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Abstract
Time delay control (TDC) is a type of disturbance observer (DO)-based control,
where the disturbance estimation is performed by using the past informa-
tion of control input and measurement signals. Despite its capability, there
are concerns about its practical implementation. First, it requires acceleration
measurements which are generally not available in many industrial systems.
Second, input delays are introduced into the closed-loop system, but the rela-
tion between the size of the delay and the performance of TDC has not been
studied. Finally, there is a lack of tools to analyze its performance in disturbance
estimation and robust stability for a given set of control parameters. We con-
struct Lyapunov–Krasovskii functionals for a class of nonlinear systems which
leads to delay-dependent conditions in linear matrix inequalities (LMIs) for the
ultimate boundedness of the closed-loop system. This provides a means for ana-
lyzing the trade-off between the accuracy of disturbance estimation and robust
stability. To circumvent acceleration measurements, we construct a sliding mode
(SM) observer where the resulting error dynamics turns into a neutral type delay
system. The existence conditions of both the SM control and SM observer are
provided via a single LMI. A simulation example considering the tracking con-
trol of an autonomous underwater vehicle at constant and varying speed with a
comparison to a non-TDC shows the effectiveness of the proposed method.

K E Y W O R D S

linear matrix inequalities, nonlinearity-disturbance estimation, sliding mode controller and
observer, time delay control

1 INTRODUCTION

The technique of time delay control (TDC) has been originally developed to compensate for system uncertainties, for
example, unmodeled dynamics, parameter variations, and the effect of disturbances. The technique utilizes the past infor-
mation of the control input and measurement signals to estimate the effect of the nonlinearities and disturbances.1,2

While delays are considered to be undesirable in many systems, it might also have a stabilizing effect, see References 3-5.
For introduction to the topic of time delay systems, please refer to References 6, 7, or 8. Another popular and effective
robust control strategy is sliding mode control (SMC). It is well known for its inherent robust property against a class
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original work is properly cited.
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of unmeasurable disturbances and uncertainties.9 There are more recent advances in SMC. Gonzalez et al.10 considered
finite-time convergence problem in variable gain super-twisting SMC for matched perturbations/uncertainties that are
Lipschitz-continuous. An adaptive continuous higher order SMC was designed to mitigate the chattering effect.11 SMC
based on finite-time boundedness for a class of nonlinear systems was investigated in Reference 12. A dissipativity-based
SMC of continuously switched stochastic systems was proposed in Reference 13. A more recent collection of SMC
advances and applications can be found in Reference 14. Combining robust control strategies such as SMC with methods
that give estimates of uncertainties and disturbances is an attractive proposition. Such a combination enables a reduc-
tion in the magnitude of discontinuous components in the control and thereby offers the possibility of mitigating the
chattering in control. Such control strategy and its applications can be found in References 15-17.

TDC has been applied in experimental environment in many systems.18-25 Despite its robustness, there are some critics
about the usage of TDC.26,27 There is a lack of guidelines for how to select the TDC parameters for disturbance estima-
tion and feedback controller gains. The delay is usually chosen as the smallest sample size available in digital control.
But these delays introduced to the control inputs may cause stability issues and make the stability analysis quite compli-
cated. To what size of the delay the closed-loop system can tolerate is yet to be investigated. SMC under input delay was
investigated, see, for example, Reference 28, where ultimate bounded stability was derived. In addition, TDC requires
acceleration measurements. This limits its application as the acceleration measurements are generally not available in
many industrial systems. It is also difficult to construct the acceleration signal from the velocity signal by differentiation
due to injection of noise with discrete time-derivation. Another problem as pointed out in Reference 29 is that in the pres-
ence of so-called hard nonlinearities, such as saturation or static friction, TDC reveals some problems commonly found in
other methods, like PID control or disturbance observer (DO). An increase in the command input or the response speed
leads to (or would lead to) large over-shoots, limit cycles, or even unstable responses on the outputs. A simple frequency
domain analysis shows that TDC contains a natural integral action, which is generated from the time-delayed estimation
of the uncertainties and disturbance. Owing to the integral action, therefore, when an actuator has a saturation element,
a wind-up phenomenon occurs as the control input increases. Hence, the design of disturbance estimation has to be
considered together with the design of the controller gains to prevent the wind-up phenomenon. While TDC has shown
promising results in experimental studies, literature rigorously analyzing these aspects that delimit the capabilities of
TDC is scarce. How a system would respond to larger size of delays and how the disturbance estimation parameters and
controller gains are to be selected so that the natural integral action in TDC is prevented from destabilizing the system
are still to be investigated.

While there has been a lack of theoretical results in TDC to explore its full capability and performance limits, there
are on-going efforts in studying other type of disturbance estimation methods which originated from the same concept
as TDC. A nonlinear disturbance observer (NDO), which circumvents the need to use delays and acceleration measure-
ments, was proposed in Reference 30 to estimate constant disturbance torques caused by unknown friction in robotic
manipulators. An additional variable is introduced to avoid the measurement of the acceleration signals, in the form of
an either linear or nonlinear functions. However, the resulting error of disturbance estimation in NDO depends on the
derivative of the disturbances, whereas the resulting error of disturbance estimation in TDC only depends on the dif-
ference of the disturbance over the delay duration. The bound on the derivative of the disturbances can much greater
than the bound on the time difference of the disturbance. This restricts the NDO to account for a typical type of distur-
bances with some known properties. A harmonic disturbance was considered in Reference 31 with known frequency but
unknown amplitude and phase rather than constant ones. Based on this, an enhanced version of DO is also provided.
In Reference 32, a disturbance estimator which requires the full knowledge of the nonlinearities was designed, so that it
is fully compensated in the disturbance estimation error. Hence, the disturbance error dynamics is free from the control
input, exemplifying the separation principle, that is, separating the design of controller and DO into two tasks. First, a state
feedback controller that stabilizes the system and meets other design specifications is designed. Then, a DO is obtained
which minimizes the error between the disturbances and its estimates provided by the DO.

Another disturbance observation technique, which is originated from TDC is developed in Reference 26, where it
was shown in frequency domain that a low-pass filter or an uncertainty and disturbance estimator (UDE) which does
not use acceleration measurements can be designed and its performance was shown to be comparable to that of TDC.
In Reference 27, a study was performed to provide uncertainty and disturbance estimation for linear uncertain sys-
tems. A detailed filter was designed to cover both the low and high frequency range for attenuating the disturbance
estimation error. The control gain can be increased arbitrarily to attenuate the disturbance estimation error. A modified
UDE was used in Reference 33 to compensate for model uncertainties and reject input disturbances for quadrotors with
input/output delays. None of the methods, that is, DO and UDE, have considered the effect of the controller gain on the
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bounding of the disturbance estimation error which is a function of the control inputs, meaning that larger controller
gains designed for attenuating the disturbance estimation error could increase the estimation error and consequently
violate the stability conditions. A comprehensive overview of disturbance-observer-based control (DOBC) can be found
in Reference 34. Their limitations and further improvements can be summarized in the following two points. First, as a
limitation, DOBC requires all of the states to be available, the low-pass filter, designed in frequency domain, still largely
depends on tuning (under certain guidance). Second, as a question for further improvement, what is the limit of this
approach? How to analyze the robust stability and performance for a designed DOBC strategy? For a prescribed level of
the uncertainties and nonlinearities, how to develop a strategy that requires a minimum level of feedback and control
bandwidth?

In this article, we attempt to tackle the above challenging questions by considering a sliding mode (SM) observer-based
TDC control using only position and velocity measurements. The acceleration signal is estimated using a SM observer. In
the literature of SM observer and controller for time delay systems, a SM observer for uncertain time delay systems was
designed in Reference 35, where matched uncertainties and nonlinearities are considered. SMC for systems with delays,
matched and mismatched model uncertainties, and external disturbances was performed in Reference 36. Readers are
referred to Reference 37 for a comprehensive survey of SM observers. In this article, the system nonlinearities are assumed
to be locally bounded by Lipschitz constants. We consider the effect of the controller and observer gains on the disturbance
estimation error dynamics, and propose LMI conditions for minimizing the ultimate bound of the observer-based control
system under either constant or varying delay. The resulting ultimate bound depends on the nonlinearities of the system
which include external disturbances, controller and state observer inputs, and the generated reference speed signals. A
scaling matrix Λ is introduced for tuning the trade-off between the accuracy of nonlinearity-disturbance estimation and
robust stability depending on the size of the delay and its varying rate. It is shown that the resulting closed-loop system
exhibits a delay system of a neutral type. For larger nonlinearities associated with larger speed variations, the scaling
matrix needs to be reduced, implying a reduced estimation accuracy for increased stability. Hence, the proposed strategy
prevents the problem of large overshoot and unstable responses in the output due to an increase in the command input,
which commonly occurs with PID or DO-based controllers. The conditions for the existence SM for both the observer and
the error neutral delay systems are provided in a single LMI. Based on the ultimate bound, a dynamical switching gain is
designed to minimize the impact of the input-dependent TDC estimation error.

In Section 2, the generic model of the type of nonlinear system considered in this study is given and the problem to be
solved is explained. The conditions for the existence of SM are given in Section 3. The closed-loop reachability condition
is given in Section 4. The finite-time convergence conditions are given in Section 5. Simulation example and results are
demonstrated in Section 6.

Notation: A standard notation is used throughout the article, Rn denotes the n-dimensional Euclidean space with
vector norm || ⋅ ||, Rn×m is the set of all n × m real matrices, and P > 0 for P ∈ Rn×n means that P is symmetric and positive
definite. The symmetric elements of the symmetric matrix are denoted by ∗. 𝜆(P) and 𝜆(P) denote the maximum and
minimum eigen-value of the matrix P. The symbol || ⋅ ||∞ stands for essential supremum. Time dependent variables, such
as x(t), are simply expressed as x wherever it does (would) not cause any confusion. col{⋅} denotes a column vector. Finally,
(X)∗ stands for X + XT .

2 SYSTEM MODELING AND PROBLEM FORMULATION

Consider a nonlinear system governed by the following Euler–Lagrange dynamics

M(𝜂)�̈� + D(𝜂, �̇�)�̇� + d = F, (1)

where 𝜂 ∈ Rn is the generalized position in n axes, M(𝜂) ∈ Rn×n is a time varying positive definite inertia matrix, D(𝜂, �̇�) ∈
Rn×n represent the hydraulic damping for autonomous underwater vehicle (AUV),38 the centrifugal and Coriolis force
in space manipulators39 or dry friction at each joint in exoskeleton robots.40 F ∈ Rn is the generalized control inputs.
The term d ∈ Rn represents any kind of disturbances such as external torques which are assumed to be bounded and||d − d(t − Lt)|| ≤ d is bounded by a positive constant d > 0, where Lt ≜ L(t) ∈ (0,L∗] with L∗ > 0 is a known time-varying
delay with L̇t ∈ [0, 1). Matrix M(𝜂) is always positive definite and is invertible. Let M(𝜂) be composed as M(𝜂) = Md +
Mb(𝜂), where Md is a diagonal matrix consisting of the constant parameters of the system. Let M = diag(m1, … ,mn) be
an user-defined matrix with mi > 0, ∀i = 1, … ,n, then system (1) can be written as
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M�̈� + H = F, (2)

where H ∈ Rn lumps all the nonlinearities and disturbances and is given as

H = (Md − M)�̈� + Φ, (3)

where Φ = Mb(𝜂)�̈� + D(𝜂, �̇�)�̇� + d.

Assumption 1. There exist known Lipschitz constants c0 and c1 such that

||Φ −Φ(t − Lt)|| ≤ c1||�̈� − �̈�(t − Lt)|| + c0||�̇� − �̇�(t − Lt)|| + d, ∀ �̇�, �̈� ∈ R
n. (4)

When we only consider to design a local controller and observer, the assumption of global Lipschitz nonlinearity of
Φ can be replaced by that Φ is a local Lipschitz function. All the results given in this note are then valid in a neighborhood
around a nominal point. Lipschitz nonlinear systems have been investigated by many authors and some relative works
can be found in References 41-43. Since Φ = 0 when �̈�, �̇�, d = 0, Assumption 1 implies that there exist constants c1, c0
such that ||Φ|| ≤ c1||�̈�|| + c0||�̇�|| + ||d||.

Let x = col{x1, x2} ∈ R2n, where x1 = 𝜂, x2 = �̇�, then (2) can be put into the state-space form

ẋ = Ax + B(F − H), y = Cx, (5)

where A =
(

0n In
0n 0n

)
, B =

( 0n

M
−1

)
, and C = I2n is an identity matrix. Consider the corresponding ideal reference model

ẋr = Amxr + B1ur, (6)

where Am =
(

0n In
Am21 Am22

)
and Am21 , Am22 ∈ Rn×n < 0 are diagonal matrices. Matrix B1 =

(
0n
In

)
and ur ∈ Rn is a com-

mand signal. Defining G1 = M
(

Am21 Am22

)
and G2 = M, it yields BG1 = Am − A and BG2 = B1. Next, denoting the error

between the ideal reference signals and the system measurements as xe = xr − x, one can obtain its derivative as

ẋe = Amxe + B(G1x + G2ur − F + H). (7)

In this article, we aim to construct the estimate of H and use this estimate in our control law to increase the robust
performance of the closed-loop system subjected to external disturbances. However, the construction of this estimation
requires the acceleration signals of system (5), which has the position and velocity signals available only. In the following,
a SM observer will be designed to estimate the acceleration signals of the system.

Let x̂e = col{x̂e1 , x̂e2} ∈ R2n be the observer states, and e = xe − x̂e be the observation error. Our control law is defined
as

F = Mv + Ĥ, (8)

where v = M
−1

G1x + M
−1

G2ur + u and the expression of u ∈ Rn will be given later. Ĥ ∈ Rn denotes the estimation of H
in TDC and is given as

Ĥ = Λ
(

F(t − Lt) − M
(

ẋr2(t − Lt) − ̇̂xe2(t − Lt)
))

= ΛH(t − Lt) − ΛMė2(t − Lt), (9)

where Λ = diag{a1, … , an} with ai ∈ [0, 1) is a positive diagonal matrix which governs the accuracy of the
nonlinearity-disturbance estimation. It is assumed F(t), ẋr2(t), ̇̂xe2(t) = 0 for t < 0.

Remark 1. In practice, the smallest achievable Lt is the minimum sampling period in digital implementation. A digi-
tal control system behaves reasonably close to the continuous system if the sampling rate is larger than 30 times the
bandwidth.44 Hence, with Lt smaller than this level, H is assumed to be continuous and its effect can be estimated as Ĥ
in TDC. For sampled data control, Equation (9) becomes
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Ĥ = Λ
(

Fd(tk) − M
(

ẋr2d
(tk) − ̇̂xe2d

(tk)
))

, tk ≤ t < tk+1. (10)

Following the approach in References 45 and 46, the above equation can be formulated as a continuous-time sys-
tem with a known delay as in (9), where t ∈ [tk, tk+1) and Lt = t − tk. Sampling may be variable but subject to tk+1 − tk≤ L∗, ∀ k ≥ 0, that is, the time between any two sequential sampling instants is not greater than some pre-chosen L∗ > 0.
Then Lt ∈ (0,L∗]with L̇t = 1 for t ≠ tk is known with the known sampling instants tk. For control design of a sampled-data
system, one could refer to References 45 and 46. The sampled-data control will allow easier implementation of the dis-
turbance estimation (9). Thus TDC observes the states and the inputs of the system one sample into the past at tk, and
determines the control action that should be commanded at time t.

Substituting (8) into (7) yields

ẋe = Amxe − B1u + B(H − Ĥ). (11)

Denoting 𝜖 = H − H(t − Lt), which is the disturbance and nonlinearity estimation errors, and substituting (9), (11)
becomes

ẋe = Amxe − B1u + B𝜖 + (I − Λ)M
−1

B1H(t − Lt) + ΛB1ė2(t − Lt). (12)

We design a SM observer in the following form

̇̂xe = Amx̂e + Bf e − B1u + B1ve, (13)

where Bf ∈ R2n×2n is the observer matrix to be constructed and ve ∈ Rn is the observer control inputs to be designed.

Then, denoting D =
(

0n 0n
0n Λ

)
, the observer output error dynamics can be written as follows

ė − Dė(t − Lt) = (Am − Bf )e + B𝜖 + (I − Λ)M
−1

B1h(t − Lt) − B1ve, (14)

with initial condition e(0) = e0, e(t) = 0, t < 0. Equation (14) is a time delay system of a neutral type. For more studies on
this type of systems please refer to Reference 6 and references therein.

Denoting ̄̇Φ = Φ − Φ(t − Lt), ̄̇v = v − v(t − Lt), and ë2(t − Lt) = ė2(t − Lt) − ė2(t − 2Lt), then it can be shown that

𝜖 = Λ
(

In − M−1
d M

)
𝜖(t − Lt) + ΛM−1

d M ̄̇Φ + ΛM
(

In − M−1
d M

)(
̄̇v − ë2(t − Lt)

)
+ (I − Λ)X, (15)

where

X = M
(

In − M−1
d M

)
v + M−1

d MΦ − ΛM
(

In − M−1
d M

)
ė2(t − 2Lt) −

(
H(t − Lt) − Λ

(
In − M−1

d M
)

H(t − 2Lt)
)
. (16)

For the proof of (15), please see Appendix A.1.

Remark 2. Equation (15) can be validated by setting Λ = 0, then 𝜖 = X = M
(

In − M−1
d M

)
v + M−1

d MΦ − H(t − Lt) and
Ĥ = 0. Since by definition 𝜖 = H − H(t − Lt), the following holds:

H =
(

In − M−1
d M

)
F + M−1

d MΦ. (17)

Substituting H in (3), (17) becomes (2).

It is desirable to choose a larger mi in M so that the effect of ̄̇v and ë2(t − Lt) on 𝜖 is reduced in (15). However, larger
values of mi will increase the effect of ̄̇Φ on 𝜖. Since ̄̇v depends on the control signal u and the reference model matrix
G1 and G2, and ë2(t − Lt) depends on the observer gain Bf , the choice of the controller and observer gains, as well as the
reference signal parameters have a direct impact on TDC error 𝜖. While we can reduce the values of the diagonal elements
in Λ to minimize the dependence of 𝜖 on ̄̇Φ, ̄̇v, and ë2(t − Lt), this causes 𝜖 to depend more on X and the accuracy of
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disturbance estimation (9) to be degraded. We aim to provide the delay-dependent LMI conditions to assess the trade-off
between the performance of disturbance estimation and robust stability and provide the minimum control gains that
preserves the performance of TDC.

Consider the following sliding surfaces:

Ŝ = {x̂e ∈ R
2n ∶ BT

1 P𝜇 x̂e = 0}, (18)

and

e = {e ∈ R
2n ∶ BT

1 P𝜇 (e − De(t − Lt)) = 0}, (19)

where P𝜇 ∈ R2n×2n > 0 is to be designed. It is desirable to design the estimation of nonlinearities and disturbance (9), the
controller (8), the reference model parameters (6) and the observer (13) such that the closed-loop system is exponentially
stable and the closed-loop system converges to the sliding surfaces (18) and (19) in finite time.

3 SLIDING MANIFOLDS DESIGN

This section considers the stability of the closed-loop system once on the sliding surfaces (18) and (19). Let’s define the
control law as

u = Kx̂e + vu, (20)

where K =
(

K1 K2
)
, K1 = Am21 + K1, K2 = Am22 + K2 and K1, K2 ∈ Rn×n are the control gains to be designed and vu =

𝜌
ŝ||ŝ|| is the nonlinear control law. Let’s define the observer matrix Bf =

(Bf11 In
Bf21

1
𝜇

In

)
, where Bf11 , Bf21 ∈ Rn×n are to be

designed. The observer control law is given in the form of

ve = 𝜌e
se||se|| . (21)

The switching gains 𝜌 and 𝜌e are some positive scalar functions of the outputs. We can write the observer system (13)
and the error system (14) in the following form

̇̂xe1 = x̂e2 + Bf11 e1 + e2,

̇̂xe2 = −K1x̂e1 − K2x̂e2 + Bf21 e1 +
1
𝜇

e2 − vu + ve,

ė1 = −Bf11 e1,

𝜇 (ė2 − Λė2(t − Lt)) = 𝜇(Am21 − Bf21)e1 + (𝜇Am22 − I)e2 + 𝜇M
−1
𝜖 + 𝜇(I − Λ)M

−1
H(t − Lt) − 𝜇ve, (22)

where 𝜖 is given in (15). Let P𝜇 be in the following structure

P𝜇 =

(
P11 𝛿1𝜇P22

∗ 𝛿2𝜇P22

)
, (23)

where P11, P22 > 0 and 𝜇, 𝛿1, 𝛿2 > 0 are user-defined parameters. A state transformation exists such that
(

x̂e1
ŝ

)
=

T
(

x̂e1
x̂e2

)
, and

(
ė1
ṡe

)
= T

(
e1

e2 − Λe2(t − Lt)

)
, where T =

(
In 0

𝜇𝛿1P22 𝜇𝛿2P22

)
. Hence system (22) can be rewritten as

̇̂xe1 = −𝛿1

𝛿2
x̂e1 +

1
𝛿2𝜇

P−1
22 ŝ + Bf11 e1 + e2,

̇̂s = 𝛿1𝜇P22K2x̂e1 − P22(K1 + K2)P−1
22 ŝ + 𝜇P22

(
𝛿1Bf11 + 𝛿2Bf21

)
e1 + (𝛿1𝜇 + 𝛿2)P22e2 + 𝛿2𝜇P22(ve − vu), (24)
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ė1 = −Bf11 e1,

ṡe = 𝜇P22

(
𝛿1

(
1
𝜇

In − Bf11 − Am22

)
+ 𝛿2

(
Am21 − Bf21

))
e1 + P22

(
Am22 −

1
𝜇

In

)
P−1

22 se + 𝛿2𝜇P22

(
Am22 −

1
𝜇

In

)
Λ

⋅ e2(t − Lt) + 𝛿2𝜇P22

(
M

−1
𝜖 + (I − Λ)M

−1
H(t − Lt) − ve

)
. (25)

Once the system trajectories are on the sliding surfaces (18) and (19), the dynamics of the systems (24) and (25) are
governed by

̇̂xe1 = −𝛿1

𝛿2
x̂e1 + Bf11 e1 + e2,

ė1 = −Bf11 e1,

e2 = Λe2(t − Lt) −
𝛿1

𝛿2
e1. (26)

Lemma 1. Given positive parameters L∗, 𝛼, 𝛿1, 𝛿2, positive diagonal matrix Λ, if there exist n × n matrices P1 > 0, P2 ≥ 0
and matrices Pf1 , P̃3, P̃4 such that the following LMI

Ω =

⎛⎜⎜⎜⎜⎜⎝

−2 𝛿1
𝛿2

P1 + 2𝛼P1 Pf1

∗ (−Pf1)
∗ + 2𝛼P1

∗ ∗
∗ ∗

P1 0
− 𝛿1

𝛿2
P̃3 − 𝛿1

𝛿2
P̃4

P2 + (−P̃T
3 )∗ P̃T

3Λ − P̃4

∗ −e−2𝛼L∗P2 + (P̃T
4Λ)∗

⎞⎟⎟⎟⎟⎟⎠
< 0 (27)

is feasible, then (26) is exponentially asymptotically stable with a decay rate 𝛼 for all L ∈ [0, L∗]. There exists M0 > 0 such
that the solution of (26) initialized by x̂e1(0) ∈ Rn, e1(0) ∈ Rn satisfy the following inequality:

||x̂e1 ||2 + ||e1||2 ≤ M0e−2𝛼t (||x̂e1(0)||2 + ||e1(0)||2) , ∀ t ≥ 0, (28)

where M0 = 1
𝜆(P1)

. Moreover, the observer matrix Bf11 = P
−1
1 Pf1 .

Proof. Consider the following Lyapunov–Krasovskii functional

V = x̂T
e1 P1x̂e1 + eT

1 P1e1 + ∫
t

t−Lt

e2𝛼(s−t)eT
2 (s)P2e2(s)ds. (29)

We define

W = V̇ + 2𝛼V = 2x̂T
e1 P1 ̇̂xe1 + 2eT

1 P1ė1 + 2𝛼x̂e1 P1x̂e1 + 2𝛼eT
1 P1e1 + eT

2 P2e2 − e−2𝛼Lt eT
2 (t − Lt)P2e2(t − Lt). (30)

Then adding

0 =
(

eT
2 P̃T

3 + eT
2 (t − Lt)P̃

T
4

)(
−e2 + Λe2(t − Lt) −

𝛿1

𝛿2
e1

)
(31)

into (30), and defining 𝜉
T
=
(

x̂T
e1 eT

1 eT
2 eT

2 (t − Lt)
)
, it follows W < 0 in (30) if 𝜉

T
Ω𝜉 < 0. W < 0 yields the solution of

(26) to satisfy the bound 𝜆(P1)||x̂e1 ||2 + 𝜆(P1)||e1||2 ≤ V ≤ e−2𝛼tV(0), t ≥ 0. ▪

Remark 3. Lemma 1 provides conditions for the existence of SM for both the observer system and error system with
neutral delay in a single LMI (27). Observer-based SMC control for systems with state delays has been studied in Reference
47, and for neutral delay systems has been studied in Reference 48. In those works, LMI conditions for the existence of SM
with respect to the observer system were provided separately from the existence design for the observer error system. But
the existence conditions related to the observer error dynamics were however missing. Lemma 1 shows that the existence
of SM in observer-based SMC can be considered with respect to both the observer system and the error system.
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4 REACHABILITY OF THE CLOSED LOOP SYSTEM

This section considers controller and observer design such that the closed-loop system (22) is exponentially attracted to
an ultimate bound. Denoting Lt = 𝜇𝜉(t), where 0 ≤ 𝜉(t) ≤ L and 𝜇L = L∗, with 𝜇�̇� ≤ 𝛽 < 1, then the following main result
can be stated.

Theorem 1. Given positive tuning diagonal matrix Λ with its elements ai ∈ [0, 1) for i = 1, … ,n, positive n × n diagonal
matrix M, positive parameters𝜇, L,𝜇L = L∗, and positive tuning scalars 𝛿1, 𝛿2, 𝛽 ∈ [0, 1), 𝛼, b, b1, b2, b3, b4, b5, b6, b7,
positive scalars 𝜆, c0, c1, and scalars 𝛿2, 𝛿3, 𝛿4, 𝛿5, if there exist a 2n × 2n matrix P𝜇 > 0 as in (23), and n × n matrices
S ≥ 0, T ≥ 0, R ≥ 0, R1 ≥ 0, R2 ≥ 0, Q1 ≥ 0, Q2 ≥ 0, Pm1 < 0, Pm2 < 0, n × n matrices P̂2, P̂3, P̂4, P̂5, Pk1 , Pk2 , and Pf2

such that LMI Θ < 0 with the following entries:

1, 1 = (−𝛿1𝜇Pk1 )
∗ + 2𝛼P11, 1, 2 = P11 − 𝛿1𝜇Pk2 − 𝛿2𝜇PT

k1
+ 2𝛼𝛿1𝜇P22, 1, 3 = P11Bf11 + 𝛿1𝜇Pf2 , 1, 4 = P11 + 𝛿1P22,

1, 29 = −L∗PT
k1
, 2, 2 = 2𝛿1𝜇P22 − (𝛿2𝜇Pk2 )

∗ + 2𝛼𝛿2𝜇P22, 2, 3 = 𝛿1𝜇P22Bf11 + 𝛿2𝜇Pf2 , 2, 4 = 𝛿1𝜇P22 + 𝛿2P22, 2, 28 = L∗Q1,

2, 29 = −L∗PT
k2
, 3, 3 = (−P11Bf11)

∗ + (𝛿1𝜇Pm1 − 𝛿1𝜇Pf2 )
∗ + 2𝛼P11, 3, 4 = −𝛿1𝜇BT

f11
P22 + 𝛿1(𝜇Pm2 − P22) + 𝛿2𝜇(Pm1 − Pf2)

T

+ 2𝛼𝛿1𝜇P22, 3, 5 = 𝜇𝛿1BT
f11

P22Λ − 𝛿2𝜇(Pm1 − Pf2)
TΛ − 2𝛼𝛿1𝜇P22Λ, 3, 7 = 𝛿1𝜇P22M

−1
, 3, 22 = 𝛿1𝜇P22(I − Λ)M

−1
,

3, 28 = L∗BT
f11

Q1, 3, 29 = L∗PT
f2
, 3, 30 = −L∗BT

f11
Q2, 3, 31 =

√
2L∗(Pm1 − Pf2 )

T , 4, 4 = (𝛿2𝜇Pm2)
∗ − 2𝛿2P22 + 2𝛼𝛿2𝜇P22 + T,

4, 5 = −𝛿2(𝜇Pm2 − P22)TΛ − 2𝛼𝛿2𝜇P22Λ, 4, 7 = 𝛿2𝜇P22M
−1
, 4, 22 = 𝛿2𝜇P22(I − Λ)M

−1
, 4, 28 = L∗Q1, 4, 29 = LP22,

4, 31 =
√

2(L∗PT
m2

− LP22), 5, 5 = −Te−2𝛼L∗ + 2𝛼𝛿2𝜇ΛP22Λ, 5, 7 = −𝛿2𝜇ΛP22M
−1
, 5, 22 = −𝛿2𝜇ΛP22(I − Λ)M

−1
,

6, 6 = −(1 − 𝛽)e−2𝛼L∗P22, 6, 31 =
√

2ΛP22, 7, 7 = S + (−P̂T
2 )∗, 7, 8 = P̂T

2Λ(I − M−1
d M) − P̂3, 7, 9 = P̂T

2ΛM(I − M−1
d M),

7, 11 = 𝛿2𝜇M
−1

P22, 7, 12 = −P̂T
2ΛM(I − M−1

d M) + 𝛿3𝜇M
−1

P22, 7, 13 = P̂T
2ΛM−1

d M, 7, 14 = −M
−1

P̂4, 7, 15 = −M
−1

P̂5,

7, 27 = P̂T
2 (I − Λ), 7, 31 =

√
2L∗M

−1
P22, 8, 8 = −e−2𝛼L∗S +

(
P̂T

3Λ(I − M−1
d M)

)
∗, 8, 9 = P̂T

3ΛM(I − M−1
d M),

8, 11 = −𝛿2𝜇M
−1

P22, 8, 12 = −P̂T
3ΛM(I − M−1

d M) − 𝛿3𝜇M
−1

P22, 8, 13 = P̂T
3ΛM−1

d M, 8, 14 = M
−1

P̂4, 8, 15 = M
−1

P̂5,

8, 27 = P̂T
3 (I − Λ), 9, 9 = R1 − 2𝛿4P22, 9, 10 = −𝛿5P22, 9, 14 = P̂4, 9, 15 = P̂5, 9, 16 = −𝛿4(Pm2 − Pk1),

9, 17 = −𝛿4(Pm2 − Pk2), 9, 18 = −𝛿4Pm1 , 9, 19 = −𝛿4Pm2 , 9, 21 = 𝛿4P22, 9, 25 = 𝛿4P22, 10, 10 = −e−2𝛼L∗R1,

10, 16 = −𝛿5(Pm1 − Pk1), 10, 17 = −𝛿5(Pm2 − Pk2), 10, 18 = −𝛿5Pm1 , 10, 19 = −𝛿5Pm2 , 10, 21 = 𝛿5P22,

10, 25 = 𝛿5P22, 11, 11 = R − 2𝛿2𝜇P22, 11, 12 = 𝛿2𝜇P22Λ − 𝛿3𝜇P22, 11, 18 = 𝛿2𝜇(Pm1 − Pf2 ), 11, 19 = 𝛿2(𝜇Pm2 − P22),

11, 23 = 𝛿2𝜇P22(I − Λ)M
−1
, 11, 24 = −𝛿2𝜇P22, 12, 12 = −e−2𝛼L∗R + 2𝜇𝛿3P22Λ, 12, 14 = −ΛP̂4, 12, 15 = −ΛP̂5,

12, 18 = 𝛿3𝜇(Pm1 − Pf2), 12, 19 = 𝛿3(𝜇Pm2 − P22), 12, 23 = 𝛿3𝜇P22(I − Λ)M
−1
, 12, 24 = −𝛿3𝜇P22,

13, 13 = −𝜆In, 14, 14 = R2 + (−P̂T
4 )∗ + 𝜆c2

1In, 14, 15 = −P̂5, 14, 23 = −P̂T
4 (I − Λ)M

−1
, 15, 15 = −e−2𝛼L∗R2,

15, 23 = −P̂T
5 (I − Λ)M

−1
, 16, 16 = −e−2𝛼L∗Q1, 17, 17 = −e−2𝛼L∗P22 + 2𝜆c2

0In, 18, 18 = −e−2𝛼L∗Q2,

19, 19 = −e−2𝛼L∗P22 + 2𝜆c2
0In, 20, 20 = −b2 + 2𝜆c2

0, 21, 21 = −b7, 22, 22 = −b, 22, 31 =
√

2L∗(I − Λ)M
−1

P22,

23, 23 = −b5, 24, 24 = −b6, 25, 25 = −b4, 26, 26 = −b3 + 𝜆, 27, 27 = −b1, 28, 28 = −Q1, 29, 29 = −P22, 30,
30 = −Q2, 31, 31 = −P22 (32)

and with the rest of the entries being zero, is feasible, then system (22) with the disturbance estimation error given in (15) is
exponentially attracted by the ellipsoid

lim sup
t→∞

||||||||
(

x̂e

(
e1

e2 − Λe2(t − Lt)

))||||||||2 ≤ 1
2𝛼𝜆(P𝜇)

(
b‖‖‖H(t − Lt)||2∞ + b1||X||2∞ + b2

||||||||∫ t

t−Lt

ẋr2(s)ds
||||||||2∞ + b3d

2

+ b4||vu − vu(t − Lt)||2∞ + b5||H(t − Lt) − H(t − 2Lt)||2∞ + b6||ve − ve(t − Lt)||2∞ + b7
||||||||∫ t

t−Lt

ẍr2 (s)ds
||||||||2∞

)
, (33)
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with a decay rate 𝛼 for all 𝜉 ∈ [0,L], 𝜇�̇� ≤ 𝛽 < 1. Moreover, the following matrices can be obtained as K1 = P−1
22 Pk1 , K2 =

P−1
22 Pk2 , Bf21 = P−1

22 Pf2 , and Am21 = P−1
22 Pm1 , Am22 = P−1

22 Pm2 .

Proof. See Appendix A.2. ▪

Corollary 1. If there exists Λ with ai ∈ [0, 1) for i = 1, … ,n arbitrarily close to 1 such that LMI (32) is feasible, then in
the absence of switching controls, that is, vu = ve = 0, under constant disturbances d = 0, and ur = 0 in (6), system (22) is
exponentially asymptotically stable with a decay rate 𝛼 for all 𝜉 ∈ [0,L], 𝜇�̇� ≤ 𝛽 < 1.

Proof. Suppose Λ = In. Then there is no scaling for nonlinearities-disturbance estimation in (9) and 𝜖 in (15)
does not depend on X and ė2 in (22) does not depend on H. The terms on the right-hand side of inequal-
ity (33) become 1

2𝛼

(
b2||∫ t

t−Lt
ẋr2(s)ds||2∞ + b3d

2
+ b4||vu − vu(t − Lt)||2∞ + b6||ve − ve(t − Lt)||2∞ + b7||∫ t

t−Lt
ẍr2(s)ds||2∞). Setting

vu = ve = 0 and ur = 0 and d = 0 for constant disturbances, the right-hand side of inequality (33) becomes zero as
t → ∞. ▪

Remark 4. In Reference 33, an UDE was considered for disturbance cancellation for systems with known input
delays. A linear controller without switching parts vu and ve was considered. The uncertainties-disturbance esti-
mation was constructed by delaying the control inputs and measurement signals and then the acceleration sig-
nals were estimated using a strictly proper low-pass filter. The disturbance estimation error was shown to be
bounded by the system states and the disturbance estimation error itself. A controller was then designed to drive
the system without external inputs, that is, d = ur = 0, asymptotically to the origin. Theorem 1 in Reference 33
is an special case of Theorem 1 in this article, which is given by Corollary 1 with ai ∈ [0, 1) in Λ arbitrarily
close to 1.

Remark 5. Both system (22) and (15) can be regarded as delay differential-algebraic equations, which have both
delay and algebraic constraints. These types of systems often appear in various domains, including aircraft sta-
bilization, chemical engineering systems, lossless transmission lines. In Reference 49, transforming such systems
into a descriptor form has been considered and an LMI based stability criterion has been derived. The use of
delay for stabilization, in our case for disturbance estimation, extends to other applications. For instance, a known
delay is deliberately introduced for a SMC static control design.50 Transformation of algebraic equations with
time delay into neutral type system equations, for stability control using artificial delay has been considered in
References 3 and 4.

It is shown in Reference 46 that a very small 𝜇 can be chosen to minimize the effect of the sampled-data mea-
surement on observer error, effectively resulting in a singularly perturbed system with respect to the error dynamics.
A high-gain observer design was proposed in Reference 51 based on separation principle, that is, designs of the con-
troller and the observer are performed separately and then an output feedback controller is obtained by replacing the
states by their estimates provided by the high-gain observer. It is well known that in the observer-based controller
design, it is not possible to choose a very small 𝜇 for the system considered as the observer dynamics depends on the
inverse of 1

𝜇
e2.

5 FINITE-TIME CONVERGENCE

Since the closed loop system (22) is ultimately bounded by (33), and by the definition of 𝜖 in (15), definitions of L ̄̇v, ë2 in
(A10) and (A13), respectively, there exists a t0 such that ||𝜖|| ≤ 𝛿𝜖1 ||vu − vu(t − Lt)|| + 𝛿𝜖2 ||ve − ve(t − Lt)|| + d𝜖(t, d), where
𝛿𝜖1 , 𝛿𝜖2 , d𝜖 are some positive constants for all t > t0. Also we have ||H|| ≤ dH , where dH is a positive constant for all t > t0.

Corollary 2. Given positive constants 𝛿𝜖1 , 𝛿𝜖2 , d𝜖 > 0, and dH > 0, for any positive numbers 𝛾1 > 0, 𝛾2 > 0, then the
following switching gains

𝜌e =
||M−1||((𝛿𝜖1 + 𝛿𝜖2)𝜌e(t − Lt) + 𝛿𝜖1(Δu + Δu(t − Lt)) + d𝜖(t, d)) + Δe

1 − ||M−1||(𝛿𝜖1 + 𝛿𝜖2)
, 𝜌 = 𝜌e + Δu, (34)
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where Δu = ||||||K2x̂e1 −
1

𝛿2𝜇
(K1 + K2)P−1

22 ŝ +
(

𝛿1
𝛿2

Bf11 + Bf21

)
e1 + ( 𝛿1

𝛿2
+ 1

𝜇
)e2

|||||| + 𝛾2 and Δe =
||||||( 𝛿1

𝛿2
( 1
𝜇

In − Bf11 − Am22)

+ (Am21 − Bf21))e1 + 1
𝛿2𝜇

(Am22 −
1
𝜇

In)P−1
22 se + (Am22 −

1
𝜇

In)Λe2(t − Lt)
|||||| + ||(I − Λ)M

−1||dH + 𝛾1, will ensure ideal sliding
motions are attained on (18) and (19) in finite time.

Proof. Let Ve = 1
2

sT
e (𝛿2𝜇P22)−1se, then V̇ e = sT

e (𝛿2𝜇P22)−1ṡe. Substituting ṡe in (25) and then 𝜌e in (34) gives

V̇ e ≤ ||se||(‖‖‖‖‖
(
𝛿1

𝛿2

(
1
𝜇

In − Bf11 − Am22

)
+ (Am21 − Bf21)

)
e1 +

1
𝛿2𝜇

(
Am22 −

1
𝜇

In

)
P−1

22 se +
(

Am22 −
1
𝜇

In

)
Λe2(t − Lt)

‖‖‖‖‖
+||M−1||||𝜖|| + ||(I − Λ)M

−1||||H(t − Lt)|| ) − 𝜌e||se||. (35)

Rearranging (34) yields

𝜌e = ||M−1||((𝛿𝜖1 + 𝛿𝜖2)(𝜌e + 𝜌e(t − Lt)) + 𝛿𝜖1(Δu + Δu(t − Lt)) + d𝜖(t, d)) + Δe

= ||M−1||(𝛿𝜖1(𝜌 + 𝜌(t − Lt)) + 𝛿𝜖2(𝜌e + 𝜌e(t − Lt) + d𝜖(t, d))) + Δe. (36)

Since ||H|| ≤ dH , we also have ||H(t − Lt)|| ≤ dH for all t > t0. Substituting (36) into (35), we have V̇ e < −𝛾1||se||. Next,
let Vs = 1

2
ŝT(𝛿2𝜇P22)−1ŝ, then substituting ̇̂s in (24)

V̇ s ≤ ||ŝ||||||||||K2x̂e1 −
1
𝛿2𝜇

(K1 + K2)P−1
22 ŝ +

(
𝛿1

𝛿2
Bf11 + Bf21

)
e1 +

(
𝛿1

𝛿2
+ 1

𝜇

)
e2
|||||||| + ŝT(ve − vu). (37)

Since we have shown ŝ(ve − vu) ≤ (𝜌e − 𝜌)||ŝ|| in (A16), substituting 𝜌 in (34) yields V̇ s < −𝛾2||ŝ||. Thus sliding motions
will be attained in finite time. ▪

Remark 6. The switching gain 𝜌e in (34) depends on d𝜖(t, d), where d defines the bound on ||d − d(t − Lt)||, this allows
a smaller 𝜌e to be chosen. It shows the advantage of using disturbance estimation (in our case, TDC) based SMC as
in conventional SMC without using disturbance estimation technique, the switching gain needs to be large enough to
attenuate the effect of the disturbance ||d||. Smaller switching gain is beneficial in reducing chattering when there is
a delay in the control action.28 Compared to TDC, in DO and UDE based control the filter gain design in disturbance
estimation requires a priori knowledge of the upper bound of the disturbances ||ḋ||, which is hard to estimate and its
bound can be much larger for unknown disturbances.15,16,30,33 The clear advantage of TDC based disturbance estimation
over DO and UDE is that the disturbance estimation error only depends on ||d − d(t − Lt)||, whose upper bound is much
smaller than ||ḋ||.
5.1 Design procedure

The following procedure provides guideline for selecting tuning parameters for LMIs (27) and (32) which minimize the
ultimate bound (33).

1. Select the maximum delay size L∗. In digital control, the smallest delay achievable is a sample period. Select the set of
parameters 𝛼, 𝛿1, 𝛿2 and the diagonal matrix Λ such that LMI (27) is feasible. Larger values of Λ is preferred.

2. Determine the values of c0 and c1 such that the bound (4) holds. Using larger values for larger xr2 , ẋr2 . They can be
chosen zero for a constant speed tracking.

3. Select 𝜇 such that we can increase Λ. Ideally a smaller 𝜇 is preferable, but 𝜇 needs to be large enough as the feasibility
of LMI (32) depends on a large enough 𝜇.

4. Then choose a larger M as close to Md as possible.
5. Reduce 𝛼 for larger values of Λ. Then reduce values for 𝛽, 𝜆, b, b1, b2, b3, b4, b5, b6, b7 such that LMI (32) is still feasible.

Tuning parameters 𝛿2, 𝛿3, 𝛿4, and 𝛿5 can be chosen as small values to start with.
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6 SIMULATION RESULTS

We consider the model of a 6-DOF model AUV which is assumed to be intrinsically stable in roll and pitch. Then the
resulting 4-DOF AUV hydrodynamic model can be written as52

mxu̇ = myvr − kxu − kx|x|u|u| + mxyv̇ + mxrṙ + dx + Fx,

myv̇ = −mxur − kyv − ky|y|v|v| + myxu̇ + myrṙ + dy + Fy,

mzẇ = −kzw − kz|z|w|w| + mzxu̇ + mzyv̇ + dz + Fz + W,

Irṙ = −
(

my − mx
)

uv − krr − kr|r|r|r| + mrxu̇ + mryv̇ + dr + Tr, (38)

where u, v, w in [m∕s] are the linear velocities in the surge, sway, and heave, respectively, r [rad∕s] is the angular velocity
in the yaw. The surge and sway motions are usually coupled with the yaw motion. Mass values mx, my, mz, mxy, mxr,
myx, myr, mzx, mzy, mrx, mry, in [kg] stand for the masses that include both the rigid body mass and the added mass due
to the surrounding fluid in the surge, sway, and heave; Ir [kg m2] is the moment of inertia in the yaw (including added
mass and inertia); kx∕kx|x|, ky∕ky|y|, kz∕kz|z|, and kr∕kr|r| are the linear/quadratic damping coefficients in the surge, sway,
heave, and yaw, respectively. W [N] is the resultant weight accounting for the buoyancy force in heave, and finally Fx, Fy,
Fz in [N] and Tr [N m] are the control inputs.

Considering underwater vehicle control in proximity to sub-sea structures, a vehicle is expected to respond quickly to
locally generated flow disturbances while maintaining a stable position relative to a static or moving structure. The oscil-
lation of the structure due to water flow generates local eddies and turbulence flow around the structure and the vehicle
in close proximity to the structure. This makes the stable positioning of the vehicle relative to the moving structure rather
challenging. In order to improve the robust performance under unavoidable and unknown disturbance, a SMC-based
control is considered for its intrinsic robust property. The actuators of the AUV are thrusters whose rotational switch-
ing frequency (able to switch rotational direction every haft second) is relatively much faster compared to the reacting
motion of the vehicle in the water. For sake of simplicity and space, we only show simulation results for surge, sway, and
yaw motions and not for heave motion. The parameters of the physical model of the AUV that we consider are provided
in Table 1.53

To demonstrate the effectiveness of the method, we consider two cases. In case 1, we consider the vehicle to follow a
constant speed reference. In case 2, we consider the vehicle to follow a variable speed reference.

For constant speed tracking, we can choose c0 = c1 = 0 in (4) as x2 − x2(t − Lt) = 0, ẋ2 − ẋ2(t − Lt) = 0. We
have chosen a constant delay of 0.1 s. This represents the simplest case to investigate the best performance
that we can obtain from the proposed control strategy. In LMI (27), choosing 𝛼 = 0.005, L∗ = 0.1 s, 𝛿1 = 0.1,

T A B L E 1 Parameter values used for the AUV

Cyclops parameter Value

Rigid body mass of Cyclops, m (kg) 219.8

Mass of Cyclops in surge, mx (kg) 391.5

Linear drag coefficient in surge, kx 120

Quadratic drag coefficient in surge, kx|x| 229.4

Mass of Cyclops in sway, my (kg) 639.6

Linear drag coefficient in sway, ky 131.8

Quadratic drag coefficient in sway, ky|y| 328.3

Inertia of Cyclops in yaw, Ir (kg m2) 130

Linear drag coefficient in yaw, kr 80

Quadratic drag coefficient in yaw, kr|r| 280

Other mass values, mxy, mxr, myx, myr (kg) 4, 7, 7, 29

mzx, mzy, mrx, mry (kg) 15, 25, 7, 20



12 HAN et al.

𝛿2 = 0.5, and Λ = diag{0.84, 0.85, 0.85}, we obtain the observer matrix Bf11 = diag{0.68, 0.72, 0.72}. In LMI (32),
choosing M = diag{390, 639, 129}, 𝛽 = 0, 𝜇 = 5, 𝛿2 = 0.01, 𝛿3 = 0.003, 𝛿4 = 0.1, 𝛿5 = 0.05, 𝛼 = 0.01, 𝜆 = 0.001, b =
0.7 × 10−5, b1 = 0.0001, b2 = 0.2 × 10−8, b3 = 0.002, b4 = 1, b5 = 0.3 × 10−6, b6 = 1, b7 = 0.8, we obtain the reference
model, controller and observer matrices as Am21 = diag{−0.018, −0.0027, −0.0024}, Am22 = diag{−0.6, −0.445, −0.4},
K1 = diag{0.448, 0.58, 0.77}, K2 = diag{0.686, 1.49, 2.36}, Bf21 = {0.082, 0.06, −0.0064}. The Lyapunov matrix is P22 =
diag{3.28, 2.77, 0.72} and 𝜆(P𝜇) = 0.094. In the switching gain design in (34), we choose 𝛿𝜖1 = 𝛿𝜖2 = 5, d𝜖 = 5, dH =
30, 𝛾1 = 𝛾2 = 0.001.

For the varying speed tracking, we choose c0, c1 such that ||Φ|| ≤ c1||ẋ2|| + c0||x2|| + ||d||, as implied by Assumption 1.

By definition, we have Φ = Mbẋ2 +D(x2)x2 + d, where Mb =

( 0 mxy mxr
myx 0 myr
mrx mry 0

)
and D(x2)x2 = Dk(x2)x2 + Dm(x2)

in system (38), with Dk(x2) = diag{−kx|x||x21 |,−ky|y||x22 |,−kr|r||x23 |}, Dm(x2) = col{myx22 x23 ,−mxx21 x23 , (mx − my)x21 x22}
and x21 = u, x22 = v, x23 = r. We assume that the velocities x21 , x22 , x23 are small such that the following bound||D(x2)x2|| ≤ c0||x2|| holds, where c0 = ||diag{−kx|x|,−ky|y|,−kr|r|}|| = 328. We choose c1 = ||Mb|| = 30. In LMI (27), we
select Λ = diag{0.73, 0.77, 0.42} and keep the other parameters the same as those in the case of constant speed
tracking. We obtain Bf11 = diag{0.59, 0.67, 0.36}. In LMI (32), we choose 𝛽 = 0.3, 𝜇 = 3, 𝛿2 = 0.001, 𝛿3 = 0.0003,
𝛿4 = 0.01, 𝛿5 = 0.0005, 𝜆 = 0.00002, b = 0.7, b1 = 0.1, b2 = 5, b3 = 0.00003, b4 = 10, b5 = 0.004, b6 = 0.9, b7 = 1.5 and
keep M, 𝛼 the same as chosen in the case of constant speed. We obtain the reference model, controller and
observer matrices as Am21 = diag{−0.23, −0.01, −0.57}, Am22 = diag{−2.1, −0.65, −3.75}, K1 = diag{0.45, 0.85, 0.03},
K2 = diag{−1.57, 1.06, −3.06}, Bf21 = diag{0.2, 0.08, 0.12}. The Lyapunov matrix is P22 = diag{10.6, 10.9, 8.2} and
𝜆(P𝜇) = 1.33. For the switching gain design, we keep 𝛿𝜖1 , 𝛿𝜖2 , d𝜖 , dH , 𝛾1, 𝛾2 the same as in the case of constant speed design.

In the simulation, we consider constant speed tracking in the first 35 s and variable speed tracking afterwards, as
shown in Figure 1. The figure shows that the tracking performance was maintained in the presence of disturbances
in surge, sway, and yaw. The delay Lt is constant during the constant speed tracking and becomes variable with a rate
less than 0.3 afterwards (Figure 2). The TDC input Ĥ is plotted in comparison to the actual nonlinearity and distur-
bance signals H in Figure 3. It can be seen that the estimation Ĥ is in an approximate neighborhood of the actual
H in surge and sway. In yaw, the estimation Ĥ is quite close to the actual H during constant speed tracking but its
estimation accuracy deteriorates during variable speed tracking as the scaling factor a3 is reduced from 0.85 to 0.42.

F I G U R E 1 Reference position tracking in the surge, sway, and yaw under disturbances
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F I G U R E 2 Delay Lt in TDC is constant and then become variable

Figure 4 shows that during constant speed tracking, as c0 = c1 = 0, we have ||Φ −Φ(t − Lt)|| ≤ d in (4). Note that in the
first 5 s, the condition ||Φ −Φ(t − Lt)|| ≤ d does not hold since the vehicle’s speed increases in the interval t ∈ [0, 5]
s, when its speed stays unchanged thereafter. In the meantime, d = 0 in the first 5 s as seen in the zoom-in plots in
Figure 1. During variable speed tracking, the zoom-in plots in Figure 4 show ||Φ −Φ(t − Lt)|| is always bounded by the
right-hand side of (4). Figures 5–7 show the sliding surface, control inputs, and the switching gain in TDC (blue line in the
figures).

Below we demonstrate the effectiveness of TDC (with Ĥ) in reducing the potential chattering caused by larger switch-
ing energy in SMC. We replace ŝ||ŝ|| , se||se|| in vu and ve with ŝ||ŝ||+𝛾v

and se||se||+𝛾v
, respectively, where 𝛾v > 0 is a small constant.

This allows smoothing the discontinuity in the nonlinear switching control in SMC to obtain an arbitrarily close but
continuous approximation of the discontinuous functions. This approximation is reasonable as the thrusters in an AUV
change rotational speed and directions continuously.

In Figure 5, the sliding surface using TDC (with Ĥ) and without using TDC (without Ĥ) in surge, sway, and
yaw are shown to be in the similar magnitudes. The control inputs are shown in Figure 6. It is seen in both cases
that the same level of control inputs are present to keep the sliding surface ŝ at the same level. However, the result
of not using TDC requires larger switching gain 𝜌, Figure 7. The value of 𝜌 in non-TDC case is about 8 times
larger than that in the TDC case. The smaller switching gain due to TDC (using Ĥ to compensate for the effect
of the actual nonlinear-disturbance H rather than using larger switching gain) reduces the risk of potential chat-
tering due to the switching control action. In both of the controllers, TDC or non-TDC, the switching gain 𝜌 is
increased from constant speed tracking to variable speed tracking due to the decreased value of Λ in TDC and larger
value of H in variable speed tracking. The effect of delay size on the scaling factor Λ can be seen in Figure 8.
The data in the figure is obtained by setting c0 = c1 = 𝛽 = 0 in the LMI (27) and (32). It is shown that the scal-
ing factor Λ needs to be reduced for increasing delay size L∗, weakening the efficiency of TDC in compensating the
nonlinearity-disturbances.

In this section, we have demonstrated that the effectiveness of using TDC in reducing the potential chattering in SMC,
by compensating the nonlinearity-disturbance with its estimate from the past control and measurement information.
In constant speed tracking, the estimation accuracy of nonlinearity-disturbance is higher compared to variable speed
tracking. It is seen that in TDC, the level of compensation for H by Ĥ is affected by the design parameter Λ. We have
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F I G U R E 3 TDC estimation and its comparison to the actual nonlinearity and disturbances in the surge, sway, and yaw

F I G U R E 4 Bounding on the nonlinearity-disturbances ||Φ −Φ(t − Lt)|| in Equation (4)
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F I G U R E 5 Sliding surfaces in the surge, sway, and yaw in TDC (with Ĥ) with comparison to non-TDC (without Ĥ)

F I G U R E 6 Control inputs in the surge, sway, and yaw with comparison to non-TDC
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F I G U R E 7 Switching gain 𝜌 used in TDC and non-TDC

F I G U R E 8 Delay size L∗ against scaling factor a1,2,3 in Λ

shown that the maximum value we can achieve for L∗ = 0.1s is Λ = diag{0.84, 0.85, 0.85}, which is obtained at constant
speed tracking with a constant delay. Note that Λ needs to be chosen by considering the size of the delay, controller gains,
observer gains and the reference model parameters to maximize the TDC performance and to avoid potential instability.

7 CONCLUSION

TDC is a simple but effective disturbance observation based control technique. However, it suffers from that it requires
all system states to be available including the acceleration measurement which is not easily accessible in many phys-
ical systems. There is still a lack of analytical tools to find the limitations of this approach and to analyze the trade
of between robust stability and performance for a designed TDC. In this article, a SM observer has been designed to
circumvent the need for acceleration measurement that has been commonly assumed available in TDC. The resulting
observer error system is shown to be a time delay system of neutral type. A tuning factor Λ is introduced for TDC-based
nonlinearities-disturbance estimation, which governs the accuracy of the non-linearity-disturbance estimation and the
robust performance of TDC. Delay-dependent linear matrix inequalities (LMIs) conditions are proposed for the design
of TDC with the SM. The size of the delay, the controller gains, the observer gains, and the reference model param-
eters are determined from the LMIs which minimize the ultimate bound of the closed-loop system. It is shown with
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simulations that higher estimation accuracy can be achieved for a constant speed tracking than varying speed
tracking. The advantage of using TDC is demonstrated with the simulation results as the substitution of the
nonlinearity-disturbance estimation (TDC) in the control law compensate for the effect of the actual nonlinearities and
disturbance and the resulting closed-loop system is constrained into a smaller neighborhood of the origin. As a conse-
quence a smaller switching gain can be designed in SMC to induce a SM. The smaller switching gain reduces the potential
undesirable chattering caused by the switching control action. It is shown that for larger delay size the scaling factor Λ
needs to be reduced.
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APPENDIX A

A.1 Proof of Equation (15)
Given the sliding surface (18) and sliding surface matrix (23), it follows

ŝ = BT
1 P𝜇 x̂e = 𝛿1𝜇P22x̂e1 + 𝛿2𝜇P22x̂e2 = 𝛿1𝜇P22xe1 − 𝛿1𝜇P22e1 + 𝛿2𝜇P22xe2 − 𝛿2𝜇P22e2. (A1)

From (12), we can write

ẋe2 =
(

Am21 Am22

)
xe − Kx̂e − 𝜌

ŝ||ŝ|| + M
−1
𝜖 + (I − Λ)M

−1
H(t − Lt) + Λė2(t − Lt), (A2)

then it follows

̇̂s = 𝛿1𝜇P22xe2 − 𝛿1𝜇P22ė1 − 𝛿2𝜇P22ė2 + 𝛿2𝜇P22

((
Am21 Am22

)
xe − Kx̂e − 𝜌

ŝ||ŝ|| + M
−1
𝜖

+ (I − Λ)M
−1

H(t − Lt) + Λė2(t − Lt)
)
. (A3)

Rearranging yields

−𝜌 ŝ||ŝ|| = 1
𝛿2𝜇

P−1
22

̇̂s − 𝛿1

𝛿2
xe2 +

𝛿1

𝛿2
ė1 + ė2 −

(
Am21 Am22

)
xe + Kx̂e − M

−1
𝜖 − Λė2(t − Lt) − (I − Λ)M

−1
H(t − Lt). (A4)

Next, substituting ̇̂s = 𝛿1𝜇P22(xe2 − ė1) + 𝛿2𝜇P22(ẋe2 − ė2) into the above equation, we achieve

−𝜌 ŝ||ŝ|| = ẋe2 −
(

Am21 Am22

)
xe + Kx̂e − M

−1
𝜖 − Λė2(t − Lt) − (I − Λ)M

−1
H(t − Lt). (A5)

Given v in (8), we can write

v − �̈� = v − ẋ2 = M
−1
𝜖 + (I − Λ)M

−1
H(t − Lt) + Λė2(t − Lt). (A6)

Multiplying both sides of (A6) by MMd and substituting F = Md�̈� + Φ, we have

MMdv + M(Φ − F) = Md𝜖 + Md(I − Λ)H(t − Lt) + MMdΛė2(t − Lt). (A7)

From (3), (8), and (9), we can write

MF = M
2
v + MΛ((Md − M)�̈�(t − Lt) + Φ(t − Lt) − Mė2(t − Lt)). (A8)

Substituting (A8) into (A7) yields

MMdv + MΦ − M
2
v − MΛ((Md − M)�̈�(t − Lt) + Φ(t − Lt) − Mė2(t − Lt))

= Md𝜖 + MMdΛė2(t − Lt) + Md(I − Λ)H(t − Lt). (A9)

Then substituting �̈� from (A6) leads to (15).

A.2 Proof of Theorem 1
According to (8), (20), and using x = xr − x̂e − e, it follows that

̄̇v = ∫
t

t−Lt

ẍr2(s)ds − (Am21 − K1)∫
t

t−Lt

̇̂xe1(s)ds − Am21∫
t

t−Lt

ė1(s)ds − (Am22 − K2)∫
t

t−Lt

̇̂xe2(s)ds
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− Am22∫
t

t−Lt

ė2(s)ds + vu − vu(t − Lt). (A10)

Using (12), it can be shown that

ẋ2 = v − M
−1
𝜖 − M

−1
(I − Λ)H(t − Lt) − Λė2(t − Lt), (A11)

and denoting ̄̈x2 = ẋ2 − ẋ2(t − Lt), we get

̄̈x2 = ̄̇v − M
−1
(𝜖 − 𝜖(t − Lt)) − M

−1
(I − Λ)(H(t − Lt) − H(t − 2Lt)) − Λë2(t − Lt). (A12)

According to (22), we can write

𝜇ë2 = 𝜇Λë2(t − Lt) + 𝜇(Am21 − Bf21)∫
t

t−Lt

ė1(s)ds + (𝜇Am22 − In)∫
t

t−Lt

ė2(s)ds + 𝜇M
−1
(𝜖 − 𝜖(t − Lt))

+ 𝜇M
−1
(I − Λ)(H(t − Lt) − H(t − 2Lt)) − 𝜇(ve − ve(t − Lt)). (A13)

Consider the Lyapunov–Krasovskii functionals V = V1 + V2 + V3 + V4 for the observer and the error dynamics in (22),
as below:

V1 = x̂T
e P𝜇 x̂e +

(
eT

1 eT
2 − eT

2 (t − Lt)Λ
)

P𝜇

(
e1

e2 − Λe2(t − Lt)

)
,

V2 = ∫
t

t−Lt

e2𝛼(s−t)eT
2 (s)Te2(s)ds + ∫

t

t−Lt

e2𝛼(s−t)𝜖T(s)S𝜖(s)ds + ∫
t

t−Lt

e2𝛼(s−t)ë
T
2 (s)Rë2(s)ds

+ ∫
t

t−Lt

e2𝛼(s−t) ̄̇vT(s)R1 ̄̇v(s)ds + ∫
t

t−Lt

e2𝛼(s−t) ̄̈xT
2 (s)R2 ̄̈x2(s)ds,

V3 = L∗∫
0

−L∗∫
t

t+𝜃
e2𝛼(s−t) ̇̂xT

e1 (s)Q1 ̇̂xe1(s)ds + L∗∫
0

−L∗∫
t

t+𝜃
e2𝛼(s−t)ėT

1 (s)Q2ė1(s)ds

+ L∗∫
0

−L∗∫
t

t+𝜃
e2𝛼(s−t) ̇̂xT

e2(s)P22 ̇̂xe2 (s)ds + L∗∫
0

−L∗∫
t

t+𝜃
e2𝛼(s−t)ėT

2 (s)P22ė2(s)ds,

V4 = L∗2

∫
t

t−Lt

e2𝛼(s−t)ėT
2 (s)P22ė2(s)ds. (A14)

Denoting Pk1 = P22K1, Pk2 = P22K2, Pm1 = P22Am21 , Pm2 = P22Am22 , and Pf2 = P22Bf21 , and differentiating V1 yields

V̇ 1 + 2𝛼V1 = 2(x̂T
e1 P11 + 𝜇𝛿1x̂T

e2 P22)(x̂e2 + Bf11 e1 + e2) + 2(𝛿1x̂T
e1 + 𝛿2x̂T

e2 )(−𝜇Pk1 x̂e1 − 𝜇Pk2 x̂e2 + 𝜇Pf2 e1 + P22e2

+ 𝜇P22(−vu + ve)) + 2(eT
1 P11 + (eT

2 − eT
2 (t − Lt)Λ)𝜇𝛿1P22)(−Bf11 e1) + 2(𝛿1eT

1 + 𝛿2(eT
2 − eT

2 (t − Lt)Λ))

⋅ (𝜇(Pm1 − Pf2 )e1 + (𝜇Pm2 − P22)e2 + 𝜇P22M
−1
𝜖 + 𝜇P22(I − Λ)M

−1
H(t − Lt) − 𝜇P22ve) + 2𝛼V1. (A15)

Note that since ŝ ŝe||ŝe|| ≤ ||ŝ||, it follows in (A15) that

(𝛿1x̂e1 + 𝛿2x̂e2)𝜇P22(−vu + ve) = ŝ
(
−𝜌 ŝ||ŝ|| + 𝜌e

se||se||
)

= −𝜌||ŝ|| + 𝜌eŝ se||se|| ≤ −(𝜌 − 𝜌e)||ŝ|| < 0 (A16)

for 𝜌 > 𝜌e > 0, and
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(𝛿1e1 + 𝛿2(e2 − Λe2(t − Lt)))(−𝜇P22ve) = −seve = −𝜌e||se|| < 0. (A17)

Then differentiating V2 yields

V̇ 2 + 2𝛼V2 = eT
2 Te2 − e−2𝛼Lt eT

2 (t − Lt)Te2(t − Lt) + 𝜖TS𝜖 − e−2𝛼Lt𝜖T(t − Lt)S𝜖(t − Lt) + ë
T
2 Rë2

− e−2𝛼Lt ë
T
2 (t − Lt)Rë2(t − Lt) + ̄̇vTR1 ̄̇v − e−2𝛼Lt ̄̇vT(t − Lt)R1 ̄̇v(t − Lt) + ̄̈xT

2 R2 ̄̈x2 − e−2𝛼Lt ̄̈xT
2 (t − Lt)R2 ̄̈x2(t − Lt). (A18)

In differentiation of V̇ 3 + 2𝛼V3, we first consider the first term and denote V31 = L∗∫ 0
−L∗∫ t

t+𝜃e2𝛼(s−t) ̇̂xT
e1 (s)Q1 ̇̂xe1(s)ds, then

it follows that

V̇ 31 + 2𝛼V31 = L∗2 ̇̂xT
e1 Q1 ̇̂xe1 − L∗e−2𝛼L∗

⎛⎜⎜⎜⎜⎜⎝
∫

t−Lt

t−L∗

̇̂xT
e1(s)Q1 ̇̂xe1(s)ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
neglected

+ ∫
t

t−Lt

̇̂xT
e1(s)Q1 ̇̂xe1(s)ds

⎞⎟⎟⎟⎟⎟⎠
. (A19)

By Jensen’s inequality6

−L∗e−2𝛼L∗

∫
t

t−Lt

̇̂xT
e1(s)Q1 ̇̂xe1(s)ds ≤ −e−2𝛼L∗

∫
t

t−Lt

̇̂xT
e1 (s)dsQ1∫

t

t−Lt

̇̂xe1(s)ds. (A20)

Differentiating the other terms in V3, Jensen’s inequality can be applied to the similar terms in the same way. Using
Schur complement for the following terms yields

L∗2 ̇̂xT
e1 Q1 ̇̂xe1 =

(
x̂T

e2 eT
1 eT

2

) ⎛⎜⎜⎜⎝
L∗Q1

L∗BT
f11

Q1

L∗Q1

⎞⎟⎟⎟⎠Q−1
1

(
L∗Q1 L∗Q1Bf11 L∗Q1

) ⎛⎜⎜⎜⎝
x̂e2

e1

e2

⎞⎟⎟⎟⎠ ,
L∗2 ėT

1 Q2ė1 = eT
1

(
− L∗BT

f11
Q2

)
Q−1

2

(
− L∗Q2Bf11

)
e1. (A21)

Since we have shown that vu and ve terms in (A16) and (A17) are control signals rather than disturbance, we can
analyze the linear part of ̇̂xe2 and ė2 when writing their Schur complement as follows:

L∗2 ̇̂xT
e2 P22 ̇̂xe2 = 𝜇2L

2 ̇̂xT
e2 P22 ̇̂xe2 =

(
x̂T

e1 x̂T
e2 eT

1 eT
2

) ⎛⎜⎜⎜⎜⎜⎝

−𝜇LPT
k1

−𝜇LPT
k2

𝜇LPT
f2

LP22

⎞⎟⎟⎟⎟⎟⎠
P−1

22

(
−𝜇LPk1 −𝜇LPk2 𝜇LPf2 LP22

) ⎛⎜⎜⎜⎜⎜⎝

x̂e1

x̂e2

e1

e2

⎞⎟⎟⎟⎟⎟⎠
, (A22)

and

𝜇2L
2
ėT

2 P22ė2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e1

e2

𝜇Lė2(t − Lt)
𝜖

H(t − Lt)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜇L(Pm1 − Pf2)
T

𝜇LPT
m2

− LP22

ΛP22

𝜇LM
−1

P22

𝜇L(I − Λ)M
−1

P22

⎞⎟⎟⎟⎟⎟⎟⎟⎠
P−1

22

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜇L(Pm1 − Pf2 )
T

𝜇LPT
m2

− LP22

ΛP22

𝜇LM
−1

P22

𝜇L(I − Λ)M
−1

P22

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛⎜⎜⎜⎜⎜⎜⎜⎝

e1

e2

𝜇Lė2(t − Lt)
𝜖

H(t − Lt)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A23)

Next, differentiating V4 yields

V̇ 4 + 2𝛼V4 ≤ L∗2 ėT
2 P22ė2 − (1 − 𝛽)e−2𝛼L∗L∗2 ėT

2 (t − Lt)P22ė2(t − Lt). (A24)
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In (4), given that x2 = xr2 − xe2 and xe2 = x̂e2 + e2, we can write

c0||x2 − x2(t − Lt)|| ≤ c0

(‖‖‖‖‖∫
t

t−Lt

ẋr2(s)ds
‖‖‖‖‖ +

‖‖‖‖‖∫
t

t−Lt

̇̂xe2(s)ds
‖‖‖‖‖ +

‖‖‖‖‖∫
t

t−Lt

ė2(s)ds
‖‖‖‖‖
)
. (A25)

Then using Young’s inequality it follows

c2
0

‖‖‖‖‖∫
t

t−Lt

ẋr2(s)ds
‖‖‖‖‖

2

≤ 2c2
0

(
∫

t

t−Lt

ẋr2(s)ds
)T (

∫
t

t−Lt

ẋr2(s)ds
)
,

c2
0

‖‖‖‖‖∫
t

t−Lt

̇̂xe2(s)ds
‖‖‖‖‖

2

≤ 2c2
0

(
∫

t

t−Lt

̇̂xe2 (s)ds
)T (

∫
t

t−Lt

̇̂xe2(s)ds
)
,

c2
0

‖‖‖‖‖∫
t

t−Lt

ė2(s)ds
‖‖‖‖‖

2

≤ 2c2
0

(
∫

t

t−Lt

ė2(s)ds
)T (

∫
t

t−Lt

ė2(s)ds
)
. (A26)

Therefore, we can write

̄̇Φ
T ̄̇Φ ≤ c2

1
̄̈xT

2 ̄̈x2 + c2
0

(
2
(
∫

t

t−Lt

ẋr2(s)ds
)T (

∫
t

t−Lt

ẋr2(s)ds
)
+ 2

(
∫

t

t−Lt

̇̂xe2(s)ds
)T (

∫
t

t−Lt

̇̂xe2(s)ds
)

+ 2
(
∫

t

t−Lt

ė2(s)ds
)T (

∫
t

t−Lt

ė2(s)ds
))

+ (d − d(t − Lt))T(d − d(t − Lt)). (A27)

Using -procedure,54 the term 𝜆(− ̄̇Φ
T ̄̇Φ + right-hand side of (A27)), where 𝜆 is any positive number, is added to the

following

W = V̇ + 2𝛼V − bHT(t − Lt)H(t − Lt) − b1XTX − b2

(
∫

t

t−Lt

ẋr2(s)ds
)T (

∫
t

t−Lt

ẋr2(s)ds
)

− b3(d − d(t − Lt))T(d − d(t − Lt)) − b4(vu − vu(t − Lt))T(vu − vu(t − Lt))
− b5(H(t − Lt) − H(t − 2Lt))T(H(t − Lt) − H(t − 2Lt)) − b6(ve − ve(t − Lt))T(ve − ve(t − Lt))

− b7

(
∫

t

t−Lt

ẍr2(s)ds
)T (

∫
t

t−Lt

ẍr2(s)ds
)
+ 𝜆c2

1
̄̈xT

2 ̄̈x2 + 𝜆

(
2c2

0

(
∫

t

t−Lt

ẋr2(s)ds
)T (

∫
t

t−Lt

ẋr2(s)ds
)

+ 2c2
0

(
∫

t

t−Lt

̇̂xe2(s)ds
)T (

∫
t

t−Lt

̇̂xe2(s)ds
)
+ 2c2

0

(
∫

t

t−Lt

ė2(s)ds
)T (

∫
t

t−Lt

ė2(s)ds
)

+ (d − d(t − Lt))T(d − d(t − Lt)) − ̄̇Φ
T ̄̇Φ

)
. (A28)

Then adding the right-hand side of the following terms

0 = 2(𝜖TP̂T
2 + 𝜖T(t − Lt)P̂

T
3 )(−𝜖 + right-hand side of Equation (15)),

0 = 2( ̄̇vT
𝛿4P22 + ̄̇vT(t − Lt)𝛿5P22)(−L ̄̇v + right-hand side of Equation (A10)),

0 = 2( ̄̈xT
2 P̂T

4 + ̄̈xT
2 (t − Lt)P̂

T
5 )(−L ̄̈x2 + right-hand side of Equation (A12)),

0 = 2(ë
T
2 𝛿2P22 + ë

T
2 (t − Lt)𝛿3P22)(−𝜇Lë2 + right-hand side of Equation (A13)), (A29)

to (A28) and defining 𝜁 = col{x̂e1 , x̂e2 , e1, e2, e2(t − Lt), 𝜇Lė2(t − Lt), 𝜖, 𝜖(t − Lt), ̄̇v, ̄̇v(t − Lt), ë2, ë2(t − Lt),
̄̇Φ, ̄̈x2, ̄̈x2(t − Lt), ∫ t

t−Lt
̇̂xe1(s)ds, ∫ t

t−Lt
̇̂xe2(s)ds, ∫ t

t−Lt
ė1(s)ds, ∫ t

t−Lt
ė2(s)ds, ∫ t

t−Lt
ẋr2(s)ds, ∫ t

t−Lt
ẍr2(s)ds, H(t − Lt), H(t − Lt) −

H(t − 2Lt), ve − ve(t − Lt), vu − vu(t − Lt), d − d(t − Lt), X}, then W < 0 is satisfied if 𝜁TΘ𝜁 < 0, which is nothing but
Θ < 0, where Θ is explicitly given in (32).


