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1. Introduction 

Dynamical systems are often nonlinear in nature. It motives people to explore various 
theoretical nonlinear analysis and control design tools, of which constructive nonlinear 
design methods are the most celebrated ones. However, applying a constructive tool faces 
up a big hurdle that the tool deals only with a certain dynamical structure, often not 
possessed by the natural dynamics. Nonlinear constructive control designs heavily relies on 
the identification of a particular structure via coordinate transformation and control 
transformation. To be realistic, these theoretical tools are not general to all of the nonlinear 
systems. Here, a challenging benchmark example–a four degrees of freedom inverted 
pendulum under the influence of a planar force–is considered that is nonlinear, multiple 
input and multiple output, underactuated and unstable. The benchmark is also of practical 
interests because it is an abstract of several applications. Three challenging control objectives 
are envisaged for the first time in the literature in order to how to apply various cutting-
edge theoretical nonlinear control tools. In fact, the key step of all of the nonlinear designs is 
to identify spectral structures– certain “normal” forms. From this aspect, a sequence of 
preliminary designs will accompany the existing tools to construct nonlinear controllers, 
which is quite different from the linear control designs. 

2. The benchmark problem 

2.1 Modeling 

The spherical inverted pendulum is subject to a holonomic constraint on the vertical direction 
and its self-spin about the principal axis along the pole is neglected from the context. As a 
result, the benchmark has only four degrees of freedom described by a set of generalized 

coordinates q ∈ R4 that include two translational ones (also called external variables) and two 
angular ones (also called shape variables). The translational coordinates are unanimously 
denoted by two globally fixed Cartesian coordinates (x,y) while the angular ones have 

several choices as is given later. Q ∈ R4 denotes the generalized input for the system with 

 Q = ( Fx, Fy, 0, 0 )T
 + vf , (1) 

where (Fx, Fy) 5 F is the actual planar force and vf ∈ R4 is a collection of exogenous 

disturbances and unmodelled dynamics. 
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Fig. 1. The configurations of a spherical inverted pendulum 
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Define a Lagrangian L = K – V where K and V are respectively the kinetic energy and the 

potential energy of the benchmark. Applying the Euler-Lagrangian equations 

 
d d d

Q
dt dq dq

− =
$
L L

 (2) 

for the benchmark derives the dynamics 

 ( ) { } ( , ) { } ( ) ,iq q q q q q Q⋅ + ⋅ + =D C G$$ $ $  (3) 

where D(q) is the matrix of inertia, C(q, q$ ) is the centrifugal and Coriolis matrix and G(q) is 

the gravitational matrix. Equation 3 is taken as the mathematical model of the benchmark. 
Three models with respect to three sets of generalized coordinates are derived (see Fig. 1) 

M.1 The model in q = (x,y, θ,φ) in (Liu, 2006) – θ and φ are the procession and nutation angles 

respectively; the model has singular points at φ = . . . , 0,π,2π, . . . but the model is ideal 

for the objective of swing-up (e.g., (Albouy & Praly, 2000)); the upper space is defined 

by U = {(x,y, θ,φ, x$ , y$ , θ$ , φ$ ) ∈ R8|– π/2 < φ < π/2}; 

M.2 The model in q = (x,y, δ, ε) in (Liu et al., 2008a) – δ and ε denote the heading and bank 

angles respectively; the model has singular points at δ = π/2,3π/2, . . . and/or ε = 

π/2,3π/2, . . . that does not affect the control objectives here; special structures have 

been derived from this model (see S.1 and S.2 in the sequel); the upper space is defined 

by U = {(x,y, δ, ε, x$ , y$ , δ$ , $ε ) ∈ R8| – π/2 < δ < π/2 and – π/2 < ε < π/2}; 

M.3 The model in q = (x,y,X,Y) in (Liu et al., 2008b) – X and Y are the projection of the center 

of mass in the horizontal plane; the model can only represent the case that the 

pendulum is either above the horizontal plane or below the plane but it is sufficient to 

the control objectives in this paper; the description of the model is technically simpler 

than the above two but we cannot ensure that it also implies particular structures as 

those derived from M.2; the upper space is defined by U = {(x,y,X,Y, x$ , y$ , X$ , Y$ ) ∈ 

R8| 2 2X Y+  < L} (L is the length of the center of mass to the pivot). 
Generally, Equation 3 can be written in a state space form 

 ( , , )ff F vη η=$   (4) 

where η 5(q, q$ ) ∈ U denotes the state vector and Equation 4 is called the nominal dynamics 

as vf  ≡ 0. 

2.2 Problem formulation 
In the literature, a local stabilizing controller is used to switch from a swing-up strategy 
(Albouy & Praly, 2000) to achieve a large domain attraction. Here, three different control 
objectives are envisaged which are more challenging: 

PF.1 The non-local stabilization – Find a planar force F to drive the spherical inverted 

pendulum in such a way that for a non-trivial set S ⊂ U and S ¸ 0, where the trivial 

solution denotes the upright position of the pendulum and a given point on the 

horizontal plane in (x,y) for the universal joint of the pendulum, S is contained in a 

domain of attraction. If S ⊆ U and U ⊆ S, the closed loop system is said to yield a 

“global” stability region. If ∀S ⊆ U, there exist certain design parameters such that S is 
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contained in a domain of attraction. Then, the closed loop system is said to yield a 

“semi-global” stability region. 

PF.2 Exact output tracking – Let (xd(t),yd(t)) for t ∈ (–∞,∞) be a sufficiently smooth desired 

curvature in the globally fixed frame with respect to the time variable t. Derive a 

feedback control law for F such that the pivot position, denoted by triplet (t,x(t),y(t)), of 

the pendulum starting from a set of initial conditions (t0, x(t0),y(t0)) converges to 

(t,xd(t),yd(t)) asymptotically, i.e., x(t) – xd(t) →0, y(t) – yd(t) →0 as t → ∞. Meanwhile, the 

pendulum is kept in U. 

PF.3 Way-point tracking – Let p = {p1, p2..., pn} with pi = (xri
,yri ) for i = 1, 2, ..., n be a given 

sequence of points on the plane x – y of the globally fixed frame. Associated with each 

pi, consider the closed ball Nμi (pi) with center pi and radius μi > 0. Derive a feedback 

control law for F such that the pivot (x,y) of the pendulum converges to pn after visiting 

the ordered sequence of neighborhood Nμi (pi) for i = 1, 2, ..., (n – 1) while keeping the 

pendulum in the upper space U. 

2.3 Derivatives of the benchmark 

The system is an abstraction of many real life applications/problems (see Fig. 2) 

A.1 A juggler’s balancing problem – One of very childish games is to balance a pole using a 

finger. The pole may fall in any direction and its base moves together with the finger. 

When the finger moves to the left, to the right, forward or backward in a horizontal 

plane, a planar force F = (Fx, Fy) is applied the pole to steer it around. The human’s hand 

is replaced by a manipulator in an automated environment. 

A.2 The hovering of a vector thrusted rocket – This system may hover at certain altitude either 

staying at a point or tracking certain trajectory. The rocket may head to any direction in 

a horizontal plane under the influence of injection–the main thrust. In this case, the 

main thrust can be decoupled to a vertical thrust against the gravity force or the drag 

and a planar thrust F = (Fx, Fy) steering the rocket in the plane. 

A.3 A personal transporter – It is a two-wheel vehicle on which a rider stands without falling 

over in any direction. The rider who hold the bar bending to the left, the right, forward 

and backward induces the cart to move intelligently to balance the rider. Some different 

accelerations may yielded by two wheels that together with an acceleration yielded by 

the centrifugal and Coriolis effects form a planar force F = (Fx, Fy) to balance the rider. 

There is a commercial product from Segway. 
A.4 The test bench – A pole with a universal joint stands on a cart sliding on a beam that in 

turn slides in a fixed frame. The cart and the beam that are driven by two motors 
respectively yields a planar force F = (Fx, Fy) to the pole. This is a case where the 
classical inverted pendulum on the cart operates in three dimensional space; 

A.5 Others – There are other controlled systems similar to the benchmark, for example, the 
launching of a spacecraft (without the thrust at the beginning). 

As is given in A.1-A.5, a planar force F = (Fx, Fy) could be derived from several different 

types of original actuation for different controlled systems. Without loss of generality, we 

take the planar force F as the “generalized” force acting on the models from M.1-M.3. This 

gives us the same benchmark when exploring various control ideas. So, one can focus on the 

basic dynamic behaviors and the principles. 
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Fig. 2. Applications A.1-A.4 
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3. Nonlinear analysis and design tools 

In the realm of various nonlinear analysis and design tools, the following concepts and tools 
are among the mainstream (not a complete survey), which are either used, incorporated, or 
related to several successful designs for the benchmark 
T.1 The differential geometric approach (see (Isidori, 1995)) – It is fundamental to nonlinear 

control systems. One of the key ideas is to transform a system to a linear one by means 
of feedback and coordinate transformation. The notion of “zero” dynamics plays an 
important role in the problem of achieving local asymptotic stability, asymptotic 
tracking, model matching and disturbance decoupling. 

T.2 Input-to-state stability (ISS) (see (Sontag, 1990; 2005)) – The concept establishes a result on 
feedback redesign to obtain a desirable stability condition with respect to actuator 
errors, and provides a necessary and sufficiency test in terms of ISS-Lyapunov function. 
It brings about a number of powerful analysis tools, one of which is asymptotic “ISS” 
gain and its small gain theorem (Teel, 1996). The latter leads to a “celebrated” design 
tool–forwarding. 

T.3 Forwarding and backstepping – Forwarding is a recursive control design procedure for 
nonlinear systems possessing an upper triangular structure. Nest saturating design (a 
low gain approach) (Teel, 1996) is the first tool in forwarding where design parameters 
are carefully selected to make the feedback interconnection of two systems satisfying 
small gain conditions. Lyapunov approaches (see (Mazenc & Praly, 1996; Sepulchre et 
al., 1997)) for forwarding are practically very difficult to apply because constructing an 
“exact” cross term in the Lyapunov function is hard. Backstepping (a high gain 
approach) (see (Kristić, 1995; Sepulchre et al., 1997)) is a different recursive design 
procedure for nonlinear systems possessing a lower triangular structure. It is a very 
successful tool. However, one must realize that many nature systems do not possess 
such a structure. A misconception is that the interlaced designs (Sepulchre et al., 1997) 
apply also to special structures (half upper and half lower structures). Sliding mode 
control (see (Utkin, 1992)) can be taken as a recursive design procedure similar to 
backstepping. 

T.4 Singular perturbations (see (Kokotović, 1986) – It is a means of taking into account 
neglected high-frequency phenomena and considering them in a separate fast time-
scale. This is achieved by treating a change in the dynamic order of a system of 
differential equations as a parameter perturbation, called the “singular perturbations”. 
It results in a structure of a dynamical system with two time scales (fast and slow) so 
that the control problem is simplified. 

T.5 Controlled Lagrangians/Hamiltanians (IDA-PBC) (see (Block et al., 2001; Ortega et al., 2002) 
– The methods are constructive passivity based control tools for a physical system that 
can be described in Lagrangian dynamics or Hamiltanian dynamics. The key notion is 
the energy shaping (kinetic, potential or total energy) such that the closed loop system 
preserves the structure of Lagrangian or Hamiltanian dynamics with a desired 
behavior. For example, the unstable equilibrium of the original dynamics may become a 
stable equilibrium of the modified dynamics. For mechanical systems, two variations 
are equivalent. 

T.6 Stable inversion/output regulation (see (Devasia, 1996; Isidori, 1995) – The Byrnes-Isidori 

(see (Isidori, 1995)) regulator generalizes internal model principle to nonlinear systems 

that can be applied to track any trajectory generated by a given exosystem if one can 
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solve the associated PDEs. The stable inversion technique (see (Devasia, 1996)) trades 

the requirement of solving these general PDES for a specific trajectory. Both tools can 

deal with the unstable “zero” dynamics that cannot be dealt with by the conventional 

inversion technique. 
T.7 Hybrid control1–There is no ultimate definition. It refers to a control system that mixes 

discrete parts (e.g., a controller, a supervisor) and continuous parts (e.g., a continuous 
plant). 

4. Constructive control designs 

4.1 Step 1 identifying “normal” forms 
Unlike linear systems that can be written more or less in a unified manner, nonlinear 
systems are so diversified that one can only cope with a subclass of nonlinear systems even 
one particular example at a time. Therefore, nonlinear control designs are usually much 
more complex and difficult than linear ones. The situation well fits in with a famous 
sentence in Leo Tolstoy’s Anna Karenina 

“All happy families (linear systems here) are happy alike, all unhappy families (nonlinear systems 
here) are unhappy in their own way.” 

Nevertheless, the linear control theory is not a panacea to all control problems as it holds 
only around an operating point if and only if the first approximation principle holds at this 
point. In contrast, nonlinear control systems may yield a large (even “global”) region of 
stability, tracks asymptotically a nonlinear trajectory that exceeds the bandwidth of a linear 
control system, and provides more physical insights. 
A significant effort in nonlinear control designs is to identify a structure that is suitable for a 
particular design procedure. Ad hoc approaches for identifying a structure of a nonlinear 
control system maybe 

• neglecting some nonlinear effects or considering them as perturbations; 

• exploring physical properties to provide insight to the dynamics; 

• taking a preliminary feedback and/or a change of states to simplify the dynamics. 
Neglecting some nonlinear effects in a nonlinear design should be taken carefully because 
the claimed properties (e.g., a “global” domain of attraction and robustness) for the reduced 
dynamics may not represent a real situation. In our designs, we only neglect the disturbance 
and the unmodelled dynamics in analysis and design. So, we guarantee that the closed loop 
systems represents the original full nonlinear control system. 
The structures that are explored for our designs are listed (to compare with the different 
structures, we abuse notations a little bit for new states) 
S.1 The original dynamics maps to an “appropriate” upper triangular structure (Liu et al., 

2008a) 

 
( , )

      for = 1,2,3,4
( , ),

i i i i i

i i i

A g u
i

f u

ζ = ζ + ξ
ξ = ξ
$

$  (5) 

by a nonsingular transformation T1U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α1(η,u), where u is the new input, ξi+1 5 (ξi, ζi), (ξi, ζi) are the 

                                                 
1 It does not mean a particular tool or method but a broad class of mixed tools and methods. 
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states corresponding to each augmented subsystem and Ai = 0. The feedback 
linearization technique (Isidori, 1995) in T.1 is incorporated. 

S.2 The original dynamics also maps to two interconnected subsystems (Liu et al., 2008c) 

 

1 1 2 1 2

1 2

2 1

( , , , )A B

u

ηω ω ϕ= + ξ + ξ ξ ζ ζ
ξ = ξ
ξ =

$
$

$
 (6) 

 

1 1 2 1 2

1 2

2 2

( , , , )A B

u

ϑϑ ϑ ϕ= + ζ + ξ ξ ζ ζ
ζ = ζ
ζ =

$

$

$
  (7) 

by a nonsingular transformation T2U → R8
 (there is no constraint in new states) and a 

preliminary feedback F = α2(η,u), where u = (u1,u2) is the new input, (ξ1, ξ2,ω) (with  ω = (ω1,ω2)) and (ζ1, ζ2,ϑ) (with ϑ = (ϑ1,ϑ2)) are the states for two subsystems 

respectively, 
0 1

0 0
A

⎛ ⎞= ⎜ ⎟⎝ ⎠ , 
0

1
B

⎛ ⎞= ⎜ ⎟⎝ ⎠ , and ϕη(·) and ϕϑ(·) are interconnected terms which 

are high order nonlinear terms with respect to their arguments. 
S.3 This structure is trivial as we can write the original unperturbed dynamics in an 

“appropriate” form of the Euler-Lagrangian equations (Block et al., 2001) 

 

1 2

1 2

2 1

( , , , )uA ψ u u

u

ηω ω ω ϑ= +
ξ = ξ
ξ =

$
$

$
  (10) 

 

1 2

1 2

2 2

( , , , )sA ψ u u

u

ϑϑ ϑ ω ϑ= +
ζ = ζ
ζ =

$

$

$
  (11) 

by a nonsingular transformation T3U → χ ∈ R8
 (χ is a locally bounded set about  

(ω,ϑ) ¸ 0) and a preliminary feedback F = α3(η,u), where u = (u1,u2) is the new input, (ξ1, 

ξ2, ω, ζ1, ζ2, ϑ) with ω = (ω1, ω2) and ϑ = (ϑ1,ϑ2) are the new states, 
0

0u

c
A

c

⎛ ⎞= ⎜ ⎟⎝ ⎠  and 

0

0s

c
A

c

−⎛ ⎞= ⎜ ⎟−⎝ ⎠  for a scalar c > 0. Here, a combination of a linear transformation and the 

feedback linearization technique is used. 

4.2 Step 2 applying nonlinear tools 

The structures S.1-S.4 enable us to complete a number of nonlinear control designs 
relatively easier for three control objectives PF.1-PF.3. Fig. 3 shows the close loop systems 
with the controllers NC.1-NC.5 as follows. 
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Fig. 3. Diagrams of NC.1-NC.5 
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NC.1 The high-low gain controller (see (Liu et al., 2008a) for PF.1 is designed on the basis of S.1 

 1 1 for 1,2,3,4iu L iσ += − ξ − =  (12) 

where L ∈ R4×4 is a linear high gain matrix, 1 1 1 1 1
1

sat( ( ))i i i i i i
i

K vσ λ λ+ + + + +⋅ ξ + Γ5  with 

vi+1 = σi+2 (v5 does not necessary to be given as the design is complete, Ki+1 and λi are 
associated gain matrices and saturation levels). Nested saturating method (Teel, 1996) 

in T.3 is used to design a low gain control part σi+1 at the aid of a linear control design 
method–LQR. The controller yields a closed loop system with a “global” stability 

region. The design implies the existence of appropriate λi that is related to the domain 

of attraction yielded by a linear controller. Practically, λi is found by trails and errors. 
ISS (see (Sontag, 2005)) in T.2 is a key analysis tool in both the design and the redesign. 

NC.2 The decentralized controller in (Liu et al., 2008c) for PF.1 is designed on the basis of S.2 

 

1 1,1 1,1 1 1,2 2

1,1 1 1,2 2

2 2,1 2,1 1 2,2 2

2,1 1 2,2 2

( )

       ( )

( )

       ( )

u L K K

L L

u L K K

L L

ε ε ω ω
ε ε ϑ ϑ

= − +
+ ξ + ξ

= − +
+ ζ + ζ

 (13) 

where L.,. and K.,. are positive scalars, ε ∈ (0,1) is time scaling parameters. The resultant 
closed loop system is a hidden singularly perturbed system that can be transformed 

into a standard singular perturbation form (slow) x$  = f ( x , y ), (fast) ε y$  = h( x , y , ε). A 

“strong” Lyapunov function comes with the design and the total stability of the system 

is ensured. A “semi-global” stability region (it increases as ε decreases) is yielded by the 
closed loop system. The design is heavily relying on T.4 (see (Kokotović, 1986)). 

NC.3 The controller via controlled Lagrangians in (Block et al., 2001) and (Liu et al., 2007) (a 
complete version) for PF.1 is based on S.3 

 F ⇐ Lc (14) 

which defines a passivity based controller F, where Lc is defined as a controlled 

Lagragian that satisfies the conditions in (Block et al., 2001). Although the controller is a 
direct result of the theory (Block et al., 2001) in T.5, the derivation is technically 
complex. A “weak” Lyapunov function comes with the design, that is, an energy 
function of the closed loop system. LaShall’s invariance principle is used to established 
the stability but the principle cannot guarantee the stability under disturbances. 

NC.4 The exact output tracking controller in (Liu et al., 2008b) for PF.2 is a designed on the 
basis of S.3 

 

1 1 1 1 1 2 2

1 1 2 2

2 1 2 1 1 2 2

1 1 2 2

    (

                          )

    (

                          )

d d d

d d

d d d

d d

u K

u K

ω ω ω ω
ϑ ϑ ϑ ϑ

= ξ + − −
ξ − ξ ξ − ξ

= ζ + − −
ζ − ζ ζ − ζ

$$

$$   (15) 
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where {ξ1d, ζ1d|ξ2d, ζ2d, 1dξ$$ , 1dζ$$ ,ω1d,ω2d,ϑ1d,ϑ2d} are obtained based on the stable 

inversion tool (Devasia, 1996) in T.6 with respect to a desired output trajectory. K. are 

linear feedback gain matrices obtained by a linear controller design–LQR. ( 1dξ$$ , 1dζ$$ ) is 

a guidance controller (a feedforward part) and the rest is a feedback minimizing the 
tracking errors and rejecting exogenous disturbances. For an achievable desired 

trajectory that is c2(–∞,∞), the output (the translational variables ξ1 and ζ1 – the original x 
and y) of the closed loop system tracks exactly the desired trajectory while keeping the 
pendulum upward. 

NC.5 The hybrid controller in (Liu & Yang, 2010) for PF.3 is in the category of T.7. The result is 

relying on NC.1 or NC.2 and an event driven piecewise constant signal σ[t0,∞) →Zn that 

is continuous from the right at every point and is defined recursively by 

 0  ( , , ),    ψ t tσ α χ σ −= ≥   (16) 

where χ and ψ are metrics on the current tracking errors with respect to the 

neighborhood Nμi of ith way-point, σ–(τ ) is equal to the limit from the left of σ(τ ) as τ → 

t based on an event that determines the discrete value i in a set {1, 2, ...,n}. The controller 
yields either “global” or “semi-global” stability region to the closed loop system inherit 
from NC.1 or NC.2. The ordered sequence of way-points are guaranteed but the timing 
to a way-point is uncertain. 

5. Conclusion and future work 

The cutting-edge theoretical nonlinear analysis and designs tools have been used 
successfully to solve the challenging control goals for a four degrees of freedom spherical 
inverted pendulum, such as the global stabilization and the nonlinear exact tracking. 
However, the tools are unable to yield satisfactory controllers on their own. A designer 
should perform preliminary designs via identify the special structures, “normal” forms, to 
bridge the gap. Observed from these successful designs, a good insight to the physical 
dynamical system would help us to find a way, bridging the gap. The experiences obtained 
from the benchmark example should be extended to other nonlinear control systems. 
Techniques of identifying various “normal forms” should be emphasized. 

6. References 

Albouy, X. & Praly, L. (2000). On the use of dynamic invariants and forwarding for 
swinging up a spherical inverted pendulum, in Proceedings of 39th Conference on 
Decision & Control, Sydney, Australia, pp. 1667–1672. 

Bloch, A.; Chang, D.; Leonard, N. & Marsden, J. (2001). Controlled Lagragians and the 
stabilization of mechanical systems II potential shaping, IEEE Transactions on 
Automatic Control, Vol. 41, pp. 1556–1571. 

Devasia, D.; Chen, D. & Paden, B. (1996). Nonliear inversion-based output tracking, IEEE 
Transactions on Automatic Control, Vol. 41, pp. 930–942. 

Isidori, A. (1995). Nonlinear Control System (3rd edition), Springer. 
Kokotović; P. Khalil, H. & O’Reilly, J. (1986). Singular Perturbation Methods in Control Analysis 

and Design, Academic Press Inc.. 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

272 

Krstić M.; Kanellakopoulos, L. & Kokotović, P. (1995). Nonlinear and Adaptive Control Design, 
John Wiley & Sons. 

Liu, G. (2006). Modeling, Stabilizing Control and Trajectory Tracking of a Spherical Inverted 
Pendulu. Ph.D Thesis, The University of Melbourne. 

Liu, G.; Challa, I. & Yu, L.(2007). Revisit controlled Lagrangians for spherical inverted 
pendulum , International Journal of Mathematics and Computers in Simulation, Vol. 1, 
No. 1, pp. 209–214. 

Liu, G.; Mareels, I. & Nešić, D. (2008). Decentralized control design of interconnected chains 
of integrators a case study, Automatica, Vol. 44, No. 8, pp. 2171-2178. 

Liu, G.; D. Nešić & I. Mareels (2008). Nonlinear stable-inversion based output tracking for 
the spherical inverted pendulum, International Journal of Control, Vol. 81, No.7, pp. 
1035–1053. 

Liu, G.; D. Nešić & I. Mareels (2008). Nonlinear stable-inversion based output tracking for 
the spherical inverted pendulum, International Journal of Control, Vol. 81, No.1, pp. 
116–133. 

Liu, G. & Yang, R. (2010). Minimizing operating points of way point tracking of an unstable 
nonlinear plant, Asian Journal of Control, Vol. 12, No. 1, pp. 84–88. 

Mazenc, F. & Praly, L. (1996). Adding integrations, saturated controls, and stabilization for 
feedforward systems, IEEE Transactions on Automatic Control, Vol.41, pp. 1559–1577. 

Ortega, R.; Spong, W.; Gomez-Estern, F. & Blankenstein, G. (2002). Stabilization of a class of 
underactuated mechanical systems via interconnection and damping assignment. 
IEEE Transactions on Automatic Control, Vol. 47, pp. 1218–1233. 

Sepulchre, R.; Janković, M. & Kokotović, P. (1997). Constructive Nonlinear Control, Springer, 
pp. 979–984. 

Sepulchre, R.; Janković M. & Kokotović, P. (1997). Integrator forwarding a new recursive 
nonlinear robust design. Automatica, Vol. 393, pp. 979–984. 

Sontag, E. (1990). Further facts about input to state stabilization. IEEE Transactions on 
Automatic Control, Vol. 35, pp. 473–476. 

Sontag, E. (2005). Input to state stability Basic concepts and results, Springer Lecture Notes in 
Mathematics, Springer. 

Teel, A. (1996). A nonlinear small gain theorem for the analysis of control systems with 
saturation. IEEE Transactions on Automatic Control, Vol. 41, pp. 1256–1270. 

Utkin, V. (1992). Sliding modes in control optimization, Springer-Verlag. 

www.intechopen.com



Advanced Strategies for Robot Manipulators
Edited by S. Ehsan Shafiei

ISBN 978-953-307-099-5
Hard cover, 428 pages
Publisher Sciyo
Published online 12, August, 2010
Published in print edition August, 2010

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and
are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are
designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional
control methods cannot be efficient, and advanced control strategies with considering special constraints are
needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm
until now, there are still many novel aspects which have to be explored.
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