223 research outputs found

    Global tracking for an underactuated ships with bounded feedback controllers

    Get PDF
    In this paper, we present a global state feedback tracking controller for underactuated surface marine vessels. This controller is based on saturated control inputs and, under an assumption on the reference trajectory, the closed-loop system is globally asymptotically stable (GAS). It has been designed using a 3 Degree of Freedom benchmark vessel model used in marine engineering. The main feature of our controller is the boundedness of the control inputs, which is an essential consideration in real life. In absence of velocity measurements, the controller works and remains stable with observers and can be used as an output feedback controller. Simulation results demonstrate the effectiveness of this method

    Nonlinear control of a class of underactuated systems

    Get PDF
    A theoretical framework is established for the dynamics and control of underactuated systems, defined as systems which have fewer inputs than degrees of freedom. Control system formulation of underactuated systems is addressed and the class of second-order nonholonomic systems is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the result

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    Ship Course Keeping Using Different Sliding Mode Controllers

    Get PDF
    This study addresses three sliding mode heading controllers for dealing with uncertain wave disturbances. A nonlinear steering model is derived, and the feedback linearization method is chosen to simplify the nonlinear system in this study. The adaptive method and disturbance observer technique are proposed for course keeping and ensuring robust performance of the time varying wave moment and actuator dynamics. Finally, the simulation results on a navy ship illustrate the effectiveness of the presented control algorithms for course keeping

    Nonlinear Control of a Class of Underactuated Systems

    Get PDF

    Nonlinear Control of a Class of Underactuated Systems

    Get PDF

    Linear active disturbance rejection control of the hovercraft vessel model

    Full text link
    A linearizing robust dynamic output feedback control scheme is proposed for earth coordinate position variables trajectory tracking tasks in a hovercraft vessel model. The controller design is carried out using only position and orientation measurements. A highly simplified model obtained from flatness considerations is proposed which vastly simplifies the controller design task. Only the order of integration of the input-to-flat output subsystems, along with the associated input matrix gain, is retained in the simplified model. All the unknown additive nonlinearities and exogenous perturbations are lumped into an absolutely bounded, unstructured, vector of time signals whose components may be locally on-line estimated by means of a high gain Generalized Proportional Integral (GPI) observer. GPI observers are the dual counterpart of GPI controllers providing accurate simultaneous estimation of each flat output associated phase variables and of the exogenous and endogenous perturbation inputs. These observers exhibit remarkably convenient self-updating internal models of the unknown disturbance input vector components. These two key pieces of on-line information are used in the proposed feedback controller to conform an active disturbance rejection, or disturbance accommodation, control scheme. Simulation results validate the effectiveness of the proposed design method
    corecore