1,208 research outputs found

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angleโ€“based torque vectoring controller and tilting compensatorโ€“based torque vectoring controller. The steer angleโ€“based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensatorโ€“based torque vectoring controller develops the steer angleโ€“based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    ๊ณ ์„ฑ๋Šฅ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง์„ ์œ„ํ•œ ์ธํœ ๋ชจํ„ฐ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์ด๊ฒฝ์ˆ˜.์ง€๋‚œ 10๋…„ ๋™์•ˆ ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ(ESC)์€ ์น˜๋ช…์ ์ธ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์ƒ์šฉ ์ฐจ๋Ÿ‰์—์„œ ๋น„์•ฝ์ ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด ์‹œ์Šคํ…œ์€ ์•…์ฒœํ›„๋กœ ์ธํ•œ ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์™€ ๊ฐ™์€ ์œ„ํ—˜ํ•œ ๋„๋กœ์—์„œ ๋ถˆ์•ˆ์ •ํ•œ ์ฐจ๋Ÿ‰ ์ฃผํ–‰ ์กฐ๊ฑด์—์„œ ์‚ฌ๊ณ ๋ฅผ ํ”ผํ•˜๋Š”๋ฐ ํฐ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ตœ๊ทผ์˜ ๊ฒฝ์šฐ, ๊ณ ์„ฑ๋Šฅ ์ฐจ๋Ÿ‰ ๋˜๋Š” ์Šคํฌ์ธ ์นด ๋“ฑ์˜ ๊ฒฝ์šฐ ์ œ๋™์ œ์–ด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐœ์ž…์€ ์šด์ „์˜ ์ฆ๊ฑฐ์›€์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ถˆ๋งŒ๋„ ์กด์žฌํ•œ๋‹ค. ์ตœ๊ทผ ์ฐจ๋Ÿ‰์˜ ์ „๋™ํ™”์™€ ํ•จ๊ป˜, ์ž๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ์˜ ์ž‘๋™ ์˜์—ญ์ธ ํ•œ๊ณ„ ์ฃผํ–‰ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ๊ฐ ํœ ์˜ ๋…๋ฆฝ์ ์ธ ๊ตฌ๋™์„ ์ ์šฉ ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ ์ค‘ ํ•˜๋‚˜์ธ ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰์˜ ์ข…, ํšก๋ฐฉํ–ฅ ํŠน์„ฑ์„ ์ œ์–ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐจ๋Ÿ‰์˜ ์„ ํšŒ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ์•ˆ์ •์„ฑ๊ณผ ์ฃผํ–‰ ๋‹ค์ด๋‚˜๋ฏน ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ €, ์ฐจ๋Ÿ‰์˜ ๋น„์„ ํ˜• ์ฃผํ–‰ ๊ตฌ๊ฐ„์ธ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์— ๋Œ€ํ•œ ์ž๋™ ๋“œ๋ฆฌํ”„ํŠธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ํ† ํฌ๋ฒกํ„ฐ๋ง์ œ์–ด์— ์ฐจ๋Ÿ‰์˜ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰๋ชจ๋“œ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์—์„œ ์ฐจ๋Ÿ‰์˜ ๋†’์€ ์Šฌ๋ฆฝ ๊ฐ๋„์˜ ์•ˆ์ •์„ฑ ์ œ์–ด๋ฅผ ์ œ๊ณต ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์ฐจ๋Ÿ‰์˜ ์ „๋ฅœ์— 2๊ฐœ ๋ชจํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰ ๊ณ ์œ ์˜ ํŠน์„ฑ์ธ ์ฐจ๋Ÿ‰ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ตฌ๋ฐฐ๋ฅผ ์ง์ ‘์  ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ, ์ฐจ๋Ÿ‰์˜ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ œ์–ด๊ธฐ์˜ ์ฑ„ํ„ฐ๋ง ํšจ๊ณผ๋ฅผ ์ค„์ด๊ณ  ๋น ๋ฅธ ์‘๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๊ณผ๋„ ๋งค๊ฐœ ๋ณ€์ˆ˜๊ฐ€ ์ด์šฉํ•˜์—ฌ ์ˆ˜์‹ํ™”ํ•˜์—ฌ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ฐจ๋Ÿ‰์˜ ์ •์ƒ ์ƒํƒœ ๋ฐ ๊ณผ๋„ ํŠน์„ฑ ํ–ฅ์ƒ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ISO ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ฐจ๋Ÿ‰ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์š” ์ œ์–ด๊ธฐ์™€ ํšก ์Šฌ๋ฆฝ ๊ฐ๋„ ์ œ์–ด๊ธฐ๋กœ ๊ตฌ์„ฑ๋œ MASMC (Multiple Adaptive Sliding Mode Control) ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋Š” 4๋ฅœ ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•œ ๋™์  ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋†’์€ ๋น„์„ ํ˜• ํŠน์„ฑ์„ ๊ฐ€์ง„ ์ฐจ๋Ÿ‰์˜ ์ „ํ›„๋ฅœ ํƒ€์ด์–ด์˜ ์ฝ”๋„ˆ๋ง ๊ฐ•์„ฑ์€ ์ ์‘์ œ์–ด๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ์•ˆ์ „๋ชจ๋“œ์™€ ๋‹ค์ด๋‚˜๋ฏน ๋ชจ๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ, ์šด์ „์ž๋กœ ํ•˜์—ฌ๊ธˆ ์›ํ•˜๋Š” ์ฃผํ–‰์˜ ์กฐ๊ฑด์— ๋งž๊ฒŒ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด MASMC ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ–ฅํ›„ ์ „๋™ํ™” ์ฐจ๋Ÿ‰์— ์ฃผํ–‰์•ˆ์ •์„ฑ ํ–ฅ์ƒ๊ณผ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰์˜ ์ฆ๊ฑฐ์›€์„ ์ฃผ๋Š” ๊ธฐ์ˆ ๋กœ์จ, ์ „์ฐจ๋Ÿ‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค.In the last ten decades, vehicle stability control systems have been dramatically developed and adapted in many commercial vehicles to avoid fatal crashes. Significantly, ESC (Electric Stability Control) system can help escape the accident from unstable driving conditions with dangerous roads such as slippery roads due to inclement weather conditions. However, for the high performed vehicle, frequent intervention from ESC reduces the pleasure of fun-to-drive. Recently, the development of traction control technologies has been taking place with that of the electrification of vehicles. The IWMs (In-Wheel Motor system), which is one of the systems that can apply independent drive of each wheel, for the limit handling characteristics, which are the operation areas of the ESC, is introduced for the control that enables the lateral characteristics of the vehicle dynamics. Firstly, the automated drift control algorithm can be proposed for the nonlinear limit handling condition of vehicles. This approach can give an insight of fun-to-drive mode to TV (Torque Vector) control scheme, but also the stability control of high sideslip angle of the vehicle on slippery roads. Secondly, using IWMs system with front two motors, understeer gradient of vehicle, which is the unique characteristics of vehicle can be used for the proposed control strategy. A new transient parameter is formulated to be acquired rapid response of controller and reducing chattering effects. Simulation and vehicle tests are conducted for validation of TV control algorithm with steady-state and transient ISO-based tests. Finally, dynamic torque vectoring control with a four-wheel motor system with Multiple Adaptive Sliding Mode Control (MASMC) approach, which is composed of a yaw rate controller and sideslip angle controller, is introduced. Highly nonlinear characteristics, cornering stiffnesses of front and rear tires are estimated by adaptation law with measuring data. Consequently, there are two types of driving modes, the safety mode and the dynamic mode. MASMC algorithm can be found and validated by simulation in torque vectoring technology to improve the handling performance of fully electric vehicles.Chapter 1 Introduction 7 1.1. Background and Motivation 7 1.2. Literature review 11 1.3. Thesis Objectives 15 1.4. Thesis Outline 15 Chapter 2 Vehicle dynamic control at limit handling 17 2.1. Vehicle Model and Analysis 17 2.1.1. Lateral dynamics of vehicle 17 2.1.2. Longitudinal dynamics of vehicle 20 2.2. Tire Model 24 2.3. Analysis of vehicle drift for fun-to-drive 28 2.4. Designing A Controller for Automated Drift 34 2.4.1. Lateral controller 35 2.4.2. Longitudinal Controller 37 2.4.3. Stability Analysis 39 2.4.4. Validation with simulation and test 40 Chapter 3 Torque Vectoring Control with Front Two Motor In-Wheel Vehicles 47 3.1. Dynamic Torque Vectoring Control 48 3.1.1. In-wheel motor system (IWMs) 48 3.1.2. Dynamic system modeling 49 3.1.3. Designing controller 53 3.2. Validation with Simulation and Experiment 59 3.2.1. Simulation 59 3.2.2. Vehicle Experiment 64 Chapter 4 Dynamic handling control for Four-wheel Drive In-Wheel platform 75 4.1. Vehicle System Modeling 76 4.2. Motion Control based on MASMC 78 4.2.1. Yaw motion controller for the inner ASMC 80 4.2.2. Sideslip angle controller for the outer ASMC 84 4.3. Optimal Torque Distribution (OTD) 88 4.3.1. Constraints of dynamics 88 4.3.2. Optimal torque distribution law 90 4.4. Validation with Simulation 91 4.4.1. Simulation setup 91 4.4.2. Simulation results 92 Chapter 5 Conclusion and Future works 104 5.1 Conclusion 104 5.2 Future works 106 Bibliography 108 Abstract in Korean 114๋ฐ•

    ๊ทนํ•œ ์ฃผํ–‰ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•œ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2023. 2. ์ด๊ฒฝ์ˆ˜.This dissertation comprehensively details the design of a torque vectoring control algorithm for enhanced cornering performance using two front in-wheel motors (IWMs) and electronic limited slip differential (eLSD) at the rear axle. The main scopes to be covered in this dissertation can be divided into two categories: 1) individual control of IWM for torque vectoring control at the front axle; 2) integrated control of IWM and eLSD for both front and rear axle. First, an individual control strategy of two front IWMs in a rear-wheel-drive vehicle has been designed to improve the cornering performance. The individual control of IWMs consists of steady-state and transient control input. The steady-state control input is devised to improve the steady-state cornering response with modifying the vehicle understeer gradient, and the transient control input is designed to enhance the lateral stability by increasing the yaw rate damping coefficient. The proposed algorithm has been investigated through both computer simulations and vehicle tests, in order to show that the proposed algorithm can enhance the cornering response achieving the control objectives and to show the superior control performance compared to the other cases, such as yaw rate tracking algorithm and uncontrolled case. Second, the integrated control of two front IWMs and eLSD is designed to enhance the cornering performance at high speeds considering the characteristics of each actuator. The two front IWMs are controlled to improve the cornering performance based on a feedforward control, and the eLSD is utilized for the yaw rate feedback control. The computer simulations are conducted to show the effects of each actuator on the vehicle lateral motion at aggressive cornering with longitudinal acceleration and deceleration. Additionally, vehicle test results show that the proposed controller improves the cornering performance at the limits of handling compared to the uncontrolled case. In summary, this dissertation proposes a control algorithm for an enhanced limit handling performance based on vehicle understeer gradient and yaw rate damping characteristics, addressing also integrated control of in-wheel motors and electronic limited slip differential with considering the characteristics of each actuator. The proposed IWM control law is formulated to shape the understeer characteristics during steady-state cornering and yaw rate damping characteristic during transient cornering, and the eLSD control is designed to track the reference yaw rate. Computer simulations and vehicle tests are conducted to validate the control performance of the proposed algorithm, showing significant improvements in the agility and the stability of a test vehicle without chattering issues. Additionally, the vehicle tests at a racing track confirm the enhanced limit handling performance.๋ณธ ๋…ผ๋ฌธ์€ ์ „๋ฅœ ์ธํœ ๋ชจํ„ฐ์™€ ํ›„๋ฅœ ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ ํšŒ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•œ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ํฌ๊ด„์ ์œผ๋กœ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ๋Š” ์ฃผ์š” ์—ฐ๊ตฌ ๋ฒ”์œ„๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ๋ฒ”์ฃผ๋กœ ๋‚˜๋‰  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ „๋ฅœ ์ธํœ ๋ชจํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ฐœ๋ณ„์ ์ธ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด์ด๊ณ , ๋‘ ๋ฒˆ์งธ๋Š” ์ „๋ฅœ ์ธํœ ๋ชจํ„ฐ ๋ฐ ํ›„๋ฅœ ์ „์ž์‹ ์ฐจ๋™์ œํ•œ์žฅ์น˜๋ฅผ ๋ชจ๋‘ ์ด์šฉํ•œ ์ „ํ›„๋ฅœ ํ†ตํ•ฉ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ํ›„๋ฅœ ๊ตฌ๋™ ์ฐจ๋Ÿ‰ ๋‚ด์—์„œ ๋‘ ๊ฐœ์˜ ์ „๋ฅœ ์ธํœ  ๋ชจํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์„ ํšŒ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ธํœ  ๋ชจํ„ฐ ๋…๋ฆฝ ์ œ์–ด๋Š” ์ •์ƒ์ƒํƒœ ์ œ์–ด ์ž…๋ ฅ๊ณผ ๊ณผ๋„์‘๋‹ต ์ƒํƒœ ์ œ์–ด ์ž…๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ •์ƒ์ƒํƒœ ์ œ์–ด ์ž…๋ ฅ์€ ์ฐจ๋Ÿ‰์˜ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ตฌ๋ฐฐ๋ฅผ ๋ณ€ํ˜•ํ•˜๋ฉด์„œ ์ •์ƒ์ƒํƒœ ์„ ํšŒ ๋ฐ˜์‘์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์•ˆ๋˜์—ˆ๊ณ , ๊ณผ๋„์‘๋‹ต ์ƒํƒœ ์ œ์–ด ์ž…๋ ฅ์€ ์ฐจ๋Ÿ‰์˜ ์š”๋Œํ•‘ ๊ณ„์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ์ฐจ๋Ÿ‰์˜ ํšก๋ฐฉํ–ฅ ์•ˆ์ •์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์ฐจ๋Ÿ‰ ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์—์„œ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด, ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ œ์–ด ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๋ฉฐ ์ฐจ๋Ÿ‰์˜ ์„ ํšŒ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ฐ ์—‘์ธ„์—์ดํ„ฐ์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๊ณ  ๊ณ ์† ์ฃผํ–‰ ์ƒํ™ฉ์—์„œ์˜ ์„ ํšŒ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด, ๋‘ ๊ฐœ์˜ ์ „๋ฅœ ์ธํœ  ๋ชจํ„ฐ์™€ ํ›„๋ฅœ์˜ ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜์˜ ํ†ตํ•ฉ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋‘ ๊ฐœ์˜ ์ „๋ฅœ ์ธํœ  ๋ชจํ„ฐ๋Š” ํ”ผ๋“œํฌ์›Œ๋“œ ์ œ์–ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ ํšŒ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์–ด๋˜์—ˆ๊ณ , ํ›„๋ฅœ์˜ ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜๋Š” ์š”๋ ˆ์ดํŠธ ํ”ผ๋“œ๋ฐฑ ์ œ์–ด๋ฅผ ์œ„ํ•ด ํ™œ์šฉ๋˜์—ˆ๋‹ค. ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ๊ฐ๊ฐ€์†์„ ํฌํ•จํ•œ ๊ณต๊ฒฉ์ ์ธ ์„ ํšŒ ์ƒํ™ฉ์—์„œ ๊ฐ ์—‘์ธ„์—์ดํ„ฐ์˜ ์ œ์–ด ํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์ฐจ๋Ÿ‰ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๊ฐ€ ์ œ์–ด๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ์— ๋น„ํ•ด ํ•ธ๋“ค๋ง ํ•œ๊ณ„ ์ƒํ™ฉ์—์„œ์˜ ์„ ํšŒ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐจ๋Ÿ‰์˜ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ทธ๋ ˆ๋””์–ธํŠธ์™€ ์š”๋ ˆ์ดํŠธ ๋Œํ•‘ ํŠน์„ฑ์— ๊ธฐ๋ฐ˜ํ•œ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ธํœ ๋ชจํ„ฐ์™€ ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜์˜ ๊ฐ ์—‘์ธ„์—์ดํ„ฐ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ธํœ ๋ชจํ„ฐ์™€ ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜์˜ ํ†ตํ•ฉ ์ œ์–ด์— ๋Œ€ํ•ด ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์ธํœ ๋ชจํ„ฐ ์ œ์–ด๊ธฐ๋Š” ์ •์ƒ์ƒํƒœ ์„ ํšŒ์—์„œ์˜ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ทธ๋ ˆ๋””์–ธํŠธ์™€ ๊ณผ๋„์‘๋‹ต์ƒํƒœ ์„ ํšŒ์—์„œ์˜ ์š”๋ ˆ์ดํŠธ ๋Œํ•‘ ํŠน์„ฑ์„ ๋ณ€ํ˜•ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์•ˆ๋˜์—ˆ๊ณ , ์ „์ž์‹ ์ฐจ๋™ ์ œํ•œ ์žฅ์น˜ ์ œ์–ด๋Š” ๋ชฉํ‘œ ์š”๋ ˆ์ดํŠธ๋ฅผ ์ถ”์ข…ํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ฐจ ์‹คํ—˜์ด ์ง„ํ–‰๋˜์—ˆ๊ณ , ์ฐจ๋Ÿ‰์˜ ์„ ํšŒ ์•ˆ์ •์„ฑ๊ณผ ๋ฏผ์ฒฉ์„ฑ์ด ์ฑ„ํ„ฐ๋ง ๋ฌธ์ œ์—†์ด ํ™•์—ฐํžˆ ๊ฐœ์„ ๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ๋ ˆ์ด์‹ฑ ํŠธ๋ž™์—์„œ์˜ ์‹ค์ฐจ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฐœ์„ ๋œ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ ๋˜ํ•œ ์ œ์‹œ๋˜์—ˆ๋‹ค.Chapter 1. Introduction 1 1.1. Background and motivation 1 1.2. Previous research on considering tire characteristics 4 1.2. Previous research on vehicle controller design 8 1.3. Thesis objectives 13 1.4. Thesis outline 15 Chapter 2. Vehicle Control System 17 2.1. Vehicle chassis system 17 2.2. Vehicle tire-road interactions 22 2.3. Tire characteristics at the limits of handling 35 Chapter 3. Torque Vectoring Control with In-Wheel Motors (IWMs) 49 3.1. Upper level controller 53 3.1.1. Control strategies for steady-state response 54 3.1.2. Control strategies for transient response 57 3.1.3. Analysis on the closed-loop system with proposed controller 60 3.2. Lower level controller 65 3.2.1. Actuator characteristics of in-wheel motors 65 3.2.2. Torque inputs for yaw moment generation 66 Chapter 4. Integrated Control of Two Front In-Wheel Motors (IWMs) and Rear-Axle Electronic Limited Slip Differential (eLSD) 68 4.1. Upper level controller 71 4.1.1. Analysis on actuator characteristics and vehicle responses 71 4.1.2. Feedforward control using in-wheel motors 79 4.1.3. Feedback control using electronic limited slip differential 80 4.2. Lower level controller 82 4.2.1. Transforming the desired yaw moments to the torque command 82 4.2.2. Saturating the torque inputs considering the actuator and tire friction limit 83 4.2.3. Transferring the eLSD clutch torque in the desired direction 84 Chapter 5. Simulation Results 87 5.1. Effect of IWM control on vehicle motion 87 5.2. Effect of IWM/eLSD integrated control 98 Chapter 6. Vehicle Test Results 108 6.1. Test results for IWM control 108 6.2. Test results for integrated control of IWM and eLSD 116 Chapter 7. Conclusion 121 Appendix A. Integrated control of two front in-wheel motors and rear wheel steering 123 A.1. Prediction model for vehicle motion 124 A.2. Controller design 128 A.3. Simulation results 131 Bibliography 138 Abstract in Korean 148๋ฐ•

    State Estimation and Control of Active Systems for High Performance Vehicles

    Get PDF
    In recent days, mechatronic systems are getting integrated in vehicles ever more. While stability and safety systems such as ABS, ESP have pioneered the introduction of such systems in the modern day car, the lowered cost and increased computational power of electronics along with electrification of the various components has fuelled an increase in this trend. The availability of chassis control systems onboard vehicles has been widely studied and exploited for augmenting vehicle stability. At the same time, for the context of high performance and luxury vehicles, chassis control systems offer a vast and untapped potential to improve vehicle handling and the driveability experience. As performance objectives have not been studied very well in the literature, this thesis deals with the problem of control system design for various active chassis control systems with performance as the main objective. A precursor to the control system design is having complete knowledge of the vehicle states, including those such as the vehicle sideslip angle and the vehicle mass, that cannot be measured directly. The first half of the thesis is dedicated to the development of algorithms for the estimation of these variables in a robust manner. While several estimation methods do exist in the literature, there is still some scope of research in terms of the development of estimation algorithms that have been validated on a test track with extensive experimental testing without using research grade sensors. The advantage of the presented algorithms is that they work only with CAN-BUS data coming from the standard vehicle ESP sensor cluster. The algorithms are tested rigorously under all possible conditions to guarantee robustness. The second half of the thesis deals with the design of the control objectives and controllers for the control of an active rear wheel steering system for a high performance supercar and a torque vectoring algorithm for an electric racing vehicle. With the use of an active rear wheel steering, the driverโ€™s confidence in the vehicle improves due a reduction in the lag between the lateral acceleration and the yaw rate, which allows drivers to push the vehicle harder on a racetrack without losing confidence in it. The torque vectoring algorithm controls the motor torques to improve the tire utilisation and increases the net lateral force, which allows professional drivers to set faster lap times

    Integration of Active Systems for a Global Chassis Control Design

    Get PDF
    Vehicle chassis control active systems (braking, suspension, steering and driveline), from the first ABS/ESC control unit to the current advanced driver assistance systems (ADAS), are progressively revolutionizing the way of thinking and designing the vehicle, improving its interaction with the surrounding world (V2V and V2X) and have led to excellent results in terms of safety and performances (dynamic behavior and drivability). They are usually referred as intelligent vehicles due to a software/hardware architecture able to assist the driver for achieving specific safety margin and/or optimal vehicle dynamic behavior. Moreover, industrial and academic communities agree that these technologies will progress till the diffusion of the so called autonomous cars which are able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles are already available in Europe, Japan and United States and several solutions have been proposed for smart cities and/or small public area like university campus. In this context, the present research activity aims at improving safety, comfort and performances through the integration of global active chassis control: the purposes are to study, design and implement control strategies to support the driver for achieving one or more final target among safety, comfort and performance. Specifically, the vehicle subsystems that are involved in the present research for active systems development are the steering system, the propulsion system, the transmission and the braking system. The thesis is divided into three sections related to different applications of active systems that, starting from a robust theoretical design procedure, are strongly supported by objective experimental results obtained fromHardware In the Loop (HIL) test rigs and/or proving ground testing sessions. The first chapter is dedicated to one of the most discussed topic about autonomous driving due to its impact from the social point of view and in terms of human error mitigation when the driver is not prompt enough. In particular, it is here analyzed the automated steering control which is already implemented for automatic parking and that could represent also a key element for conventional passenger car in emergency situation where a braking intervention is not enough for avoiding an imminent collision. The activity is focused on different steering controllers design and their implementation for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced for future implementations. Three different controllers, Proportional Derivative (PD), PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a reference trajectory that can be modified in real-time for obstacle avoidance purposes. Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of automated steering during cornering maneuvers, relevant fromthe collision avoidance point of view. Path tracking control and its obstacle avoidance enhancement is also shown during experimental tests executed in a proving ground through its implementation for an autonomous vehicle demonstrator. Even if the activity is presented for an autonomous vehicle, the active control can be developed also for a conventional vehicle equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures. The second chapter describes a Torque Vectoring (TV) control strategy, applied to a Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel), that aims to optimize the lateral vehicle behavior by a proper electric motor torque regulation. A yaw rate controller is presented and designed in order to achieve a desired steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle controller is also integrated to preserve vehicle stability during emergency situations (safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw rate and concurrent yaw rate/sideslip angle control techniques also comparing their advantages and weakness points. The TV strategy is implemented and calibrated on a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane change and sequence of step steers) thus proving the efficacy of the proposed controller and the safety contribution guaranteed by the sideslip control. The TV could be also applied for internal combustion engine driven vehicles by installing specific torque vectoring differentials, able to distribute the torque generated by the engine to each wheel independently. The TV strategy evaluated in the second chapter can be influenced by the presence of a transmission between themotor (or the engine) and wheels (where the torque control is supposed to be designed): in addition to the mechanical delay introduced by transmission components, the presence of gears backlashes can provoke undesired noises and vibrations in presence of torque sign inversion. The last chapter is thus related to a new method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This is achieved in a new way by integrating the powertrain control with the braking system control, which are historically and conventionally analyzed and designed separately. It is showed that a torsional preload effect can be obtained on transmission components by increasing the wheel torque and concurrently applying a braking wheel torque. For this reason, a pressure following controller is presented and validated through a Hardware In the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring the desired preload effect and noises reduction. Experimental results demonstrates the efficacy of the controller, also opening new scenario for global chassis control design. Finally, some general conclusions are drawn and possible future activities and recommendations are proposed for further investigations or improvements with respect to the results shown in the present work

    Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer

    Get PDF
    A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental settin
    • โ€ฆ
    corecore