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Abstract- A theoretical framework is estab- 
lished for the dynamics and control of underac- 
tuated systems, defined as systems which have 
fewer inputs than degrees of freedom. Control 
system formulation of underactuated systems is 
addressed and the class of second-order nonholo- 
nomic systems is identified. Controllability and 
stabilizability results are derived for this class of 
underactuated systems. Examples are included 
to illustrate the results. 

1. Introduction 
In the past few years, there has been a consider- 

able amount of interest in the control of nonholonomic 
systems. These studies were primarily limited to first- 
order nonholonomic systems, in particular, systems sat- 
isfying classical nonholonomic velocity relations (see e.g. 
[2],[6] and references therein). In this paper the ideas 
in [2] are extended to second-order nonholonomic sys- 
tems, i.e. systems that satisfy nonintegrable relations 
involving not only generalized coordinates and veloci- 
ties but also the generalized accelerations. 

Second-order nonholonomic systems can arise by im- 
position of certain design conditions on the allowable 
motions of redundant manipulators. Such systems can 
also arise as models of underactuated systems, defined 
as systems which have fewer inputs than degrees of 
freedom. While many interesting techniques and re- 
sults have been presented for underactuated systems, 
the control of these systems still remains an open prob- 
lem. Important issues are: how can nonlinear control 
models be formulated for such systems; what are their 
controllability and stabilizability properties; how can 
open-loop and closed-loop control problems be solved. 
The first two issues are addressed in this paper. 

The organization of this paper is as follows. In Sec- 
tion 2, formulation of the problem is given. Section 3 
derives certain fundamental controllability and stabiliz- 
ability properties. Examples are considered in Section 
4. Finally, Section 5 contains a summary of the paper. 

2. Models of Underactuated Systems 
Consider first a dynamic system with configuration 

manifold Q. Let (4, q )  = (ql , .  . . , qn, q', . . . , 4") denote 
local coordinates on M = TQ. We refer to q ,  q ,  and q 
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as the vectors of generalized coordinates, generalized 
velocities and generalized accelerations, respectively. As- 
sume that the system is under the action of m < n in- 
dependent control forces and/or torques, i.e. there are 
fewer control inputs than degrees of freedom. Also let 
U E R" denote the vector of control variables. We par- 
tition the set of generalized coordinates q = (ql,.  . . , qn) 
as q = (41, q z ) ,  q1 E Rm, q2 E RnPm. Without loss 
of generality, we assume that the actuated degrees of 
freedom are represented by the elements of q1 and the 
unactuated degrees of freedom are represented by the 
elements of q2. Lagrange's equations can then be writ- 
ten as 

M11(q)G1 + M12(Q)ii2 + F1(q, 4 )  = B ( d u  , 
Mzl(q)iil + Mzz(q)G2 + F2(q14)  = 0 , 

(1) 

(2) 

where B(q) E RmX" is invertible for all q E Q, Fl(q, q )  
E Rm, Fz(q,4) E RnPm, and Mt3(q) ,  i , j  = 1 , 2 ,  rep- 
resent components of an n x n inertia matrix which is 
symmetric and positive definite for all q E Q. Through- 
out this paper all functions are assumed to be smooth 
(C") functions defined on M. 

Following Spong [15], we may solve for q z  as 

G2 = -MG1(d[M21(q)O1 + Fz(q,4)1 

a(q)iil + P(4,4) = B(q)u. 7 

. i i (q)  = M11(q) - M12(q)~ii1(q)m&) , 
F(q ,Q)  = F1(q,4.) - M12(q)Mii1(q)F2(qr(1) . 

and substitute into (1) to obtain 

where 

Consequently, using the partial feedback linearizing 
controller 

the equations (1)-(2) can be rewritten as 

q 1 = v .  

where 

(3) 

(4) 
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Equations (3)-(4) have a special triangular or cascade 
form that appropriately captures the important attribu 
tes of underactuated mechanical systems. Equation (4) 
defines n-m relations involving generalized coordinates 
as well as their first and second time derivatives. If 
these relations do not admit any nontrivial integral, i.e. 
any smooth function h(ql  q, t )  such that Q = 0 along 
the solutions, then these relations may be interpreted 
as n - m second-order nonholonomic constraints [13]. 
As will be seen in the rsubsequent development, control- 
lability and stabilizability properties of underactuated 
mechanical systems are closely related to this property. 
Hence, it is crucial to identify underactuated mechani- 
cal systems where the relations defined by equation (4) 
are second-order nonholonomic. 

Let I k  denote the set { 1,. . . , k } .  Define the n - m- 
covector fields 

Tn 

j=1 

on M x R so that the n - m relations given by the 
equation (4) can be rewritten as wi = 0, i E In-m. 
Augment the above covector fields with 

6' = dq1,j - q1,jdt , j E I ,  , 

I;fm+l= &2,1 - Q2,ldt i 1 E In-n 1 

and let R c T*(M x 13.) denote the codistribution 

R = span{wi, ~ j ,  i E I ~ - ~ ,  j E I ~ }  . 

The annihilator of Cl, denoted R', is spanned by m + 1 
linearly independent smooth vector fields 

We present the following definition. 
Definition 1: Consider the distribution Otl and let C? 
denote its accessibility algebra, i.e. the smallest subal- 
gebra of V-(M x R) that contains TO, 7 1 , .  . . , rn. Let 
6 denote the accessibility distribution generated by the 
accessibility algebra 2.. The nonlinear control system 
(3)-(4) is said to  be completely second-order nonholo- 
nomic i f  d i m  c ( x l  t )  =: 2 n  + 1, V ( X ,  t )  E M x R. 

Previous, less general, definitions of second-order non- 
holonomic systems have been given in [1 11 , [18]. Exam- 
ples of underactuated systems that satisfy Definition 
1 include underactuated robot manipulators ([8] ,[ll]), 
underactuated marine vehicles ([12],[18]), the planar 

vertical takeoff and landing aircraft ([5],[9]), the rota- 
tional translational actuator system ([4] ,[7]), and the 
acrobot system [14]. 

In this paper it is assumed throughout that the con- 
straints (4) are (completely) second-order nonholonomic. 
In contrast to the first-order nonholonomic case, second- 
order nonholonomic relations do not reduce the dimen- 
sion of the state space. 

A particularly important class of solutions are the 
equilibrium solutions of (3)-(4) with v(t) = 0, 'dt 2 0. 
A solution is an equilibrium solution if it is a constant 
solution; note that if (q,ci) = (qelO) is an equilibrium 
solution we refer to qe as an equilibrium configuration. 
Clearly, the set of equilibrium configurations of the sys- 
tem (3)-(4) is given by 

Equations (3)-(4) can ble expressed in the usual non- 
linear control system form by defining the following 
state variables 

~ l = q l i ~ 2 = q 2 , ~ 3 = ~ 1 , ~ 4 = ~ 2 .  

Then the state equations are given by 

j.1 = 2 3  , (5) 

x 2  = x4 , ( 6 )  

x 3 = v 1  (7) 

$4 = 5(51152)21+R(51,5:3,x3,x4) . (8) 

Clearly, these state equations define a drift vector field 
f ( x )  = ( 5 3 ,  x4,0, R(x1, xg!, 5 3 ,  x4)) and control vector 
fields g i (x )  = ( O , O , e i , J i ( ~ ~ , x ~ ) ) ,  where ei denotes the 
i'th standard basis vector in R" and J i ( x l , x 2 )  denotes 
the i'th column of the matrix function J(x1, x2), for all 
i E In-ml according to the standard control system 
form 

m 

i = fb )  + c92(x)21z . (9) 
i=l 

Note that an equilibrium solution xe , corresponding 
to v = 0,  of equation (!3) has the form xy E: R", 
x; E Rn-,, where R(x7, xq, 0,O) = 0,  and xl = xz = 0,  
i.e. an equilibrium solution corresponds to a motion of 
the system for which all the configuration variables re- 
main constant. The controllability and stabilizability 
properties of the system (3)-(4) near an eqilibrium con- 
figuration qe can be obtained by studying local proper- 
ties of the system (5)-(8) near the corresponding equi- 
librium solution (x;?,  xz, 0,O). 

3. Controllability and Stabilizability 
This section develops controllability and stabilizabil- 

ity results for second-order nonholonomic systems. The 
reader is referred to [lo] and [16] for the controllability 
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concepts developed in the nonlinear control literature. 
We first demonstrate that the second-order nonholo- 

nomic system, defined by equations (3)-(4), does satisfy 
certain nonlinear controllability properties. In particu- 
lar, we show that the system is strongly accessible. 
Theorem 1: Let n-m 2 1. The second-order nonholo- 
nomic system, defined by equations (3)- (d) ,  is  strongly 
accessible. 
Proof: Since we have assumed that the system (3)- 
(4) is completely second-order nonholonomic the dis- 
tribution ft' spanned by TO, 71,  . +  . , T, satisfies the ac- 
cessibility Lie algebra rank condition at any (q ,  Q, t )  E 
M x R, i.e. 

d i m  C(z,t)  = 2 n  + 1, V ( z , t )  E M x R 

Let TM : M x R + M denote the projection onto 
M. Then, clearly r ~ e 1 - 0  = f and ~ ~ 1 7 %  = gz, i E Im. 
Let CO denote the strong accessibility algebra associated 
with f ,  91,. . . , gm, i.e. the smallest subalgebra which 
contains 91,. . . , gm and satisfies [f, XI E CO, VX E CO, 
and let CO denote the strong accessibility distribution 
generated by the strong accessibility algebra CO. Since 
we have 

dimE(z, t )  = dimCo(s) + 1 , 

it follows that 

d i m  Co(x) = 2n ,  Vx E M . 
Hence, the system (5)-(8) is strongly accessible. Con- 
sequently, the second-order nonholonomic system, de- 
fined by equations (3)-(4), is strongly accessible. 

The following result illustrates the fact that in ccr- 
tain cases a given equilibrium configuration cannot be 
asymptotically stabilized using time-invariant continu- 
ous (static or dynamic) state feedback. 
Theorem 2. Assume that R%(q,O) = 0 ,  V q  E Q, f o r  
some i E In-m. Let n - m 2 1 and let (qe,O) denote 
an  equilibrium solution. Then  the second-order non- 
holonomic system, defined by equations (3)-(4), is not 
asymptotically stabilizable to (qe,  0 )  using time-znvariant 
continuous (static or dynamic) state feedback law. 
Proof: A necessary condition for the existence of a 
time-invariant continuous (CO) asymptotically stabiliz- 
ing state feedback law for system (5)-(8) is that the 
image of the mapping 

(x,'u) ++ ( z 3 , 5 4 , ' u ,  J(Zl,Z2)'u + R ( Z l , x 2 , 5 3 r x 4 ) )  

contain some neighborhood of zero (see Brockett [3]). 
No points of the form 

( 0  0 0 E ) , t # O ,  

are in its image: it follows that the necessary con- 
dition is not satisfied. Hence system (5)-(8) cannot 
be asymptotically stabilized to (x:, xs, 0,O) by a time- 
invariant continuous (static or dynamic) state feedback 

law. Consequently, the second-order nonholonomic sys- 
tem, defined by equations (3)-(4), is not asymptotically 
stabilizable to (qe ,  0) using a time-invariant continuous 
(static or dynamic) state feedback. 

There are examples of second-order nonholonomic 
systems for which the assumption of Theorem 2 is not 
satisfied; in such cases an equilibrium solution may 
be smoothly (even linearly) stabilizable. The planar 
V/STOL problem is viewed from this perspective in [9]. 

It is well-known that strong accessibility is far from 
being sufficient for the existence of a feedback con- 
trol which asymptotically stabilizes the system at an 
equilibrium solution. In certain cases it is possible to 
prove a stronger controllability property such as small 
time local controllability (STLC) which guarantees the 
existence of a piecewise analytic feedback control for 
asymptotic stabilization in the real analytic case [17]. 
Examples are studied in Section 4 to illustrate this 
point. 

4. Examples 

Control of a Manipulator with an Unactuated Joint 

Consider the planar 3-DOF redundant manipulator 
(Figure l), moving in a horizontal plane so that gravity 
can be ignored [l]. The base body can translate and 
rotate freely in the plane. A massless arm is attached 
to the base body by an unactuated revolute joint, with 
joint angle 4. Let (z, y) denote the end-effector position 
of the manipulator and let 8 be the orientation angle of 
the base body. Also, let the base body have mass M 
and rotational inertia I, the end-effector and payload 
combination have mass m, and let 1 be the length of 
the massless arm. 

Assume that initially cj(0) = $(O) = 0. The control 
problem is to move the manipulator between any given 
initial configuration (zo, yo, eo) and final configuration 
(zf , yf ,  Of) such that there is no change in the unactu- 
ated joint angle, i.e. d ( t )  = 0, Vt 2 0. 

We use the ideas introduced previously to formulate 
the above problem as a nonlinear control problem. Let 
u = (u,,uy,u~) E R3 denote the vector of control in- 
puts applied to the base body; where (uz,uy) are the 
force inputs in the x and y direction, respectively, and 
u g  is the torque input. Setting 4 0, we obtain 

(A4 + m)? + Mlgsin 8 + Mld2 cos 8 = u, , (10) 

Note that equation (13) represents a second-order non- 
holonomic relation which implies that there is no net 
torque on the unactuated joint. This condition can be 

1684 



viewed as a design constraint. 

to select ulator dynamics. 

(14) ug = -(ux sin e - U!, cos e) . 
It is then straightforward to show that the above equa- 
tions can be equivalently written as 

The following results characterize the controllability 
and stabilizability properties of the constrained manip- 

Proposition 1. Let Me denote the equilibrium man- 
ifold and let xe E Me denote an  equilibrium solution. 
The following hold for  the manipulator dynamics de- 
scribed by  equations (20)-(25). 

1. The system is stron,gly accessible since the space 
spanned by the vectors 

In order to satisfy the above equations, it is required 

I 
M I  

5 = u 1 ,  (15) 

e = u 2 ,  
91, Q21 If1g111 If>9217 [92, If,9111, [f, [g2r [f,91111 

(16) 

(17) 

has dimension 6 at any x E M. 
2. The system is  small time locally controllable at xe y = u l t a n e ,  

since the brackets satisfy :;u#icient conditions f o r  small 
where time local controllability. 

3. There exist time-invariant piecewise analytic feed- 
U 1  = ___ ' back laws which asymptotically stabilize xe. 

M + m  4. There is no time-anvariant continuous feedback 
law which asymptotically stabilizes the closed loop to  1 

MI 
Clearly, the controllability properties given in Propo- 

lem of controlling the ma,nipulator while not exciting 

cos ,g + uy sing - M&) cos e , (18) 

up = -(u,sinB - uy cos8) . (19) xe. 

It is to check that' equations (15)-(17) satisfy sition 1 guarantee the existence of solutions to the prob 
nition 1 and hence define a second-order nonholonomic 
system* Note that now the the unactuated joint. As indicated in [Ill if there is 
to designing u1 and a torsional spring at  the unactuated joint, the above 
Once these are designed One can 'elations control problem is equivalpnt to controlling the manip- 
(18)-(19) to determine the 

problem is reduced 
for the 'Ystem (15)-(17). 

and %. ulator without energy storage in the torsional spring. 
ug can be determined from (14). 

Define the variables Control of an Underactuated Surface Vessel 
Consider the problem of controlling the Cartesian 

position and orientation O F  a surface vessel (marine ve- 
hicle) with two independent propellers as shown in Fig- 
ure 2, where ( x , y )  denotes the position of the center 
of mass of the vehicle and $ denotes the orientation 
of the vehicle [18]. Let F.  and T, denote the external 
force (along the body-fixed x-direction) and the exter- 
nal torque (about the body-fixed z-direction), respec- 
tively, which are generated by the two propellers. For 
simplicity, assume that the vehicle is neutrally buoy- 
ant. Also assume that the hydrodynamic damping is 
not coupled and that the damping terms of order higher 
than one are negligible. Then, the dynamic equations 
of motion can be written as 

m(2 cos $ + y sin $) +c, (5 cos $ +$ sin $) = F, , (26) 

x1 = x, x2 = e, x3 = x4 = i, x5 = e, X 6  = y l 

so that the state equations are given by 

x1 = 5 4  1 

x p  = 5 5  , 

k3 = 2 6  , 

x 4  = U1 , 

xs = U2 , 
x6 = u1 tan22 . 
Note that the state space is M = R x (-r/2,r/2) x 
R x R3. The drift and control vector fields on M are 
given by 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

I q + C z $ = T z  1 (27) 

m( -5 sin $ + y cos $) +cy( --i sin $ + y cos $) = 0 , (28) 

where m and I denote the mass and the rotational in- 
axl ax2 ax3 ertia (around the body-fixed z-axis passing through the 

center of mass) of the vehicle, respectively, and G, cy 
and c, are positive constants representing the hydrody- 
namic damping coefficients. 

Clearly, the above equations can be equivalently writ- 
ten as 

a d d 
f =x4- + x5- + x 6 -  

a a a 
g1 = - + tanx2-, g2 = - . 

Note also that the set, of equilibrium solutions corre- 
sponding to U = 0 is given by 

ax4 '3x6 ax5 

M, = {X E M I X4 = Z 5  = Z 6  = O }  - 5 = u 1 ,  (29) 
1685 



4 = u 2 ,  (30) 

jj = u1 tan$ + %(ktan+ - Q) , (31) m 

where 

u1 = - (F,  cos $ - x(cy sin2 1c, + c, cos2 $) 
1 
m 

+(cy - cz)$ sin $ cos 111) , (32) 

(33) 
1 
I U2 = -(Tz - cz+) . 

It is easy to check that equations (29)-(31) satisfy Defi- 
nition 1 and hence define a second-order nonholonomic 
system. 

Define the variables 

21 = 2,  2 2  = $ 3  x3 = y ,  2 4  = k ,  x5 = '$, 56 == $ 

so that the state equations are given by 

i l  = x 4  , (34) 

xz = x5 , (35) 

$3 = 26 , (36) 

x 4  = U1 , (37) 

x5 = U2 , (38) 

(39) 
cy j.6 = u1 tan22 + -(x4 tanxa - 2 6 )  . m 

Note that the state space is M = R x (-.rr/Z,n/2) x 
R x R3. The drift and control vector fields on M are 
given by 

Note also that the set of equilibrium solutions corre- 
sponding to U = 0 is given by 

Me = {X E M 1 x 4  = X5 = X 6  = O }  . 
The following results characterize the controllability 

and stabilizability properties of the underactuated ve- 
hicle dynamics. 
Proposition 2. Let Me denote the equilibrium man- 
ifold and let xe E Me denote a n  equilibrium solution. 
The following hold for the vehicle dynamics described 
by equations (34)-(39). 

I .  The  system is strongly accessible since the space 
spanned by the vectors 

91, Q2, [flGJlI, [f,g21, [92> [f,9111, [f, 1921 [flL71111 

has dimension 6 at any x E M. 

2. The system i s  small t ime locally controllable at xe 
since the brackets satisfy suficient conditions for small 
t ime local controllability. 

3. There exist time-invariant piecewise analytic feed- 
back laws which asymptotically stabilize xe. 

4. There is  no  time-invariant continuous feedback 
law which asymptotically stabilizes the closed loop to  
xe. 

Time-invariant discontinuous feedback control laws 
have been developed for this problem in [12], based on 
the above theoretical results. 

5 .  Conclusions 
A theoretical framework has been presented for the 

dynamics and control of second-order nonholonomic sys- 
tems. In particular, a nonlinear control system for- 
mulation has been introduced and certain controllabil- 
ity and stabilizability properties have been analyzed. 
These fundamental properties should provide a foun- 
dation for further research in this area. 

We argue that identification of specific nonlinear con- 
trol systems as second-order nonholonomic systems is a 
useful categorization. Second-order nonholonomic sys- 
tems arise as models for a large class of underactuated 
mechanical systems, and study of this class of nonlinear 
control systems will necessarily provide insight into the 
challenging problem of controlling under actuated me- 
chanical systems. The controllability and stabilizability 
properties developed in this paper are readily applica- 
ble to such control problems, as shown by the examples 
of underactuated systems considered previously in the 
paper. 

In addition, we believe that motion planning algo- 
rithms and feedback stabilization schemes can be de- 
veloped for the class of second order nonholonomic sys- 
tems, just as such developments have been made for 
first-order nonholonomic systems [6]. Specific feedback 
stabilization schemes have recently been developed for 
the control of an underactuated surface vessel [12] and 
for hover control of an V/STOL aircraft [9]. In the for- 
mer problem, a time-invariant discontinuous feedback 
law is developed based on a nonsmooth state transfor- 
mation. In the latter problem, a time-invariant discon- 
tinuous feedback law is developed based on introduc- 
tion of a piecewise constant switching signal. These 
particular feedback stabilization approaches, and other 
approaches that have been introduced for first-order 
nonholonomic systems, can perhaps be extended to the 
class of second-order nonholonomic systems. These ex- 
tensions are not direct, but the results in ([9], [12]) are 
encouraging. 
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Figure 2: Model of a Surface Vessel. 
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