4,829 research outputs found

    Adaptive performance optimization for large-scale traffic control systems

    Get PDF
    In this paper, we study the problem of optimizing (fine-tuning) the design parameters of large-scale traffic control systems that are composed of distinct and mutually interacting modules. This problem usually requires a considerable amount of human effort and time to devote to the successful deployment and operation of traffic control systems due to the lack of an automated well-established systematic approach. We investigate the adaptive fine-tuning algorithm for determining the set of design parameters of two distinct mutually interacting modules of the traffic-responsive urban control (TUC) strategy, i.e., split and cycle, for the large-scale urban road network of the city of Chania, Greece. Simulation results are presented, demonstrating that the network performance in terms of the daily mean speed, which is attained by the proposed adaptive optimization methodology, is significantly better than the original TUC system in the case in which the aforementioned design parameters are manually fine-tuned to virtual perfection by the system operators

    Switching Trackers for Effective Sensor Fusion in Advanced Driver Assistance Systems

    Get PDF
    Modern cars utilise Advanced Driver Assistance Systems (ADAS) in several ways. In ADAS, the use of multiple sensors to gauge the environment surrounding the ego-vehicle offers numerous advantages, as fusing information from more than one sensor helps to provide highly reliable and error-free data. The fused data is typically then fed to a tracker algorithm, which helps to reduce noise and compensate for situations when received sensor data is temporarily absent or spurious, or to counter the offhand false positives and negatives. The performances of these constituent algorithms vary vastly under different scenarios. In this paper, we focus on the variation in the performance of tracker algorithms in sensor fusion due to the alteration in external conditions in different scenarios, and on the methods for countering that variation. We introduce a sensor fusion architecture, where the tracking algorithm is spontaneously switched to achieve the utmost performance under all scenarios. By employing a Real-time Traffic Density Estimation (RTDE) technique, we may understand whether the ego-vehicle is currently in dense or sparse traffic conditions. A highly dense traffic (or congested traffic) condition would mean that external circumstances are non-linear; similarly, sparse traffic conditions would mean that the probability of linear external conditions would be higher. We also employ a Traffic Sign Recognition (TSR) algorithm, which is able to monitor for construction zones, junctions, schools, and pedestrian crossings, thereby identifying areas which have a high probability of spontaneous, on-road occurrences. Based on the results received from the RTDE and TSR algorithms, we construct a logic which switches the tracker of the fusion architecture between an Extended Kalman Filter (for linear external scenarios) and an Unscented Kalman Filter (for non-linear scenarios). This ensures that the fusion model always uses the tracker that is best suited for its current needs, thereby yielding consistent accuracy across multiple external scenarios, compared to the fusion models that employ a fixed single tracker

    A Distributed and Privacy-Aware Speed Advisory System for Optimising Conventional and Electric Vehicles Networks

    Get PDF
    One of the key ideas to make Intelligent Transportation Systems (ITS) work effectively is to deploy advanced communication and cooperative control technologies among the vehicles and road infrastructures. In this spirit, we propose a consensus-based distributed speed advisory system that optimally determines a recommended common speed for a given area in order that the group emissions, or group battery consumptions, are minimised. Our algorithms achieve this in a privacy-aware manner; namely, individual vehicles do not reveal in-vehicle information to other vehicles or to infrastructure. A mobility simulator is used to illustrate the efficacy of the algorithm, and hardware-in-the-loop tests involving a real vehicle are given to illustrate user acceptability and ease of the deployment.Comment: This is a journal paper based on the conference paper "Highway speed limits, optimised consensus, and intelligent speed advisory systems" presented at the 3rd International Conference on Connected Vehicles and Expo (ICCVE 2014) in November 2014. This is the revised version of the paper recently submitted to the IEEE Transactions on Intelligent Transportation Systems for publicatio

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I
    corecore