ug (VW @), 5(0), 2(1)), f3(X(0), (1), 2(1)))]

where k; := 7;(6, + v4)"!. By utilizing Lemmas 4.2,4.3,4.6-4.8, the following
holds almost everywhere along every local solution (X(*), ¥(*), 2(*)) of (4.50),

d i Vi), () VE(x(1), 5(1))
2 WD, 3@, 20) < = [wi(x(:), (1), z(:))]’ Ha [W*(i’(t),y(t), ‘z'(t))]>
(4.572)
where
M A n 4.57b
K emy (i Bo-waX G +we) imy | (4.37b)

Noting that M, is positive definite, then the theorem follows.
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CHAPTER 5§

ADAPTIVE STABILIZATION OF A CLASS
OF UNCERTAIN SYSTEMS

5.1 Introduction

The proposed design approach given in the preceding chapter will work
well if we have a suitable model that satisfies all the assumptions of the
design. As we have seen in Chapter 4, the threshold values x* and p' (x'; and
ﬂ; in the discontinuous case) are crucial in this design and are explicitly cal-
culable from known system data (i.e. in terms of known bounds of uncertain-
ties). However, since these values are determined via a "worst case” analysis, it

is to be expected that, in practice, the compensator will be conservative.

The main goal of this chapter is to develop adaptive-based feedback con-
trols for a class of uncertain systems. This stabilizing adaptive version has a
close relationship with compensator-based design proposed in the preceding
chapter in the sense that the adaptive-based compensator is designed to circum-
vent the inherent conservatism induced by crude estimates in a "worst case"
analysis. Furthermore, it can handle the case for which bounds on the uncer-
tainties may be unknown (i.e. to allow for bounded uncertainties with unknown
bounds). Thus, this adaptive-based design can be regarded as complementary to

the compensator-based design.

In order to develop this adaptive compensator, we adopt a universal adap-
tive stabilization approach which is essentially that of Martensson (1985), but

close in spirit to that of Ryan (1988); and akin to that of Corless and Leitmann
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(1983, 1984).

This chapter is organized as follows. In § 5.2, we discuss state space
representations for system (4.1,4.2) with filter dynamics. Section 5.3 deals with
the adaptive stabilization by linear output feedback. Then, in § 5.4, the problem
of stabilizing adaptive compensator by discontinuous cutput feedback will be
considered, extending the adaptive compensator developed in preceding section.
This is achieved (as in § 4.4) by admitting a discontinuous control component,
modelled by a suitably chosen set-valued map, and overall controlled system is
interpreted in the generalized sense of a controlled differential inclusions
(Aubin and Cellina 1984). Finally, in § 5.5, we give example to illustrate the

proposed approach.

5.2 State space representations

In order to proceed, we will give a state space representation for system
(4.1,4.2) plus filter dynamics. Recall that the (%, ¥, 2) representation used in
§8§ 4.3.2,4.4.3 (equation (4.23), and equation (4.50) in the discontinuous case)

may be interpreted as follows.

For analysis only, we have separated the component G,(s)N(s) of the
proposed compensator as two components G,(s) and N(s), where the dynamic

block  G,(s) = diag {¥}(s)) is realized by linear  system

m
" =(C*,u~ 'A%, p71B") with state dimension Y&; where A*, B* and C*

i=1
are defined by (4.20). However, in practice, the component G#(s)N(s) is real-
ized by constructing a total of mp filters of the form

n..(s)
i=1,2,-m; j=1,2,--,p, (5.1)
xi(us)
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where n;;(s) denotes the ij-th element of N. Each filter of the form (5.1) can be

interpreted as a single-input single-output system having a state space realiza-

tion of the form

uo(t) = Alo(t) + Biv(t)

7'(t) = Di(u)v(1) + Di(p)o(2)

‘+b1S+b0

Example 5.1
If
"ij(s) _ b‘g‘S& + b‘g‘___lsai-l + -
ZiHS)  (us)” + agy(us) T -
then
(0 1 0 ]
0 O 1 --- 0
Ai=| o o . |, Bi=
o 0 o0 --- 1
-1 —a) —-as °-°°* "ag‘_

+ay(us) + 1

» Di(u) = bsu™

Dj(u) = [(bg "bs,ll-a") (by ™! - ayb,, pE -

(5.2a)

(5.2b)

-(5-2 -5 -(5-1 -5
s+ by t™ P — g 1bsu™) (bsa ™V —azbs ]

Thus, G,(s)N(s) has a state space realization in the form of a p-input, m-

output linear system I'* = (D;(u), D,(u), u~14a, p~1B) with state dimension

q = pq for which 6(2) c €~ and the pair (D;(x), D,(u)) determines the out-

put map, D;(u) being a feedforward operator. Therefore, the overall controlled

system has the structure shown in Figure 5.1 below (Figure 5.2 is the structure

of the associated discontinuous case).
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SYSTEM (4.1, 4.2)

compensator

Figure 5.1. Linear case

SYSTEM (4.1, 4.2)

Non-linear

compensator

Figure 5.2. Discontinuous case
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The governing equations (equivalent to (4.23)) can be expressed as

x(t) = Ax(t) + Blu(r) + g(e,x(2), u(t))], x(t) € R*, (5.3a)
ui(t) = Az(1) + By(t), 2(r) e R, u < u*, (5.3b)
y(@) = Cx(t), y(t) € R?, (5.3¢c)

u(t) = = R(C,BY1[F1y(t) + Dy(1)y(t) + Dy(p)z(1)], u(r) e R™,
R>x*a-p)1, (5.3d)

and in the generalized feedback control case, the governing equations

(equivalent to (4.50)) can be expressed as

x(t) = Ax(t) + Blu(?) + g(t,x(2), u())], x(t) e R", (5.4a)
pai(t) = Az() + By(r), z(8) e R, py < pg, (5.4b)
y() = Cx(t), y(1) € R?, (5.40)

u(t) € = R [(C,BY [F1y(8) + D1(1)y(1) + Da(1)2(0)] + N(y(1))],
Ry > max (x7,(1- By} (54d)

Clearly, the threshold values x* and £* (x; and g, in the discontinuous
case) are central to this design. Since these values are determined via a "worst
case" analysis, it is to be expected that, in practical implementation, the com-
pensator will be conservative. In the next section, a stabilizing adaptive version
of the compensator is developed; however, in the case r 2 2, this is achieved at

the expense of imposing further structure on the uncertain function g.

Before proceeding, it is worth mentioning that this chapter should be read
in conjunction with Chapter 4, since we are discussing a system with the basic

assumptions (i.e. A4.1-A4.2); the only difference being in the structure of g.
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5.3 Adaptive stabilization by linear output feedback

In this section, we will develop a stabilizing adaptive (linear) output feed-
back for system (5.3). This adaptive control requires only knowledge of
F{,F,,- -, F, and C,B. Thus, in the next sub-section, we first consider adap-
tive version for a special case (r = 1). Then, in § 5.3.2, a stabilizing adaptive
compensator is developed by an approach which is essentially that of

MZrtensson (1985).

The subject of discussion in this section can be found in Ryan and Yaacob

(1989).

5.3.1 Case r = 1: Stabilizing adaptive output feedback for the true system
4.1,4.2)

If A4.2 holds with r = 1, then, by Corollary 4.1, system (4.1,4.2) is
asymptotically stabilized by the static output feedback (4.8) with
R > x"(1 - B)7! provided, of course, that F; and C,B are known and that suf-
ficient a priori information is available to compute the (conservative) gain
threshold x*(1 — 8)~1. We now consider the case for which the latter informa-
tion is unavailable, i.e. we only assume knowledge of F; and C,B and, in par-
ticular, the constants @ and 8 < 1 in A4.3 may be unknown. Assumptions A4.1

and A4.2 remain in force.

Replace fixed & in (4.8) by variable x(¢) to yield

u(t) = - x(£)(C,BY 1 Fyy(1) (5.5a)

and let x(¢) evolve according to the adaptation law

£(t) = I(C,BY 1Fy ()| (5.5b)
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-then,

Theorem 5.1

For all initial data (f5,x(%), x(fp)) € RxIR"XIR*, the adaptively con-

trolled system (4.1,4.2,5.5) exhibits the following properties:

(i) lim x(#) exists and is finite;
{~>o00

(ii) lim llx(®)] = 0.

Proof

For fixed (but unknown) 2> x*(1-8)"! and under the similarity

transformation T, system (4.1,4.2,5.5) may be expressed as
x(r) = Ay 2(0) + Apy() (5.62)
J(#) = Ay %(1) + ApI (1) — k9(1) - [x(0) - R19(0)
+ (@, %(), 9(2), — x(£)9(2) (5.6b)
@) = |y (5.6¢)

With (f(to), y(t()): K(t())) = (-f()vy09 K())-
Let U and V be as in the proof of Theorem 4.1 and define the positive

definite (since < 1) function

V: (2,9,5) B V&P + ¥ x—-RP? - 1B(x—R)|x-R| .  (5.7)

Then, along solutions (X(+), $(*), «(*)) of (5.6), the following holds almost

everywhere
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%m(t),ym, x(8)) < - UG, 7)) — BRIFO?
= [x() = RIFOI? + Bx®IF (D)2
+ [[x()) - &1 - Bl (D - & |72

< =Ux(), (1) | (5.8)

Since U is positive definite, we conclude that ¢ = (X(2), y(¢), x(2)) is bounded

and since t > «x(¢) is also monotonic, assertion (i) of the theorem follows.

Furthermore, in view of (5.8), for solutions

X, ¥, x): [ty,22) > R" " xIR" xR of (5.6),
[oUG@), 50 dr < Ao, 5o, Kp) < o0 (5.9)
Hence, since U and V are positive definite forms,
L:V(i'(t),y(r)) dr < oo - (5.10)
Furthermore, (5.8) ensures that there exists a constant c(Xy, §5) > O such that
V@E@1), 3(1)) < (%, 30) (5.11)

Invoking Lemma 6.3 of Corless and Leitmann (1984), we conclude (from
(5.10) and (5.11)) that V(x(2), 7(#)) — 0 as ¢ — oo whence assertion (ii) of the

theorem.
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5.3.2 Cases r 2 2: Stabilizing adaptive compensator for system (5.3)

Before describing the adaptive strategy in this case, it is remarked that the
argument used in establishing Theorem 5.1 cannot be carried over directly.
Instead, we will base our approach on that of M&rtensson (1985). For this rea-
son, further conditions are imposed on the uncertain function g, i.e. g depends

linearly on x. In particular, A4.3 is now replaced by:

AS5.1: There exist a bounded continuous function AA: R -5 IR™*" a
Carathéodory function g3: RXIR™ — IR™, and a constant 8 such that for
all (¢, x,u) € RxR"xIR™,

() g(t,x,u) = AA(t)x + g5(t, u);

(i) llgs (e, Wl < Bliull, B <15

(iii) (C,A +BAA(*)) is uniformly completely observable in the sense of
Definition 2.8.

Note that, if AS.1 holds, then A4.3 holds a fortiori with a = sup ||AA(?)]] pro-
t

vided that «, and B are known. However, knowledge of these constants is not

required here.

Example 52

With (C, A, B) defined as in Example 4.1 of Chapter 4, AS5.1 holds for
any bounded continuous AA: ¢ = (Aa;(t), Aay(2), Aaz(2)).
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Now replace fixed & in (5.3d) by variable x(#) > 0 and replace fixed u in
(5.3b) by (8x(2))"!, where § > 0 is a constant (design parameter) and let x(#)
evolve according to the adaptation law (other adaptation laws may be feasible,

as discussed in Ilchmann et al. 1987)
k(@) = ly®OI? + llz@0)1? (5.12)

Writing (as in M&rtensson 1985)

x(1) u(t) y(t)
*alt) = [Z(t)]’ Hal) = [z'(t)]' Yalt) = [z(')

then the overall adaptively controlled system may be expressed in the form

, (5.13)

X() = A (Dx,(2) + B,lu,(8) + g,(t, u, ()], x,(2) € R*™, (5.14a)

Ya(t) = Coxy(1), y,(t) € IRPHI, (5.14b)
ug (1) = — k(DK (k(0)ya (1), u,(t) € R™, (5.14¢)
£() =yl (5.14d)

where

A+BAA(1) O B O coO
A () = 0 ol» Ba:= OI,Ca:= oIl

(5.14¢)
(C,BY\[Fy + Dy ((6x) 1] (C,BYD,((5¢)™")
K,(x) := —53 _54 > (5.14f)
83(2, u)
ga(t’ ua) = 0 . (5'143)

The stability of system (5.14) will now be investigated. We first require
the following lemma (essentially a non-autonomous version of MZrtensson’s

lemma (Mirtensson 1985)).
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Lemma 5.1
Let x,: R — IR*7 satisfy
X (1) = A(D)x,(2) + B,v(e) + g, (2, v(2))] (5.15)

where v: IR — IR™*7 is measurable. Then, there exist constants c,, 7 > 0 such

that for all ¢,

IO < ¢ [ _Uya(I? + v ds . (5.16)

Proof

Let ®(-,) denote the state transition matrix function generated by
A+ BAA(°) and define the observability Gramian for the pair (C, A + BAA(*))

in the usual manner, i.e.
M(,5) = [ @7 (0, 5)CTCW(o, ) do . (5.17)

Now, for some constants 1; and @, we have |lexp At|| < 2;exp (wr) and, since
AA(*) is bounded (by assumption), there exists a constant A, such that

IBAA(2)|| < 4,. By standard perturbation theory, we conclude that,

1D, s)|| < Ajexp [(w+2;,4,)(2=5)], foralle,s. (5.18)

Clearly, the state transition matrix function ®,(-, *) generated by A,(*) is given

by

O(t,s) 0
D,(1,5) = 0 AL (5.19)
whence
P2, )| £ w(t-5s), foralle,s, (5.20a)
where

y:o = 1+ Aexp [(w+2;4;)0] (5.20b)
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The observability Gramian for the pair (C,, A,(*)) is given by

M(t, 0
M,(t,5) := J:(D'ar(a,s)CZCad>a(a,s)ds = [ ((t) ) (t_s)l], (5.21)

and, since (C, A + BAA(*)) is uniformly completely observable (by assumption),
we may conclude (see Definition 2.8) that there exist positive constants

7, €1, Cp such that, for all ¢,
e ICI? <& My(t, t=7) L) S qll¢lI?, forall{ e R™T . (522)

Now define the measurable function v,: t = v(z) + g,(z, v(?)) and note that

lva()ll < A+ llv()ll. Then,

xa(1) = @1, 1= D)x (1= 7) + | g O (1, 5)B,v,(s) ds (5.23)
whence

(D2 < 200,08, 1= D)5, (1= D)2 + 201 @y(t, $)B,v,(s) dsll?

< 263 lIxa(t = D12 + 2641+ BB, I [_lIv(s)II> s, (5.242)
wherein (5.20) has been used, and
¢y := y(1), ¢4 := jo'yzz(s)ds. (5.24b)

Also, invoking (5.14b), (5.20), (5.22) and (5.23), we have

IxaCe =% < et (xa(t = 2), My(t, £ = 0)x, (1= 7))
= ¢p! j“_ NCa®y(s, 1= )x,(e - 0)]|2 ds
= o[ Iya(s) = Co [ @uls, 0)Bv,(0) do* ds
<27 [ lya(o)l1% ds

+ est(1+BYIC I 1B Iv(s)II* ds] (5.252)
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where

cs = jo’ j; v2(o) dods. (5.25b)

Combining (5.24) and (5.25) yields the required result.
Now we state and prove the stability theorem for the system (5.14).

Theorem 5.2

For all initial data (fy,x,(%), k(%)) € RxIR"7x(0, o), system (5.14)

exhibits the following properties:

(1) lim x(r) exists and is finite;
f—o0

i) lim [z, ()]l = 0.

Proof

Seeking a contradiction to (i), suppose that the monotonically increasing
function ¢+ x(f) is unbounded. Then, for some ¢; € [0, o),
k(tg+1) =R >x"A-p)"! and (6k(tg+1))! = u < u*. Now, an argu-
ment similar to that used in the proof of Theorem 4.2 can be adopted to estab-
lish that x(*) (and hence y(*) = Cx(*)) must ultimately tend exponentially to

zero (and hence are square integrable on [y, o°)).

Consider now the filter equation part of (5.14c), i.e.
(1) = éx(D)[Az(t) + By(1)] (5.26)

Let ¢, (with inverse @ 1) denote the monotonic function ¢ - J; ‘ ok (s) ds.
0

Then, it can be shown that

()
2(6) = exp (Ap; (i) + [1' exp [Apy (1) By (o7 (s) ds (527)
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satisfies (5.26). Since y(+) is exponentially tend to zero, y(cpi'l(')) is clearly
bounded. Since 6(2) ¢ €C~, we may conclude from (5.27) that z is bounded.
Hence, from (5.14d), £(¢) is bounded and so there exists a constant x; such

that

x(t) < x(ty) + x1(t—1y), forallt 2 1. (5.28)

Now, it is readily verified that the function y(@; 1.y ultimately satisfies
Iy (PT (PN < Ky exp [K3 — V(i + x48)] (5.29)

for some positive constants «; (i = 2,3,4), and so is square integrable on
[£9, =°). From (5.27) (since 0(A) c €~) we may conclude that z(+) is square
integrable on [#;, ). Thus, y,(+) is square integrable on [#;, e) which, in view
of (5.14d), contradicts our supposition that the function x is unbounded. This
establishes assertion (i) of the theorem.

It remains to show that x,(#) — 0 as t — oo, Clearly, (i) ensures that y,
is square integrable on [fy, e0) and, in view of (5.14c), that u, is a bounded
linear transformation of y,. Thus, we may conclude that u, is also square

integrable on [7;, o). Now, by Lemma 5.1, we have

oI < caf Tya(I? + Nug(s)l?1 ds
= caf, UVa()I? + lug(s)I1 ds

= caf, “Tya(I? + llug(s)I*] ds (530)

Therefore, ||x,(1)]] = Oast — .
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5.4 Adaptive stabilization by discontinuous output feedback

This section considers the problem of adaptive stabilization of a class of
uncertain systems by discontinuous output feedback. Our goal is to extend the
adaptive strategy developed in § 5.3, by expanding the class of allowable uncer-
tainties. A generalized adaptive output feedback strategy is developed which
renders the zero state globally attractive. The generalized strategy has a linear
plus discontinuous output feedback structure with bounded adaptive scalar gain.
An appropriately chosen set-valued map models the discontinuous control com-
ponent and we adopt the analytic framework of controlled differential inclu-

sions (Aubin and Cellina 1984).

In essence, the approach adopted here also is that of Martensson (1985)
and in a similar ideas with that of Ryan (1988). Thus, here we attempt to
expand Ryan (1988) to the cases r 2 2, by using Martensson’s method. How-
ever, this generalization is achieved at the expense of extra assumptions or the

uncertain function g; and this will be discussed in § 5.4.2.

5.4.1 Case r = 1: Stabilizing generalized adaptive output feedback for the
true system (4.1,4.2)

Recalling from § 4.4.2 that, if A4.2 holds with r = 1, then, by Corollary
4.2, for each fixed R; > max {x;, (1~ B,) !y} the generalized static output
feedback (4.43) asymptotically stabilizes system (4.1,4.2) provided that, F; and
C,B are known and that sufficient a priori information is available to calculate
the (conservative) gain threshold: max {x; ,(1- ﬂz)‘ly}. We now consider
the case for which the latter information is unavailable, i.e. we only assume

knowledge of F; and C,B; in particular, the constants &, f; < 1,8, <1 and ¥
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in A4.4 may be unknown. Assumptions A4.1 and A4.2 remain in force.
Replace fixed £, in (4.43) by variable x,(¢) to yield the generalized feed-
back

u(t) € - x4(t) [(C,BY'Fyy(1) + N(y(1))] (5.31a)

where the set-valued map y > N(y) < R™ is defined as in (4.37b), and x,(t)

evolves according to the adapiation law
£4(t) = [IC,BY WPyl + EN]IC,BY Iyl (5.31b)

then, for completeness, we state (without proof) the following lemma (see Ryan

1988, Theorem 2)

Lemma 5.2

For all initial data (fy, x(%), x4(%p)) € RxR"xIR*, the adaptive output
feedback system (4.1,4.2,5.31) possesses the féllowing properties:

(i) existence and continuation of solutions;

(ii) lim x,(z) exists and is finite;
£ T

(iii) lim [x()]| = 0.

5.4.2 Cases r 2 2: Stabilizing generalized adaptive compensator for system

54)

In this sub-section, we consider the case for which a priori information is
unavailable to calculate the (conservative) gain thrcshdld
max {x;,(1-,)"17) in Theorem 4.3 of the preceding chapter, i.e. we only

assume knowledge of F;, i=1,2,---,r, and C,B, and the constants
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a, B1, Bpandy in A44 may be unknown. We adopt the approach of
M2rtensson (1985) and for this reason, we have to impose further conditions on
the uncertain function g. Here, we need that "(/ —II)" part of g; is assumed to
depend linearly on x and g, is assumed to depend linearly on u. To be precise,
A4.4 is now replaced by A5.2 below. All other assumptions (i.e. A4.1-A4.2)

remain in force.

AS5.2: There exist a non-negative constant ¥, a bounded measurable func-
tion AA;: R - R™", a Carathéodory function g;: RXIR” - R™, a
known continuous function é: RP -5 R, and matrices

AB, AB,, AB, € IR™"™ such that, for all (¢, x, u),
@) g(t, x,u) = (I -IDAA;(t)x + I1Ig,(z,x) + ABu;
@) [ITIg, (2, 0|l < ¥5(Cx);
(iii) AB = (I -IDAB (I -1I) + TIAB,I1, |AB|l <1, |AB,] <1; -
- (@iv) (C,A+B(I- IDAA,(*)) is uniformly completely observable in the

sense of Definition 2.8;

furthermore, if we define the class of exponentially bounded continuous

functions Z by
E:={n: R>R? | [In()| £ Mye™™ for all ¢ and some My >0, wy > 0}

then,

(v) for each 1 € &, the composite function £on is square integrable on

[#5, ), forall ¢ € RR.
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Remark

If A5.2 holds, then A4.4 holds with & = sup [[AA;(D]l, B; = lAB;l[ < 1
t _

and B, = ||AB,[l <1 (since from AS5.2 (iii) and using decomposition
u=(-IDu+ Ilu, we have ABu = (I -IDAB(I —IT)u + I1AB,Ilu), pro-
vided that @, B, B, and y are known. However, knowledge of this constants is

not required here.

Now replace fixed &; in (5.4d) by variable x,(¢) > 0 and replace fixed yu,
in (5.4b) by (exd(t))‘l, where £ > 0 is a constant (design parameter) and let

x4(*) generated via 'the adaptation law
k40 = ly®I? + 20N + E2 @), (5:32)

and writing (as in M8rtensson 1985)

x(1) u(t) y()
x4(8) = [z(t) ] ’ ud(t) = [i(t) ] » Ya(1) = [z(t) ] ’ (5.33)

then the overall adaptively controlled system may be written in the form

x4(8) = A (O)xg(8) + B4I(I+ ABuy(t) + g4(t, xg()], x4(t) € R*™7,

(5.34a)
¥4(2) = Cyxy(t), yu(t) € RPH, (5.34b)
uy(t) € — k(1) [Ky(xcg(0)ya(1) + Ny(rg()], (5.34c)

£4(0) = llygOI? + E2(y(2)), (5.34d)
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where
A+B(I-TDAA(1) O B O
Ay(t) := 0 ol Ba= 1o s (5.34¢)
AB 0 Cc 0
ABd = [0 0], Cd = |:0 I]’ (5-34f)
(C,BY [Fy +Dy((ex)™ ] (C,BY 1Dy((ex ™)
Kd(Kd) = —¢B —e4 !(5°34g)

Ilg,(z,x)

N(@)
84(t, %) = [ 0

. Ny(vg) = Ny(IC Olxy) = [ 0 }<5.34h)

We are now going to investigate the stability of system (5.34). Since we
wish to admit discontinuous feedback (as in the § 4.4), we need to recast the

problem in the context of controlled differential inclusion system as follows.

Let define multifunction H3 by
H3(Xd, K'd) ==Ky [chdxd + Nd([C O]Xd)] (5.35)
and let define multifunctions D; and F; as

Dy(t, x4, x4) := {Ag(t)xy + By[(I+ ABy)v + g4(t,x4)] : veH3(xy, x4)}
(5.36)

Fa(t, x4, K4) := Dy(t, x4, k)X {ICax4lI> + E2(IC Olx,)) (5.37)

Then, the controlled system (5.34) may be replaced by a controlled differential

inclusion system
(X4(2), £4(2)) € Fy(2, x4(2), k4(2)) (5.38)

Certainly, any generalized solution of (5.34) (satisfying (5.34) a.e.) is also a

generalized solution of (5.38) (satisfying (5.38) a.e.).
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Now, let (x4(¢), x4()) be a solution of (5.38). We first want to show that
there exists u*(+) such that (xg(*), x4(*), u®(+)) is also a solution of (5.34). We
show this by an argument similar that used in Dorling and Ryan (1985), and is
reiterated in Lemma 5.3 below. For this purpose, by writing By, = B;(I + ABy)

the systems (5.38) and (5.34) may be rewritten respectively as

x4(2) = Ag(0)xy(t) — Byga(t, x4(1)) € BAH3(x4(2), k4(1)),  (5.392)

£4(8) = [CaxgDII? + E2(C 0)xy(r)), (5.39b)
and

Xy(8) = Ay()xy(t) — Byg (2, x (1)) = Bpuy(t), (5.40a)

k4(0) = [[Caxg]* + E2(IC Olx (1)), (5.40b)

uy(1) € Ha(xy(2), x4(1)), (5.40c)

Then, we may state the following lemma.

Lemma 5.3

Let (x4(*), x4(*)) solve system (5.39). Then there exists a measurable

function uy(*) = 1" (+) such that (x4(*), x4(*), u”*(+)) solves system (5.40).

Proof
Let (x*(*), €*(*)) satisfy (5.39). Then define ¢t = u' (1) by
u*(1) = (B{Bp) 'BLE" (1) = Ay()x"(8) = Baga(,x"(1))] 2. (5.41)
Note that u*(+) defined above is well defined, by recalling that x*(+) is abso-

lutely continuous and hence differentiable almost everywhere, and A,(*) and

gd(',x*(')) are measurable and B, has full rank m for almost all ¢. Then, we
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conclude that u* is a measurable selection for H3(x,(*), k4(*)). This, can be

easily seen, since from (5.39),

2°(8) = Ag(D)x* (1) — Bygu(t,x" (1)) = Bph(t) ae. (542)
for some h(r) € Hy(x,(t), x4(2)), and hence
u*(r) = (BIBY 'BI[x" (1) — Ay(1)x" (£) = Byg (2. x*(1))]
= (BfBa) 'B{BAK(1)
= h(t) € Hy(x4(2), k4(2)) ae. (5.43)

Now, by putting x;, = x* in (5.40) and use the fact that B,(BIB,) !B} pro-

jects orthogonally onto im B,, we have
27(8) = Agx"(8) — Byga(t,x" (1)) = Bp(BB,)'B]
L2°(0) = Ag(0)x"(8) — Baga(t,x" ()]
= Byu*() ae., | (5.44)

that is (x*(+), € *(+)) solves (5.40) with uy = u®, which completes the proof.

Remark

As a consequence of Lemma 5.3, we may conclude that

™I < 263(0) UK (kg2 NyaOI + E2(()]  (5:45)

Before stating and proving the main theorem of this section (i.e. the stabil-
ity theorem for system (5.38)), we need the following lemma (essentially a gen-
eralized non-autonomous version of MZirtensson’s lemma (M3rtensson 1985),

and hence a generalized version of Lemma 5.1).
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Lemma 54

Let (x4, x5): [t, @) = IR*7xIR solve differential inclusion system
(5.38) and let u*(*) be defined as in (5.41). Then, there exist constants

¢4, T > 0 such that, for all ¢ € (¢y + 7, W),

a2 < cq [T [yaI + lu™ (I + £2(s)] ds -

Proof (This lemma is proved in a similar manner that we prove Lemma 5.1)

Let ©(-,*) be the state transition matrix function generated by
A+B(I-II)AA;(*) and define the observability Gramian for the pair
(C,A+B(I-TDAA, (")) by

A(t,s) := K@T(a, s)CTC@(&, s)do. (5.46)
Now, for some constants A; and w, we have |lexp Ar]] < A;exp (wr) and, since

AA;(*) is bounded (by assumption), there exists a constant A3 such that

IB(I ~II)AA,(2)]| <€ 23. By standard perturbation theory, it can be shown that

I8¢t )| < Ayexp [(@+ A As)¢—5)], forallz, s. (5.47)

Clearly, the state transition matrix function ©4(-, *) generated by A,(*) is given

by

©(t,s) 0
O4(t,5) = 0 Il (5.48)
. and hence
[©4(, )|l S wy(2=5), forallye, s, (5.49a)
where

ya: 0 B 1+ Aexp [(@+2,43)0] (5.49b)
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The observability Gramian for the pair (C,, A4(*)) is given by

Alt,s) O
Ay(t,8) := j:@£(a,s)cjcd®d(o,s)do= [ 0 (- s),]. (5.50)

and, since (C,A+B(I-1II)AA;(*)) is uniformly completely observable (by
assumption), we may conclude from Definition 2.8 that, there exist positive

constants 7, ¢, ¢y such that for all t € (1, + 7, 1;),

cs Sl < (¢ Ag(t,t=2) 8 S ¢qlICN?, forallf e R, (5.50)
Now, let u*(+) be defined as in (5.41). Then,

xy(t) = O, (t,t—7)x4(t —17)

+ [ 0t )B U+ ABu"(s) + gyls, xg(sNds  (5.52)

Thus, using (5.49) a.hd the fact that ||/ + AB4|| < (1+8;+5,), we have

gD < 210,408, 1= 7)xy(t = D)2

+21lf]_©y(t, )B4 +ABu"(5) + gals, xy(s))] ds]]?

< 2¢gllxg(r = )12 + dcg 1By I [(A+8y+B,) [ Nu* ()2 ds

+ 72 E20(s)) as] (5.532)
where
¢ = vh(D), ¢ = [[yd(s)ds (5:53b)
Now, from (5.34b) and (5.52) yields

Ya(t) = CyO4(t, t — T)x4(t - 7)

+ Caf Oyt, $)B4I(I+ ABU"(5) + ga(s, xz(sN1ds  (5.54)
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By utilizing (5.49), (5.51) and (5.54),

Ix, (¢ = )I? < cgxg(t— 1), Ayt t—7)x5(t— 7))
= 5" [ ICa®4(s, 1= 1)xy(t =) ds
= '[! _llya(s) - Caf’ Ouls, )BU+ABu"(s)
+ 84(s,x4(s))] do||* ds
<25 [ lya()I> ds
+ 2007 IC I 2 IBAI(A+ By + By [ _llu* ()11 ds
+ 72 E2(y(s)) ds]] (5.552)
where
1o = jo' jo‘ v2(c)dads, (5.55b)
and we use the fact (since s € [t -7, t]) that |
[L ' @NPdo < [} llu" ()2 do,
and |
[{,8200Ndo <[ £Xy(o)do.

Combining (5.53) and (5.55) yields the result.

We are now ready to state and prove the stability theorem of the adap-

tively controlled differential inclusion system (5.38).
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Theorem 5.3

For all initial data (fg,x,(tp), x4(f)) € RXIR**7x(0, =), the adaptively
controlled differential inclusion system (5.38) possesses the following proper-
ties:

(i) there exists a solution on [f#3,®;), and every such solution can be

extended into a solution on [, o°);

(ii) lim x,4(¢) exists and is finite;
t—3o0

(i) lim g0l = 0.

Proof

Multifunction F,; defined by (5.37) is upper semi-continuous with convex
and compact values in IRxR™7¥x(0,e). Thus, for each
(29, X4(tg)» x4(tp)) € RXIR™x(0,0), there exists a local solution
(x4, x2): [tg, @) = R™¥x(0, ). It remains to show that @; = co. We will
show this by several steps. First, we prove that x; is bounded on [#;, @;).

Now, seeking a contradiction to above, i.e. suppose that the monotonically
increasing function ¢ > x,(t) is unbounded. Then, for some
t €[0,m), 4y < w, ky(ty +1;) = £z > max {K‘;, (1 —B2)‘1y} and
(exg(tg+2,))"! = py < u). Hence, by using arguments similar to those used
in the proof of Theorem 4.4, it can be established that x(*) (and hence
y(*) = Cx(+)) is ultimately exponentially decaying on [#), @;) (and hence are
square integrable on [f;, @;)). By continuity of £ and the exponential decay of
¥, (£oy)(+) is bounded and hence 52()’(-)) is bounded. Now, consider the filter
equation part of (5.34c), i.e.

z(t) = exy()[Az(2) + By (2)] (5.56)
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e . - . . t
Let ¢4 (with inverse ¢ 4 1) be the monotonic function ¢t L exy(s) ds. Then,
0

it can be verified that

20
2(1) = exp (Apu(N2(te) + 1+ exp [Alpa(r) = )By(95 ' (5)) ds (5.57)

satisfies (5.56). Since y(+) is exponentially decaying, (o1 1)) is clearly
bounded. In view of o(4) c €, we may conclude from (5.57) that z is
bounded. Hence, from (5.34d), £,(¢) is bounded and so there exists a constant

x5 such that

k(1) < x4 (t9) + k5(t—1g), foralle 2t . (5.58)

Now, it can be shown that the function y(¢; HO)) ultimately satisfies
Iy(pz (NI < Kgexp [xq = V(kF + xgs)] (5.59)

for some positive constants k; (i = 6,7,8), and so is square integrable on
[%9, @). Again, since 6(A) ¢ C~, we may conclude from (5.57) that z(*) is -
square integrable on [#;, ®;). Thus, y,(-) is square integrable on [to:wl)
which, from (5.34d) and in view of A5.2(v) (i.e. (£oy)(*) is square integrable
on [, %)), contradicts our supposition that x; is unbounded. This establishes

that x,(+) is bounded on [#;, @, ).

Secondly, we show that x,(+) is bounded on [#;, w;). Let u*(*) be as in
(5.41) and initially we want to estimate u”(-). Since x4(*) is bounded,
k4(t) € Q, for all ¢, where Q is a compact set. Since «; > [|[K (k)| is con-

tinuous, then
74 = max {|[K; (k) : x; € Q) (5.60)
exists. Hence, [[K (x4(1))]| £ 74, for all ¢. Thus, it follows from (5.45) that,

lu*(ON1? < 262 [P2yaOI? + E2(0 ()], Koo < oo (5.61)



- 122 -

Now by using (5.61) in Lemma 5.4, yields

a2 < caf,_[ya@I? + llu* N2 + E2(s)] ds

< enf, aIds + eppf E20r(s) ds (5.622)
where

e = cg(1+2c272), ¢1p 1= c (1 +2x2). (5.62b)

In view of AS5.2(v), (£°y)(*) is square integrable on [z, ) and since y,(¢) is
square integrable on [fy, @), then we may conclude that x,(-) is bounded on
(75, ).

We have now shown that (x;(*), x4(*)) is bounded on [z, @;). Thus, it
follows that every such solution (x4, x;): [£, @) = IR™4x(0, e) with initial
value (fy,x4(%), x(%)), evolves within a compact set, and hence can be
extended indefinitely, i.e. @; = e, which proves assertion (i). Furthermofc, in
view of above arguments, assertion (ii) of the theorem follows.

It remains to show assertion (iii) of the theorem, i.e. x4(#) — 0 ast — oo.
Clearly, (ii) ensures that y,(+) is square integrable on [7;, e). We claim that
u*(+) defined as in (5.41) is also square integrable on [fy, e). This, can be
easily seen by integrating (5.61) from #; to e which yields

[T NG ds < eiaf v ds + e E2(sHds  (5.63a)
0 0 0
where

c13 = 2x2y2, cyq = 2x2. (5.63b)

In view of AS.2(v) and since y, is square integrable on [z, =), we conclude

that

[ @I ds (= tim [ u* ()] ds)
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exists and is finite, which establishes our claim. Now, using Lemma 5.4 with

u*(*) as in (5.41), we have

a2 S caf) _[ya()I? + lu" N2 + £2(p(s)] ds
= caf; Uya()I? + ") + E2((s))] ds

= e I + IO + 20N ds (564
Since [ 7,(s) ds (= lim L: 7:(s) ds) is finite, where
1) = Iy,
120) = ()2,
73(*) = E2y (),

then lim [““y(s)ds is also finitt and equals [7(s)ds. Hence,

lxy(Dll > Oast — .

5.5 An example - Suspension control system for a Maglev vehicle

In this section, we give a magnetic levitation (Maglev) vehicle example to
illustrate the application of the proposed control described in § 5.3.2. Specifi-
cally, the point mass model of Breinl and Leitmann (1983) (see also, Ryan and
Corless 1984 and éhen 19864, b) is adopted, and the same numerical values are
used here. We consider only the vertical motion of a single support magnet

(Fig. 5.3), where the system without control is unstable.
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Figure 5.3.

In state space it is governed by

x(1) = [A+AA,()]x(2) + [B+AB,(D]u(t), x(ip) =x,  (5.65)

where
z(1) 010 0
x()=|i()}; A={0 0 1 |; B=1]0}; (5:662)
Z(1) a; a; a; b
with
KR K, KK, R K,
a = ——, ay = — — , Gy (= ——, b= ———,
V" mLly” 2 m omly L, mLy,
(5.66b)

where m is the mass of the magnet; R is resistance; K, K, and K5 are gap,
current and velocity coefficients, respectively; and Lg is the nominal induc-
tance. The state vector x(¢) € R? consists of the gaf) deviation z(r) with respect
to the desired gap width zy, velocity Z(f) and acceleration Z(z). The (scalar)~
control u(t) e R is the deviation (from nominal) of applied voltage generating
the magnetic field. Furthermore, we assumed that the inpilt disturbances, e.g.

due to track irregularities are neglected.
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In practice, it is very difficult to measure the inductance accurately. Thus,
the inductance considered as uncertain, gives rise to the uncertain elements

AA,(+) and AB,(+) in the model. Particularly,

0O 0 O K,Ks
M,=L@®; 0 0 0 |, & := Ly (5.67)
-ay 8 -a3
and
AB,(t) =—L,(1)B, (5.68)

where the uncertain parameter L,(¢) represents the ratio of inductance error

L(t) - Ly to actual inductance L(¢), i.e.

L(n-Ly
L(n=—F o (5.69)
and is assumed bounded, i.e.
L, <L’ <1 (5.70)

where L, is a known constant (which plays the role of 8). Moreover, the func-

tion L.: R — [-L,, L] is assumed to be continuous.

It is assumed that z and 7 are available for measurement, thus the output

of the system is given by

y(2) = Cx(1), (5.71a)

where

o o

(5.71b)

O

— O
——
.
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Let us now check that ali assumptions of design are hold.
(i) (A, B) is controllable (obvious). Thus, A4.1 holds.

(ii) Here we use r =2 so that C, = F;C + F,CA with F; = [A2 1] and

Fy =[-22 0], and 4 < O is a design parameter.
(a) A4.2(i) holds since F,CB = 0.
(b) With F; and F, as above, we have
C, =[A? -21 1];
thus the transfer function of the linear system (C,,A,B) has the form
G(s) = N(s)D~1(s) with N(s) = (s—1)? and D(s) = s> —a3s2 —ays—a.
Hence, |[N(s)] =0 = (s-1)? =0 = 5 = 1 (s € C7). Thus, A4.2(ii) holds.

(c) C,B = b = det (C,B) = det b § 0. Hence, A4.2(jii) holds.

(iii) g(t,x,u) = AA(t)x + ga(t, u),

where
AA(1) = [—K——L, -K3L, - —K——L,] , &(t,u)=-L.(u,
2 2
with
lgs (e, wll < L} |ul

Hence, A5.1(i),(ii) hold.

(iv) It remains to check that (C, A + BAA(*)) is uniformly completely observ-

able in the sense of Definition 2.8.
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(@) Let d(-,*) be the state transition matrix function generated by
A + BAA(+). Now, for some k; and w, we have [|e?’]| < k;e® and since AA(*)
is bounded, there exists a constant k, such that |BAA(¢)|| < k. By standard

perturbation theory, it can be shown that

1DCe, $)]| < ke BRX=) forall e, s,

= as(|t-s|) foralls,s, (5.72a)
where
as: o b kel?thklo (5.72b)

Thus, condition (2.13c) of Definition 2.8 holds.

(b) Next, we want to calculate upper bound for M(t, t - 7), i.e. the obser-
vability Gramian for the pair (C, A + BAA(*)) which is given by (5.17). Using
(5.72),

IM(e, =)l < [ _lICTClI®(o, 1~ )] do
< licTellf]  ad(z)do
= 7ICTClled(7) =: ay()

(c) Finally, we have to show. that M is positive definite. Note initially that
the state transition matrix function ®(+, *) generated by A + BAA(*) satisfies
O(t,t—-17) = exp (A7) + J;t_Tcxp (A(t-0))BAA(0)DP(0,t—1) do
Now

y() = CO(t,t—1)x(t— 1)
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Then,

[L Iy do = [ (C(o,t-1)x(1=7), CV(0, 1= D)x(1 = 7)) do

= (x(t-1), L‘_tCDT(o, t—7)CTCd(o,1-7) dox(t-1))

={x(t=17), M(t, 1 —7)x(t—17))

Now, the matrix C can be written as
c=cY+cC?

where

0 100 0 000

Then,

(1) = Cx(e) = CPx(1) + CPx(s)

= y1(8) + y2(8)

Therefore, from (5.73) and (5.74),

(5.73)

(5.74)

L y@)NPdo = [ lIn(@N2do + [ ly(0)l?do 2 [ _lyi(@)I?do

Assume now j"_tllyl(o)llz do = 0. Therefore, y;(s) =0 for t-7<s<t¢

which implies C{)x(s) = 0 and, in particular, C{’x(t—r) = Q.
Also

CPi(s) = CPLA + BAA(s)]x(s)
= CAx(s) (CPBAA(s) = 0)

=0, r-7<s<t,
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and, in particular,

CRAx(1-7) = 0.

Similarly, we have

Cli(s) = CPAL(s)
= CPA[A + BAA()]x(s)
= CYA2x(s)
=0, t—-t<s5s<1t,

and, in particular, |
CA%x(1-1) = 0.

Hence,
cy
CPA |x(t-1) =0
cPA?
But (C{),A) is an observable pair and so x(¢—7) = 0. Thus,

x(=7) % 0= [ (o) do >0 = [ Iy@)?do > 0.

Hence, M is positive definite.

From (b) and (c), the condition (2.13a) of Definition 2.8 holds. Conse-
quently, we can conclude from (a), (b) and (c) that (C,A + BAA(*)) is uni-

formly completely observable.

Now, for simulation we return to equation (5.3) with the adaptation law
(5.12). For this example, the filter dynamic (i.e. equation (5.3b)) is a scalar (to

estimate x;). A realization of the filter dynamic has the form (in terms of the
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state variables)

A1) = — S (D)[x (1) — 2Ax(2)] (5.75)
with the output
z(1) = Sx(Dx(1) — 2Ax,(1)] (5.76)

wherein we have replaced fixed g in (5.3b) by variable (6x(#))~!, where § > 0
is a design parameter and x(z) > 0 is generated by the adaptation law (5.12),

ie.

S) = y2 2 2

k(1) = x{(t) + x5(¢) + xf (0. 6.7
The overall control (equivalent to equation (5.3d)) then is given by

u(®) = = k(1)(C,B) [A2x, (1) + x3(8) + Sk (O)[xK1) = 24, ()] (5.78)

For purposes of simulation, the following illustrative (numerical) parame-

ters are adopted (Breinl and Leitmann 1983):
m=16kg, R=8Q, K, =5.7x10*Nm™!, K, =K; = 114N A",
Ly =0.5VsA’l, with L’ =0.5.
The control design parameters used in simulation:
6=10, A=-15.

Figures 5.4-5.9 depict the simulated evolution of states, filter’s state, adaptation
gain and control for an initial value -
(x1(0), x2(0), x3(0), x/0), x(0)) = (1073, 5%x1073,0,0,0.1).

It is clearly seen from simulations that the example illustrated the proposed

control design.



X (0 3 m)

3.5

1.5

0.5

- 131 -

¢ (x10-1 s)

Figure 5.4. Evolution of state

10



x2 (xI0 2 ms

1.5

- 0.5

1.5

- 132 -

Figure 5.5. Evolution of state x2
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Figure 5.6. Evolution of state x 3
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CHAPTER 6

STATIC OUTPUT FEEDBACK STABILIZATION
FOR A CLASS OF UNCERTAIN "RELATIVE
DEGREE TWO" SYSTEMS

6.1 Introduction

In this chapter, we address the problem of designing static output feedback
control for a class of uncertain "relative degree 2" systems. The approach is
anologous to that of Chapter 4, but with a fundamental distinction: in Chapter
4, a realizable dynamic compensator is used to stabilize a class of uncertain
systems; in this chapter, a class of uncertain systems is stabilized by using only

a static output feedback control.

To achieve our aim, we have to impose an extra or additional set of
assumptions to the system. It is shown that, a cone-bounded uncertainty can be
tolerated by a static output feedback. Since the feedback control is based on
“worst case" design, the proposed feedback control is expected to be conserva-
tive. Thus, anologous to Chapter 5, an adaptive version of this feedback control
is conjectured to allow for bounded uncertainties with unknown bounds and to

counteract conservatism.

The chapter is presented as follows. In § 6.2, we first state the system and
ixhpose a set of assumptions which implicitly defined the class of systems to be
studied. Then, by using an approach anologous to that of Chapter 4, we estab-
lish the existence of a class of stabilizing static output feedback control for the

system. Finally, in § 6.4, an adaptive version is conjectured (anologous to
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Chapter 5) which may counteract the conservatism that induced by crude esti-
mates in the "worst case" design and which also may dispense with the require-

ment that uncertainty parameters be known.

6.2 The system and assumptions

The system to be considered is of the form
xX(t) = Ax(t) + Blu(e) + g(t, x(2), u(2))], x(t)eR*, u(r)eR™, (6.1)
with an output given by
y() = Cx(1), y(r)eR™. 6.2)

First, we impose assumptions on the nominal linear system (C, A, B).

AG6.1: (i) Transmission zeros of (C,A,B) liein C™;
(ii) CB = 0;
(iii) CAB is nonsingular;
(iv) Spectrum of CA2B(CAB)™! lies in €~ .

Next we impose structural properties on g, which implicitly define the

class of uncertain systems to be studied.

A6.2: (i) g: RxR"XIR™ — R™ is a Carathéodory function;
(ii) For all (2, x, ) € RXR*XIR™,

gt,x,u) = g1(t,x) + g,(¢t,Cx) + yu,
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with
@) llg; (¢, )|l < a;llx]l, where &; is a known constant;
®) llg2(t, Ml < x4, llyll, where ; is a known constant;

(c) there exists y* such that |y| < ¢* < 1.

6.3 Stabilizing static output feedback

In this section, we consider the problem of designing of static output feed-
back control for the class of systems described in the previous section. In order

to proceed, we first introduce the following notation and state transformation.

Let
_ . _ C
B=[B:AB] and C= | 4 6.3)
Then, by straightforward calculation,
CB 0 CAB 6.4
= | cAB cA?B (6.42)
and
_ —~(CAB) 1CA%B(CAB)™! (CAB)1
—-1 _
(CBY " = [ (CABY! 0 (6.4b)
_ _ T
Now, let T € R(*~2m)%n pe guch that ker T = im B, then T := [ E] is inver-
tible, with inverse § = [S * B(CB)™!], where
S := (I -B(CBY'C)TT(TTTY ! . 6.5)

For convenience, we write

M = CA%B(CAB)™! (6.6)



- 140 -

We now introduce the coordinate transformation (parameterized by k& > 0)

X
X Lix=X= |x

X3
where
T
L, := kC
CA-IMC
with inverse
Li' =[S : k7'8; : B(CAB)']
where

S| := AB(CAB)™! —1B(CAB) 'M
In new coordinates the system representation is

(1) = Ax(r) + Blu(o) + g(t, 2(1), u(0)]

with output
y(t) = Cx(1)
where
A k1A O
A=LAL;'=10 WM H|,
A, k71A; WM
0
B=LB=| 0 [,
CAB

C=cLyl =[0:k711:0],

(6.7a)

(6.7b)

(6.7¢)
(6.7d)
(6.8a)

(6.8b)

(6.8¢)

(6.8d)

(6.8¢)
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with
A* =TAS, A, = TA2B(CAB)™!,
A, = CA2S, A; = CAB(CAB) ! -3M?,
and

g(t,x,u) := g(t, L,’c‘l,i', u).

We now introduce the output feedback

u(t) = —k2(CABY ly(t) = —k(CAB) 1x,(2) .

Then, the closed-loop feedback system now becomes

% (8) = A% (0) + k1A x,(2)

X (1) = IMxx(1) + k3 (1)

H3(2) = Apxy (1) + k7 1Asxp(2) + M3 (2) — kop(2)
+ (CAB)g(t, 2(1), ~k(CAB) ' x, (1))

In view of A6.1(3), 6(A*) < €~ and hence

P*'A* + AP  +7I=0

(6.8f)

(6.8g)

(6.9

(6.10a)

(6.10b)

(6.10c)

(6.11)

has unique symmetric positive definite solution P*. Also, in view of A6.1(iv),

o(M) < €™ and hence

PM+MTP +1=0

has unique symmetric positive definite solution P.

We now impose our final assumption.

(6.12)
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1

A6.3: o < —
4lIPIICABIIIB(CABY "I

Regarding the feedback controlled system (6.10), we have

Theorem 6.1

There exists k* € IR such that, for each fixed k > k* the feedback con-

trolled system (6.10) is globally uniformly asymptotically stable.

Proof

The Carathéodory assumption (A6.2(i))) on g ensures that, for each
(15, %) € RxIR" there exists a local solution £(*) of (6.10) with X(1y) = ;.

Introduce Lyapunov function candidate V,: R™2"xRR™xR™ — R
defined by

Vk_(xl,xz,x;,) = ik(xl,P*xl) + (1 +7)(x2,Px2) + (X3,PX3) (6.13)

Then, along every trajectory (x;(*),x2(*), x3(*)) of (6.10), the following holds
almost everywhere

%Vk(xl(t),xz(t),x;;(t)) = KP*x, (1), A"xy(2) + k1A, %, (1))
+ 2(1 + yXPxy (1), sMx, (1) + kx3(2))
+ 2(Px3(2), Ayxy (8) + k1 Ay xy (1) + M5 (2)

— kxy (1) + (CAB)g(t, (1), ~k(CABY x5 (£)))
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In view of A6.2, (6.7c) and (6.8g),

2y, Gy (0, 2,(0), 131)) € =¥l (DI + 1P Al Do)l

dt
=34+ 2 + 2k +7XPxy(2), x3(1))
+ 21 PA llx (OWlxs ()l + 261 [PAs llxa (D) Iz ()]
—3lxs (D11 — 2K(Px3(8), x2())
+2||P|CABJ| [ IS lx, (Dl lixs (D
+ aykH1S; (O lllxs ()1l + e I1B(CABY Hlllxs (01
+ ok Hixa ()lllxs (D] — 2kKPx3(2), x2(2))
lIlx; (DI flx; ()]
< =3{ | Il |, M | 101 [ ) (6.142)
s ()l llx3 ()]
where
k -m; -my
M, = {-m (-%%) -my (6.14b)
"M2 —m3 M4
with

my = |IP*All, my = 2[I1PAy|l+ e IPIICABIIISIN
my = 2~ [|PA3 |+ IPIICABII(e ISy Il + @)1 ,

my = 1-4a;|P||[CAB||[B(CAB)™|.
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Note that (1-y"*) and my are positive by virtue of A6.2(c) and A6.3. Thus,
there exists k* such that (6.14a) is a positive definite quadratic form for each

fixed k > k*. Hence, the result follows.

6.4 Conjectured stabilizing adaptive output feedback

In the previous section, if A6.1-A6.3 hold, the original system (6.1,6.2) is
uniformly asymptotically stabilized by the static output feedback (6.9) for each
fixed k£ > k* and sufficient information is available to compﬁte k*. Here, we
consider the case for which A6.1 holds but now we only require knowledge of
CAB. A6.2 and A6.3 also remain in force but the constants «; and @, in

A6.2(ii)(a-b) may be unknown.

Replace fixed k > k* in (6.9) by variable x(z) to yield

u(t) = — x2(¢)(CAB) ly(z) (6.15)

and let x(¢) evolve according to an adaptation law

k(1) = [I(CABY 'y(D)lI? (6.16)

Then the adaptively controlled system becomes

() = A" x (1) + k1A x(2) (6.17a)
ip(1) = MM (8) + kg (1) (6.17b)
x3(1) = Apxp (1) + k71A3x0(2) + M3 (2) — k™1 x2(2)x,(2)

+ (CAB)2(t, %, — k™ x2(2)x,(2)) (6.17¢)

£(2) = [(CAB)Y ly(n)|? (6.17d)
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We conjecture the following:

Conjecture 6.1

For all initial data (%, (%), k(%)) € RxIR"XIR*, the adaptively con-
trolled system (6.17) possesses the following properties:

@) }_i_)nl x(t) exists and is finite;

(i) lim |[x()] = 0.
t—o0

A possible proof might be constructed along the following ﬁneé.

(i) Suppose that the monotonically increasing function ¢ > x(r) is
unbounded. Then, for some #; 2 0, x(tx+¢) =k > k*. Hence, the result of
Theorem 6.1 would suggest that £(+) (and hence y(*) = €%(*)) is ultimately
exponentially decaying on [#y, =) (and hence are square integrable on [#;, ¢°)).
At present, ‘we are unable to prove this. However, if this is true, then x, is
square integrable on [#y, e2), which from (6.17d) contradicts with supposition
that x(t) is unbounded. Hence, the results of (i) would follow.

(ii) Now, if x(¢) is bounded (say «x..), then by virtue of (6.17d), y (and
hence x,) is square integrable on [7;, ). This and in view of asymptotic stabil-
ity of A* in (6.17a) yields x; (and X;) square integrable on [y, °0).

To proceed in the argument, we now consider the subsystem (6.17c) and a

Lyapunov function candidate W: IR™ — R given by

W(x3) = {(x3, Px3) (6.18)

Then, along any solution (X(*), k(*)) of (6.17c), the following holds almost
everywhere
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-‘%W(x:;(t)) = (2Px;3(1), IMx;3(2) + Ayx (8) + k‘l(A3 - lcz(t)l)xz(t)

+ (CAB)g(t, %, — k™12 ()x(1)))
< — 31 - 4oy |PIIICABYIIB(CCABY  1llx3 () 1|2

+ 2]|Px3(0)|1f (x1(8), x5(2)) (6.192)

where

f(x1,x9) = (1421l + &, ICABIIS; 1] 11x, I

+ kU [IAs |+ A= 7")x2 + [ICAB|I(ay IS 1| + )] lIx, |l
(6.19b)

Note that, the coefficient of |x; |2 (in the bracket) of (6.19a) is positive by vir-
tue of A6.3 and f(x;(*),x,(*)) is square integrable on [f, =) (since x; and x,

are square integrable on [1;, <°)).
Now, let

¢ := 1 — 41 ||P[|ICAB|||IB(CAB)'|| > 0O, (6.20)

then (6.19a) can be rewritten as

£ W) < - el + 2PHBOL O, 5 0)
< - aulls®I? + o lsOIFC©.u0), o =i, c = 2P

2 € 2
< - clix)® = [allx @l = == fF(x1 (1), x, ()]
2

2
+ 2Ol + 42—22f2<x1(r>.x2<r»
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2 2, 3 :
<= (g —a)lx@dI° + “4;2—f (x1 (1), x2(2)) 6.21)
Integrating (6.21) from ¢, to <, yields

2
W () = Wi (r) < = (e —a?) [ llxs(0)l1 > dr + fﬁ; [ 2@, () dr

<-(er—a))f @l de + x,

since f(x;(*),x,(*)) is square integrable on [#;, «2). Now, by choosing & such

that ¢; > @2 and rearranging, we have, for all 7 > £,

(c1 =) [ x3(D11 dr < Wxs (1)) — Wxs(7)) + x

< W(.X3(t0)) + k= Ml (6.22)

Therefore x5 is square integrable on [#;, ).

Consider now the subsystem (6.17b). Since c(M) ¢ €~ and subsystem
(6.17b) with square integrable input x3, then x, (hence X,) is square integrable
on [y, ). Thus, we could conclude that ¥ (and hence %) is square integrable

on [1, «). Hence, [|X]| > O as t — oo,
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CHAPTER 7

CONCLUSIONS

7.1 Introduction

This chapter aims to conclude the thesis by summarizing and discussing
the results obtained and briefly indicate some suggestions for future research

and highlight some possible extensions and applications.

Main results are summarized and discussed in § 7.2, while in § 7.3 we
indicate some possible extensions of our work motivated either by some
unresolved problems which arose during the investigation or by potential gen-

eralizations to a wider framework.

7.2 Summary and discussion of the main results

In this section, we summarize and discuss the main results obtained in
Chapters 3-6. It is our intention to relate our results with other recent develop-
ments in feedback control design of uncertain dynamical systems. We present it

chapter by chapter.

7.2.1 Summary and discussion of Chapter 3

The main result of this chapter was presented in Theorem 3.2. It was

shown that for arbitrary admissible uncertainty realization F € ¥, the observer-
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feedback controlled system is ultimately bounded with respect to every
Lyapunov ellipsoid containing the closed ball En(nl). In Lemma 3.1, we have
proved the existence and continuation of solutions for the overall observer-
feedback controlled system. Preceding that (in Theorem 3.1) we have esta-
blished the existence of a stabilizing state feedback control by Iassuming the

entire state is available for feedback purposes.

Our work here is an extension of that of Breinl and Leitmann (1983) in
the directions which may be summarized as follows. First, we have used the
Corless and Leitmann (1981) approach in the control design whereas they used
Leitmann (1979b) approach. Secondly, we have generalized cone-bounded
uncertainties to quadratically-bounded uncertainties. Thirdly, condition 7B = 0
was imposed there whereas here we relaxed it to ||TBg(¢)]| < constant. We
remark from Kudva et al. (1980) that the condition TB = 0 holds if and only if
rank CB = rank B = m and transmission zeros of (C, A, B) is stable. Thus, the
results obtained here are stronger than before. Furthermore, Lemma 3.1 pro.vide
the existence and continuation of solution of observer-feedback controlled sys-

tem, which has not given earlier.

7.2.2 Summary and discussion of Chapter 4

We have proposed a new method of design of stabilizing dynamic output
feedback of a class of uncertain systems. This was accomplished by initially
considering "hypothetical” output y, and then (in Theorem 4.1) a stabilizing
static output feedback for hypothetical system was established by using the
Steinberg and Ryan (1986) approach (fundamentally based on Barmish, Corless
and Leitmann 1983). Then, the static output feedback was approximated by a

realizable dynamic compenstor which filters the actual output y, and by using
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singular perturbation analysis akin to that Saberi and Khalil (1984) and Corless
et al. (1989), it has been shown (in Theorem 4.2) that the feedback controlled
system is globally uniformly asymptotically stable provided that the filter
dynamics are sufficiently fast. A calculable threshold measure of fastness was

provided (in Theorem 4.2).

By an analogous approach, we have generalized the proposed control '
design to include more general systems (i.e. to allow for additional uncertain-
ties) by admitting a nonlinear discontinuous con&ol component, modelled by an
appropriately chosen set-valued map, and the overall controlled system conse-
quently interpreted in the generalized sense of a controlled differential inclusion
(Aubin and Cellina 1984). The additional structure on the uncertain function g
were imposed in A4.4 and A4.5, and equivalent results were stated in Theorem

4.3 for static case, and in Theorem 4.4 for dynamic compensator case.

Our work here has been inspired by that of Steinberg and Ryan (1986)
who suggested that their approach may be feasible for the case r > 2. It is our
aim to extend their approach to multivariable version and to the cases r 2 2..

Case r = 1 turned out to be our special case.

In the discontinuous case, we generalized the Ryan (1988) approach to the
case r 2 2 with the help the results of Leitmann and Ryan (1987) on the

decomposition of g.

7.2.3 Summary and discussion of Chapter 5

In this chapter, we have developed a stabilizing adaptive control, which
mainly to circumvent the inherent conservatism induced by the crude estimates
in a "worst case" design occured in Chapter 4. Moreover, it is applicable to the

case for which bounds on the uncertainties may be unknown (i.e. to allow for
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bounded uncertainties with unknown bounds (Corless and Leitmann 1983,

1984)).

Our initial result contained in Theorem 5.1 where we have looked at a
special case, i.e. r = 1. By Lyapunov analysis, it was shown that the adaptively
conirolled system exhibits the properties of universal adaptive stabilizer. For
cases r = 2, we first proved Lemma 5.1 which is the non-autonomous version
of Mirtensson’s Lemma (M&rtensson 1986). Then, by using this lemma, we
proved Theorem 5.2 which is our main result in adaptive control for the linear
case. However, further conditions were imposed on g in order to apply the

lemma.

Adaptive strategy is then generalized by expanding the class of allowable
uncertainties. We developed an associate generalized adaptive output feedback
strategy which is in the spirit of Ryan (1988) and akin to that of Martensson
(1986), i.e. we expand to the cases r = 2 by using Martensson’s method. How-
ever, this generalization is achieved at expanse of extra assumptions on the
uncertain function g which is given in AS5.2. In this discontinuous case, we
first established Lemmas 5.3 and 54 (Lemma 5.4 is generalized non-
autonomous version of Mirtensson’s lemma). Then, by using these lemmas we
proved the main result for the discontinuous case, which is given in Theorem

5.3.

Finally, we gave an example (a Maglev vehicle model) to illustrate the

application of the proposed control design (linear case only).
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7.2.4 Summary and discussion of Chapter 6

We addressed here the ﬁmblcm of designing static output feedback for a
class of uncertain "relative degree 2" systems. In the first part, the approach
undertaken is similar to that of Chapter 4, to show that there exist a stabilizing
static output feedback control and was established in Theorem 6.1. Then, since
the design is based on "worst case" analysis, we also conjectured an adaptive
version of the static output feedback control by using a similar approach to

Chapter 5 and was stated in Conjecture 6.1.

Our main aim here was to extend Morse (1985) and Steinberg and Ryan
(1986) works to multivariable case and to avoid of using of dynamic compensa-
tor in Steinberg and Ryan (1986). This is done by imposing an extra set of
assumptions which was given in A6.1. However, as might be expected, the
structural properties on uncertainties are more restrictive as stated in A6.2 and

A6.3.

7.3 Suggestions for future work

We briefly indicate here some possible extensions of our work which
might be pursued, or some directions in which the work can be extended, in
response to the recent trends in feedback design (see, for example, Kokotovié
1985, DeCarlo et al. 1988 and Ljung 1988 for surveys) and in context of deter-

ministic control of uncertain systems.
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7.3.1 Observer-based design

One of possible direction in which our work might be extended is non-
linear observers. Recently, this field of research has attracted many researchers,
see for example, Walcott et al. (1987). This field may be subdivided into: exact
linearization (Hunt et al. 1983, Su 1983) which transforms the original non-
linear system into an equivalent linear system, observers with linearizable error
dynamics (Krener and Respondek 1985, Respondek 1985) and variable struc-
ture system observers (Walcott and Zak 1987). Since our design has close links
with variable structure system theory, the latter is a promising area of extension

(see reference cited above and recent paper by DeCarlo et al. (1988)).

One of the problems that arose in this design is that y, is required to be
sufficiently small. One way to overcome this is to select it in optimal manner.
An approach based on the stability radius of Hinrichsen and Pritchard (1986a,
b) may be appropriate. .

7.3.2 Dynamic compensator-based design

A recent development in singular perturbation theory is the use of
geometric methods (see, e.g. Kokotovié¢ 1985). Our work might be extended in
this framework, in particular along the lines of Khorasani and Kokotovi¢ 1987
and Shakey and O’Reilly 1987. Moreover, since our singular perturbation
analysis is akin to Saberi and Khalil (1984), other possible direction is via com-
posite control (see, e.g. Saberi and Khalil 1985); this approach has been used
recently by Garofalo (1988).
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7.3.3 Adaptive-based design

For this design, the possibility of using others adaptation laws is very
promising, for example, adaptation laws of Ilchmann et al. (1987). Since
universal adaptive stabilization is an active area of research recently, and the
problem still far from complete (see Helmke and Pritzel-Wolters 1988), explor-

ing further other adaptation laws along these lines is warranted.

7.3.4 Static output-based design

Certainly, some generalization could be done in this design, since only a
few papers have appeared for “"relative degree 2" systems (Morse 1985 and
Steinberg and Ryan 1986), but the first task is to prove Conjecture 6.1 along
the lines indicated.

One of possible extension to this design is to relax some assumptions. In
particular, assumptions AG6.1(ii)-(iii) could be replaced by condition
rank [CB : CAB] = m and modifying A6.1(iv) accordingly. Tentative work in
this direction suggests that, using a particular state transformation, stabilizing
static output feedback is feasible. Then, an adaptive version might also be

developed.
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