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ABSTRACT

This thesis considers aspects of deterministic control of uncertain dynami­

cal systems, with particular reference to the design of observers, dynamic com­

pensators and adaptive stabilization.

A major objective in deterministic theory is synthesis of feedbacks, based 

only on available knowledge of properties and bounds relating to the uncer­

tainty, which guarantee that every member of the underlying class of uncertain 

systems exhibits some prescribed stability property. In achieving this objective, 

an assumption of full state measurement is frequently made; this is difficult to 

justify in practice where, generally, not all components of state can be meas­

ured. With the aim of relaxing this assumption, we consider two approaches to 

output-based design for classes of nominally linear uncertain systems.

In the first approach, we employ an observer to reconstruct the missing 

state components. The proposed control consists of a linear part to stabilize the 

nominal linear system and a nonlinear part to counteract uncertainties (non­

linear).

In the second approach, a dynamic output feedback control is proposed. 

Using a singular perturbation method, a threshold measure of "fastness1' of the 

feedback dynamics, to ensure overall system stability, is derived. This threshold 

is calculable in terms of known bounds on the system uncertainties, but may be 

conservative in practice. To circumvent this drawback and to allow for bounded 

uncertainties with unknown bounds, an adaptive version of the proposed design 

is then developed.



The class of controls considered is extended to encompass discontinuous 

feedback which is modelled by an appropriately chosen set-valued map and the 

feedback controlled system is interpreted as generalized dynamical system. By 

using this formulation, we can enlarge the class of allowable uncertainties.

Finally, a class of "relative degree two" systems is considered as a special 

case of our general dynamic output feedback design. It is shown that this spe­

cial class of systems can be stabilized by a static output feedback.
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CHAPTER 1

DETERMINISTIC CONTROL OF UNCERTAIN 

DYNAMICAL SYSTEMS

1.1 Introduction

The process of mathematically modelling a physical dynamical system, in 

order to predict or to control its behaviour, generally induces some degree of 

imprecision or uncertainty. Typical uncertainties in the model are internal 

parameters, possibly time-vaiying, which are unknown or imperfectly known; 

uncertainties in the input (i.e. extraneous disturbances impinging on the sys­

tem); and uncertainties in the state (i.e. measurement errors). These so-called 

uncertain dynamical systems have attracted much research recently, see for 

example, Gutman and Leitmann (1976a, b), Leitmann (1977, 1979b, 1980, 

1981), Gutman (1979), Molander (1979), Corless and Leitmann (1981, 1983, 

1984), Thorp and Barmish (1981), Gutman and Palmor (1982), Barmish and 

Leitmann (1982), Barmish, Corless and Leitmann (1983), Ryan (1983), Slotine 

and Sastry (1983), Balestrino et al. (1984), Ryan and Corless (1984), Ambro- 

sino et al. (1985), Barmish (1985), Chen (1986a, 1988), Petersen and Hollot 

(1986), Chen and Leitmann (1987), Corless (1987), Goodall and Ryan (1988), 

and bibliographies therein.

With view to designing controllers for such uncertain systems, there are 

essentially two main approaches available to designer. The first approach is sto­

chastic control theory, which is appropriate if a priori statistical characteriza­

tion of the uncertainties in the system dynamics are available (e.g., see Astrom



1970). The second approach is deterministic control theory, which is appropri­

ate in cases for which the available information takes the form of known func­

tional properties and bounds relating to the uncertain elements in the model.

Within the deterministic framework, one seeks feedback control which 

attempts to guarantee certain behaviour in the presence of uncertain information 

in the sense that every possible trajectory of the uncertain systems exhibits the 

desired behaviour. This desired behaviour is frequently asymptotic stability or 

ultimate boundedness.

Techniques of deterministic control in the presence of uncertainty separate 

into two categories. One category is variable structure systems theory, which 

developed initially in the USSR (see e.g. Itkis (1976), Utkin (1977, 1978)). 

This theory is based on the concept of an ’’attractive" design manifold, in the 

sense that neighbouring system trajectories are drawn onto the manifold and 

subsequently constrained to remain thereon. In addition, variable structure con- 

cepts are usefully employed in systems with uncertain and time-varying param­

eters in view of the invariance properties of "sliding modes" (Drazenovid 

1969). The second approach is Lyapunov-based theory developed by Leitmann 

and others, which originated in differential games analysis (see e.g., Leitmann 

1976, Gutman and Leitmann 1976, Gutman 1979). In essence, this approach is 

based on the construction of a Lyapunov-type function V for the nominal sys­

tem (i.e. the system in the absence of uncertainty). The controllers are syn­

thesized such that they guarantee negativity of the time derivative of V  along 

the solutions of the uncertain system under the "worst case" uncertainty. Once 

a controller has been generated, it guarantees the stability of the feedback sys­

tem for all admissible uncertainty, since it is initially designed based on a 

"worst case" assumption. This design is sometimes called "the Lyapunov min- 

max" design (Gutman 1979). These two approaches, although historically dis­



tinct, are in fact, closely related. It has been shown (Ryan 1983, Ryan and 

Corless 1984 and Goodall and Ryan 1988) that the strengths of both theories 

could be exploited in a unified design which guarantees global uniform asymp­

totic stability or global uniform ultimate boundedness of a class of the feedback 

systems with bounded uncertainties.

It is often convenient when designing feedback control systems to assume 

initially that the full state of the system to be controlled is available through 

measurement Thus, one might design a state feedback control law which can 

be implemented on the system. This is, for example, the control law that results 

from solution of a linear quadratic problem, from pole assignment problem, and 

from numerous other techniques that ensure stability and in some sense 

improve system performance. This state feedback approach has been success­

fully adopted by many researchers in the context of deterministic control of 

uncertain systems, see for example, Leitmann and others and their bibliogra­

phies, in the references cited above. Of particular interest are the approaches of 

Corless and Leitmann (1981) and Barmish, Corless and Leitmann (1983). In 

the former, it was shown that there exists a class of continuous state feedback 

controls which guarantee that every response of the system is uniformly ulti­

mately bounded within an arbitrary small neighbourhood of the zero state. 

While in the latter, it was shown that the controller can be selected to be a 

linear time-invariant feedback of the state when the nominal system dynamics 

happen to be linear time-invariant. Moreover, it was illustrated by an example 

that a linear stabilizing controller can sometimes be constructed even when the 

system dynamics are nonlinear.

In general, however, not all states are available for measurement. This 

may be due to various technical reasons, for example, the measurement is too 

expensive, or it is strictly impossible to measure all the states. As a result, the



feedback control law cannot be implemented. If that is the case, i.e. if only 

some states are measurable, an output-based controller is desirable. In the 

underlying principle of output feedback design, one has to use either "direct 

methods" or "indirect methods". A direct method is usually a "new" approach 

that directly accounts for inaccessibility of the entire state. Among papers writ­

ten on stabilization of uncertain systems via static output feedback are Stein­

berg and Corless (1985) and Chen (1987c). Meanwhile, in the indirect method, 

one has to determine a suitable approximation to the state that can be incor­

porated in the feedback law. In essence, this approach results in a decomposi­

tion of the control design problem into two phases. The first phase is design of 

the control law assuming that the full state is available. This may be based on 

optimization or other design techniques and typically results in a control law 

without dynamics. The second phase is the design of a system that produces 

an approximation to the state. This system is called an observer, and was first 

developed by Luenberger (1964). Since then, observer theory has been extended 

by several researchers to include time-varying systems, discrete systems, and 

stochastic systems (see e.g. Luenberger 1971 and O’Reilly 1983). For feedback 

control of uncertain systems, observer-based design can be found in, for exam­

ple, Leitmann (1981), Breinl and Leitmann (1983), Galimidi and Barmish 

(1986), Barmish and Galimidi (1986), Chen (1986b, 1987d) and Schmitendorf 

(1988c).

One of the fundamental issues in stabilization of uncertain systems is: 

what a priori assumptions must be imposed on the manner in which the uncer­

tainties enter structurally into the state equations in order to guarantee stabiliza- 

bility. In the cases of many previous references, these assumptions were 

known as matching conditions. These conditions have been exploited exten­

sively in the literature dealing with stabilization using full state feedback, see 

e.g., Leitmann (1977, 1980), Gutman (1979), Corless and Leitmann (1981).



Many attempts have been made to relax these conditions to some extent. For 

example, in Leitmann and Barmish (1982), it is shown that ultimate bounded­

ness is still possible as long as a measure of mismatch does not exceed a thres­

hold limit; in Thorp and Barmish (1981), these matching conditions are some­

what generalized leading to a weaker requirement on the system structure; also 

in Molander (1979), the structure of the uncertainty was constrained by sub­

space relationships, in which its essentially play the role of matching condi­

tions; and recently, Chen and Leitmann (1987) generalized the threshold 

mismatch by introducing the notion of "mismatch envelope".

A second fundamental issue is the question of robustness with respect to 

neglected dynamics. Suppose that a system consists of two subsystems, i.e. 

slow and fast dynamics. A desired property is derived for reduced-order system 

(i.e. a system in the absence of fast dynamics). The question then to be con­

sidered is essentially that of robustness with respect to neglected dynamics, viz.
«

how does the presence of fast dynamics affect the performance of the feedback 

controlled uncertain system. It has been shown (Leitmann et al. 1986, Leit­

mann and Ryan 1987, Corless 1987 and Corless et al. 1989) that, under 

appropriate assumptions, the desired property of the reduced-order system is 

structurally stable in the sense that it is qualitatively retained by the full system 

provided that the neglected dynamics are sufficiently fast. Related questions of 

robustness are addressed in, for example, Khalil (1981, 1984), Young and 

Kokotovid (1982), Kokotovid (1985), Vidyasagar (1985), O’Reilly (1986), 

Garofalo (1988) and Linnemann (1988).

In the approach popularly known as adaptive control, controller parame­

ters are adjusted continuously according to an adaptation law. A survey of the 

adaptive control theory and its applications through 1970s was given by Astrom 

(1983). The research in the 1980s started by focusing on the robustness of
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adaptive schemes with respect to disturbances and unmodelled dynamics (see 

discussion by Kokotovid 1985). One active area of research in adaptive control 

recently is called universal adaptive stabilization. These type of stabilizers are 

popularly known as "Nussbaum" controllers (Nussbaum 1983). Their applica­

tion to minimum phase plants of relative degree one with unknown high- 

frequency gains was analyzed by Willems and Byrnes (1984), Mudgett and 

Morse (1985), Owens et al. (1987), Logemann and Owens (1988), and many 

others. The emphasis in this new work, essentially is the problem of reducing a 

priori information requirements. That is, the issue of concern is to determine 

the extent to which one can relax requirements such as that the plants degree 

and relative degree are known, the plant is minimum phase, and the sign of 

high-frequency gain is known. This research has culminated in necessary and 

sufficient conditions for universal adaptive stabilization (see, Byrnes et al. 

1986, MSrtensson 1986).
«

This thesis is concerned with the problem of designing an output stabiliz­

ing controller for several classes of uncertain systems. Our study is restricted to 

linear time-invariant nominal systems. In the context of the above discussion, 

we will be looking at both methods (i.e. direct and indirect) and adaptive con­

trol. The precise formulation will be given in the next section.

1.2 Problem formulation

In this section, we formulate the general class of uncertain systems to be 

studied.

We consider uncertain nonlinearly perturbed linear systems of the general

form

x(t) -  Ax(t) + Bu(t) + F (r,* (r), u(t)) , (1.1)
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where x(t)  e  1R" is the state, u(t) e  lRm is the control, and F is an unknown 

function from the set 7  of all admissible perturbations to the system. We 

assume also that the only available state information is given by the output

where y(t) e  JRP (m < p <, n), and co(t) e JRP is bounded measurement noise. 

The triple (C ,A ,B ) defines a nominal system (i.e. system in absence of uncer­

tainty).

The problems studied (in general) may be stated as follows:

(i) Observer-based design (Indirect Method)

The objective is to design an observer-based feedback control law, i.e. to deter­

mine a Carathdodory function ti: IRn —»IRm such that the control

where £  is an estimate of the state x, guarantees that, for each uncertainty reali­

zation F € 7* the zero state of (1.1,1.2) with control (1.3) is ultimately 

bounded with respect to an "acceptably small" neighbourhood S of the zero 

state, in the sense that the state enters and remains within S after a finite inter­

val of time.

(ii) Compensator-based design (Direct Method)

The objective is to design a dynamic compensator-based feedback control law, 

i.e. to determine Carathdodory functions / ,  <p: !RxIRmxIR<? —>IRm such that 

the controller

y(t) = Cx(t) + e>{t) , (1.2)

u{t) =  am)) (1.3)

m )  = f ( t ty(t),  z (0 ) , z(t) e IR? , p > 0 , (1.4a)

u{t) = p (f ,y (0 ,z (0 ) (1.4b)



guarantees that, for each uncertainty realization F e y ,  the zero state of 

(1.1,1.2) with control (1.4) is globally uniformly asymptotically stable (in the 

sense of Lyapunov).

1.3 Design approaches, motivations and contributions

In order to achieve the objectives as given in § 1.2, we describe here the 

motivation of method of studies, the design approaches undertaken, and our 

main contributions to deterministic control of uncertain systems, particularly in 

design of observers, dynamic compensators and adaptive control. We present 

these under separate sub-titles, i.e. observer-based design, dynamic 

compensator-based design, adaptive-based design and static output-based 

design. We remark that each approach applies to a different class of systems.

«

1.3.1 Observer-based design

As we have mentioned in § 1.1, the observer-based design is based on an 

estimated state. The approach used is first to obtain a feedback control by 

assuming that the full state is available and then use an estimated state in the 

implementation of the controller. The estimated state is generated via a 

reduced-order observer which is based on the nominal system. This idea of 

using an observer based on the nominal system is due to Breinl and Leitmann 

(1983). The general feature of their approach is that the control consists of two 

parts, i.e. linear and nonlinear. The linear part is used to stabilize the nominal 

system, whereas the nonlinear part is designed to cope with uncertainties, i.e. it 

is designed to guarantee ultimate boundedness of the zero state in the presence



of bounded uncertainties.

Our study is similar in principle to that of the above mentioned paper, we 

extend the approach to more general class of system uncertainties. Specifically, 

Breinl and Leitmann, consider only cone-bounded uncertainties whereas here 

we relax to non-cone-bounded, i.e. quadratically-bounded uncertainties.

Some previous works related to this observer-based design, can be found 

in, for example, Barmish and Galimidi (1986), Galimidi and Barmish (1986), 

Chen (1986b, 1987d) and Schmitendorf (1988c). However, except for Chen 

(1986b, 1987d), their designs are based on other approaches, e.g. based on 

"quadratic stabilizability" (see e.g. Barmish 1985) and a Riccati equation 

approach (see e.g. Petersen and Hollot 1986).

1.3.2 Dynamic compensator-based design

In this direct method, we propose a new dynamic output feedback control 

design for a class of uncertain systems. Our approach is similar in concept to 

that of Steinberg and Ryan (1986). The main feature of the approach is that the 

positive realness condition, required by the static output feedback design 

method of Steinberg and Corless (1985), is not imposed on the class of uncer­

tain systems. Thus, our approach is applicable to a wider class of systems.

In essence, the approach is as follows. The control design is first carried 

out by considering a "hypothetical" output yh for the system, to establish a sta­

bilizing static output feedback control (which generally is unrealizable). This 

static control is then approximated by a realizable dynamic compensator (with 

parameter n  > 0) which filters the actual system output y. Physically, the 

parameter n  is a measure of "fastness" for the filter dynamics; analytically, fi 

plays the role of a singular perturbation parameter. Using a singular
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perturbation analysis akin to that of Saberi and Khalil (1984) and Corless et al. 

(1989) (a detailed discussion of the use singular perturbation method as a tool 

to resolve many problems and its applications can be found in, e.g. Kokotovid 

et al. 1986), a threshold measure //* of "fastness" of the compensator dynam­

ics, to ensure overall system stability, is then derived. This threshold is calcul­

able in terms of known bounds on the system uncertainties but corresponds to a 

"worst case" value it may be conservative in practice. To counteract this 

inherent conservatism and to allow for bounded uncertainties with unknown 

bounds, an adaptive version of the compensator is also developed (discussion in 

the next sub-section).

In this design, the main aims are threefold. First, to relax the minimum 

phase and relative degree 1 conditions of the nominal system. In Steinberg and 

Corless (1985), these conditions are imposed on the system, but here we only 

need that the "hypothetical" nominal system is minimum phase and relative 

degree 1. Thus, our system under consideration has relative degree > 2; relative 

degree 1 turns out to be a special case. Secondly, to find a relationship (if any) 

between observer-based design and dynamic compensator-based designs. 

Thirdly, to generalize to more broader class of uncertain systems by admitting a 

discontinuous control. However, when a discontinuous control is coupled with 

system (1.1,1.2), the resulting system is governed by a differential equations 

with discontinuous right hand side. For such equations, the classical 

Carathdodory theory and concepts of solution are inappropriate. Consequently, 

the discontinuous feedback system is interpreted in the sense generalized 

dynamical system (see, e.g. Gutman 1979, Leitmann 1979), and defined via a 

differential inclusion (see, e.g. Aubin and Cellina 1984, Clarke 1983). This last 

aim (i.e. generalized feedback control) is achieved by adopting an approach that 

essentially of Ryan (1988). In order to include a more general class of system, 

i.e. to allow for unknown bounds with bounded uncertainties, the adaptive
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version to this design (i.e. generalized adaptive control), is also developed (dis­

cussion in the next sub-section).

1.3.3 Adaptive-based design

The design approach that has been described in § 1.3.2 will work well if 

we are given all information that fulfil the requirements of the design. We now 

consider the case for which bound on the uncertainties may be unknown. 

Recent developments in adaptive control of uncertain systems containing unk­

nown functions with uncertain bounds has been made by Corless and Leitmann 

(1983, 1984).

Our design approach is also in similar spirit to that of Corless and Leit­

mann (1983, 1984), but it is developed by an approach which is essentially 

based on Martensson (1986). In that paper, he has used a rather weak assump­

tion, viz. the order of any stabilizing regulator is sufficient a priori information 

for universal adaptive stabilization (see also, e.g. Byrnes et al. 1986). This 

adaptive version has a close relationship with compensator-based design that 

proposed in § 1.3.2, since it also has three aims. First, it is designed to coun­

teract the inherent conservatism that results from crude estimates in "worst 

case" analysis. Secondly, to allow for bounded uncertainties with unknown 

bounds. Thus, this adaptive-based design may be regarded as an extension to 

the compensator-based design. Thirdly, to generalize to a more general class of 

uncertain systems, viz. by admitting a discontinuous control and analyzed in 

generalized sense of controlled differential inclusions (e.g. Aubin and Cellina 

1984). We develop a generalized adaptive feedback control which follows that 

of Ryan (1988).
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1.3.4 Static output-based design

In § 1.3.2, it was claimed that it is possible to design a stabilizing dynamic 

output feedback control for a class of uncertain systems, with "relative degree" 

> 2. A natural question one might ask here is: is it possible to stabilize uncer­

tain "relative degree 2" systems by using only static output feedback control?

We address in Chapter 6 the problem of designing static output feedback 

for a class of uncertain "relative degree 2" systems. This work has been 

motivated by our work developed in § 1.3.2 and the works of Steinberg and 

Ryan (1986) and Morse (1985). In Steinberg and Ryan (1986), as we have 

mentioned earlier, used a realizable dynamic compensator to stabilize a class 

of uncertain systems with relative degree 1 or 2. While, Morse (1985), has 

developed an universal controller which can adaptively stabilize any strictly 

proper, minimum phase system with relative degree not exceeding two.

However, in both above mentioned papers, they have only considered a 

class of single-input single-output systems. In Chapter 6, we extend it to mul­

tivariable case. It will be shown that we can design a static output feedback 

control for a class of uncertain systems, by imposing an extra or additional set 

of conditions on the system. Apart from the extra conditions, the procedure 

undertaken is similar to that used in § 1.3.2. Since it is designed on "worst 

case" analysis, the proposed feedback control is expected to be conservative. 

Thus, an adaptive version of this feedback control is conjectured; however sta­

bility of this remains an open question.
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1.4 Organization of the thesis

The main results are contained in Chapters 3 to 6. Apart from this intro­

ductory chapter, the thesis is organized as follows.

Chapter 2 reviews the fundamental mathematical concepts that serve as 

foundations for our work. This includes the existence solutions of ordinary dif­

ferential equations and differential inclusions, Lyapunov’s stability theory, 

structural properties of linear systems (i.e. controllability and observability), 

feedback concepts including generalized feedback, observer theory, singular 

perturbation theory and universal adaptive stabilization.

We present our first results in Chapter 3. In that chapter, we incorporate 

an observer in an output feedback law in order to stabilize a class of uncertain 

systems. This observer-based design is preceded by establishing the existence 

of a full-state feedback stabilizing control.

In Chapter 4, we address the problem of design of dynamic output feed­

back controls for a class of uncertain systems. Here, we propose a new method 

to handle the problem by using singular perturbation theory. The second part of 

the chapter constitutes a generalization of the above proposed control design by 

admitting a discontinuous control component, modelled by an appropriately 

chosen set-valued map and interpreted in the generalized sense of a controlled 

differential inclusion.

Our proposed controller presented in Chapter 4 is designed by adopting a 

"worst case" analysis. Thus, the compensator is expected to be conservative in 

practice. To counteract this inherent conservatism and to allow for bounded 

uncertainties with unknown bounds, an adaptive version of the compensator is 

then developed in Chapter 5. Again, as in preceding chapter, the generalized 

adaptive control is developed by admitting a discontinuous control component 

modelled by a suitably chosen set-valued map.
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Chapter 6 is devoted to a special class of uncertain systems known as 

"relative degree two" systems. We consider the possibility of stabilization of 

that special class by a static output feedback. A class of controllers indeed 

exists for this type of system by imposing an extra set of conditions on the 

nominal system. Since the "worst case" analysis is also adopted, the controller 

is expected to be conservative, and consequently an adaptive version is conjec­

tured to allow for bounded uncertainties with unknown bounds and to circum­

vent the conservatism.

The thesis closes with Chapter 7, which gives summary and discussion of 

the results obtained, indicating some suggestions for future research and 

highlighting some possible extensions and applications.
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CHAPTER 2 

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The present chapter reviews the fundamental concepts that relate to our 

work. These ideas and concepts are presented to provide foundations and tools 

for our design and analysis. Since we are dealing with stabilization and com­

pensation of a class of dynamical systems, the items of interest are: the 

existence of solutions of ordinary differential equations and differential inclu­

sions, Lyapunov’s stability theory, controllability and observability, feedback 

concepts, observer theory, singular perturbation theory and universal adaptive 

stabilization.

Since this material can be found in standard texts and research publica­

tions, we will not supply proofs for any of the results presented in this chapter.

2.2 Notation

In this section, we introduce notation which is used throughout the thesis.

Unless otherwise stated, small Roman or Latin letters will denote vectors, 

and capital Roman or Latin letters will denote matrices.

Let 1R denote the set of real numbers and let IR+ = [0, ©°). Let lRn be the 

set of ordered ^-tuples of real numbers (Euclidean w-space). Let x  e lRn, then 

x  = col Otj, • • •, xn\  i.e. x  is presented as a column vector, and 

x T = (*!, ♦ • •, xn) denotes the transpose of x. Let x ,y  e 1R", then the function



- 16-

(*,*): IRnxlRn —» ]R is an inner product and defined as follows:

n
(x ,y )  = .

1=1

Then we can define the function ||*||: IRrt —> IR+, known as Euclidean norm 

induced by the inner product, which is given by

||jc|| = (jc, jc)* , for all x  e lRn .

Let lRnxm be the space of all real nxm  matrices. If A = [a -̂] € IR"xm is 

an arbitrary matrix, then A T denotes the transpose of A . Now, let A e IRnxn be 

a square matrix. If A is non-singular, then A-1 denotes the inverse of A. The 

set of eigenvalues of A is denoted by a  (A). If all its eigenvalues have negative 

real parts, we use c(A)  c  C", where C” denotes the open left half the com­

plex plane. If all eigenvalues of A happen to be real, we write crmax(A) and 

<Tmin04) to denote the largest and smallest eigenvalues of A, respectively. The 

quadratic form associated with a square matrix A is denoted by (jc, Ax ) .

If A is a diagonal matrix, we write A = diag [a\ , • • *, an]. The identity 

matrix is denoted by /.

The norm of an arbitrary matrix A, induced by the Euclidean norm, is 

given by

P ll = = [ma* {A: X  e a(A rA ) \\1.

Let B n{r) denotes the open ball of radius r > 0 centred at the origin in 

IR" (with closure B n(r) \  i.e.

® n(r ) =  {* s  1R": INI < r )  •

If r = 1, i.e. the open unit ball, we denotes it by JBn .

For S c  IR* and z e IR*, z + S denotes the set {z + s: s e  S } c  IR*. For 

c  1R*, Sj + S2 denotes the set + s2: S\ e S\; s2 e 5 2).
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Finally, a remark about numbering of equations and theorems (including 

definitions, lemmas and corollaries): these are numbered in increasing order 

with the chapter indicated. For example, equation (3.2) means equation 2 of 

Chapter 3. Likewise, Theorem 5.4 means Theorem 4 of Chapter 5.

2.3 Solution concepts of ordinary differential equations and differential 

inclusions

The concept of solution for a given system is a fundamental issue to be 

addressed before proceeding to study the problem of stabilization or other prob­

lems. Of particular importance is the question of existence. Here, we summar­

ize basic existence results for systems described by controlled ordinary differen­

tial equations and differential inclusions.

2.3.1 Ordinary differential equations

We consider a system governed by

x(t) = / ( f ,  Jt(r), i i(0 ) , x(t) e JRn , u(t) e  IRm , (2.1a)

with initial value

*('o) = *o » (2*lb)

and bounded measurable input u(').

A function x: [r0, r) —»IR" will be said to be a solution of (2.1) if x  is 

absolutely continuous and satisfies (2.1a) almost everywhere and (2.1b).
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The following theorem provides conditions that suffice to guarantee the 

existence of solutions in respect with the requirements of our study. Before that 

we need the following definition.

Definition 2.1 Carathiodory function

A function / :  IRxIRnxIRm —>IR? is Carathiodory iff:

(i) /(*»*»u) is Lebesgue-measurable for each fixed (jc , u) e  !RrtxIRm;

(ii) f ( t ,  \  •) is continuous for each fixed f e R ;

(iii) for each compact set U c  IRxIRnxlRm, there exists a Lebesgue- 

integrable function my(*) such that

\\f(t ,x,u)\\ < myit)  , for all ( t ,x ,u )  e U.

Furthermore, if my{m) = mUt constant, then /  is said to be strongly 

Carathiodory.

Now we state the existence theorem for ordinary differential equations 

(see Coddington and Levinson 1955).

Theorem 2.1 The existence theorem o f Carathiodory

Let / :  IRxlRnxIRm IR" be Carathiodory. For each (f0»*o) e IRxJR.” 

and bounded measurable «(•)> the initial value problem (2.1) admits a solution.

Recall that the system (2.1a) is called linear if it is linear in x  and u. Then 

it can be written as

x(t) = A(t)x(t) + B(t)u(t)  (2.2)

In most cases, system (2.2) arises from the "linearization" of system (2.1a). It is
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well known that, the general solution of (2.2) is given by the variation of 

parameters formula (see Coddington and Levinson 1955)

*(0  = 0>(f, r0)x0 + f/0 (r, s)B(s)u(s) d s , (2.3)
J»o

where 0 (r , t0) is called the transition matrix of the system (2.2), with

<X>(r0, t0) = I. In case of (2.2) is linear time-invariant system, A and B are con­

stants and equation (2.2) becomes

x(t)  = Ax(t) + Bu(t) (2.4)

and <3> is given by

<£(r, t0) = exp [ A ( t - t 0)] . (2.5)

Almost in all parts of our study, we are dealing with this linear time-invariant 

system, since the design approach is based on this linear nominal system.

«

2.3.2 Differential inclusions

Before proceeding, we give the definition of a set-valued map or multi­

function.

Definition 2.2

A multifunction T : IRm —> ]Rn is a mapping from ]Rm to the subsets of 

IR". Thus, for each x  in lRm, T(jc) is a (possibly empty) set in JRn.

The following definition is needed in connection with continuity of com­

pact set-valued maps.
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Definition 23

A compact-valued multifunction T : IRm —> IR" is upper semi-continuous if 

it is upper semi-continuous at each x  e IRm in the following sense: given any 

£ > 0, there exists 8 > 0 such that IX ^) c: T(x) + JBn(e) for all 

x x ex+ JB m(8).

Consider again the system (2.1a). Suppose, for example, that the control 

takes the form of discontinuous state feedback. The resulting differential equa­

tion then has discontinuous right hand side, which renders the classical 

Carathdodory theory and concept of solution described in § 2.3.1 inappropriate. 

However, by embedding the feedback in a set-valued map (r, x) *-> ^i(r, x), 

the system may be interpreted in the sense of generalized dynamical systems 

(see, e.g., Gutman 1979, Leitmann 1979), and defined via a differential inclu­

sion (see, e.g., Clarke 1983, Aubin and Cellina 1984). In fact, the theory of dif-
%

ferential inclusions, extends many results from differential equations, such as 

those concerning the existence and nature of solutions, stability and invariance.

Thus, instead of considering system (2.1a), we now have to consider a dif­

ferential inclusion

x(t) e £ (r ,x (0 ) , (2.6a)

x(t0) = x0 (2.6b)

where Q is a set-valued map defined as

$(t ,x)  := {/(r,x,M ): u e <U(t,x)} . (2.7)

We will define precisely the set-valued map Q in Chapters 4 and 5.
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We now give a formal definition of solution of differential inclusion (2.6). 

A solution of (2.6) is defined to be an absolutely continuous function

x- [lb, f ) which satisfies (2.6a) almost everywhere and (2.6b).

The following theorem is sufficient for existence of a solution of a dif­

ferential inclusion (Aubin and Cellina 1984, p. 98).

Theorem 2.2

Let Q c  IRxlRn be an open subset containing (t0, x0). Suppose that

g: £2 —»lRn is a set-valued map with the properties:

(i) g  is non-empty, compact and convex values;

(ii) g  is upper semi-continuous.

Then there exists t  > 0 and a solution jc(*) of (2.6) defined on [/q» *0-

2.4 Lyapunov’s stability theory and related results

The present section is devoted in discussing concepts of stability according 

to Lyapunov. The direct or second method of Lyapunov is our essential tool in 

analysis of stability of given a system, and is frequently used in subsequent 

chapters.

2.4.1 The concepts of stability

A large variety of definitions of stability have been proposed; only those 

most suited to our need will be discussed in this section. To state these defini­

tions, we return to the system (2.1a) again but now under feedback control.
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Suppose we choose a continuous feedback control u(t) = u(x(t)). Then, 

with slight abuse of notation, system (2.1) has the form

x(t)  = / ( r ,x ( r ) ) ,  (2.8a)

x(t0) = *o (2-8t>)

Under Carathdodory assumption on / ,  then by Theorem 2.1, a local solution of

(2.8) exists for each (x0, t0) g  IRxlR".

Recall that a state xe of the system (2.8) is said to be an equilibrium state 

if f ( t , x e) = 0, for all t. In other words, a motion passing through an equili­

brium state at any time is actually at the same state at all future times. Any 

equilibrium state xe can always be transferred to origin (x = 0) by transforma­

tion z = x  — xe. Thus, without any loss of generality, we assume that the system

(2.8) has xe = 0 as an equilibrium state, with f ( t ,  0) = 0, for all t.

Assume further that the system (2.8) does not possess a finite escape 

times. Then, we state the following definitions of stability in the sense of 

Lyapunov.

Definition 2.4 Stability

The equilibrium state x  = 0 of the system (2.8) is stable, if for any e > 0 

and f0, there exists 8 = 5{e, t0) > 0 such that

||*oII < 8 => ||*(0|| < e , for all t > t0 .

Definition 2.5 Attractivity

The equilibrium state x  = 0 of the system (2.8) is attractive, if there exists 

p > 0 and, to each tj > 0 there corresponds a number Tp(r], t0) such that

l*b I -  P => IWf)H s  > for all f S f0 + Tp(n, t0) .
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If p can be made arbitrarily large, then the equilibrium state x  = 0 is said to be 

globally attractive.

In above definitions, if S and T  are independent of r0» such stability is called 

uniform. Thus, we define the next important concept of stability.

Definition 2.6 Global uniform asymptotic stability

The equilibrium state x  = 0 is called globally uniformly asymptotically 

stable if it is uniformly stable and globally uniformly attractive.

2.4.2 The direct method of Lyapunov

The direct method of Lyapunov attempts to deduce statements on the sta­

bility properties of equilibrium state of a system, without knowing its solution 

explicitly. This method actually has its origin from energy considerations. 

Lyapunov’s idea was to generalize the energy arguments by introducing 

energy-like functions and evaluating their rate of change along the motion of 

the system under consideration. These functions are called Lyapunov function 

candidates for the system.

In short, the application of the direct method to stability problems consists 

of defining a Lyapunov function candidate with appropriate properties whose 

existence implies the desired type of stability. We state the global uniform 

asymptotic stability theorem for system (2.8) and define the class of Lyapunov 

functions for this case. By weakening various requirements on Lyapunov func­

tions, we obtain other stability results as a by-product (see, Kalman and Ber­

tram 1960).
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Theorem 2.3 (Lyapunov)

Consider the system (2.8) with / ( f ,  0) = 0, for all t. Suppose there exists a 

function V: IRxlR" —> ]R+ with continuous first partial derivatives with respect 

to t and x  such that V (t, 0) = 0 and

(i) V is positive definite; i.e. there exists a continuous, monotonically increasing 

function a: IR+ - » IR+ such that a(0) = 0, and for all t and x  =f= 0

0<a ( \ \ x \ \ ) < V( t , x ) ;

(ii) There exists a continuous function y: 1R+ -> 1R+ such that y(0) = 0 and for 

all t and all x  4= 0,

n t , x )  :=  £ v ( t , x )  + (VV(t ,x) , f ( t , x) )  S - r ( I W I )  < 0 ;

(iii) There exists a continuous, monotonically increasing function p: 1R+ -> IR+ 

such that p(0) = 0, and for all f,

V(t ,x)  < /?(||x ||);

(iv) a(||jt||) -> oo with ||jc|| -» <».

Then, the equilibrium state xe = 0 is globally uniformly asymptotically stable. 

V is said to be a Lyapunov function for the system.

Corollary 2.1

The following conditions are sufficient for the various weaker types of sta­

bility:

(a) Uniform asymptotic stability: (i)-(iii).

(b) Uniform stability: (i), (iii) and (ii’): V(r,x) < 0, for all f, x.

(c) Stability: (i)-(ii’).
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(d) No finite escape time: (i), (iv) and (ii"): V(t,x)  < cx + c2V( t , x ) for 

all f, j c ; Ci  and c2 being positive constants.

In the case of linear time-invariant systems, we have the following result.

Corollary 2.2 (Lyapunov)

The equilibrium state xe = 0 of the system

x(t)  = Ax(t) (2.9)

is asymptotically stable if and only if, given any symmetric positive definite 

matrix Q there exists a symmetric positive definite matrix P which is the 

unique solution of the Lyapunov equation

PA + A t P + Q = 0 . (2.10)

V(jc) = (x, Px) is a Lyapunov function for the system (2.9).

2.43  Ultimate boundedness

In certain circumstances, the requirement of global uniform asymptotic sta­

bility (in the sense of Lyapunov) is too stringent. Hence, we relax it to global 

uniform ultimate boundedness with respect to some compact set S (which con­

tains the zero state) in the sense that the state enters and remains thereafter

within S after a finite interval of time. The following definition is due to Leit-

mann (1981) (see also, Corless and Leitmann 1981 and Barmish, Corless and 

Leitmann 1983).
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Deflnition 2.7 Global uniform ultimate boundedness with respect to S a  R n

The system (2.8) is said to be globally uniformly ultimately bounded with 

respect to the set S c  1R" if:

(i) existence o f solutions: for each (fo,*o) e IRxlR", there exists at least a

solution x : [r0» *i) —> IRn of (2.8), with x (to) = x0, t\ > tQ;

(ii) uniform boundedness: given any r > 0, there exists d(r) > 0, such that for 

any solution x: [f0» *i) -> 1R", *(^o) = *o ° f  (2-8),

ll-Xotl S r => l|x(f)H £ d ( r ) , for all t € [f0, ' 1);

hence, every such solution can be continued to a solution over [r0, <»);

(iii) uniform ultimate boundedness with respect to S: given any r  > 0, there

exists T(S, r) < such that for any solution x: [fy, °°) —> IR”, x(t0) = x0 of  

(2.8),

llacoll £ r => x(t) e S ,  for all t £ tQ + T(S,  r).

2.5 Feedback concepts

We discuss here the fundamental concepts of feedback design for linear 

(nominal) systems. We also summarized the state feedback control approaches 

for uncertain systems, on which our methods are based. First, we state the 

structural properties of feedback system, namely, the notions of controllability 

and observability.
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2.5.1 Controllability and observability

(A) Controllability

Consider now a system given by (2.2). The main objective in feedback 

design is the regulation of the state x(t)  to some desired state, by chosen a suit­

able control input. The ability to exert the required control action is a structural 

characteristic of the system (2.2) known as controllability.

Recall that the system (2.2) is completely controllable if, for any tQ and 

each x0 e  1R", there exist t{ £ r0 and control u: [f0»*i] —»IR*1 such that 

*(fi) = 0.

For linear time-invariant system (2.4), we have a simple algebraic criterion 

for complete controllability.

The pair (A ,B ) is completely controllable if and only if rank Wc = n, 

where Wc is controllability matrix defined by

Wc := - .

(B) Observability

Consider the system (2.2) again, but now with the output

y(t)  = C{t)x{t) , y ( t ) e  W .  (2.11)

The concept of observability is concerned with the problem of determining 

the initial state, knowing only the output y  for some interval of time. Formally, 

we may define this as follows.

The linear system (2.2) is said to be completely observable if, for any r0, 

there exists > t0 such that, each initial state x(r0) = x0 e  IRn can be
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uniquely determined from knowledge of the input u: [f0, *il —> IRm and output 

y: [r0, t{\ —» IR  ̂ functions.

Now let us define the matrix M  (known as observability Gramian) given

by

M(t0, () := / '  t0)CTU ) C ( s m s ,  t0) ds (2.12)

A stronger type of observability is obtained by imposing further conditions 

on the systems (see, e.g., Anderson 1977).

Definition 2.8 Uniform complete observability

The system (2.2) is uniformly completely observable if the following three 

conditions hold (any two implying the third): there exist t  > 0  and positive 

constants « /(t), i = 1, • * *, 4, (which may depend on t ) such that for all s, r,

0 < cq tr)/ < M(t , t + r) < (t )I  (2;13a)

0 < a3(t)I  < <£>T(t , t+T)M(t , t+T)®( t , t+T)  ^ «4(t)7 (2.13b)

||® (f,i)|| ^ «5( | t - i | )  (2.13c)

where function : ]R+ —> R  is bounded on bounded intervals and <!>(•, •) is the 

transition matrix generated by A(').

Like controllability, for a linear time-invariant system, we have a simple 

algebraic criterion for complete observability.

The pair (C, A) is completely observable if and only if rank W0 = w, 

where W0 is observability matrix defined by

C
CA

W *=o •

CA n- 1
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2.5.2 Continuous state feedback

In feedback design, the typical problem is the following: determine a func­

tion tp such that under the control u(t) = <p(x(t)) the system exhibits desired 

behaviour. First, we discuss the linear state feedback.

(A) Linear state feedback

Now consider linear time-invariant system (2.4). Suppose that its state x(t)  

is completely accessible; then a linear feedback law of the form

u(t) = Kx(t) (2.14)

can be applied to (2.4), results in the closed-loop system described by

x(t)  = (A+BK)x(t )  (2.15)

The state of (2.15) is asymptotically driven to the desired equilibrium state, if 

gain matrix K  can be chosen such that the matrix A + BK is stability matrix. 

The ability to do this is characterized by the following result (Wonham 1967).

Theorem 2.4

The pair (A, B) is controllable if and only if, for any symmetric set A of a 

complex numbers, there exists K  such that a(A + BK ) = A.

The ability to assign any prescribed spectrum A is more than we require, 

since we seek only to determine K  such that a{A + BK)  c  C” .
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Definition 2.9

The pair (A,B)  is stabilizable if and only if, there exists K  such that 

ff(A + M ) c C “.

(B) Continuous state feedback

Here, we give a summary of two control approaches to stabilize uncertain 

systems, which form the basis for constructing the output feedback control pro­

posed in Chapters 3-6. We will discuss this in algorithmic form and in the con­

text of our study, i.e. the design approach is based on a nominal linear system.

(i) Corless and Leitmann approach

This feedback design approach is proposed by Corless and Leitmann 

(1981):

• Choose K  such that A := A + BK is a stability matrix, i.e. a(A)  <z C“.

• Solve Lyapunov equation

PA + P p  + Q = 0 (2.16)

for a given Q > 0. Then, V(x) = (x, Px) is a Lyapunov function.

• Form a continuous nonlinear control p: IRn —> IRm as follows:

P W  := 1
-p(x) \ \BTPx\\-lB TP x , if p(x)\\BTPx\\> e 

, - p ( x ) e~1B TP x , if p(x)\\BTPx\\ < £ (2.17)

where e > 0 is a prescribed constant (design parameter), and the function 

p : IRn —> IR+ is strongly Carathiodory, and determined via known bounds 

on the system uncertainties.



- 31 -

Then the control

u(t) = Kx(t) + p(x( t )) (2.18)

stabilizes the uncertain system.

We will make use this approach in Chapter 3.

(ii) Barmish, Corless and Leitmann approach

This feedback design approach is made by Barmish, Corless and Leitmann 

(1983):

The first two steps are similar as in the above design approach. Then 

• Form a control

ur(t) = - rB TPx(t) ,  r >  o , (2.19)

and choose y  such that the corresponding Lyapunov derivative V  is nega­

tive.

Then for each fixed y > y *, where y* is determined from known bounds 

on the system uncertainties, the control

u{t) = { K - y B TP)x(t)  (2.20)

stabilizes the uncertain system.

We will use the modification form of this type of control in Chapters 4-6.

2.53 Discontinuous state feedback

In section 2.3.2, we have discussed the concept of multifunction. Since we 

wish to admit a discontinuous control to stabilize the uncertain systems, a class 

of generalized feedbacks is defined.
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Definition 2.10 Generalized feedback

A multifunction 'F is a generalized feedback if:

(i) 'F is upper semi-continuous with non-empty, convex and compact values;

(ii) 'F is singleton-valued except on a set I*? of (Lebesgue) measure zero.

For our purpose, we will employ a generalized output feedback control 

proposed by Ryan (1988). The control has a linear plus discontinuous output 

feedback structure of the form

u(t) e -  it {{FCBT'Fyd)  + ^(y(f))] (2.21a)

where y 9f(y) cz lRm is a set-valued map which, in essence models a 

discontinuous control component and is defined by

(^ M K F C B r 'F y ir 'C F C B r 'F y ) , Fy *  0
Kiy)  := 1 0 0 ) , Fy = <> (2'21b)

Then for each fixed fc > rc*, where tc* is determined by known bounds on the 

system uncertainties, the control (2.21) stabilizes the uncertain system, provided 

that F e  JRm*P exists such that FCB is known with | FCB \ + 0, and 

IRP —»IR+ is a known continuous function. In this approach, the discontinu­

ous control component is used to counteract an extra uncertainty component 

which is bounded by the function £ of the system output y. Note further that, 

the nonlinear component of control is continuous everywhere except when 

Fy = 0 where-it is discontinuous.

We will define this type of control precisely in Chapters 4-5.
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2.6 Observer theory

In the previous section, we introduced state feedback under the assumption 

that the full state is available for measurement. This assumption often does not 

hold in practice, either because all state components are not accessible for 

direct measurement or because the number of measuring devices is limited. 

Thus, in order to apply state feedback to stabilize the system, we employ an 

observer that will estimate the missing state components, by utilizing the avail­

able inputs and outputs of the system.

2.6.1 FuII-order observer

Consider linear system (2.4) with the output

y(r) = Cx(r), y(t) e W .  (2.22)
«

Define an observer system given by

z(t) = Dz(t) + Ey(t) + Hu(t) ,  z(t) e IRn , (2.23)

where D, E and H  are determined such that z(t) is asymptotic estimation of a 

linear transformation 7jc(f), in the sense that if we define e(t) = z(t) -  Tx(t), 

then e(t) —> 0 as t —» oo t

We first state the following general result.

Theorem 2.5

The state z(t) in (2.23) is an asymptotic estimate of Tx(t) for some con­

stant T  e IRnxn for any (x0, z0) e ]RnxIRn and u(t) e IRm if and only if:

(i) T A - D T  = EC ;

(ii) H = TB;

(iii) a(D)  c  C" .
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As a special case, if T = /  in the above theorem, then the dynamic (2.23) 

is called a full-order observer or an identity observer. In this case, constraint (i) 

becomes D = A -  EC. Thus, an identity observer is uniquely determined by 

selection of E. Relating to this issue, we have the following fundamental 

theorem.

Theorem 2.6

The pair (C, A) is observable if and only if, for any symmetric set A of n 

complex numbers, there exists E such that a  (A -  EC) = A.

Definition 2.11

The pair (C,A) is detectable if and only if, there exists E such that 

<j(A -  EC)  c  C“

2.6.2 Reduced-order observer

The full-order observer we have just described above, although has simple 

structure, however possesses some redundancy. It stems from the fact that, 

while the observer constructs an estimate of the entire state, part of the state is 

already given by the available system outputs. This redundancy can be elim­

inated by building an observer of lower order but of arbitrary dynamics. This 

observer is called reduced-order observer or minimal-order observer.

The basic construction of a reduced-order observer is as follows. Since 

y(t)  has dimension p, an observer of order (n - p ) is constructed with state z(t) 

that approximates Tx(t) for some pxn  matrix T, as in Theorem 2.5. Then an 

estimate Jf(r) of x(t)  can be determined through
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(2.24)

provided that the indicated inverse exists.

Suppose now the inverse of the matrix in (2.24) exists, then £(t) may be 

written as

The following result is needed in Chapter 3, and is taken from Luenberger 

(1971) (see also Gopinath 1971).

Theorem 2.7

Define X(t) := x(t)  -  J£(/). Jf(f) is an asymptotic estimation of state vc(t), 

i.e. X(t) 0 as t —» ©o if and only if the following observer constraints are 

satisfied:

(i) n - p  < q < n;

(ii) T A - D T  = EC ;

(iii) S\T + S2C = In ;

(iv) o{D)  c  C " .

2.63  State estimation and state feedback

m  = s xz(t) + s ^ t ) (2.25)

Rewrite an observer (2.23) as

z(t) = Dz(t) + Ey(t) + TBu(t) , z(t) e  1R̂  . (2.26)

Consider now the effect induced by using an estimated state (generated by 

an observer) in place of the actual value in the implementation of the control 

law. Of fundamental importance in this respect is the effect of introducing an
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observer on the closed-loop stability properties of the system. Fortunately, 

observers do not disturb stability properties when they are introduced.

It has been shown (Luenberger 1971) that, the eigenvalues of the compo­

site system (i.e. feedback control and observer) are the union of those of state 

feedback (by assuming full state is available) and of observer. Thus, the 

separation principle is valid here. Consequently, the state feedback and 

observer can be designed independently. By combining the results of Theorems 

2.4 and 2.6, and Definitions 2.9 and 2.11, we have Theorem 2.8 and Corollary 

2.3 below.

Theorem 2.8

If the pair (A,B)  is controllable and the pair (C,A) is observable with p 

linearly independent outputs, then for any symmetric set A of (2n - p )  complex 

numbers, there exists an observer of order (n -/?), such that the (2n - p )  eigen­

values of composite system can be set equal to A.

Corollary 2.3

If the pair (A, B)  is stabilizable and the pair (C, A) is detectable with p  

linearly independent outputs, then there exists an observer of order (n - p ), 

such that (2 n - p ) eigenvalues of composite system can be placed in open left 

half the complex plane.

2.7 Singular perturbation theory

In this section, we will briefly discuss what is known as the problem of 

singular perturbations and its relation to our study. The problem may be stated



as follows.

Suppose we are given the system of nonlinear differential equations 

(known as a nonlinear singularly perturbed system)

*(0 = /( * ,* « ,  z(O), x(t) e  R" , z(0 € IRm , (2.27a)

ez(t) = g ( t , x ( t ) , z ( t ) ) f (2.27b)

where function / :  R x R " x R m —» R ", and function g: R x R nx R m —» R m. 

Note that for any value of £ other than zero, the system (2.27) consists of n + m 

differential equations. However, if e = 0, then system (2.27) consists of n dif­

ferential equations and m algebraic equations, because with e = 0, (2.27b) 

reduces to

* (f,jc (0 ,z (0 ) = 0 . (2.28)

Now suppose it is possible to solve equation (2.28) to obtain an explicit expres­

sion for z(r) in terms of x(t), of the form

2(0 = h(t,x(t))  , (2.29)

where h: R x R "  —» R "\ Then (2.27a) with (2.29) reduce to

i ( 0 = / ( * ,* (0 ,M f ,* ( 0 ) )  (2.30)

which is a system of n differential equations.

The parameter e = 0 in (2.27b) is called a singular perturbation parame­

ter because its value completely changes the nature of (2.27b), i.e. from a dif­

ferential equation if e 4= 0 to an algebraic equation if e = 0. Briefly, the objec­

tive of singular perturbation theory is to examine the simplified system (2.30) 

and from this to draw conclusions about the original system (2.27) with e =j= 0.

Related discussions of singular perturbation theory relevant to our work is 

given by Leitmann et al. (1986) and Leitmann and Ryan (1987) (see also
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Kokotovid et al. 1986 and O’Reilly 1986). Here, an equivalent theory is 

developed for the problem of robustness with respect to neglected dynamics. 

Thus, in context of this theory, x(t)  is the dominant or "slow" state, z( t )  is the 

state of the parasitic dynamics or "fast" state and e > 0 is small scalar 

representing the parasitic elements (e.g., small inductances, capacitances, iner­

tias, etc.). Neglecting the parasitic elements by setting e = 0 in (2.27b), and 

substitution of z(t) from (2.29) into (2.27a) yields the reduced-order system 

(2.30).

The robustness issue under discussion is whether a feedback control 

designed to stabilized the reduced-order (2.30), will in fact stabilize the actual 

system (2.27) for e sufficiently small.

We will utilize this concept in Chapter 4.

2.8 Universal adaptive stabilization

In this final section, we will discuss briefly an approach of adaptive stabil­

ization, popularly known as universal adaptive stabilization. Results to date 

show that there exist stabilizing adaptive control schemes of simple form, 

parameterized by a single gain parameter. Here, attention is restricted to the 

adaptive stabilization of first-order system by one-dimensional controllers and is 

taken from Byrnes et al. (1986).

Suppose Z is a given class of linear systems (A , B , C ) with (fixed) inputs 

and outputs, i.e.

x(t) = Ax(t) + Bu(t) ,  u(t) e  lRm , (2.31)

y( t ) = Cx(t) , y(t) e JRP . (2.32)



By a smooth controller we mean a C°° system

z (z )= /(z ( f ) ,y M ), z ( f ) e R « ,  

u{t) = g(z(r),y(r)).

(2.33)

(2.34)

Definition 2.12 Universal adaptive stabilizer

A smooth controller is an universal adaptive stabilizer for E, provided that 

for each fixed system (A ,B ,C)  e E and for all initial conditions 

(jc0,z0) e  IRnxIR, the closed-loop system (2.31-2.34) satisfies:

(i) lim x (t) = 0;
t — >oo

(ii) lim z(r) = zM.

Remark

Helmke and Pratzel-Wolters (1988) have considered a more general adap­

tive stabilizers. There, dynamic controllers may belong to some function space, 

i.e. analytic and piecewise continuous functions. Moreover, condition (ii) is 

relaxed to

(iia) there exists M > 0 such that |z(f) | < M  for all t e  [0, ©°).

In context of our study, we will use this approach in Chapters 5-6, and 

equations (2.34) and (2.33) is replaced respectively by (as it used in Byrnes et 

al, 1984 and Uchmann et al, 1987)

u(t) = -  k(t)y(t) , (2.35)

k(t) = IlyWII2 , * ( f ) e ] R . (2.36)
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Hence, the condition (ii) is replaced by

lim k(t) -  < oo.
t —><x»
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CHAPTER 3

OBSERVERS FOR A CLASS OF UNCERTAIN SYSTEMS

3.1 Introduction

In this chapter, we present an observer-based design approach for stabili­

zation of a class of uncertain systems. The aim of our study is the construction 

of an observer-based feedback control which guarantees that the response of the 

system enters and remains within a particular neighbourhood of the zero state 

after a finite interval of time.

The controller design adopted here is based on the approach of Breinl and 

Leitmann (1983). A salient feature of this approach is that the control consists 

of two parts, i.e. linear and nonlinear. The linear part is used to stabilize the 

nominal linear system, while the nonlinear part is designed to cope with uncer­

tainties. We attempt to extend the approach to include a more general class of 

systems, by widening the class of allowable uncertainties; this will be precisely 

stated in the next section.

Although an observer-based controller design is our aim, we first establish 

the existence of a stabilizing state feedback control by assuming that the entire 

state is available for measurement. This is presented in § 3.3. Section 3.4 con­

tains the second stage of the design procedure, wherein we employ a reduced- 

order observer for state estimation, and then implement the control by feeding 

back this estimated state. Under appropriate assumptions on the uncertainties, it 

will be shown that it is possible to design the feedback control and observer 

separately.
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3.2 Problem statement and assumptions

The uncertain systems to be studied are governed by a differential equa­

tion of the form

x(t) = Ax(t) + Bu(t) + F( tyx ( t ), u(t)), x(t)  e R n , u(t) e lRm (3.1) 

with an output equation is given by

where m,p  < n, F is unknown function from the set 7  of all admissible uncer­

tainty in the system and o)(t) is bounded measurement noise. The triple 

(CyA,B)  which defines a nominal linear system is assumed to be known and 

satisfies the following assumptions:

A3.1: The pair (A ,£) is stabilizable and B has full rank m.

A3.2: The pair (C, A) is observable and C has full rank p.

Next we impose some structural properties on uncertain function F, which 

implicitly define the set

A3.3: F: IRxIRnx]Rm —>IR" is a Carathdodory function and satisfies the 

"matching conditions", i.e. there exists an unknown Carathdodory function 

g : IRxRnxIRm —> R m such that F (#) = Bg(m) and g satisfies

y(t)  = Cx(t) + <o(t) , y(t) e TRF (3.2)

| |g ( r ,* ,u ) | |  < r 0 +  n lM I  +  r i l M l 2 +  /* N I  • (3.3)

p  and Yi (i = 0 ,1 ,2 ) are known constants with

p < i (3.4)
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Remark

In Breinl and Leitmann (1983), the condition ||g(f, x, m)|| < y||jc|| + 0\\u\\ 

was imposed on the uncertainty. Here, we relax it to (3.3), hence generalize 

their work.

Now, we state the problem to be studied which consists of two objectives. 

The first is that of designing a full state feedback control law, i.e. we would 

like to determine a Carathdodory function Uq : IR" —»lRm such that the control

u(t) = Uo(x(t)) (3.5)

guarantees that, for each uncertainty realization F e y ,  the state of closed-loop 

system (3.1) and (3.5) is globally uniformly ultimately bounded with respect to 

a compact set S0 containing the zero state (in the sense of Definition 2.7); this 

will be established in Theorem 3.1. Since (3.5) is unrealizable in general (in 

view of (3.2)), the second objective is that of designing an observer-based feed­

back control law, i.e. we would like to determine a Carathdodoiy function

; IR" —> IRm such that the control

u(t) = Ulm ) )  (3.6)

where 5t(t) is an estimate of the state x(t)> guarantees that, for each uncertainty 

realization F e y ,  the state of closed-loop system (3.1-3.2) and (3.6) is ulti­

mately bounded with respect to a compact set Si containing the zero state in 

the sense that the state enters and remains thereafter within set after a finite 

interval of time; this will be established in Theorem 3.2.
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3.3 Stabilization via full-state feedback

In this section, we present the first stage of our design. Assume now that 

the full state is accessible. Under the assumptions A3.1-A3.3, we will show that 

there exists a stabilizing state feedback control for this class of uncertain sys­

tems.

Following Breinl and Leitmann (1983), we split the control u(t) into two 

parts, i.e.

where W/(r) is the linear part and un(t) is the nonlinear part. In what follows, 

we describe the control design procedure for both parts.

(i) Linear control part

This part is merely a linear control, i.e. it is of the form

We design this part to stabilize the nominal linear system, i.e. we want to 

choose gain matrix K  such that g (A -  BK ) c  C~.

It is well known from the linear quadratic optimization problem (e.g., 

Kwakemaak and Sivan 1972) that, in view of A3.2, there exists a feedback 

control

u(t) = u,{t) + un(t) (3.7)

(3.8)

K/(f) = - B TPx(t) = -K x { t ) , (3.9)

where P > 0 is the unique symmetric positive definite solution of the Riccati 

equation

PA + A t P -  2PBBt P + Q = 0 (3.10)



-45 -

for a given Q > 0, which stabilizes the nominal system, i.e. 

o (A — BBtP) c  C".

(ii) Nonlinear control part

The nonlinear control part is designed to cope with the uncertainties and 

to guarantee stability of the closed-loop system in the presence of uncertainties. 

The construction of this control is based on Corless and Leitmann (1981), thus 

we use

m« W = p W 0) (3.11a)

where the function p : IR" —» IRm is defined by

p(x)  := *
-p(x)||K x || lKx,  if p (x ) lKx \ \>e  
- p H x ) e - ' K x ,  (311b)

where P > 0 is the solution of the Riccati equation (3.10) and function 

p: IRn —» 1R+ is defined as

p(x) := (1 - /} ) " ' (ro + rilM I + rzWxW2 + ^ ll^ l l ]  (3.12)

Now we turn to the problem of constructing a full state feedback control 

which assures that, no matter what the uncertainties and initial conditions are, 

every solution of feedback controlled system is globally unifomly ultimately 

bounded with respect to a set SQ, to be specified in the sequel.

Suppose that the desired set SQ of ultimate boundedness is specified as the

closed ball of radius d > 0 in IR", i.e.

So = ®n(d) (3.13)

Define rj£ as

% := N I C '1 1114 (3.14)
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Our first task is to establish the following.

Theorem 3.1

Consider system (3.1), satisfying assumptions A3.1-A3.3 and under feed­

back control law (3.7), (3.9) and (3.11). For e sufficiently small and for arbi­

trary uncertainty realization F e y ,  the feedback controlled system is globally 

uniformly ultimately bounded with respect to set SQ (in the sense of Definition 

2.7).

Proof

In view of A3.3 and control law (3.7), (3.9) and (3.11), the feedback con­

trolled system can be written as

m  = (A -BK)x ( t )  + Bp(x(t)) + Bg( t ,x ( t ) , -Kx( t )+p(x( t ) ) )  (3.15)

Now we are going to prove the ultimate boundedness of (3.15) in several 

steps (in accordance with Definition 2.7).

(i) Existence o f solutions:

The Carathdodory assumption (A3.3) on the function F ensures that, given 

any initial condition (to>*o) G IRxlR", there exists a local solution 

x • Uo, *i) —»IRn of system (3.15), with x(t0) = *0, for some t\ > tQ.

(ii) Uniform boundedness:

Consider a solution x: [r0, *i) —»IRn, x(tQ) = *o, of (3.15) with 11*0 II ^  r. 

We want to prove that this solution is bounded and so does not possess a finite 

escape time; hence, every such solution can be extended to a solution over
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Since P > 0, define C 1 function (Lyapunov function candidate) 

V: IR" —»1R+ as

V(x) = h(x> Px) , for all x  e  IRn . (3.16)

Now, consider the associated function IRxIR" —> IR given by

<V{Ux) := {VV{x ) , {A-BK)x  + Bp(x) + Bg{ t , x , -Kx+p(x) ) )

= ( P x , ( A -B K ) x  + Bp(x) + Bg(t ,x,  -Kx+p(x ) ) )  (3.17)

Then, in view of (3.3) and (3.10),

V(ttx) < - \ { x ,Qx )  -  ||£x|| lip(x)ll + p(x)\\Kx\\

Now, from Rayleigh’s principle (Franklin 1968),

^  <X,QX> £ <rma(Q )||* ||2

or, equivalently,
«

n o r x i r 1 w 2 s  (x, ox)  <; i i e i iw 2 (3.i8)

Thus, in view of (3.12), (3.18): if / j ( x ) | | / C c | |  > e,

n t , x ) < -  i ik rM i-M w 2

and if p(x)||£x|| < c,

m ^ ^ - i i i e - M r M w P  + e .

Consequendy, for all ( t ,x)  e  RxJR",

-n c r .^ ^ - i i ie - M r M w P  + f .  (3.i9)

Hence,

H t t x) < 0, for all (t , x ) e R x ( R nW n(7j£)) (3.20)

where r\e is defined as in (3.14).
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Now, along every solution x: [r0» fi) —> IR” of the feedback system,

V(*(0) = K r,x (r)) a.e. (3.21)

from which, together with (3.20), uniform boundedness is assured by selecting 

a function d: IR+ —> 1R+ defined by

Therefore, every local solution jc(*) is bounded and hence does not possess a 

finite escape times. Thus, every such solution can be extended into a solution 

over any compact interval, and hence, over [r0. °°).

(iii) Uniform ultimate boundedness:

Let jc: [f0» °°) —> IR”, *(*o) = %  be a solution of (3.15) with ||jcq || ^  r. 

We want to show that there exists a finite T(d, r) > 0 such that ||jc(f) |) < d, for 

all t ^  tQ + T(d , r).

Now choose e > 0 sufficiently small so that

d(r):=  I t l l W M l ] * '- .  if r > Ve (3.22)

which yields

IWOII ^  d(r) ,  for all t>  t0 . (3.23)

where tj£ is defined by (3.14). Define 7/ as

(3.24)

Then, clearly tj > rje and

diji) = d (3.25a)

or, equivalently,

n = d r \ d ) . (3.25b)
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Now arguing as in Corless and Leitmann (1981), define T(d, r) as

-  J o ,  if r <: [||Jt>lll|/>- 1 l i r i rf
n r ) Uo1 Dî ik2 - if»r1i/»-‘r252]. »•> [ii/>niiF-1iir1<f

(3.26)

with

Co :=  [ | i e - 1 lll]/>IIIIP '1 l i r 1d 2  -  (3 .2 7 )

In view of (3.19) and uniform boundedness result (ii), global uniform ultimate 

boundedness property (iii) holds. Alternatively, it can be concluded that every 

solution x: [r0» °°) ->IRn, with jt(r0) = jc0, of the feedback controlled system 

(3.15) must enters and thereafter remains within any closed ball containing a 

(Lyapunov) ellipsoid {jc e lRn: V(x) < ^ll^ll^2} which, in turn, contains the 

closed ball One such candidate is the closed ball IBn(d),  with d  given

by (3.25a), since

B n(d) o  {x e IR": V(x) < i||P ||jj2} 3  B n(W) .

Hence, the theorem has been established.

3.4 Observer-based controller

In the preceding section, we have established the existence of a stabilizing 

full state feedback control for the class of uncertain systems. To realize this, the 

full state must be available for feedback. However, in general situations, only 

some of the state components are available for measurement; the reason (as we 

have mentioned earlier) may be due to either that measuring devices are limited 

or that particular state components cannot be measured directly. Thus, we 

employ a reduced-order observer (Luenberger 1971) developed for a linear sys­

tem as described in § 2.6.
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Before proceeding, as a matter of convenience, we rewrite the observer 

equation (2.26) and state estimate (2.25) respectively as

z(f) = Dz(t) + Ey{t) + TBu(t) , z(r) € IR* , (3.28)

and

m  = SlZ(t) + S2y(t)  (3.29)

where the observer (3.28) satisfies the "asymptotic estimation" constraints as 

given in Theorem 2.6, i.e.

(i) n - p  < q < n\ (3.30a)

(ii) TA - D T  = EC ; (3.30b)

(iii) S t f  + S2C = In ; (3.30c)

(iv) cr(D) c  C~ , (3.30d)

and so ||exp Dr|| < Me- * for all t > 0 and for some known constants

M, S > 0. Recall that (in absence of uncertainty), the matrices

D, E,T,  Si and S2 are determined such that z(r) is an asymptotic estimation of

the linear transformation Tx(t), i.e. if we define the estimation error e(t) as

e(t) = z(f) -  Tx(t) (3.31)

then,

lim e(t) = 0 .
t—>«x>

Moreover, if and only if the constraints (3.30) are satisfied, then

lim (x ( t ) - f ( r ) )  = 0 ,t—»oo

i.e. x(t)  is an asymptotic estimation of state x(t)  in absence of uncertainty.
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In our case, that is for the uncertain system (3.1), we impose additional 

structure on the uncertainty g.

Breinl and Leitmann (1983) imposed the stronger condition TB = 0. Here 

it is relaxed to (3.32).

To employ this reduced-order observer for the uncertain system (3.1,3.2), 

again we adopt an approach of Breinl and Leitmann (1983) where we use 

u(t) = tfj(f) + i.e. we replace the state x(t) by the estimate f(r), which 

results in control laws (3.9) and (3.11) respectively replaced by

A3.4: For all (t , x , u ) e IRxIRnxlRm,

(3.32)

where kt is a known constant.

Remark

(3.33)

and

u t )  = p m ) ) (3.34a)

where the function p: R n —> lRm is defined by

_ f - p ^ i i K f i r 1̂ ,  if m i m > e
p(-X ) :  m ,  if p(f)i|Kc|| ^  £ (3.34b)

P ( - f )  :=  ( 1  ~ P )  1 [ft) +  n ( P I I  + A c )  + 72(PII +  A c ) 2

+ / ? M  + IM IA J (3.34c)
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where e > 0 is a design parameter, P > 0 is the solution of the Riccati equa­

tion (3.10) for a given Q > 0, and the parameter pe > 0 will be defined later 

(in (3.43b)).

In order to proceed, we define state estimation error 5L{t) as

m  := m  -  x(t)  (3.35)

and, in view of the state estimate (3.29) and observer constraint (3.30c), we 

have

X(t) = Sxe(t) + S2co{t) (3.36)

Since we are dealing with an asymptotic estimation, it is more convenient 

to consider the estimation error e(t) rather than observer state z{t). Thus, the 

overall observer-feedback controlled system, i.e. system (3.1) under control ti(t) 

given by (3.33) and (3.34), which, in view of (3.36), can be expressed in the 

form

x(t) = (A -B K )x ( t )  + Bp($(t))

+ B[g ( t , x ( t ) , - m t ) + H $ m - m t ) ]  0 .37 )

and, in view of (3.30b) and (3.31), we may write the error dynamic equation as 

e(t) = De(t) + Eco(t) -  T B g ( t ,x ( t ) , -K x ( t )+ p (f(r))) (3.38)

Now, we impose additional assumptions on co.

A3.5: The function co: IR —> IRP is measurable and bounded, i.e.

||<y(f)|| < Ka , for all t e  IR,

where Ka is a known constant.
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We are going to investigate the ultimate boundedness property of

(3.37.3.38). We will do this by initially proving existence and continuation of 

solutions of (3.37,3.38); this is proved in Lemma 3.1. Then, under the standing 

assumptions and two additional assumptions (one will be specified in A3.6 

below and the other in due course), it is shown that ultimate boundedness of

(3.37.3.38) is assured in a particular neighbourhood of the zero state.

Suppose (*(•)»£(*)) is a solution of (3.37,3.38) (this is a valid assump­

tion, since F  is a Carathdodory and co is measurable and bounded, and will be 

phrased precisely in Lemma 3.1). Now recall that since a(D) a  C” ,

IIexp £>(f-r0)|| <; , (3.39)

for all t > tQ and for some M, 5 > 0. Define

(ft : = a - 1Af(||E|k«» + «Pr) (3.40)

then, in view of A3.4 and A3.5, along every solution (*(•), e(*)) of (3.37,3.38) 

we have

lk(0ll * pt  + e~*('~'o>[M||e(r0)ll -  M  . for all t > t0 . (3.41)

Now define

P -  11^11^ + 115-2 Ik* (3.42)

then, in view of (3.36), (3.41) and (3.42),

||*(f)ll ^ p  + c€~6̂ ~tQ>>, for all t > t0 , and c-is a constant, (3.43a)

< p + e =: p£ for sufficiently large t . (3.43b)

Note that (3.42a) will be used in establishing of existence and continuation of 

solutions (Lemma 3.1), while (3.42b) will be used for ultimate boundedness 

(Theorem 3.2).



We now impose our final assumption.

A3-6: ri < . . . - i i

Before proceeding, we observe that for all t > tQ the following holds

l |g (^ (0 ,- /a ( t )+ £ ( f ( f ) ) ) -K ? (r ) | |  < ro + nlWOII + r2ll*WII2

+ p m m  + n 

+ ||Jir||[^+ce-i('- 'o)]

From (3.35) and (3.43a),

K O I  s  P (0 I I  + P (0 I I

£  P (0 I I  +  P  + ce~f<‘" ‘o), for all r > r0 .

Therefore

igit,x(t),-K£(t)+()(£(t)))-Kx(t)$ < ro + ri(P(OII + p) + r2(P(OII + £ )2

+ f l j c e w i  + /JP P W )II + im ip

+ n e e - 5™  + y1c 2e Vi™

+ 2r2ce_i(,_,o)( P ( f ) | |  + p )

+ ||Ar||ce_i(,_<“)

Then, using (3.34c), we have

U ( u x ( t ) , - m t ) + M ( . m - m t ) \ \  s  p w o )

+  CZ-S™  [ C l +  C2<rS™  +  C3 | | f  ( f ) | | ]

(3.44)
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where

Cj := n  + 2 r i P ,

c2 := cy2 , 

c3 := ly2 .

Now we establish the existence and continuation of solutions of system

(3.37,3.38).

Lemma 3.1

Consider the composite feedback controlled system (3.37,3.38), satisfying 

A3.1-A3.5. For arbitrary uncertainty realization F e f  and for each 

(/6 ,*o»eo) e lRx]Rnx]R*, there exists a local solution

(jc, e): [f0, *i) -» of the feedback controlled system (3.37,3.38), with

(x(t0), e{tQ)) = (x0 ,e 0), for some t\ > tQ. Moreover, every such solution can 

be continued into a solution over [r0, <»).

Proof

In view of the Carath&xlory assumption (A3.3) on F ensures that, for each 

( to ,Xo ,eo)eTRxnHxTRi, there exists a local solution

(x, e): [r0, -» H^xIR* of the feedback controlled system (3.37,3.38) with

(*(*o)> eW )  = (*o» eo)> for some h > *o-

To establish that every such solution can be extended into a solution over 

[r0,°°), the behaviour (along local solutions of (3.37,3.38)) of the function V(m) 

(defined by (3.16)) is examined.
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Consider now the associated function ‘W: IRx]R''xIR" —> ]R given by 

'H’( t ,x ,£)  := (W (je), (A - B K ) x  + Bp(f)

+ B [g ( t ,x , -K £ + P {£ )) -K X \)

= (Px, ( A - B K ) x  + Bp(£)

+ B[g(tt x , - K £ + p m - m )

where X = x -  X. In view of (3.10),

= -£(* , Qx) + (£x,p(f)>

+ (Kx, [g ( t ,x , -K 2+p(X )) -K X])  (3.45)

Now in view of (3.35) and (3.44), along every local solution (*(•), e(*)) of

(3.37,3.38),

< - % x ( t ) , Q x { t ) )  -  | |K ( O I I [ | |^ ( O ) 0 - W ( 0 ) 1
«

+ l|ra(/)||[||/H*(f))|| + £(*(0)]

+ ||Kf(f)||ce_i<,_‘°>[c1 + c2c~s{- ^  + c3 ||f(/)||]

+ ||A3'(r)||ce_#('_<b)[c1 + c2e-a('- 'o) + c3 ||f(t)||]
(3.46)

Since Hi'(r) || < p  + c for all t > t0, we have

tW(t,x{t) ,i( t) ) <, ~i(xU),QxU))  + e + 2\\K\\(p+c)p(£(t))

+ c||Kf(OI|[ci + c2 + c3 ||f(OI|]

+ c\\Kl(p + c)[Cl +c2 + c3 fif (f)||] (3.47)
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But from (3.35),

| £ ( 0 1  * IWOII + |f (O I

s  IWOII + P + C 

and so we can do the following estimation:

PC?M) < a { + OjIkWII + «3 l-*(0 1 2 .

ICftOI S a4 + a5||jc(t)ll.

||Kf(0 ||||f(r)|| Z a 6 + a7 ||x(r)|| + «8II*WII2 -

Thus, using these in (3.47) yields

•n\.t,x(t),£(t)) £ *o + *i 11̂ (011 + t iW O I2 . (3-48)

for all r > r0, where klt i = 0 , 1 , 2  arc positive constants.

Now, along every solution (*(•)»£(*)) of the feedback controlled system

(3.37,3.38),

V(x(0) = *m f,jc(0 ,f(0 ) a.e. (3.49)

Thus, from the inequality

l l l f ' r M k l l2 s  voo * W I M I 2 ,

(3.48) can be written as

V(x(f)) 2 * 0  + *jV»(x(0) + *4 y<*(0) (3.50)

where £3 = k-l (2\\P~l ||) and A4 = jtj(2 HZ’-1 ||)*. Using approximation 

(x) 5 ( 1  + V(x)), we have

VWO)S «r 0 + *-iV(jr(f)). (3.51)

where kq = k$ + and /q = k3 + k4.
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Now, by invoking Corollary 2.1(d), we may conclude that every local 

solution (jc(-), e(m)) of the feedback controlled system (3.37,3.38) does not pos­

sess a finite escape times. Thus, every such solution can be extended into a 

solution over any compact interval, and hence can be extended indefinitely. 

This completes the proof of lemma.

Let T  be sufficiently large so that

* r0 + n o w o n + & >  +  r 2 ( P «  n + & ) 2 

+ p w m m  + /}iip(*(0 )ii + m P e

||-?(f)ll ^  pe , for all t s r . (3.52)

Then the following holds for all t > T,

£ P(*(0 ) (3.53)

Using

£  iWOII + pc

then

p m ) )  $  a - p r 1 Oo + n < l * w i + 2 & )  +  r 2( IU ( f ) l i+ 2 ^ ) 2

+ ^ i m i ( i w o i + ^ )  + m p c]

= a + fe||jc(r)!l + cIMOII2 ■ (3.54)
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where

a := (1 - p Y h r o  + (2n  +4r2ifc + p m  + m w  -

b := ( i -prHn + tyiPe + /*ll*ili,

c := (1 - / ? r V 2 .

Consider now the closed ball IBn(ri) of radius

|  + im i pea 2
(3.55)

e

where

0 := Die-1 II" 1 -4 ||A T ||^ c ] . (3.56)

Note that 6 defined above is positive by virtue of A3.6 and definition of c in

We now ready to state the main theorem of this chapter.

Theorem 3.2

For arbitrary uncertainty realization F e f ,  the feedback controlled system

(3.37,3.38) which satisfies A3.1-A3.6 is ultimately bounded with respect to 

every Lyapunov ellipsoid which contains the closed ball JBn(ri) in its interior.

We consider again now the Lyapunov function V(*) defined by (3.16) and 

its associated function W(‘) introduce in Lemma 3.1. Thus, from (3.45) and in 

view of (3.53), along solutions (*(•), e(m)) of (3.37,3.38) the following holds 

for sufficiently large t,

(3.54).

Proof



‘HKt,x(t),£(t)) < -h(xU),QxU)) + e + 2\\K\\pep(£(t)) (3.57)

Using (3.18) and (3.54), we have

'HXt,x(t) ,m) Z -i[0 |U (O II2 -4 ||A : ||^ ||x ( t) l |- 2 e -4 ||A : ||^ a ]  
(3.58)

where 0 is defined by (3.56). Hence,

^ r ,jc ( r ) ,J 0(0) < 0 , for all (r, x) g (3.59)

where rj is defined as in (3.55).

Now, along every solution (jc(*), e(m)) of (3.37,3.38), (3.49) holds for suf­

ficiently large f, from which, together with (3.59), we may conclude that every 

solution (*(•)> e(')) of the feedback controlled system (3.37,3.38) must ulti­

mately enters and thereafter remains within any Lyapunov ellipsoid which con­

tains the closed ball JBn{r]) in its interior, i.e. 

Sj = {x e IR": J(jc, Px) zd B n(Ti)). This completes the proof of the theorem.
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CHAPTER 4

DYNAMIC OUTPUT FEEDBACK STABILIZATION 

OF A CLASS OF UNCERTAIN SYSTEMS

4.1 Introduction

In the preceding chapter, we considered a problem of designing a dynamic 

output feedback control for a class of uncertain systems, which is based on the 

construction of an asymptotic Luenberger state observer. Here, we will consider 

another approach to dynamic output feedback control of uncertain systems, i.e. 

a direct method, which we called "dynamic compensator-based design". In this 

approach, we propose a new dynamic output feedback control design for a class 

of uncertain systems. Our approach is similar in concept to that of Steinberg 

and Ryan (1986), and fundamentally based on that of Barmish, Corless and 

Leitmann (1983) and Steinberg and Corless (1985).

The main feature of the approach is that the positive realness condition, 

required by the static output feedback design method of Steinberg and Corless 

(1985), is not imposed on the class of uncertain system. To be precise, Stein­

berg and Ryan (1986) have considered a stabilizing dynamic output feedback 

control for a class of single-input single-output uncertain systems whose nomi­

nal transfer functions have relative degree 2. It is our goal of this chapter to 

extend their approach to a class of multi-input multi-output uncertain systems.

In essence, the approach is as follows. Initially considering a hypothetical 

output yh for the system, a (generally unrealizable) stabilizing static output 

feedback control is established. This static control is then approximated by a
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realizable dynamic compensator (with parameter fi > 0) which filters the actual 

output y. Physically, the parameter // is a measure of "fastness" for the filter 

dynamics; analytically, ji plays the role of a singular perturbation parameter. 

Using a singular perturbation analysis akin to that of Saberi and Khalil (1984) 

and Corless et al. (1989), a threshold measure /z* of "fastness" of the compen­

sator dynamics; to ensure overall system stability, is then derived.

The outline of the chapter is as follows. First, in § 4.2, we introduce the 

class of systems to be considered. In the next section, we propose a linear 

dynamic output feedback compensator for system introduced in § 4.2. Then, by 

an analogous approach, in § 4.4, we generalize the control design proposed in 

the previous section, to include more general systems by admitting a nonlinear 

discontinuous control component, modelled by an appropriately chosen set­

valued map, and the overall controlled system is consequently interpreted in the 

generalized sense of a controlled differential inclusion (Aubin and Cellina 

1984).

4.2 The system and assumptions

We consider uncertain nonlinearly perturbed linear systems of the form 

x(t) = Ax(t) + B[u(t) + g(t,x( t) ,u(t))],  x(t)<=]Rn , u(t) e IRm (4.1)

for which the only available state information is provided by the output

y(r) = Cx(r), y(t )eJR?t m < p  < n . (4.2)

The triple (C ,A ,5), which defines the nominal linear system, is assumed to 

satisfy the following.



A4.1: (A,B)  is a controllable pair and B has full rank m.

A4.2: For some integer r > 1, there exist known matrices

F i , F2, * * *, Fr e IRmx̂ , such that

(i) for / = 1 , 2 ,- •

im CAl~lB c  p i  ker Fj ; 
y=i+1

moreover, the matrix

Cr := FXC + F2CA + • • • + FrCAr~l

is such that

(ii) \CrB | + 0 ;

(iii) the transmission zeros of the m-input m-output linear system

(Cr, A , B ) lie in C“.

Example 4.1 

If

0 1 0 0

A = 0 0 1 , B = 0

0 0 0 1
, C =

1 0  0  

0  0  1

then the above assumptions hold with r  = 2, Fx = [1 1] and F2 = [1 0].

Next, we impose some structure on the uncertain function g.

A4.3: g: !RxIRnxlRm -» ]Rm is a Carath^odory function, with

(i) ll£(f>*>w)|| < a||*|| + P\\u\\ f°r (*»*, *0 g IRxlRnxIRm, where a  

and p  are known constants with p < 1;
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(ii) if r > 2, then g is uniformly Lipschitz in its final argument (with 

known Lipschitz constant A), i.e. if r ^ 2, there exists known A, such that, 

for each (r. jc) e IRxIRn,

\ \g ( t ,x ,u ) -g ( t ,x ,v ) \ \  < A ||w -v || , for all m, v e IR"1.

Remark

In the terminology of Corless and Leitmann (1981), Barmish, Corless and 

Leitmann (1983) and Ryan and Corless (1984), the matching condition is impli­

cit in (4.1).

4.3 Linear output feedback control

This section is concerned with the problem of designing a (dynamic) out­

put feedback compensator for system (4.1,4.2). This is accomplished by* ini­

tially considering system (4.1) with hypothetical output

yh(t) = C j ( t )  (4.3)

where Cr is defined as in A4.2. Note that, if r = 1 then y/,(f) = Fiy(t) and 

hence is realizable; however, if r > 2  then y^(r) is unavailable to the controller, 

hence the qualifier "hypothetical". For the system (4.1,4.3) so defined, (ii) and

(iii) of A4.2 in essence play the role of "relative degree one" and "minimum 

phase" conditions on the hypothetical nominal linear system triple (Cr ,A ,B). 

Under such conditions, it is known (see, for example, Byrnes and Isidori 1984, 

Byrnes and Willems 1984, Mzlrtensson 1985 and Byrnes et al. 1986) that the 

zero state of system (4.1,4.3) can be rendered globally uniformly asymptotically 

stable by static output feedback; this is considered in § 4.3.1 and is reiterated in 

Theorem 4.1. However, with the exception of the case r -  1, such static output
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feedback is unrealizable in the context of the true system (4.1,4.2). Therefore, 

in § 4.3.2, a realizable dynamic compensator is constructed for the cases r  £ 2, 

which filters the actual output y. This filter can be interpreted as providing a 

realizable approximation to the static hypothetical output feedback; moreover, it 

is shown in Theorem 4.2 that global uniform asymptotic stability of the zero 

state of (4.1,4.2) is guaranteed provided that the filter dynamics are sufficiently 

fast (a calculable threshold measure of fastness is provided).

The subject of this section, can be found in Ryan and Yaacob (1989).

4.3.1 Stabilizing static output feedback for hypothetical system

For convenience, the following state transformation is introduced. Let 

Ti e jR(w_/n)xn be such that ker Tj = im B, then

is a similarity transformation which takes system (4.1,4.3) into the form

*1

(CrB)~lCr with inverse T  1 = [Sj ; B] (4.4)

X(t) = An *(r) + An y(t),  XV) e  IR"“m (4.5a)

fv )  =  a2Xxv) +  Anyv)  +  uV) +  g v , m , y v ) , « ( » ) ) .  y c o e i R ”
(4.5b)

where

^11 An  

^21 ^22
:= TAT 1 , g( t ,X ,y ,u )  := g( ty S ^ + B y ,  u) (4.5c)

with hypothetical output

yh{t) = (CrB)nO (4.6)
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Note that the eigenvalues of coincide with the transmission zeros of 

(Cr , A t B); thus, by virtue of A4.2(iii), <j(An ) c  C“ .

Let P > 0 be the unique symmetric positive definite solution of the 

Lyapunov equation

PAn + AjxP + I = 0 (4.7)

then we state our first result.

Theorem 4.1

Define k * := IJA22 II + a ll#ll + i [ l l ^ i 2 + ^Jill + a ll^i ll]2» ^ en» f°r eac^ 

fixed ft > x-*(l -  /?)-1 , the static output feedback

u(t) = -  £(CrB T \ (0 = -  *7(0 (4.8)

renders the zero state of the hypothetical system (4.1,4.3) globally uniformly

asymptotically stable.

Proof

In view of (4.7), we introduce a function V: lRn_mxIRm —> IR+ by

V(x,7 ) := PX)  + illyII2 • (4.9)

Then, along solutions (£(•),?(*)) of (4.5,4.6,4.8) (equivalent to (4.1,4.3,4.8)), 

the following holds almost everywhere

■Jt V ( * ( 0 , y ( 0 )  = - i lW O II2 + <x(t),  [PA,2 +A[,]y(t ))  

+ (7(0. A22y(t))

+ ( 7 ( 0 . -  * 7 (0 + £ 0 . * (0 .7 (0 ,-* 7 (0 )  > (4.10)
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In view of A4.3(i), (4.4) and (4.8),

a - m i  -^ )-« iiB ii] iiy (o ii2

(4.11)

and combining (4.10) with (4.11) yields 

d
dt

(4.12a)

where

U(X,y) :=
11*11

m
. M,

Ill'll
m >. (4.12b)

1 -  [||/M 12 + A ^  || + a ||5 , ||]

-  [ 1 1 ^ 1 2 + ^ 2 1  II +  «IIS , 111 2 [ £ ( 1  - / ? ) - 1|42 2 1| - a | | B | | ]
(4.12c)

Noting that Mg is positive definite, thus U is positive definite quadratic form, 

then the requisite properties of global uniform asymptotic stability may be con­

cluded by standard arguments.

In the context of the true system (4.1,4.2), if r = 1, then the static output 

feedback (4.8) is realizable as

u(t) = - k ( C rB)- 'F iy {t) (4.13)

whence

Corollary 4.1

Let k * be as in Theorem 4.1. If r  = 1 then the static output feedback 

(4.13) renders the zero state of the true system (4.1,4.2) globally uniformly 

asymptotically stable.



However, in all other cases (r > 2), the feedback (4.8) is unrealizable for 

the true system (4.1,4.2); in its place, we will develop a realizable dynamic 

compensator in the next sub-section.

4.3.2 Cases r > 2: Stabilizing dynamic output feedback for the true system

(4.1,4.2)

In view of A4.2(i), we note that

yh(.t) = C^c(f) = F,y(r) + F2y(t)  + • • • + Fry (r~l\ t )  (4.14)

which can be interpreted in the frequency domain as

Vkis) = [Fx + N(s)]y(s) , (4.15a)

where

N(s) = sF 2 + s 2F 3 +  • • • + s r~1Fr (4.15b)

is physically unrealizable. Our approach is to replace N(s)  in (4.15) by a physi­

cally realizable transfer matrix (filter) of the form GM(s)N(s)  with appropri­

ately chosen GM(s). To this end, let St < r - I  denote the degree of the 

highest-degree polynomial in the zth row of N(s). Let constants 

aj  > 0 , j  = 2 , • • *, Si, be such that

Zi(s) = s Si + a l5.sSi~l + • • • + a{s + 1, i = 1 ,2 , • • •, m (4.16)

is Hurwitz (i.e. with all its roots lying in C"). For i = 1,2,* • *,m, define 

^ ( 5 ), parameterized by // > 0 , as

'j'f '(i) = - T - r  (4.17)
Xiius)

which, interpreted as a transfer function, has minimal realization
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(c f ,/z  lAi9ji 1bi)i where

4  =

---
---

1
o 1 0  • •

r

o

0 0 1 • •

> • 
o

• • o

• • o

0  • • 1

- 1 - 4 - a \  ••

-------1

Q1

g  1R'SiXSi (4.18a)

bi =

0 1

0 0
• G 1R5' , Cl = •

0 0

1 0

g 1RSi (4.18b)

We now introduce the transfer matrix

Gm( s )  := diag {'Pf(s))

which clearly has minimal realization (C*, where

(4.19)

A* = diag (A,) e!R?x?, B * = diag {bi ) e , c*  = diag (c j ) elR1* ^ ,
(4.20)

m
with q := £<5/. We note, in passing, that a{A*) c  C and that 

i= l

C*(A*r1B* = - / .

Let v* be as in Theorem 4.1, then, for fixed fc > jc*(1 -  /?)~1, the pro- 

posed physically realizable compensator (which filters the actual output y ) for 

system (4.1,4.2) is parameterized by ji, and has frequency domain characteriza­

tion:

H„(s) = -  6 (CrB)->[Fj + G ^ s m s ) ] . (4.21)

For notational convenience, we introduce functions p, / i , / 2 > A/2, and 

/ 3, defined as follows.
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q>: 0 r,y,2) H> - * ( C r B T l [ F l C [ S l X + B n  + C*2] (4.22a)

f t : a y )  !-> i4n jr +  A 12y (4.22b)

(4.22c)

a / 2 : a  *, y, z) i-> *y + q>a  y, z) + j a  *, y, ?>a y, z))

(4.22d)

/ 3: a y , z ) H ^ z  + fl*[Cr5y -  FjCt^jr+^y]] . (4.22c)

Then it is readily verified that, in the time domain and under state transforma­

tion 7, the differential equations governing the dynamic output feedback con­

trolled system may now be expressed in the form:

n o  = / 2a * w ,y ( 0 )  + a / 2( f ,* (o ,y (o , *(0), n o  e R m (4,23b)

In analysing the stability of system (4.23), we regard ji as a singular per­

turbation parameter. Recalling that C*(A*)~lB* = - / ,  we note that system 

(4.5) with control (4.8) is recovered on setting /z = 0 in (4.23); thus, in the 

usual terminology (Saberi and Khalil 1984, Corless et al. 1989 and Kokotovid 

et al. 1986), system (4.5,4.8) may be interpreted as the reduced-order system 

associated with the singularly perturbed system (4.23). The ensuing approach 

is akin to that of Saberi and Khalil (1984) and Corless et al. (1989), our objec­

tive being to determine a threshold value j i * > 0  such that, for all /z e  (0 , /z*), 

the zero state of system (4.23) is globally uniformly asymptotically stable.

Recalling that a  (A*) c  C_, let P* > 0 be the unique symmetric positive 

definite solution of the Lyapunov equation

i ( f ) = / i ( * ( 0 ,y (0 ), *(r)elR n- m (4.23a)

mH o  = / 3 a o , y ( o , z ( 0 ), n o ^ q . (4.23c)
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P*A* + (A*?P* + 1 = 0 

Define W: JRn-mx]RmxIR'J —» ]R+ by

w ( x , y, 2) := i<w(*,y, 2), p*w(x,y,  2)>

where

w{X,y , t )  := 1 + (A*)_1B* \CrBy -  FiC[SiX+Byi]

= { A ' r ' h ( x , y , r ) .

We now establish some preliminary lemmas.

Lemma 4.1

where

< v ,v (* ,y ), /i(Jf,y)> + ( V .v f t jo ,  h ( t , x , y ) )  < -a o V (x ,y )

Proof

This is implicit in the proof of Theorem 4.1. Thus, from (4.12),

( v ^ j r . y ) ,  f i ( x , y ) )  + ( v f v (x ,y ) ,  f 2( t , x , y »

£ - ! <
Ml
llyll

- in -1

, M. Ml
iiyii >

Ml
llyll

^ - i l |A / i 1 i r 1 [ W 2 + ||y ||2]

(4.24)

(4.25a)

(4.25b)

(4.26)
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Now, V defined in (4.9) can be written as

v(x,y)  = | <
X P 0 X

J .
9 0 I .y .

Therefore

m , y )  <i[ll^ ll + nDWI2 + liyil2]

Combining (4.26) and (4.27), the required result follows.

Lemma 4.2

(VJVix,?,  z), f 3(x,y,  z)> < - p 0w(x , y ,  z)

where

11̂ * II"1 > 0

Proof

{VtW{x,y,  r>, f 3(x,y,  2)> = (p 'w(x,y ,  2), f 2(x, y,  ?)) 

= (P * w (ij,? ) , A*w(jr,y,?)> 

= - I M i ' . y ,? ) ! !2

< - | | / >* ||-1VK(l',y,2 ) .

Lemma 4 3

There exists a calculable constant 0Q such that, 

(X,?,z)  € ]Rn-mxlRmxIR<?,

<vgw(x.y,*), fi(x,y)) z e0vhx,mHx,s,2) .

(4.27)

for all
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Proof (Sketch)

VxW(X>y, z) = -  [(A*)~lB*F1CSl ]TP*w(X,y, z), and so, in view of 

(4.25b), \\VxW(X,y,f)\\ is bounded above by a calculable scalar multiple of 

y, z). Clearly, the function ||/i (JF, y) 1! is bounded above by a calculable 

scalar multiple of V^(X, y). Hence, the required result follows.

Lemma 4.4

There exist calculable constants Y \ , such that, for all

( t ,X ,¥ ,z )  e IRx]R',~mxIRmx]R<7,

( v f w(x , y , z ) ,  f 2( t ,x ,y)  + Af2( t , x j , ?)) < y xW(x,y, ?) 

+ ¥2v i (x , y )w H x ,y , r ) .

Proof (Sketch)

VyW(J?, y ,z ) = [(A *)"1F * [Crfi -  Fj CS ]]r P*w( , y, z), and so, in view 

of (4.25b), ||VyW (jr,y,z)|| is bounded above by a calculable scalar multiple of 

W^(X, y, z). In view of A4.3(i), ||/2(̂ , Jf, y)|| is bounded above by a calculable 

scalar multiple of V*(j?,y). By A4.3(ii), g is uniformly Lipschitz in its final 

argument (with known Lipschitz constant A); hence,

l|A/2(r,* ,y ,z)|| < (i+A )||xy + p(*,y ,z)||

for all (r,j?,y ,z) € !RxIR',~mxIRmxIR*, and, since

£y + ^(Jf,y,z) = - £(Cr£)~1C*u'(if,y ,z )  (by using C*(A*)-1£* = - / ) ,  it 

follows that is bounded by a calculable scalar multiple of

W^(X, y, 2"). Hence, the result follows.
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Lemma 4.5

There exists a calculable constant rj0 such that, for all 

e  IRxRn-mxIRmx R <7,

(Vyv(jr, j o ,a f 2o , x , j f , i ) )  < v0v k x , m k x , y , r ) .

Proof (Sketch)

VyV(JP,y) = y, and so ||VyF(j?,y)|| is bounded above by a calculable 

scalar multiple of V* (X, f) .  From the discussion in Lemma 4.4, 

||A/2(L Xyy, z)\\ is bounded above by a calculable scalar multiple of 

y, z). Hence, the lemma follows.

Having established the above preliminary lemmas, we demonstrate in the 

next theorem that system (4.23) is globally uniformly asymptotically stable for 

all // > 0  sufficiently small.

Theorem 4.2

Let k * be as in Theorem 4.1 and define

* a oA) ^
jj. := --------------------------- > 0 .

[<Wi + *70(00 + ^ 2)]

Then, for each fixed ft > x*(l -  f$)~l and fixed n  e (0, //*), the zero state of 

system (4.23) is globally uniformly asymptotically stable.

Proof

Define the positive definite quadratic form (Lyapunov function candidate) 

‘W by

■HKx.y.z) := V(jr,jo + TiQ(eQ + V2r l w(x ,9 , z )



- 7 5 -

then, along solutions (%('),y (m),2(•)) of (4.23), the following holds almost 

everywhere

+ < y . v ( x o ) , n t ) ) ,

+ M m ,  y u m

+ ft-Hvtw m ),yo ) ,  m ) ,  h i m , y u ) ,  ? ( 0 )>]

where k0 := t)o(0o + yr2) *. By invoking Lemmas 4.1-4.5, the following holds 

almost everywhere along solutions (X(m) ,?(•),?(•)) of (4.23),

4 w w o.y< o ,*W )s-<at
vHx(t),yu)) 

wHx(t),yu),m)
v\x{t),y(t»  

w H m ,y m ,m )
(4.28a)

)

where

:=
«b -»?o

-vo  (m~1 00  -  riXfy + v i f l vo
(4.28b)

Noting that Mu is positive definite; hence, the result follows.
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4.4 Discontinuous output feedback control

The aim of this section is to extend the approach proposed in §4.3, by 

generalizing the class of allowable uncertainties. A generalized output feedback 

control is developed which renders the zero state globally uniformly asymptoti­

cally stable. The generalized feedback has a linear plus discontinuous output 

feedback structure. The discontinuous control component is modelled by an 

appropriately chosen set-valued map, and we adopt the analytic framework of 

controlled differential inclusions (Aubin and Cellina 1984).

The approach adopted here is essentially that of Ryan (1988) and Leit- 

mann and Ryan (1987). In Ryan (1988) and for the case r = 1 only, a wider 

class of uncertain functions g is studied. Specifically, he has considered a class 

of nonlinear systems with uncertain functions g satisfying

IteCr.x, u)|| £ a||a:|| + p\\u\\ + rf(Cx)  (4.29)

for all (f, x, u ) e  !RxlRnx R m with a  and p  < 1 as in A4.3 and where y  is a 

known constant and £ is a known continuous function. Thus, in Ryan (1988) a 

non-cone-bounded component of uncertainty is allowed but this is required to 

be bounded by a function of the system output y. Here, we will consider the 

cases r  ^ 2, by using an approach of Leitmann and Ryan (1987) on decomposi­

tion of the uncertain function g. Thus, the subject consider here may be 

regarded as an extension of § 4.3 and Ryan (1988); however, this extension is 

achieved at the expense of additional assumptions on the "hypothetical" nomi­

nal system and on the uncertain function g, which are stated in the following 

sub-section.

The approach used in the present section is analogous to that described in 

§ 4.3, but, in contrast to § 4.3, a discontinuous control component is admitted 

and the overall controlled system is consequently interpreted in the generalized



sense of a controlled differential inclusion (Aubin and Cellina 1984). Thus, in 

§ 4.4.2, we consider a hypothetical output yh defined as in (4.3) for system 

(4.1) and establish the existence of a stabilizing generalized static output feed­

back for the hypothetical system; this is stated in Theorem 4.3. Since this gen­

eralized static output feedback is unrealizable in the context of the true system

(4.1,4.2) (except for the case r = 1), in §4.4.3, we will construct a realizable 

generalized dynamic compensator for the cases r  > 2 , which filters the actual 

output y. As we have mentioned in § 4.3, this filter can be interpreted as pro­

viding a realizable approximation to the generalized static hypothetical output 

feedback; furthermore, it will be shown in Theorem 4.4 that global uniform 

asymptotic stability of the zero state of (4.1,4.2) is guaranteed provided that the 

filter dynamics are sufficiently fast.

4.4.1 Additional assumptions

Consider again system (4.1,4.2). Here however, we have to impose some 

additional conditions on the system. Before that, we need the following.

Let n  denote the matrix of orthogonal projection of lRm onto

5  = (im KC rBT^Y.F j^CAj)] )1 c  IRm (4.30)
;'=  i

In the next assumption, additional structural properties are imposed on the 

uncertain function g. In particular, we have to replace A4.3(i), however, 

A4.3(ii) remains in force. Thus, A4.3(i) is now replaced by:
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A4.4: There exist known non-negative constants a , P i , p2» 7* a 

Carathdodory function g j : ]RxlRn —> R m, a continuous function 

g2: R m -» R m, and a known continuous function TRP —> R + such that,

for all (f, x y u) e  R x R nx R m,

(i ) g ( t , x , u )  = g\( t,x)  + g2(u);

(ii) H(/—n ) <̂1(r,j:)|| < a ||x ||;

(iii) ling^f.x)!! < rf(Cx);

(iv) | | ( / - n ) g 2 (w)|| < A H (/-n )iiO , a  < i ;

(v) \\ng2(u)\\ < p2\\nu\\, p2 < l .

Example 42  

If

A =
0 1 0 0 0

0 1 1 , B = 1 0

0 0 0 0 1
, C =

1 0  0  

0  0  1

then the assumptions A4.1 and A4.2 hold with r = 2,

1 0 1 0
= 0 1 and F2 = 0 0

Furthermore, 5 defined as in (4.30) is given by
*

0 1 0
S  = im 0 0 0

with

n  =
0  0

0  1
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We wish to admit discontinuous control. Clearly, if such discontinuous 

control is coupled with system (4.1), the resulting system is a differential equa­

tion with discontinuous right hand side. For such equations, the classical 

(Carathdodory) theory and concept of solution are inappropriate; consequently, 

the discontinuous feedback system is inteipreted in the sense of generalized 

dynamical system (Gutman 1979, Leitmann 1979) and defined via a differential 

inclusion (Aubin and Cellina 1984, Clarke 1983). Now, we are going to recast 

the problem in the context of controlled differential inclusions.

From A4.4, we first have the following.

Proposition 4.1

For each function gi satisfying A4.4(ii)-(iii),

g l(t ,x)  e GiOO := ( / - n ) # m( a M )  + U B m(r((Cx)) c  

for all ( t t x ) e RxIRn.

Proof

Let satisfy A4.4(ii)-(iii). Then

= ( / - n )g ! ( f ,x )  + n g j(r,;t)

=  V j +  v 2

with ||vi || < a||x || and ||v2|| ^  r£(Cx). Hence,

Vi € ( / - n)ZBm(a||j:||) and v2 e I IB m(rf(Cx)) , 

which completes the proof.
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Now, system (4.1) with output feedback (4.2) is replaced by the differen­

tial inclusion system

x(t) e Ax(t) + B[u(t) + G ^xit) )  + g2(u(t))] (4.31)

with output

y(t) = Cx(t) (4.32)

Certainly, for each bounded measurable function w(*)» any solution *(•) of (4.1) 

(absolutely continuous function satisfying (4.1) a.e.) is also a solution of (4.31) 

(absolutely continuous function satisfying (4.31) a.e.).

It is clearly seen that, defmed as in Proposition 4.1 has convex and 

compact values. Moreover, since £ is continuous then Gj is upper semi- 

continuous (in fact continuous).

Our first task now is to establish the existence of a generalized output 

feedback (y, z) I—> Hj(y, z), which renders the zero state of the feedback .con­

trolled differential inclusion

x(t) e F(x(t)) (4.33a)

where

FU ) := Ax + B [H^Cc, (CrB)~xCrx) + G jO ) + G21(x)] (4.33b)

G2iW  := lgl(u): u e HjCCx. (CrB ) - 'C s )}  (4.33c)

globally uniformly asymptotically stable.
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4.42 Existence of stabilizing generalized static output feedback for 

hypothetical system

By using a similarity transformation as introduced in § 4.3.1, then under 

transformation T as defined in (4.4) takes system (4.1,4.3) into the form

X(t) = An JT(0 + A l2? ( t ) t X(t) e JRn-m (4.34a)

n o  e A21x(t) + A22m  + u(o  + c 1(jr(o ,y (0 ) + g2w o).
(4.34b)

where

1
cs 

1__

X
A 21 a 22 " :=  T A T ' 1 ; G ^ JP .y )  :=  G ^ r *1

3 .
(4.34c)

with hypothetical output

y hU) = ( c rB ) n t ) (4.35)

Recalling that the eigenvalues of An  coincide with the transmission zeros of 

(Cr ,A ,B); thus, by virtue of A4.2(iii), (?(An ) c  C“ . Hence, the Lyapunov 

equation (4.7) has a unique symmetric positive definite solution P > 0. Define 

the matrix by

1 ~(m1+m3) - m i

-(m , +/w3) 2[£d(l-/? 1)-m 2-m 4] -m 4

-m i  -m 4 2[*d( l - p 2) - m 2]

(4.36)

with

m\ = 11^12 +^2lII. mi  = 11̂ 22II. = a||S, ||, m4 = a ||B ||.

Let Hj be the generalized feedback given by

Hl C >0 := "  *d[y + N00] (4.37a)
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where the set-valued map y  h-> N(y) c  ]Rm in essence models a discontinuous 

control component and is given by

N(y) := <
{ f w i i n c Q B r 'F ^ r ^ Q B ) - 1̂ } , n c c ^ r 1̂  * o 

B m(Z(y)). n  (CrBT'Ftf = 0

(4.37b)

Then we state the following.

Theorem 4.3

Define Kd := inf [fcd: > 0 ) . Then, for each fixed

kd > max {Kd , (1 -  /?2)_1/ h  the generalized static output feedback Hj defined 

in (4.37) renders the zero state of the hypothetical system (4.34,4.35) globally 

uniformly asymptotically stable.

Proof

Note initially that defined in (4.37) is singleton-valued off the sub­

space = ker Ii{CrB Y lFl c  JRP and is upper semi-continuous with convex 

and compact values; thus, Hx qualifies as a generalized feedback. Now, con­

sider the transformed system (4.34) under feedback control (4.37), viz.

( f ( 0 . # ( 0 ) e F 1(jr(0#y(0) (4.38a)

where

F i(* ,y ) := {An X+ An y JxDjOT,?) c  !Rn~mxIRm (4.38b)

with

Di(jr,JO := a 2, x  + A22y  + fl,(jr,y) + G ^ jr.jo  + G21(jr,jo (4.38c)
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N(*,>0 := N(CT~

- l *

S
,y) = - ^ [ y +  N(jr,y)]

X

y

G2i(* ,)0  := lgi(u) '  uefin iX,?)}  .

(4.38d)

(4.38e)

(4.38f)

Clearly, the multifunction Fj is upper semi-continuous with convex and com­

pact values. Hence, for each pair (*(*o)»y(*b)) € lRrt_mx]Rm, there exists a 

local solution (X, y ) : [t0, t ) —> R n_mx R m to the above system (see Aubin and 

Cellina 1984).

By considering a Lyapunov function candidate V defined as in (4.9), then 

along every local solution (*(•)»?(*)) of (4.38), the following holds almost 

everywhere

-£v(x(t),y(0) e  - i i w o i l 2 +  ( m .  irAu+Ahwo)

+ ( y w . A z t f O ) )  + g ( m , m )

with

§ { X , y )  : =  ( ( y , « 1+ w 1+ t v 2 ) :  «1 s f l 1( i ' , y ) ;  w ,  w j e G j i ^ . y ) }

Now, in view of (4.30),

n y w  = n(CrB T lFxy(t)  = n c c ^ r '^ c r - ' t s ^ c o + B y c o ]  (4.39)

Defining

£(*,50 := £(CT-l *

y
(4.40)

then, in view of definition of N and by using y(t) = ( I~H)y(t )  + Uy(t) and 

(4.39), for all v e N (*(r),y(0),
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<y(0, v> = « jr(0 ,y (0 ) ||n y (0 ll (4.41)

By direct calculation,

sup g(x ,y)  <. -  f o a - f a ) -  a||B ||] ||( / - n )y ||2 -  *d( \ - h ) W W 2 

+ a ||5 iin i( /-n )y i|||i '|| + « ||B |ii |( /-n )y ||||n y ||

< -  f o ( i - A ) - « H f i | ] l l ( / - n ) y u 2 -  ^ ( i - f t ) l in y i l2

+ a||Si | | | |( / -n )y ||p i | + a ||B ||||(/-n )y ||||n y ||

Hence,

“ V(Jr(f),y(f» ^  -  w(JT(r),y(/)) a.e. at
(4.42a)

where

m , y )  :=
11*11 11*11

ll(/-iD y|| ll(7-n)y||
linyn linyii

> , (4.42b)

and is defined as in (4.36). Noting that is a positive definite matrix 

and thus U is a positive definite quadratic form; hence the result follows.

The generalized static output feedback (4.37) is unrealizable for the true 

system (4.1,4.2) except for case r = 1. Thus, in this case (r = 1), the general­

ized static output feedback (4.37) is realizable as

«(f) e - £ d [(CrB )-1F,y(f) + N(y)] (4.43)

whence:



Corollary 4.2

Let Kj be as in Theorem 4.3. If r = 1 then the generalized static output 

feedback (4.43) renders the zero state of the true system (4.1,4.2) globally uni­

formly asymptotically stable.

For all other cases (r £ 2), in the next sub-section we wall develop a real­

izable dynamic compensator which filters the actual output y. This filter can be 

interpreted as a realizable approximation to the generalized static hypothetical 

output feedback (4.37).

4.4.3 Cases r ^ 2: Stabilizing generalized dynamic output feedback for the 

true system (4.1,4.2)

Recalling from the earlier part of § 4.3.2 that

yh(t) = C ^ t )  = F,y(t) + FrfU)  + • • • + Fry ( ' - » ( 0

which can be interpreted in the frequency domain as

yhW  = [Fx + W(s)]y(s) ,

where

N(s) = sF2 + s 2F$ + • • • + s r~lFr

is physically unrealizable. Our approach is to replace N(s)  by a physically real­

izable transfer matrix (filter) of the form GMd(s)N(s)  with appropriately chosen 

GMd • We proceed exactly as described in § 4.3.2, so here we just briefly men­

tioned the procedure used.

Recalling from § 4.3.2 that we have chosen GM(s) as
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Gm(s ) := diag {*¥?}

where 'f 'f(s) (parameterized by // > 0) is defined as in (4.17) which, inter­

preted as a transfer function, has minimal realization (c^, /*_1£j),

where At , bt and ct are given by (4.18); and GM(s) has minimal realization 

(C*, , /z-1fl*), where A *, B* and C* are given by (4.20). Moreover,

we note that <j(A*) a  C“ and that C*(A*)-1Z?* = - / .

Let Kd be as in Theorem 4.3, then, for fixed > max {*£, (1 -  f t ) ”1/}  

the proposed physically realizable filter (which filters the actual output y and 

forms the linear component of the overall compensator) for system (4.1,4.2) is 

parameterized by nd, and has transfer function,

H ^ U )  = -  !?d(CrB T '[ F l + G ^ s m s ) ]  (4.44)

where we have chosen GMd(s) = G^s) ,  while the discontinuous component is 

realizable and modelled by set-valued map N defined by (4.37b).

For notational convenience we introduce multifunctions H2, G22 and D2 

as follows.

H20>, z) : = - i d [(CrB ) - \ F iy + C*f) + NOO] (4.45)

G22(y,z) := (g2(w): u e H2(y,z)} (4.46)

D2(JT, y, z) := a 21x  + A^y + h 2(*, y, z) + Hi (*, y) + e 22(*, y, z)
(4.47a)

where

H2(Jr,y,z) := h 2(c t -1

= - ^ d [(CrB )- i (F1C[S1X+BSf] + C 'z )  + N(Jf.y)]

(4.47b)
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G22(*.y,2) := G22(T~l .*) = Igiiu): u e fi2(i\y , ?)) (4.47c)

and N is defined as in (4.38e).

The next proposition shows that, there is a relationship between 

Hj and H2 and between G21 anc* ^22-

Proposition 4.2

For all (*,y, z) e ]Rrt~mxlRmxIR*,

(i) fi2( jf j ,z }  = uk (X,y,Z) -  uh($) + H i( * ,«  ;

(ii) G 22( x j , z )  C G n ( x , y )  +  ffim(i||« i!(jr ,y ,? )-u ii(y ) ||) ,

where

«/,(y) := (4.48a)

w/2(*,y, *) := -  £d(CrB T l [ F ^ S t f + B n  + C*z] (4.48b)

Proof

(i) Let m2 e fl2(*, y, z). Then, from (4.48b),

«2 = w/2(* ,y ,z) + v, v € N(*,y)

= «/2(* ,y ,z) -  wZl(y) + M/x(y) + v,

= «/2(* ,y ,z) -  w/^y) + «!, i/i e fli(* ,y )

Therefore

h 2(*, y, z ) c  Hi(*, y) + «/2(* ,y ,z) -  k 7i (y)

Now, let u e  H j(*,y) + «/2(* ,y ,z) -  M/t(y). Then,
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« = %(X,y,2) -  uh(So + a, s  H^X.y)

= “;2(*.y. ?) -  «/,(y) + «/,(y) + v, v e  N(:f,y)

= u,2(x,y,  z) + v, v e fiCf.y)

Therefore

«/2( ^ y ^ )  -  « /,(«  + H i(^ ,y) c  fi2(* ,y ,z )

Hence, the result follows.

(ii) Let w2 e G22(*, y, z), then

w2 = 8 2 (ui )» "2 = M/2(^ ,y ,z ) + v, v e  NO?,?)

Let Wj = ifyOO + v, then Mj e H^jp.y). Now, 

w2 = g2(«i) + 8 2 (^2 ) -  £2(^1)

= .wi + £2 (^2) “  8 2 (ui)> wi € 6 2 1  (^»W 

Then, by Lipschitz condition A4.3(ii), we have

ll*2 (“2) “ *2(“i)ll ^

= A||M/2(j? ,y ,z )-w /l(y )||, 

which proves the assertion (ii).

By using Proposition 4.2, we may replace D2 defined in (4.47a) by D3 

where D3 3  D2 and

D3(*,y ,2) := + W/2(* ,? ,* ) -  W/^50

+ B mW \u l2(X,y, z) -  M/l (jOII) (4.49)



Then it can be shown that, in the time domain and under state transformation T, 

the differential inclusions governing the dynamic output feedback controlled 

system may now be put in the form

( j n M t ) )  6 F2(*(f), y (0 , m ) ,  Md> 0 (4.50a)

where

F2(jT,y,z) := {/1(J?,y))xD3U >3r,z)x{ /3(jr,y,z)} c  IRn_mxlRmxIR<7
(4.50b)

with real-valued functions f \  and / 3 defined as (4.22b) and (4.22e) respec­

tively, i.e.

/ i : (JT, y) \̂ > A n X + A l2y  (4.50c)

/ 3: (JT.y.r) t-> A ’z + B* [C^sy -  F!C[S,jf+ By]] (4.50(1)

In analysing the stability of (4.50), we regard nd as a singular perturbation 

parameter. Note that system (4.34) with control (4.37) is recovered on setting 

lid — 0 in (4.50); thus, in the terminology (Saberi and Khalil 1984, Corless et 

al. 1989 and Kokotovid et al. 1986) system (4.34,4.37) may be interpreted as 

the reduced-order system associated with the singularly perturbed system (4.50). 

The ensuing approach is akin to that of Saberi and Khalil (1984) and Corless et 

al. (1989), our goal being to determine a threshold value fiid > 0 such that, for 

all !id g (0, Hd)> the zero state of system (4.50) is globally uniformly asymp­

totically stable.

Recalling again that <j (A*) c  C“ , thus the Lyapunov equation (4.24) has 

a unique symmetric positive definite solution P* > 0. Consider again the 

Lyapunov function candidate W defined as in (4.25).

Before proceeding, we impose our final assumption.
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A4.5: B*[CrB -  FiCB]II = 0, where II is the matrix of orthogonal pro­

jection of IRm onto S as defined in (4.30).

We now state some preliminary lemmas (analogous to Lemmas 4.1,4.4-

4.5).

Lemma 4.6

y), /iC r,)0 > + sup (n(* ,y) <

where

(X>?) := {(V yV ^y), hi): hi e D ^*,?)}

and

« i ~  O l ^ 1ll[||/>ll+ l]]" 1 > 0 .
«

Proof

The proof of this lemma is implicit in the proof of Theorem 4.3. Thus, 

(V^V(jr,y), /i(*,59> + sup £,(*,y)

w 11*11
ll( /-n )y || ll( /-n )y ||

liny ii linyn

2
Ill'll

12
?1V
I ll( /-n )y ||

linyil

= -  i l l r 1 Dip'll2 + | | ( / - n ) y | |2 + ||n y ||2]
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=  - i i i w j ; i r 1D M 2+ u y ii2] (4.51)

X p 0 JC
.y . * 0 / .y .

Now, V  defined in (4.7) may be written as

v cr.y ) = \ {

Therefore

V(x,y)  < H ll/’ ll + i]  Oil'll2 +  iiyii2]

Combining (4.51) and (4.52), we have the required result

(4.52)

Lemma 4.7

There exist calculable constants ŷ3 , i/ a su°h that, for all 

(*, y, z) e R rt_m x]Rm xlR?,

sup g2{x, y, ?) < y 3w ( x ,y, z) + n v H x ,y ) w * ( x , y ,* )

where

Qt ( x , y , i )  := {(V.wxjr.y,?), h3): h3 € D jCr.y,?))

Proof (Sketch)

v f w(x,y,Z)= \iA*rlB*(CrB - F l CB}Yp*w(x,y,r)

= ( M * fp * w (x ,y , r )

where

A/* := ( A * y 1B t [ C ^ - F 1CB] .



By recalling that D3 as defined in (4.49), we may write Q2 as

S2(* ,y ,z) = «V yW ( hx + u + h>: hx e D^JT.y);

h e /Bm(A||w(:r,y, z^H); u = -  1^(50}

From the definitions of D j, H j , Gj and G2i» ^  making use of A4.5 (i.e. the 

inner product of (M*)TP*w(X,y , z) with any terms containing "IT" is zero) and 

noting that \\(M*)TP*w(X,y, 2)\\ is bounded above by a scalar multiple of

W*(X, y, z), we may conclude that there exists a calculable constant k2 such

that,

sup {(VyW(*,y,2), hx): hx e DjC^y)} < k2vHx,S)W^{X,y,z)  (4.53)

Now, from (4.48a) and (4.48b),

u(x ,y, z) = uk ( x , y t z) -  uk (y)

= - *d{CrB T l [FtClSiX+Bn + C ' f j  +

= - e d(c rB)- '  [F iC ts ^ + s y ]  + c * i - c rBy]

= -  ad(CrB r xC*w(X, y, ?) (4.54)

Thus, there exist calculable constants £3 , &4 such that

sup {(Vf W(X,y,X), h>: ft e fflM(/t||« (* ,y ,J)||)) S k3W(X,y , t )  (4.55)

and

{Vyw (x ,y ,  X), u(x,y ,  2)) 5  kdw (x ,y ,  r> (4.56)

Combining (4.53), (4.55) and (4.56), the result follows.
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Lemma 4.8

There exists a calculable constant tji such that for all 

(jr,y,2) e !R"-mxlRmxlR<7,

sup g3(x ,y ,z )  < ThViiX'SOwhXty,?)

where

g3(x,y,r> := {(vyv(jr,y), u +h): h e mm(XMx,y,?)\ \y,

u = H,2CS',5r.2 ') - “/lC>|r)}

Proof (Sketch)

VyV(X, f )  = y, and so || y)|| is bounded above by a calculable

scalar multiple of V̂ (X,y). From Lemma 4.7 (i.e. equation (4.54)),

u(x,s,r> = utl( x , y , t ) -  utim  = - k d(CrB r xc * w {x ,y , r )  .

Thus, there exist calculable constants k$, such that

sup {(v^vc?,?), h): h g mm(x\\u(xtyyr)\\)} < ksvHx>ywi(x,y,?)

and

(vf v(x,y), «(x , f , z»  <. k6v H x , m H x j , r ) ,

from which the result follows.

The next theorem establish that system (4.50) is globally uniformly 

asymptotically stable for all nd > 0 sufficiently small.
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Theorem 4.4

Let Kd be defined as in Theorem 4.3 and let define

* «iA>  ̂ „jid : = ----------------------------> 0 .
<■hV3 + ^i(^o + ^4>

Then, for each fixed kd > max {Kd , (1 -  /?2)- V} ^  ^ xe<̂  Md e (0* Md)* 

zero state of system (4.50) is globally uniformly asymptotically stable.

Proof

The multifunction F2 defined by (4.50b-d) is upper semi-continuous with 

convex and compact values. Hence, for each 

(X(tQ) t f ( t 0)y z(to)) € IRw-mxlRmx]R<7, there exists a local solution 

(X, y, z ) : [r0, t) —> ]Rn~mxlRmxJRi? to the system (4.50) (Aubin and Cellina 

1984).

Now, define *Wd: ]Rn-mxIRmx]R<? -» IR+, a Lyapunov function candidate,

as

r> := v(x,y> + vi(o0 + n )~ lw { x ,y , t ) ,

then, along every local solution (£(•)»?(*)> z(*)) of (4.50), the following holds 

almost everywhere

- ^ n ' d W o . m .  m )  = ( v ^ v w o .y w ) .

+ sup Q\(x{t),y(t)) + sup g3(x(t) ,y( t) ,z( t ))

+ h  y (o . m ) ,  f i ( x ( t ) , n o ) )



+ /s W O .H O .n o ) ) ]

where := 7/1 (0O + ^ 4) 1 • By utilizing Lemmas 4.2,4.3,4.6-4.8, the following 

holds almost everywhere along every local solution (£(•)> y(*)» z(*)) of (4.50),

v k m , n t ) ) v k m . m )

w k m , m , m )
(4.57a)

)

where

==
“ 1 -»7i

—»7i (fid1 Pa ~ YaWo + ¥4r 1 »7i
(4.57b)

Noting that MMj is positive definite, then the theorem follows.
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CHAPTER 5

ADAPTIVE STABILIZATION OF A CLASS 

OF UNCERTAIN SYSTEMS

5.1 Introduction

The proposed design approach given in the preceding chapter will work 

well if we have a suitable model that satisfies all the assumptions of the 

design. As we have seen in Chapter 4, the threshold values k and n  (Kd and 

lid in the discontinuous case) are crucial in this design and are explicitly cal­

culable from known system data (i.e. in terms of known bounds of uncertain­

ties). However, since these values are determined via a "worst case" analysis, it 

is to be expected that, in practice, the compensator will be conservative.

The main goal of this chapter is to develop adaptive-based feedback con­

trols for a class of uncertain systems. This stabilizing adaptive version has a 

close relationship with compensator-based design proposed in the preceding 

chapter in the sense that the adaptive-based compensator is designed to circum­

vent the inherent conservatism induced by crude estimates in a "worst case" 

analysis. Furthermore, it can handle the case for which bounds on the uncer­

tainties may be unknown (i.e. to allow for bounded uncertainties with unknown 

bounds). Thus, this adaptive-based design can be regarded as complementary to 

the compensator-based design.

In order to develop this adaptive compensator, we adopt a universal adap­

tive stabilization approach which is essentially that of MSrtensson (1985), but 

close in spirit to that of Ryan (1988); and akin to that of Corless and Leitmann
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(1983, 1984).

This chapter is organized as follows. In § 5.2, we discuss state space 

representations for system (4.1,4.2) with filter dynamics. Section 5.3 deals with 

the adaptive stabilization by linear output feedback. Then, in § 5.4, the problem 

of stabilizing adaptive compensator by discontinuous output feedback will be 

considered, extending the adaptive compensator developed in preceding section. 

This is achieved (as in § 4.4) by admitting a discontinuous control component, 

modelled by a suitably chosen set-valued map, and overall controlled system is 

interpreted in the generalized sense of a controlled differential inclusions 

(Aubin and Cellina 1984). Finally, in § 5.5, we give example to illustrate the 

proposed approach.

5.2 State space representations

In order to proceed, we will give a state space representation for system

(4.1,4.2) plus filter dynamics. Recall that the (X,y,z) representation used in 

§§ 4.3.2,4.4.3 (equation (4.23), and equation (4.50) in the discontinuous case) 

may be interpreted as follows.

For analysis only, we have separated the component GM(s)N(s) of the 

proposed compensator as two components G^(s) and N(s), where the dynamic 

block Gp(s) = diag { ^ (s )}  is realized by linear system

T* = (C* , p ~ lA* , p ~ 1B*) with state dimension where A * , B* and C*
i=i

are defined by (4.20). However, in practice, the component GM(s)N(s)  is real­

ized by constructing a total of mp filters of the form

nn (s)
— — - ,  i = l , 2 ,  j  = 1,2,  • • *,p, (5.1)
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where n ^ s )  denotes the (/-th element of N. Each filter of the form (5.1) can be 

interpreted as a single-input single-output system having a state space realiza­

tion of the form

fid)(t) = A la ( t ) + B lv(t) (5.2a)

y ‘\ t )  = D[{n )v(f) + Di(fi )®(0 (5.2b)

Example 5.1 

If

then

njj(s) _  
Xi(vs) ~

V *  + bs,-iss‘ 1 + + b\ s + br

(p s f  + a ^ i p s T  1 + * * • + ax{ps) + 1v$-i

‘ 0 1 0 • • 0 0
0 0 1 • • 0 0

; B i = *

0 0 0 • • 1 0
-1 - a 2 - a 3 • 1

; D[(p)  = bS(fi S i  .

£>20 0  = Si) (bxp  l - a 2b5.p  *)

(b5._2p (Si 2)~ as - i bt P  *) ( h - i M  i} - a 5ib5ip  *)]
M S - 1) ,-Sr

Thus, Gm(s )N(s) has a state space realization in the form of a p-input, m- 

output linear system P* = (D1(p ) ,D 2(p ), M~l A, P -1®) with state dimension 

q - p q  for which a  (A) c  C~ and the pair (Dl ( p ) t D2(p))  determines the out­

put map, D x( p ) being a feedforward operator. Therefore, the overall controlled 

system has the structure shown in Figure 5.1 below (Figure 5.2 is the structure 

of the associated discontinuous case).
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SYSTEM (4.1, 4.2)

______________________________ J
compensator

Figure 5.1. Linear case

Non-linear

SYSTEM (4.1, 4.2)

. . MBS . _  . — . _  . —- •  • — . —— .

compensator

Figure 5.2. Discontinuous case
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The governing equations (equivalent to (4.23)) can be expressed as

x(t)  = Ax(t) + B[u(t ) + g( t ,x ( t ) t w(r))], x(t) e lRn, (5.3a)

fiz(t) = Az(t) + ®y(r), z ( t ) e J R i ,  fi < //*, (5.3b)

y(t)  = Cx(t), y(t)  e (5.3c)

ii(f) = - ^ ( C rB )-1[F1y(f) + Dxin)y( t )  + D2(//)z(f)], ii(f) € IRm,

£ >  k * ( \ - P T x, (5.3d)

and in the generalized feedback control case, the governing equations 

(equivalent to (4.50)) can be expressed as

x(t)  = Ax(t) + B[u(t)  + g(f,*(f),K(f))], x(t)  e IR", (5.4a)

lidz{t) = Az(t) + ®y(r), z(r) e 1R ,̂ nd < iid> (5.4b)

y(t)  = Cx(f), y ( r ) e l R ' ,  (5.4c)

tt(f) € - ^ [ ( Q s r 't F i y C O  + £>i(^)y(0 + D2(M)z(t)\ + N(y(f))].

^  > max { k j  ,  ( 1  -  P2)~lr ) (5.4d)

Clearly, the threshold values k * and fi* (Kd and fid in the discontinuous 

case) are central to this design. Since these values are determined via a "worst 

case" analysis, it is to be expected that, in practical implementation, the com­

pensator will be conservative. In the next section, a stabilizing adaptive version 

of the compensator is developed; however, in the case r > 2, this is achieved at 

the expense of imposing further structure on the uncertain function g.

Before proceeding, it is worth mentioning that this chapter should be read 

in conjunction with Chapter 4, since we are discussing a system with the basic 

assumptions (i.e. A4.1-A4.2); the only difference being in the structure of g.
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5.3 Adaptive stabilization by linear output feedback

In this section, we will develop a stabilizing adaptive (linear) output feed­

back for system (5.3). This adaptive control requires only knowledge of 

F i ,F 2, * * \ F r and CrB. Thus, in the next sub-section, we first consider adap­

tive version for a special case (r = 1). Then, in § 5.3.2, a stabilizing adaptive 

compensator is developed by an approach which is essentially that of 

MSrtensson (1985).

The subject of discussion in this section can be found in Ryan and Yaacob 

(1989).

5.3.1 Case r = 1: Stabilizing adaptive output feedback for the true system

(4.1,4.2)

•

If A4.2 holds with r = 1, then, by Corollary 4.1, system (4.1,4.2) is 

asymptotically stabilized by the static output feedback (4.8) with 

£ > ir*(l -  /I)-1 provided, of course, that Fj and CrB are known and that suf­

ficient a priori information is available to compute the (conservative) gain 

threshold k *(1 -  P)~l , We now consider the case for which the latter informa­

tion is unavailable, i.e. we only assume knowledge of Fx and CrB and, in par­

ticular, the constants a  and < 1 in A4.3 may be unknown. Assumptions A4.1 

and A4.2 remain in force.

Replace fixed & in (4.8) by variable ic(t) to yield

« (0  = -  K(t){CrB T lFiy (t) (5.5a)

and let K ( t )  evolve according to the adaptation law

K(t) = IK C ^ r 'F jy C O II2 (5.5b)
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then,

Theorem 5.1

For all initial data (tQt x(tQ), ic(tQ)) e IRxlRnxlR+, the adaptively con­

trolled system (4.1,4.2,5.5) exhibits the following properties:

(i) lim /c(t) exists and is finite;
t — >oo

(ii) lim IWOH = 0.

Proof

For fixed (but unknown) £ > k * ( l —/?)-1 and under the similarity 

transformation T, system (4.1,4.2,5.5) may be expressed as

X(t) = An X(t) + An J(t) (5.6a)

f i t )  = A21X(t) + Aztfi t )  -  m t )  -  [ * r ( 0 - W « )

+ (5.6b)

Kit) = IIKOII2 (5.6c)

with (*(%), jr(t0), Kit0)) = (io ,y0. Ka)-

Let U and V be as in the proof of Theorem 4.1 and define the positive 

definite (since p  < 1) function

<V\ (X, **) i-» V(Xy S )  + \ { k  -  £ ) 2 -  \ P ( k  -  £) | k  -  £  | . (5.7)

Then, along solutions (X(m),y ( ') , k ( ' ) )  of (5.6), the following holds almost

everywhere
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- f n x w . m ,  4 0 )  < - u ( m . m )  -  p z w m w 2at

-  M D - m n m 2 + f r m n m 2

< - u m t ) , y « ) )  (5.8)

Since U is positive definite, we conclude that t i-» (X(t),y(t),  K(t)) is bounded 

and since t I—> ir(r) is also monotonic, assertion (i) of the theorem follows.

Furthermore, in view of (5.8), for solutions 

(JT,y, k): [f0,o°) ]Rn-mxIRmxIR of (5.6),

f ~ u w o ,y ( 0 )  ^  < W o . y0, *o) < 00 (5.9)•'*0

Hence, since U and V are positive definite forms,

\ ~ v m ) , n t ) ) d t < o o  (5 .10)

Furthermore, (5.8) ensures that there exists a constant c(X0,y0) > 0 such that

v(*(0.y«) < Wo,y0) (5.ii)

Invoking Lemma 6.3 of Corless and Leitmann (1984), we conclude (from 

(5.10) and (5.11)) that V(X(t),y(t)) 0 as t -> <» whence assertion (ii) of the

theorem.
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5.3.2 Cases r  £ 2: Stabilizing adaptive compensator for system (5.3)

Before describing the adaptive strategy in this case, it is remarked that the 

argument used in establishing Theorem 5.1 cannot be carried over directly. 

Instead, we will base our approach on that of M&rtensson (1985). For this rea­

son, further conditions are imposed on the uncertain function g, i.e. g depends 

linearly on x. In particular, A4.3 is now replaced by:

A5.1: There exist a bounded continuous function AA: IR —>IRmxn, a 

Carath6odory function g3: IRxIRm -> lRm, and a constant p  such that for 

all ( tyx t u) e  IRxlRrtxIRmf

( i ) g ( t t Xy U)  = AA(t)x + g3(t ,u);

(ii) llg3(*» M)ll -  P\\u\\» P < U

(iii) (C, A +BAA(*)) is uniformly completely observable in the sense of 

Definition 2.8.

Note that, if A5.1 holds, then A4.3 holds a fortiori with a  = sup ||AA(f)|| pro-
t

vided that a , and p  are known. However, knowledge of these constants is not 

required here.

Example 52

With (CyAyB) defined as in Example 4.1 of Chapter 4, A5.1 holds for 

any bounded continuous AA: t i—» (Aa^r), Aa2(t) t Aa3(t)).



- 105 -

Now replace fixed £ in (5.3d) by variable K(t) > 0 and replace fixed // in 

(5.3b) by (5/r(f))_1, where 8 > 0 is a constant (design parameter) and let K(t) 

evolve according to the adaptation law (other adaptation laws may be feasible, 

as discussed in Ilchmann et al. 1987)

*■(») = lly(0 ll2 + l|z(*)ll2 (5.12)

Writing (as in MSrtensson 1985) 

xa(t) =

a

u(t) y ( t )

1
/̂\ww

■

, ua(t) =

1 N. a
, y a ( 0  = z(t) (5.13)

then the overall adaptively controlled system may be expressed in the form

xa{t) = Aa(t)xa(t) + Ba[ua(t) + ga( t , ua(t))], xa(t) e IRn+*, (5.14a)

y aU)  = Caxa(t), ya(t) e IR^*, (5.14b)

ua(t) = ~ic(t)Ka(ic(t))ya(t), ua(t) e IRm+*, (5.14c)

* (0  = IM O II2 , (5.14d)

where

Aa(t) :=
A + B M (0  0 

0 0

(iCrB T x[Fx + £>1((&r)-1)] (CrB )- lD2((SK)-i ) 
- 8 $  - 8 A

B 0 C 0
, Ba := 0 I . := 0 /

K a{K) :=

0

(5.14e)

, (5.14f)

(5.14g)

The stability of system (5.14) will now be investigated. We first require 

the following lemma (essentially a non-autonomous version of Martens son’s 

lemma (M&rtensson 1985)).
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Lemma 5.1

Let xa : 1R IRn+^ satisfy

4 ( 0  = AaO)xaO) + Ba[v{t) + ga(ty v(0)] (5.15)

where v: 1R —> R m+̂  is measurable. Then, there exist constants ca, t > 0 such 

that for all r,

IW OII2 ^ ca [||y„(s)||2 + ||v (i) ||2] ds . (5.16)

Proof

Let 0(*,*) denote the state transition matrix function generated by 

A + 5AA(*) and define the observability Gramian for the pair (C, A+ Z?AA(*)) 

in the usual manner, i.e.

M(t, s) := f' Or (cr, i)C TCO(CT, s) d a . (5.17)
JS

Now, for some constants Xx and co, we have ||exp Ar|| < ^ ex p  (cot) and, since 

AA(*) is bounded (by assumption), there exists a constant such that 

||2?AA(f)|| ^ ^2- By standard perturbation theory, we conclude that,

||0 (r, j) || < Ajexp [(ty + z lj/^X f-s)], for all r ,s .  (5.18)

Clearly, the state transition matrix function Oa(*, •) generated by Aa(*) is given 

by

whence

<D(r,5) 0 
0 I (5.19)

||Oa(r, 5)|| < i f f ( t - s ) , for all r, s , (5.20a)

where

\ff\ a  h-» 1 + ^ ex p  [(cd + Xi^ g] (5.20b)
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The observability Gramian for the pair (Ca, Aa(*)) is given by

Ma(t,s) := [t<bl(c,s)ClCaQ>a(Gi s)ds  =*x

M(r, s ) 0
0 (t - s ) I , (5.21)

and, since (C, A + 5AA(*)) is uniformly completely observable (by assumption), 

we may conclude (see Definition 2.8) that there exist positive constants 

r , Ci, c2 such that, for all f,

Cl | |f | |2 < <f, Ma( t , t - r )  ( )  S c2 ||f ||2 , for all f  € 1R"+* . (5.22)

Now define the measurable function va: t »-» v(r) + ga(t, v(r)) and note that 

l|va(r)|| <; (l+/?)||v(r)||. Then,

xa(t) = <ba( t , t -  v)xa(t -  r) + f' <Da(r, s)Bava(s) ds (5.23)**—T

whence

IMOII2 ^ 2||Ofl(r, r -r )x a( r - r ) | |2 + 2||£_tOa(r,s)Bava(*)<fc||2

<! 2c3|K ( f - r ) | |2 + 2c4(l+/3)2 | |B J 2J(' j | v ( i ) | | 2* ,  (5.24a)

wherein (5.20) has been used, and

c3 := y/2(r) , c4 := J0V 2(*) *  •

Also, invoking (5.14b), (5.20), (5.22) and (5.23), we have 

ll* „ (f-r ) ||2 ^ c i l {xaU - T ) , M a( . t , t -T )xa( t - T ) )

= cf 1 / /  IICfl<I>a(5, t -  t )xa(t -  r) II2 ds

= c f 1}' IbaW  -  Ca r  Oa(i, o)Bava{o) d<j\\2 dsT 'f-T

^ 2 c f' [[ ' ||;ya( j ) | |2<fa

+ c5r ( l+ ^ ) 2 ||Ca ||2 ||Ba ||2 f' ||v (i) ||2 di] ,T

(5.24b)

(5.25a)
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where

Cs := 0 0  v' 2^  dads ■ (5.25b)

Combining (5.24) and (5.25) yields the required result.

Now we state and prove the stability theorem for the system (5.14). 

Theorem 5.2

For all initial data (t0,xa(t0), K(t0)) e IRx]Rn+*x(0, ©<>), system (5.14) 

exhibits the following properties:

(i) lim K(t) exists and is finite;

Seeking a contradiction to (i), suppose that the monotonically increasing 

function t K(t) is unbounded. Then, for some t\ e  [0, <»), 

tc(tQ + ti) = £ > / ^ ( l - / ? ) -1 and (S/c(t0 + fi))-1 = M < P* • Now, an argu­

ment similar to that used in the proof of Theorem 4.2 can be adopted to estab­

lish that *(•) (and hence y (#) = Cx(*)) must ultimately tend exponentially to 

zero (and hence are square integrable on [r0, «»)).

Consider now the filter equation part of (5.14c), i.e.

(ii) lim IMOH = 0.
f —> oo

Proof

(5.26)

Let <Pi (with inverse q>i*) denote the monotonic function

Then, it can be shown that

z(f) = exp (A(px{t))z(tQ) + j J l( }exp W<px(t) -  sJlQyfa  (5.27)
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satisfies (5.26). Since }>(•) is exponentially tend to zero, y (p f  *(•)) is clearly 

bounded. Since <j (A) c  C- , we may conclude from (5.27) that z is bounded. 

Hence, from (5.14d), )t(t) is bounded and so there exists a constant such 

that

K(t) < tc(t0) + Kl ( t - t 0) t for all t £ r0 . (5.28)

Now, it is readily verified that the function y(<p\*(*)) ultimately satisfies

lly(pr1(i))ll £ *2 exp [*r3 -  V(*3  + *4*)] (5.29)

for some positive constants Ki (i = 2 ,3 ,4 ), and so is square integrable on 

[r0, oo). From (5.27) (since cr(A) c  C~) we may conclude that z(*) is square 

integrable on [r0,©o). Thus, ya(m) is square integrable on [r0, °o) which, in view 

of (5.14d), contradicts our supposition that the function k is unbounded. This 

establishes assertion (i) of the theorem.

It remains to show that xa(t) —» 0 as t —> <*>. Clearly, (i) ensures that ya 

is square integrable on [r0, °°) and, in view of (5.14c), that ua is a bounded 

linear transformation of ya. Thus, we may conclude that ua is also square 

integrable on [t0, *«). Now, by Lemma 5.1, we have

IM O II2 ^  caf ‘ [||ya( i) ||2 + ||«a(s)||2]&•I—T

= ca£ [ Iy a($)||2 + ||ua( j ) | |2]

-  caJ’t‘"T[|b’a( j) ||2 + ||«a(s)||2] ds (5.30)

Therefore, ||jca(f)|| -> 0 as t -» «».
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5.4 Adaptive stabilization by discontinuous output feedback

This section considers the problem of adaptive stabilization of a class of 

uncertain systems by discontinuous output feedback. Our goal is to extend the 

adaptive strategy developed in § 5.3, by expanding the class of allowable uncer­

tainties. A generalized adaptive output feedback strategy is developed which 

renders the zero state globally attractive. The generalized strategy has a linear 

plus discontinuous output feedback structure with bounded adaptive scalar gain. 

An appropriately chosen set-valued map models the discontinuous control com­

ponent and we adopt the analytic framework of controlled differential inclu­

sions (Aubin and Cellina 1984).

In essence, the approach adopted here also is that of Martensson (1985) 

and in a similar ideas with that of Ryan (1988). Thus, here we attempt to 

expand Ryan (1988) to the cases r  £ 2, by using Martensson’s method. How­

ever, this generalization is achieved at the expense of extra assumptions on the 

uncertain function g; and this will be discussed in § 5.4.2.

5.4.1 Case r = 1: Stabilizing generalized adaptive output feedback for the 

true system (4.1,4.2)

Recalling from § 4.4.2 that, if A4.2 holds with r = 1, then, by Corollary 

4.2, for each fixed kd > max { a t , (1 —  the generalized static output

feedback (4.43) asymptotically stabilizes system (4.1,4.2) provided that, Fj and 

CrB are known and that sufficient a priori information is available to calculate 

the (conservative) gain threshold: max {/rj, (1 -  J32)~ly}.  We now consider 

the case for which the latter information is unavailable, i.e. we only assume 

knowledge of Fi and CrB; in particular, the constants a, fii < 1, /?2 < 1 and y
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in A4.4 may be unknown. Assumptions A4.1 and A4.2 remain in force.

Replace fixed itd in (4.43) by variable Kd { t )  to yield the generalized feed­

back

u(t) e -  Kj(t) [(CrB)-lFiy« )  + N(y(f))] (5.31a)

where the set-valued map y  h-> N(y) c  3Rm is defined as in (4.37b), and Kd ( t )  

evolves according to the adaptation law

= [ll(CrB r 1F,)-(0 || + {(y(O)]l(Cr0 r 1/'i7(OI (5.31b)

then, for completeness, we state (without proof) the following lemma (see Ryan 

1988, Theorem 2)

Lemma 5.2

For all initial data (tQ,x(tQ), icd(t0)) e ]RxlR"xIR+, the adaptive output 

feedback system (4.1,4.2,5.31) possesses the following properties:

(i) existence and continuation of solutions;

(ii) lim Kd { t )  exists and is finite;
f— »oo

(iii) lim ||x(f)|| = 0.
/ — > 0 0

5.4.2 Cases r > 2: Stabilizing generalized adaptive compensator for system 

(5.4)

In this sub-section, we consider the case for which a priori information is 

unavailable to calculate the (conservative) gain threshold 

max { k-J, (1 -  f t ) -1/}  in Theorem 4.3 of the preceding chapter, i.e. we only 

assume knowledge of Fit / = 1 ,2 , ••*,/% and CrB, and the constants
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a, p x, p2 y  in A4.4 may be unknown. We adopt the approach of 

Martensson (1985) and for this reason, we have to impose further conditions on 

the uncertain function g. Here, we need that "(/-11)" part of gi is assumed to 

depend linearly on x  and g2 is assumed to depend linearly on u. To be precise, 

A4.4 is now replaced by A5.2 below. All other assumptions (i.e. A4.1-A4.2) 

remain in force.

A5.2: There exist a non-negative constant y, a bounded measurable func­

tion AA1: IR —»lRmxn, a Carath&xiory function g j : IRxIR" —> lRm, a 

known continuous function IR̂  —> IR+, and matrices 

AB, ABx, AB2 e lRmxm such that, for all (r,x , u),

(i)g(f,x ,w ) = (/-rOAAjCO* + ng!(r,x ) + ABu;

(ii) linger,jc)H < y£(Cx);

(iii) AB = ( / - n jA f l^ Z - n )  + UAB2U , IIA5JI < 1 , ||A£2H < 1 ; .

(iv) (C, A + B ( J -  EQAAjC*)) is uniformly completely observable in the 

sense of Definition 2.8;

furthermore, if we define the class of exponentially bounded continuous 

functions H by

S := {tj: IR —»IR*7 | ||7/(f)|[ < for all t and some M0 >0,a)0 > 0}

then,

(v) for each tj e  S, the composite function £ 07] is square integrable on 

[lo. <*>), for all r0 e IR.
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Remark

If A5.2 holds, then A4.4 holds with a  = sup 0i = HAflj || < 1
t

and p2 = 11 ^ 2  II < 1 (since from A5.2 (iii) and using decomposition 

u = ( l - U ) u  + Uu, we have ABu = ( / — n)A51 ( I - U ) u  + nAZ^nw), pro­

vided that a , 0 i , 02 and y  are known. However, knowledge of this constants is 

not required here.

Now replace fixed fcd in (5.4d) by variable xd(t) > 0 and replace fixed fid 

in (5.4b) by (ejcd(t))~l > where e > 0 is a constant (design parameter) and let 

Kd(m) generated via the adaptation law

W )  = ||y(r)ll2 + l|z(r)ll2 + t 2(y(t)) , (5.32)

and writing (as in MSrtensson 1985)

x(t) u(t) y(t)
x d ( 0  -  » ud(*) -  » 3^(0 -  » (5.33)

then the overall adaptively controlled system may be written in the form

* d ( 0  = Ad(t)xd(t) + B d [(I  + ABd)ud(t) +  gd(t ,xdO))], xd(t) €  !Rn+<?,
(5.34a)

yd(0 = Cdxd(t), yd(t) e W +i 9

ud(t) e - Kd(t) [Kd(jcd(t))yd(t) + Nd(yd(t))},

**(0 = IMOII2 + f 2(y(0).

(5.34b)

(5.34c)

(5.34d)
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where

mA + B ( I - n ) A A x(t) 0 B 0
Ad(t) :=

0  ° .
. Bd := 0 I

AB 0 C 0
ABd := 0 0 , Cd := 0 I

Kd(Kd) :=
(Q B r 'tF , +X),((£*•<,)-*)] (CrB)-‘D2((£Kdr l ) 

-£<B - £ A

\-l \ - l

(5.34e)

(5.34f)

,(5.34g)

rig ^ r,* ) N(y)
gd(t ,xd) := 0 . Nrf0fc) := Nd([C 0)xd) = 0 (5.34h)

We are now going to investigate the stability of system (5.34). Since we 

wish to admit discontinuous feedback (as in the § 4.4), we need to recast the 

problem in the context of controlled differential inclusion system as follows.

Let define multifunction H3 by

H3( ^ ,  Kd) := -  Kd \KdCdxd + N /[C  0 ]^ )] (5.35)

and let define multifunctions T)d and as

Dd(t ,xd, Kd ) := {Ad(t)xd + Bd[(I + ABd)v + gd(t ,xd) \ : v e H 3(r(/, Kd ) }

(5.36)

Fd(t ,xd,Kd) := Dd(t,xd, xd)xl\\Cdxd\\2 + £2([C 0 ]^ ))  (5.37)

Then, the controlled system (5.34) may be replaced by a controlled differential 

inclusion system

(xd(t),icd(t)) e Fd(tt xd(t),icd(t)) (5.38)

Certainly, any generalized solution of (5.34) (satisfying (5.34) a.e.) is also a 

generalized solution of (5.38) (satisfying (5.38) a.e.).
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Now, let (xd(9), Kd(-)) be a solution of (5.38). We first want to show that 

there exists «*(•) such that (xd(')> K"d(‘), u*(•)) is also a solution of (5.34). We 

show this by an argument similar that used in Dorling and Ryan (1985), and is 

reiterated in Lemma 5.3 below. For this purpose, by writing BA = Bd(I + ABd) 

the systems (5.38) and (5.34) may be rewritten respectively as

* d 0 )  ~ Ad(t)xd(t) -  Bdgd(t ,xd(t)) e flAH3(xj(r), icd(t)), (5.39a) 

Kd(t) = \\Cdxd(t)\\2 + S2([C 0]xd(t)), (5.39b)

and

Xd ( t )  -  Ad{t)xd(t) -  Bdgd(t ,xd(t)) = BAudU), (5.40a)

*d(t) = | |C ^ ( t ) | | 2 + { 2([C 0]xd(t)), (5.40b)

ud(l) s  H3(xd(t),Kd(t)), (5.40c)

Then, we may state the following lemma.

Lemma S3

Let (jc^(*), *■<*(*)) solve system (5.39). Then there exists a measurable 

function ud(•) = «*(•) such that (xd(m), Kd{•), u*(•)) solves system (5.40).

Proof

Let (**(•), *■*(•)) satisfy (5.39). Then define t u*(t) by 

U * ( 0  =  ( b I b aY 1 B TA[ x ( t )  -  Ad(t)x*(t) -  Bdgd(t,x*(t))] a.e. (5.41)

Note that u*(•) defined above is well defined, by recalling that x*(•) is abso­

lutely continuous and hence differentiable almost everywhere, and Ad(•) and 

gd(m>x*(•)) are measurable and BA has full rank m for almost all t. Then, we
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conclude that u* is a measurable selection for HjCxjO)* *■</(*))• This, can be 

easily seen, since from (5.39),

x*(t) -  Ad(t)x*(t) -  Bdgd(t,x*(t)) = BAh(t) a.e. (5.42)

for some h(t) e H3(xd(t), *j(r)), and hence

«*(f) = ( s X r ' j j j i i ’ td  -  Adu ) x \ t )  -  Bdgd« , x ‘ m

= h ( t ) e H 3(xd(t),Kd(t)) a.e. (5.43)

Now, by putting = jt* in (5.40) and use the fact that B&(B£BA)~lB [  pro-

jects orthogonally onto im BAt we have

i ‘ (f) -  Adx ' « )  -  Bdgd( t , x ’ 0)) = BA(BjBAr 1B j

,[i*(f) -  AdO ) x \ t )  -  Bdgd(t,x*(t))]
«

= BAu*(t) a .e., (5.44)

that is (**(•), *■*(•)) solves (5.40) with ud = u*, which completes the proof.

Remark

As a consequence of Lemma 5.3, we may conclude that

||u*(f) | |2 £ 2r f t f )  D l^ (^ (0 ) l l2 11^(0112 + £20-(f))] (5.45)

Before stating and proving the main theorem of this section (i.e. the stabil­

ity theorem for system (5.38)), we need the following lemma (essentially a gen­

eralized non-autonomous version of MSrtensson’s lemma (MSrtensson 1985), 

and hence a generalized version of Lemma 5.1).
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Lemma 5.4

Let (xd, Kd): [f0, co{) —» IRn+^xIR solve differential inclusion system 

(5.38) and let u*(•) be defined as in (5.41). Then, there exist constants 

cd, t  > 0  such that, for all t e (tQ + r , cô ),

IM O II2 £ cd + ll“ *(s)ll2 + £2 Cy(*))] ds .

Proof (This lemma is proved in a similar manner that we prove Lemma 5.1)

Let 0(*, •) be the state transition matrix function generated by 

A +l?(/-II)A A i(*) and define the observability Gramian for the pair 

(C .A + fltf-E D M ^ -))  by

A((, s) := f '0 T(<r, s)CTC&(a, s ) d a . (5.46)
J S

Now, for some constants and <y, we have ||exp At\\ ^  Ajexp (cot) and, since 

AAj(#) is bounded (by assumption), there exists a constant A3 such that 

||5 ( /~ I I )M 1(r)|| ^ A3. By standard perturbation theory, it can be shown that

| |0 ( r ,5 )|| < /^exp [(<wh-AjA3)(r — ^)], for all r, s .  (5.47)

Gearly, the state transition matrix function ©d( \  •) generated by Ad(•) is given 

by

©d(ty s) =

and hence

0 (f, s) 0  

0  / (5.48)

where

l|€>d(f,s)ll £ for a11 L s > (5.49a)

\f/d : o  1 + Ax exp [(̂ y + AxA^cr] (5.49b)
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The observability Gramian for the pair (Cd,A d(')) is given by

Ad(t* s ) := fr0j((T, s)CjCdBdUj , s) da =
A (r, *) 0

0  (t - s ) I , (5.50)

and, since (C, A + B ( I -  11)A41(0) is uniformly completely observable (by 

assumption), we may conclude from Definition 2.8 that, there exist positive 

constants r , c6, c7 such that for all t e  (r0 + r , fj),

c6 | |f | |2 S <f. Arf(f, t - T )  o  s  C7IlfII2 , for all f  6  1R»+* . (5.51)

Now, let u *(•) be defined as in (5.41). Then, 

xd(t) = Gd( t , t - r ) x d( t - T )

+ j ‘i_ 0 d(t ,s )Bd[U + ABd)u'(s)  + gd(s,xd(s))] ds (5.52) 

Thus, using (5.49) and the fact that ||/ +AS^H < (l+/?j+/?2), we have 

IM O II2 ^  2 ||©d(r, t - x ) x d( t - r ) | |2

+ 2\\^_®d(t ,s)Bd\(I + &Bd)u '(s )  + gd(s ,xd(s))] * | | 2 

£ 2c8 ||x<J( r - r ) | |2 + 4c9IIBJ2 [(l+/3l+/}2)2 r  ||K*(s)||2 <fc
" I — %

+ 72 £2Cy(s))<fr] (5.53a)

where

c% := V d W  » c9 := Jqt yr%(s) ds (5.53b)

Now, from (5.34b) and (5.52) yields

y d ( 0  =  C dGd( t , t - T ) x d( t - T )

+ c df! ®d(t’S)Bd[(I + ABd)u*(s) + gd(s ,xd(s))] ds (5.54)•'f—T
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By utilizing (5.49), (5.51) and (5.54),

I M f - r ) | | 2 ^  C tH x jU -r ) ,  Ad( t , t - x ) x d( t - t ) )

= c e ' f o C M s ,  t -  i )xd(t -  x)\\2 ds

= c t f l  IbVifr) -  Cd Is Qd(s ,a )B d{(I+ABd) u \ s )
X *»—X

+ &<(*. *,/(*))]

^  2 c6 '  [J/^llyjW II2 *

+ 2 c1or IIQII2 ll®i/ll2 [(l+ A +A )2 J,< ll«*(*)ll2 *'i- f

+ y 2 j('_ ^ 2(y(j))& ]] (5.55a)

where

cio := Jo J0* r l( f f )  . (5.55b)

and we use the fact (since s e [ t - T > t ] )  that

r II«*(<t)H2<*7 ^ J' ||«*(cr)||2<*r,
¥i—T ¥l—%

and

J* 52(y(ff)) tfcr ^ J' f20'(cr)) dcr.
Jt-X Jt-X

Combining (5.53) and (5.55) yields the result.

We are now ready to state and prove the stability theorem of the adap­

tively controlled differential inclusion system (5.38).
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Theorem 5.3

For all initial data (t09xd(tQ)9icd(tQ)) e  IRxIRn+?x(0, «>), the adaptively 

controlled differential inclusion system (5.38) possesses the following proper­

ties:

(i) there exists a solution on every such solution can be

extended into a solution on [f0, °°);

(ii) lim Kd(t) exists and is finite;
t —} oo

(iii) lim \\xd(t)\\ = 0 .
t —

Proof

Multifunction Fd defined by (5.37) is upper semi-continuous with convex 

and compact values in ]RxIRn+^x(0, <»). Thus, for each 

(*o>*<*(*o)» *4(*o)) e IRxIRn+^x(0, °o), there exists a local solution 

(xd,Kd): [r0» 6?i) —> lRn+^x(0, °°). It remains to show that a>i -  ««. We will 

show this by several steps. First, we prove that Kd is bounded on [f0, co{).

Now, seeking a contradiction to above, i.e. suppose that the monotonically 

increasing function t I—» Kd(t) is unbounded. Then, for some 

e [0 , 6?!), tx < 6?!, ^d(to +  h )  = Kd >  max {/cj, (1 - /?2)_1r} and 

(£Jcd(t0 + fi))-1  = fid < [id . Hence, by using arguments similar to those used 

in the proof of Theorem 4.4, it can be established that *(•) (and hence 

y(*) = Cx{')) is ultimately exponentially decaying on [r0 , 6?i) (and hence are 

square integrable on [r0, £?i))- By continuity of £ and the exponential decay of 

y » (%°y)(m) is bounded and hence £2 (y(*)) is bounded. Now, consider the filter 

equation part of (5.34c), i.e.

z(t) = £Kd(t)[Az(t) + <By(t)] (5.56)
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Let <pd (with inverse <pd l) be the monotonic function t f* £Kd(s)ds . Then, 

it can be verified that

eq>M) .
z(t) = exp (A<pd(t))z(t0) + Jo exp [&(q>d(t) -  s ) ]# y (^  1(s)) ds (5.57)

satisfies (5.56). Since y(*) is exponentially decaying, y(<pd l (9)) is clearly 

bounded. In view of <?(%) cz C“, we may conclude from (5.57) that z is 

bounded. Hence, from (5.34d), Kd(t) is bounded and so there exists a constant 

*5 such that

Kd{t) < Kd(t0) + K5( t - t 0), fora11 t > t Q . (5.58)

Now, it can be shown that the function y(<pd l (*)) ultimately satisfies

IWPrf k*))!! ^ *6exP VKi  ~ V(*7 + *8*)] (5.59)

for some positive constants Kt (i = 6,7,8), and so is square integrable on 

[tQyQ)i). Again, since cr(̂ L) cz C- , we may conclude from (5.57) that z(*) is 

square integrable on [tQ,G)i). Thus, yd{') is square integrable on [?o»0i) 

which, from (5.34d) and in view of A5.2(v) (i.e. (f°y)(*) is square integrable 

on [f0 ,o°)), contradicts our supposition that Kd is unbounded. This establishes 

that Jtj(') is bounded on [r0, o)i).

Secondly, we show that xd{•) is bounded on [fo.^i)- Let u *(•) be as in 

(5.41) and initially we want to estimate w*(*)- Since Kd{*) is bounded, 

Kd(t) € Q, for all t, where Q is a compact set. Since Kd h-> ||^ /(k j) || is con­

tinuous, then

yd := max {||ATrf(irrf) | | : Kd <= Q) (5.60)

exists. Hence, ||/^ (^ (0 ) ll  ^ f°r a^ L Thus, it follows from (5.45) that,

\\u*(t)\\2 < 2Kl\y}\\yd(t)\\2 + £2 (y(s))] , ^ < 0 0 . (5.61)
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Now by using (5.61) in Lemma 5.4, yields

IM O II2 ^  cdj ‘ [}\ydU ) f  + ll«*(s)ll2 + 42(yU))] ds*1—T

^ cn \ l p d{s)W2ds + Cl2j ‘_ j 2(y(s))ds  (5.62a)

where

C\\ := cd( 1 + 2tcly}) , cn  := cd{ 1 + 2k^)  . (5.62b)

In view of A5.2(v), (£°y)(*) is square integrable on [r0, °°) and since yd(') is 

square integrable on then we may conclude that xd(m) is bounded on

We have now shown that (xd(*), tcd(m)) is bounded on [r0, co^. Thus, it 

follows that every such solution (xd,jcd): [r0, &>i) —> IR"+̂ x(0, with initial 

value (tQtxd(t0) t K(tQ)), evolves within a compact set, and hence can be 

extended indefinitely, i.e. = ©«, which proves assertion (i). Furthermore, in 

view of above arguments, assertion (ii) of the theorem follows.

It remains to show assertion (iii) of the theorem, i.e. xd(t) -» 0 as t 

Clearly, (ii) ensures that yd(') is square integrable on [r0, oo). We claim that 

w*(*) defined as in (5.41) is also square integrable on [f0,©°). This, can be 

easily seen by integrating (5.61) from t0 to «x» which yields

P  \\u*(s)\\2 ds < cl3r  \\yd(s)\\2ds + cu r  t 2(y(s))ds (5.63a)Jl0 JlQ JtQ

where

cl3 := I kI y}  . cu  '= • (5.63b)

In view of A5.2(v) and since yd is square integrable on [fo>°°)> we conclude 

that

f~ ll«*(s)ll2 <is (= lim j ’ ||M*(i)||2 & )
*,*0 f—» oo
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exists and is finite, which establishes our claim. Now, using Lemma 5.4 with 

!/*(•) as in (5.41), we have

IM O II2 S c j j '   ̂D M *) II2 + ||«*(s) | | 2 + | 2 (y(*))] ds 

= ci \ ‘. QM *)II2 + ll«*(*)ll2 + $2(y(s)j] ds

-  cdj!~T DW*)II2 + ll«*(*)ll2 + #2 Cy(*))] ds (5.64) 
*'*0

Since (~yi(s)ds  (= lim f* yi(s)ds) is finite, where
Jh  f —» eo Jt0

n (- )  = IM-)II2 ,

/ 2( ')  = ll«*<*)H2 . 

n O )  = 52(y (0 ) .

then lim V % y^s)  ds is also finite and equals f°°7 ,(.y) ds. Hence,
/ —> oo Jh Jh

IMOII -> 0  as t

5.5 An example - Suspension control system for a Maglev vehicle

In this section, we give a magnetic levitation (Maglev) vehicle example to 

illustrate the application of the proposed control described in § 5.3.2. Specifi­

cally, the point mass model of Breinl and Leitmann (1983) (see also, Ryan and 

Corless 1984 and Chen 1986a, b) is adopted, and the same numerical values are 

used here. We consider only the vertical motion of a single support magnet 

(Fig. 5.3), where the system without control is unstable.
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m
u(t)

J
z(r) + zd

Figure 5.3.

In state space it is governed by

x(t)  = [A + AAr(t)]x(t) + [B + ABr«)]u(t) f x(t0) = jcq , (5.65)

where

(5,66a)
z( 0

i
o 1

io i—o•

«■* II z(r) ii 0 0 1 ; B = 0

-z(t) . .ai a2 1 ■ 
■

with

ax :=
KXR
mLn m

k 2k 3
™Lq

R ,    * 2

°3 ‘ L0 * ’ jtiLq 9
(5.66b)

where m is the mass of the magnet; R is resistance; K\ , K2 and are gap, 

current and velocity coefficients, respectively; and Lq is the nominal induc­

tance. The state vector x(t) e  IR3 consists of the gap deviation z(f) with respect 

to the desired gap width zd, velocity z(t) and acceleration z(t). The (scalar) 

control u(t)eJR  is the deviation (from nominal) of applied voltage generating 

the magnetic field. Furthermore, we assumed that the input disturbances, e.g. 

due to track irregularities are neglected.
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In practice, it is very difficult to measure the inductance accurately. Thus, 

the inductance considered as uncertain, gives rise to the uncertain elements 

M r(*) and A5r(«) in the model. Particularly,

AAr(r) = Lr{t)
0 0 0
0 0 0

~ a \ ~ a 3

*2*3.
mL0 (5.67)

and

ABr(t) = - L r( t )B , (5.68)

where the uncertain parameter Lr(t) represents the ratio of inductance error 

L(f) - L 0 to actual inductance L(r), i.e.

L 0 ) ~ L q
Lr(t) =

W )
(5.69)

and is assumed bounded, i.e.

iM o i  < l ;  < 1 (5.70)

where L* is a known constant (which plays the role of ft). Moreover, the func­

tion Lr : R  —> [ -L * , L*] is assumed to be continuous.

It is assumed that z and z are available for measurement, thus the output 

of the system is given by

y{t) = Cx«), (5.71a)

where

C =
1 0 0
0 0 1 (5.71b)
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Let us now check that all assumptions of design are hold.

(i) (A yB ) is controllable (obvious). Thus, A4.1 holds.

(ii) Here we use r -  2 so that Cr = FjC  + F2CA with Fj = [A2 1] and 

F2 = [-2A 0], and A < 0 is a design parameter.

(a) A4.2(i) holds since F2CB = 0.

(b) With Fl and F2 as above, we have

Cr = [X1 -2X  1];

thus the transfer function of the linear system (Cr ,A ,F ) has the form 

G(s) = N(,s)D- 1(s) with N(s)  = (s -A )2 and D(s) = s 3 -  a3s 2 -  a2s -  a\.

Hence, |N($) | = 0 (s -  A)2 = 0 = > j  = A ( j e  C“). Thus, A4.2(ii) holds.

(c) C f i  = b =$ det (CrB ) = det b 4 0. Hence, A4.2(iii) holds.

(iii) g ( t , x ,u )  = M ( t ) x  + g3 (f, w), 

where

AA(0 = [ - p - L r - * 3£,, - i r - M .  =

with

l l « 3 ( ' .« ) l l

Hence, A5.1(i),(ii) hold.

(iv) It remains to check that (C, A+FAA(*)) is uniformly completely observ­

able in the sense of Definition 2.8.
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(a) Let <£(•,•) be the state transition matrix function generated by 

A + BAA{•)• Now, for some k± and <y, we have He'4' || < ^ e 0* and since AA(#) 

is bounded, there exists a constant k2 such that ||5AA(r)|| ^  k2. By standard 

perturbation theory, it can be shown that

||0 (f, i) || S k lJ a+k'k*X‘- s'> for all t, s ,

= a5{ 11- s | ) for all r, s , (5.72a)

where

as : a  l-> hlei(a+k'kl)a . (5.72b)

Thus, condition (2.13c) of Definition 2.8 holds.

(b) Next, we want to calculate upper bound for M(r, t — r), i.e. the obser­

vability Gramian for the pair (C, A +BAA(’)) which is given by (5.17). Using 

(5.72),

||M (f ,f - r ) || f' \\CTC \ \ \m < T , t -T ) fd f f*t—%

< HCTCHj'_t a i ( r ) d a

= r ||C r C||a52(r)  =: «*(*)

(c) Finally, we have to show that M is positive definite. Note initially that

the state transition matrix function 0(*, •) generated by A + BAA(*) satisfies

d>(r, t -  t) = exp {At) + f * exp {A{t-  (j))£AA (c7)<X>(cr, t - t ) d a
"t— T

Now

y{t)  = C<X>(M-T)*(f-T)
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Then,

f  \\y(<j)\\2da = f  (C<t>(<T,t-T)x(t-T) ,C®(a,t-T)x(t-T))da
Jt— X Jf-T

= (x(t  -  r ) ,  r -  t )C 7 C<I>(<t, r -  t )  dcrx( t -T) )

= C x (r-r) ,M (r,r-T )x (f-T )> (5.73)

Now, the matrix C can be written as

where

C,° :=
1 0  0  

O O O and C® :=
0  0  0  

0  0  1

Then,

y(t)  = Cx(t) = C,°jt(0 + C§x(t)

= ^ l ( 0  + >’2 ( 0 (5.74)

Therefore, from (5.73) and (5.74),

J/ I b W I I 2 ^  = J/ \\yi(v)\\2 da + J r ib^oOII2 ^  ^ j!  J y i W W 2n-T m-T t

Assume now J* ILy^oOII2 = 0. Therefore, yi(s) = 0 for t - x £ s < t  

which implies C®*^) = 0  and, in particular, C ix ( t - x )  = 0 .

Also

Cfx(s)  = C?[A+BAA(s))x(s)

= C?Ax(s) {C?BAA(s) = 0)

= 0 , t -  T < S < t ,
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and, in particular,

C®Ax(t-T) = 0

Similarly, we have

Cfi'O) = CfAiCi)

= C,°/l2x(.v)

= 0 , t - T < S < t ,

and, in particular,

C?A2x(t-T)  = 0

Hence,

c,°
C^A

C?A2

x ( t - r )  = 0

But (C®, A) is an observable pair and so x ( t - r )  = 0 . Thus,

x(t -T)  + 0 => jl_Jyi(cr)\\2 da > 0 => f f  j y W W 2 de  > 0 .

Hence, M is positive definite.

From (b) and (c), the condition (2.13a) of Definition 2.8 holds. Conse­

quently, we can conclude from (a), (b) and (c) that (C, A+ Z?AA(*)) is uni­

formly completely observable.

Now, for simulation we return to equation (5.3) with the adaptation law 

(5.12). For this example, the filter dynamic (i.e. equation (5.3b)) is a scalar (to 

estimate jc2). A realization of the filter dynamic has the form (in terms of the
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state variables)

* /r )  = -  SK(t)[xj(t) -  72xx (t)] (5.75)

with the output

z(r) = SK(t)[xj{t) -  2/Lx1(r)] (5.76)

wherein we have replaced fixed fx in (5.3b) by variable (<ftr(f))_1, where 8 > 0 

is a design parameter and K(t) > 0 is generated by the adaptation law (5.12), 

i.e.

K(t) = x f( t )  + xi( t)  + x / (0  . (5.77)

The overall control (equivalent to equation (5.3d)) then is given by

u(t) = -  K(t)(CrB)-' [A2X!(0 + X3(0  + S^( t ) [x /0-2Xx}(t)]] (5.78)

For puiposes of simulation, the following illustrative (numerical) parame­

ters are adopted (Breinl and Leitmann 1983):

m = 16 kg, R = 8 fl, Ki = 5 .7 x 1 0 ^  m_1, K2 = K3 = 114N A"1, 

Lq = 0.5 V s A-1 , with L * = 0.5 .

The control design parameters used in simulation:

§ = 10 , X = -  15 .

Figures 5.4-5.9 depict the simulated evolution of states, filter’s state, adaptation 

gain and control for an initial value

= (l(r3) 5xl(r3. 0 , 0,0.1).

It is clearly seen from simulations that the example illustrated the proposed 

control design.
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CHAPTER 6

STATIC OUTPUT FEEDBACK STABILIZATION 

FOR A CLASS OF UNCERTAIN ’RELATIVE 

DEGREE TWO’’ SYSTEMS

6.1 Introduction

In this chapter, we address the problem of designing static output feedback 

control for a class of uncertain "relative degree 2" systems. The approach is 

anologous to that of Chapter 4, but with a fundamental distinction: in Chapter 

4, a realizable dynamic compensator is used to stabilize a class of uncertain 

systems; in this chapter, a class of uncertain systems is stabilized by using only 

a static output feedback control.

To achieve our aim, we have to impose an extra or additional set of 

assumptions to the system. It is shown that, a cone-bounded uncertainty can be 

tolerated by a static output feedback. Since the feedback control is based on 

"worst case" design, the proposed feedback control is expected to be conserva­

tive. Thus, anologous to Chapter 5, an adaptive version of this feedback control 

is conjectured to allow for bounded uncertainties with unknown bounds and to 

counteract conservatism.

The chapter is presented as follows. In § 6.2, we first state the system and 

impose a set of assumptions which implicitly defined the class of systems to be 

studied. Then, by using an approach anologous to that of Chapter 4, we estab­

lish the existence of a class of stabilizing static output feedback control for the 

system. Finally, in § 6.4, an adaptive version is conjectured (anologous to
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Chapter 5) which may counteract the conservatism that induced by crude esti­

mates in the "worst case" design and which also may dispense with the require­

ment that uncertainty parameters be known.

6.2 The system and assumptions

The system to be considered is of the form

x(t)  = Ax(t) + B[u(t) + g(t,x(t),u(t))],  x(t )eTRn, K(r)eIRm, (6.1) 

with an output given by

y(r) = Cx(r), y ( t ) e lR m. (6.2)

First, we impose assumptions on the nominal linear system (C, A t B).

A6.1: (i) Transmission zeros of (C ,A t B ) lie in C“ ;

(ii) CB = 0;

(iii) CAB is nonsingular,

(iv) Spectrum of CA2B(CAB)~l lies in C  .

Next we impose structural properties on g, which implicitly define the 

class of uncertain systems to be studied.

A6.2: (i) g : IRxIRnxIRm —»]Rm is a Carathdodory function;

(ii) For all (t, Jt, u ) e IRxlRnxIRm,

g ( t , x t u) = gi( t t x) + g2(t, Cx) + y u ,
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with

(a) ||gi(f, jc)|| ^  ai ||jc|| , where is a known constant;

(b) lg2(f»30I ^  cc2\\y\\, where a2 is a known constant;

(c) there exists y* such that \y\ < y* < 1 .

6.3 Stabilizing static output feedback

In this section, we consider the problem of designing of static output feed­

back control for the class of systems described in the previous section. In order 

to proceed, we first introduce the following notation and state transformation.

Let

B = [B I AB] and C =
C

CA (6.3)

Then, by straightforward calculation,

CB =
0 CAB 

CAB CA2B (6.4a)

and

(CBT1 =
-(CAB)-xCA2B(CABT1 (CAB)-1 

(CABT1 0

Now, let T  s  IR('1 2m̂ xn be such that ker T  = im B, then T  := 

tible, with inverse S = [5 ; B(CB)~l], where

S  := ( 1 - B ( C B T 1C)Tt(TTt )-1 .

For convenience, we write

T
C

(6.4b)

is rnver-

(6.5)

M  = CA2B(CAB)- l (6.6)
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We now introduce the coordinate transformation (parameterized by k > 0)

x  h-» Lkx  = X =
*1

*2

*3

where

Lllr I —
T 

kC 
C A - \M C

with inverse

L l 1 = [S j k~lS1 I B(CAB)-l \

where

Si := AB(CAB)-1  -  

In new coordinates the system representation is

x(t)  = AX(t) + £[w(r) + g (f,* (0 ,w (0)]

with output

y(t)  =

where

A = LkAL^x =

A* k~xAx 0

0 iM

^ 2 k~xA 3

B = U B  =
0

0

CAB

(6.7a)

(6.7b)

(6.7c)

(6.7d)

(6 .8a)

(6 .8b)

(6 .8c)

(6 .8d)

C = CL* 1 = [0 \ k~xI  ; 0], (6 .8e)
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with

A* = TAS, At = TA2B(CAB) - 1 ,

A2 = CA2S , A3 = CA3B(CAB)-1 - |M 2 ,

and

g(f, u) := g(f, L* ^  u ) . (6 .8g)

We now introduce the output feedback

«(f) = -  k2{CAB)-ly(t)  = -  k{CABTlx2( t ) . (6.9)

Then, the closed-loop feedback system now becomes

i ^ f )  = A* x x{t) + k~lA^x2{t) (6.10a)

x2(t) = iMx2(t) + fct3 (f) (6 .10b)

x3 (t) = A2x1(t) + k~*A3x2(t) + iMx3(t) -  kx2(t)

+ {C A B)g{t,X{t),-k(C A B T'x2(t)) (6.10c)

In view of A6.1(i), <7 (A*) <z C-  and hence

P*A* + (A * fP *  + /  = 0 (6.11)

has unique symmetric positive definite solution /  . Also, in view of A6.1(iv), 

<r(Af) c  C” and hence

PM + M t P + 1 = 0 (6.12)

has unique symmetric positive definite solution P.

We now impose our final assumption.
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A6.3: ai < ------------------------------ :—
4||/>||||CAB||||B(C4BrMl

Regarding the feedback controlled system (6.10), we have 

Theorem 6.1

There exists k* e IR such that, for each fixed k > k* the feedback con­

trolled system (6 .10) is globally uniformly asymptotically stable.

Proof

The Carathdodory assumption (A6.2(i)) on g ensures that, for each 

UqjXq) e  IRxIR" there exists a local solution X(*) of (6.10) with X(tQ) = XQ.

Introduce Lyapunov function candidate Vk: JRn-2mxIRmxIRm —» IR 

defined by

vk(x i ’x2<xi)  := ik(xl ,P *xl ) + (1 + r)(x2,Px2) + (x3,Px3) (6.13)

Then, along every trajectory (Jti(*)»*2(')»*3 (*)) of (6.10), the following holds 

almost everywhere

- ^ V t (xI(t) ,x 2(t) ,x 3(t)) = t(P*Xi(t)f A*Xi(t) + k~1AiX2(t))

+ 2(1 + y)(Px2(t), IMx2U) + kx3U))

+ 2{Px3(t),A 1x l (t) + k~xA3x2(t) + 1Mx3(t)

-  kx2U) + (CAB)g(t, m ,  -k{C A B T xx2(t)))
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In view of A6.2, (6.7c) and (6 .8g),

dt vt (* i(o ,* 2(')>*3 (0) ^ - w m o i i 2 + ]i/>*a 1iiiix1(oiiiijc2<oii

- i ( i + r ) l l * 2 ( 0 l l 2 +  2k(i+r){Px2(t) ,x3(t))

+  2 ||P A 2 | | | |* ,( f ) l ! l l* 3 ( 0 l !  +  2*-1 l!PA3l[||jc2Cf)!|||x3(r)|| 

- i l M O I I 2 -  2k(Px3(t),x2(t)) 

+ 2|A>||CU|[a1|5 ||c 1(t) ||^ (0 l  

+  « ! * - *  | S i  I I I M 0 I I I M 0 I I  +  « i  \\B(CAB)-' | || |x 3 ( f ) l l2 

+ «2*_111*2(011 ll*3(0ll] -  2ky(Pxi ( t)>x1(tj)

where

with

1

►
-*

i

/"
"S *
*

* - ! < ll*2(0ll ,Mk IMOII
IMOII im o ii

) (6.14a)

Mu :=

k -m i  -m j

-m i  (1 -7*) -m 3 

-m 2 -m 3 m4

(6.14b)

» i = II^Xll. «2 = 2[||P/l2|| + a1||/>||||CAB||||S||], 

m3 = 2 k - H \ \ P A 3 1| + ||f||IICAB||(aj Uj || + a2)] , 

m4 = 1 -4 a , IIPIIUCABIIIIB(CAB)'11|.
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Note that (1 -y*) and m4 are positive by virtue of A6.2(c) and A6.3. Thus, 

there exists k* such that (6.14a) is a positive definite quadratic form for each 

fixed k > k*. Hence, the result follows.

6.4 Conjectured stabilizing adaptive output feedback

In the previous section, if A6.1-A6.3 hold, the original system (6 .1,6.2) is 

uniformly asymptotically stabilized by the static output feedback (6.9) for each 

fixed k > k* and sufficient information is available to compute k*. Here, we 

consider the case for which A6.1 holds but now we only require knowledge of 

CAB. A6.2 and A6.3 also remain in force but the constants a l and in 

A6.2(ii)(a-b) may be unknown.

Replace fixed k > k* in (6.9) by variable /c(t) to yield

u(r) = -  KHt)(CABTly{t) (6.15)

and let tc(t) evolve according to an adaptation law

ir(r) = ||(CAS)-V(r)||2 (6.16)

Then the adaptively controlled system becomes

x t (t) = A*x{(t) + k~1Alx2(t) (6.17a)

i 2« ) = \Mx2(t) + kx3(t) (6.17b)

i j( f )  = A2x l (t) + k~lA3x2(t) + JMx3(t) -  x 2(t)x2(t)

+ (C A B )g (t,X ,-k~ XK2(t)x2(t)) (6.17c)

k(t)  =  ||(CASr1y(OII2 (6.17d)
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We conjecture the following:

Conjecture 6.1

For all initial data (tQ,X(to), fc(t0)) e IRxlRnxIR+, the adaptively con­

trolled system (6.17) possesses the following properties:

(i) lim K(t) exists and is finite;
/— >©o

(ii) lim HJE'COII = o .

A possible proof might be constructed along the following lines.

(i) Suppose that the monotonically increasing function t h-» tc(t) is 

unbounded. Then, for some t\ £ 0, fc(tQ + 1̂ ) = k > k*. Hence, the result of 

Theorem 6.1 would suggest that £(•) (and hence y(*) = (?£(•)) is ultimately 

exponentially decaying on [f0, <») (and hence are square integrable on [t0, <*>)). 

At present, we are unable to prove this. However, if this is true, then x2 is 

square integrable on [t0, °°)> which from (6.17d) contradicts with supposition 

that tc(t) is unbounded. Hence, the results of (i) would follow.

(ii) Now, if fc(t) is bounded (say * 0 ,  then by virtue of (6.17d), y  (and 

hence x2) is square integrable on [r0, °°)- This and in view of asymptotic stabil­

ity of A* in (6.17a) yields X\ (and Xi) square integrable on [r0, °°).

To proceed in the argument, we now consider the subsystem (6.17c) and a 

Lyapunov function candidate W: lRm —> IR given by

W(x3) = (x3,Px3) (6.18)

Then, along any solution (£(•)> **(•)) of (6.17c), the following holds almost 

everywhere
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-j-W(X3(Q) = (2Px3(t),%Mx3(t) + A2x l (t) + k x{Ai - K 2(t)I)x2(t) 
a t

+ (C A B )g(t,X ,-k~ xK2{t)x2(t)))

< -  i l l  -  4a, ||/> || ||CAB || ||B(C A B r1 1|] ||x3(.') II2 

+ 21 /^ (r) |/C zi(f).x iC 0) (6.19a)

where

f i x i ,x 2) := [||A2|| + a 2 ||CAB||||S,||]||a,||

+ * _1 [l|A3 1| + ( l - r V £  + l|CAB||(a, ||Bj || + 0 2 )] ||x2||
(6.19b)

Note that, the coefficient of ||jt3 1|2 (in the bracket) of (6.19a) is positive by vir­

tue of A6.3 and /(Jti (•)»■*2(*)) is square integrable on [r0» °°) (since X\ and jc2 

are square integrable on Uo» °°))-

Now, let

c := 1 -  Aax ||P || ||CAB || ||£ (CAB)~1 1| > 0 , (6.20)

then (6.19a) can be rewritten as 

^ W(x3(t)) < -  J c f e W I 2 + 2 |B | |x , ( 0 I /(x 1(0 .% (0 )

^ -  c,||jc3(r)||2 + c2 ||*3(0 II/(*i(0 .*2W ). c, = i c ,  c2 = 2||B||

^  -  c , I M 0 l | 2 -  [a\\x-i ( t ) \ \ - ^ f ( x x(t) ,x 2( t ) ) f  

c 2
+ o 2 ||x3 (0 | | 2 + — r f 2(xi( t) ,x 2(t))

4 or
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c 2
^ -  (CX - « 2) 11̂ 3(O i l2 + - V / 2(* i(0 ,* 2(0 ) (6.21)

4 o r

Integrating (6.21) from t0 to t, yields

c2
W(x3(t)) -  W0x3 (ro)) < -(cx  - a 2)l*J\x3(t)\\2 dt + —̂ T j ^ f 2(x i( t) ,x 2(t))d t

<: - ( c j - a 2)j^\\x3U)\\2dt + k ,

since /(*!(•)» *2(*)) is square integrable on [f0, °°). Now, by choosing a  such 

that Ci > a 2 and rearranging, we have, for all x > f0>

(Cl -  a 2)j*\\x3(t)\\2 dt < Vr(jc3(r0)) -  W(x3W )  + k

£  W(x3(t0)) + AT = M, (6.22)

Therefore *3 is square integrable on [r0* °°).

Consider now the subsystem (6.17b). Since o(M ) a  C-  and subsystem 

(6.17b) with square integrable input jc3, then x2 (hence x2) is square integrable

on [t0 , oo). Thus, we could conclude that % (and hence i )  is square integrable

on [t0,oo). Hence, \\X\\ —> 0 as t —> «>.
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CHAPTER 7

CONCLUSIONS

7.1 Introduction

This chapter aims to conclude the thesis by summarizing and discussing 

the results obtained and briefly indicate some suggestions for future research 

and highlight some possible extensions and applications.

Main results are summarized and discussed in § 7.2, while in § 7.3 we 

indicate some possible extensions of our work motivated either by some 

unresolved problems which arose during the investigation or by potential gen­

eralizations to a wider framework.

7.2 Summary and discussion of the main results

In this section, we summarize and discuss the main results obtained in 

Chapters 3-6. It is our intention to relate our results with other recent develop­

ments in feedback control design of uncertain dynamical systems. We present it 

chapter by chapter.

7.2.1 Summary and discussion of Chapter 3

The main result of this chapter was presented in Theorem 3.2. It was 

shown that for arbitrary admissible uncertainty realization F g J ,  the observer-
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feedback controlled system is ultimately bounded with respect to every 

Lyapunov ellipsoid containing the closed ball IBn(ri{). In Lemma 3.1, we have 

proved the existence and continuation of solutions for the overall observer- 

feedback controlled system. Preceding that (in Theorem 3.1) we have esta­

blished the existence of a stabilizing state feedback control by assuming the 

entire state is available for feedback purposes.

Our work here is an extension of that of Breinl and Leitmann (1983) in 

the directions which may be summarized as follows. First, we have used the 

Corless and Leitmann (1981) approach in the control design whereas they used 

Leitmann (1979b) approach. Secondly, we have generalized cone-bounded 

uncertainties to quadratically-bounded uncertainties. Thirdly, condition TB = 0 

was imposed there whereas here we relaxed it to ||77?g(*)ll < constant We 

remark from Kudva et al. (1980) that the condition TB -  0 holds if and only if 

rank CB = rank B = m and transmission zeros of (C ,A ,B ) is stable. Thus, the 

results obtained here are stronger than before. Furthermore, Lemma 3.1 provide 

the existence and continuation of solution of observer-feedback controlled sys­

tem, which has not given earlier.

7.2.2 Summary and discussion of Chapter 4

We have proposed a new method of design of stabilizing dynamic output 

feedback of a class of uncertain systems. This was accomplished by initially 

considering "hypothetical" output yh and then (in Theorem 4.1) a stabilizing 

static output feedback for hypothetical system was established by using the 

Steinberg and Ryan (1986) approach (fundamentally based on Barmish, Corless 

and Leitmann 1983). Then, the static output feedback was approximated by a 

realizable dynamic compenstor which filters the actual output y, and by using
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singular perturbation analysis akin to that Saberi and Khalil (1984) and Corless 

et al. (1989), it has been shown (in Theorem 4.2) that the feedback controlled 

system is globally uniformly asymptotically stable provided that the filter 

dynamics are sufficiently fast. A calculable threshold measure of fastness was 

provided (in Theorem 4.2).

By an analogous approach, we have generalized the proposed control 

design to include more general systems (i.e. to allow for additional uncertain­

ties) by admitting a nonlinear discontinuous control component, modelled by an 

appropriately chosen set-valued map, and the overall controlled system conse­

quently interpreted in the generalized sense of a controlled differential inclusion 

(Aubin and Cellina 1984). The additional structure on the uncertain function g 

were imposed in A4.4 and A4.5, and equivalent results were stated in Theorem

4.3 for static case, and in Theorem 4.4 for dynamic compensator case.

Our work here has been inspired by that of Steinberg and Ryan (1986) 

who suggested that their approach may be feasible for the case r > 2. It is our 

aim to extend their approach to multivariable version and to the cases r  ^  2 . 

Case r  = 1 turned out to be our special case.

In the discontinuous case, we generalized the Ryan (1988) approach to the 

case r  > 2 with the help the results of Leitmann and Ryan (1987) on the 

decomposition of g.

7.2.3 Summary and discussion of Chapter 5

In this chapter, we have developed a stabilizing adaptive control, which 

mainly to circumvent the inherent conservatism induced by the crude estimates 

in a "worst case" design occured in Chapter 4. Moreover, it is applicable to the 

case for which bounds on the uncertainties may be unknown (i.e. to allow for
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bounded uncertainties with unknown bounds (Corless and Leitmann 1983, 

1984)).

Our initial result contained in Theorem 5.1 where we have looked at a 

special case, i.e. r = 1. By Lyapunov analysis, it was shown that the adaptively 

controlled system exhibits the properties of universal adaptive stabilizer. For 

cases r  > 2, we first proved Lemma 5.1 which is the non-autonomous version 

of Mlrtensson’s Lemma (M&rtensson 1986). Then, by using this lemma, we 

proved Theorem 5.2 which is our main result in adaptive control for the linear 

case. However, further conditions were imposed on g in order to apply the 

lemma.

Adaptive strategy is then generalized by expanding the class of allowable 

uncertainties. We developed an associate generalized adaptive output feedback 

strategy which is in the spirit of Ryan (1988) and akin to that of Martensson 

(1986), i.e. we expand to the cases r > 2 by using Martensson’s method. How­

ever, this generalization is achieved at expanse of extra assumptions on the 

uncertain function g which is given in A5.2. In this discontinuous case, we 

first established Lemmas 5.3 and 5.4 (Lemma 5.4 is generalized non- 

autonomous version of Martensson’s lemma). Then, by using these lemmas we 

proved the main result for the discontinuous case, which is given in Theorem 

5.3.

Finally, we gave an example (a Maglev vehicle model) to illustrate the 

application of the proposed control design (linear case only).
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7.2.4 Summary and discussion of Chapter 6

We addressed here the problem of designing static output feedback for a 

class of uncertain "relative degree 2" systems. In the first part, the approach 

undertaken is similar to that of Chapter 4, to show that there exist a stabilizing 

static output feedback control and was established in Theorem 6.1. Then, since 

the design is based on "worst case" analysis, we also conjectured an adaptive 

version of the static output feedback control by using a similar approach to 

Chapter 5 and was stated in Conjecture 6.1.

Our main aim here was to extend Morse (1985) and Steinberg and Ryan 

(1986) works to multivariable case and to avoid of using of dynamic compensa­

tor in Steinberg and Ryan (1986). This is done by imposing an extra set of 

assumptions which was given in A6.1. However, as might be expected, the 

structural properties on uncertainties are more restrictive as stated in A6.2 and 

A6.3.

7.3 Suggestions for future work

We briefly indicate here some possible extensions of our work which 

might be pursued, or some directions in which the work can be extended, in 

response to the recent trends in feedback design (see, for example, Kokotovid 

1985, DeCarlo et al. 1988 and Ljung 1988 for surveys) and in context of deter­

ministic control of uncertain systems.
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7.3.1 Observer-based design

One of possible direction in which our work might be extended is non­

linear observers. Recently, this field of research has attracted many researchers, 

see for example, Walcott et a l (1987). This field may be subdivided into: exact 

linearization (Hunt et al. 1983, Su 1983) which transforms the original non­

linear system into an equivalent linear system, observers with linearizable error 

dynamics (Krener and Respondek 1985, Respondek 1985) and variable struc­

ture system observers (Walcott and Zak 1987). Since our design has close links 

with variable structure system theory, the latter is a promising area of extension 

(see reference cited above and recent paper by DeCarlo et al. (1988)).

One of the problems that arose in this design is that y2 1S required to be 

sufficiently small. One way to overcome this is to select it in optimal manner. 

An approach based on the stability radius of Hinrichsen and Pritchard (1986a, 

b) may be appropriate.

7.3.2 Dynamic compensator-based design

A recent development in singular perturbation theory is the use of 

geometric methods (see, e.g. Kokotovid 1985). Our work might be extended in 

this framework, in particular along the lines of Khorasani and Kokotovid 1987 

and Shakey and O’Reilly 1987. Moreover, since our singular perturbation 

analysis is akin to Saberi and Khalil (1984), other possible direction is via com­

posite control (see, e.g. Saberi and Khalil 1985); this approach has been used 

recently by Garofalo (1988).
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7.3.3 Adaptive-based design

For this design, the possibility of using others adaptation laws is very 

promising, for example, adaptation laws of Ilchmann et al. (1987). Since 

universal adaptive stabilization is an active area of research recently, and the 

problem still far from complete (see Helmke and Pratzel-Wolters 1988), explor­

ing further other adaptation laws along these lines is warranted.

7.3.4 Static output-based design

Certainly, some generalization could be done in this design, since only a 

few papers have appeared for "relative degree 2" systems (Morse 1985 and 

Steinberg and Ryan 1986), but the first task is to prove Conjecture 6.1 along 

the lines indicated.

One of possible extension to this design is to relax some assumptions. In 

particular, assumptions A6 .1 (ii)-(iii) could be replaced by condition 

rank [CB • CAB] = m and modifying A6.1(iv) accordingly. Tentative work in 

this direction suggests that, using a particular state transformation, stabilizing 

static output feedback is feasible. Then, an adaptive version might also be 

developed.
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