1,544,605 research outputs found

    Robust Mechanism Design

    Get PDF
    The mechanism design literature assumes too much common knowledge of the environment among the players and planner. We relax this assumption by studying implementation on richer type spaces. We ask when ex post implementation is equivalent to interim (or Bayesian) implementation for all possible type spaces. The equivalence holds in the case of separable environments; examples of separable environments arise (1) when the planner is implementing a social choice function (not correspondence); and (2) in a quasilinear environment with no restrictions on transfers. The equivalence fails in general, including in some quasilinear environments with budget balance. In private value environments, ex post implementation is equivalent to dominant strategies implementation. The private value versions of our results offer new insights into the relation between dominant strategy implementation and Bayesian implementation.Mechanism design, Common knowledge, Universal type space, Interim equilibrium, Ex-post equilibrium, Dominant strategies

    Robust Multi-Cellular Developmental Design

    Get PDF
    This paper introduces a continuous model for Multi-cellular Developmental Design. The cells are fixed on a 2D grid and exchange "chemicals" with their neighbors during the growth process. The quantity of chemicals that a cell produces, as well as the differentiation value of the cell in the phenotype, are controlled by a Neural Network (the genotype) that takes as inputs the chemicals produced by the neighboring cells at the previous time step. In the proposed model, the number of iterations of the growth process is not pre-determined, but emerges during evolution: only organisms for which the growth process stabilizes give a phenotype (the stable state), others are declared nonviable. The optimization of the controller is done using the NEAT algorithm, that optimizes both the topology and the weights of the Neural Networks. Though each cell only receives local information from its neighbors, the experimental results of the proposed approach on the 'flags' problems (the phenotype must match a given 2D pattern) are almost as good as those of a direct regression approach using the same model with global information. Moreover, the resulting multi-cellular organisms exhibit almost perfect self-healing characteristics

    Design of robust control for uncertain fuzzy quadruple-tank systems with time-varying delays

    Get PDF
    Producción CientíficaThe robust H∞ observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov–Krasovskii functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore, by employing the L2 performance index, the adverse effects of persistent bounded disturbances is largely avoided. The proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states. Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and robustness that outperforms previous approaches.Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Development of a variance prioritized multiresponse robust design framework for quality improvement

    Get PDF
    Robust design is a well-known quality improvement method that focuses on building quality into the design of products and services. Yet, most well established robust design models only consider a single performance measure and their prioritization schemes do not always address the inherent goal of robust design. This paper aims to propose a new robust design method for multiple quality characteristics where the goal is to first reduce the variability of the system under investigation and then attempt to locate the mean at the desired target value. The paper investigates the use of a response surface approach and a sequential optimization strategy to create a flexible and structured method for modeling multiresponse problems in the context of robust design. Nonlinear programming is used as an optimization tool. The proposed methodology is demonstrated through a numerical example. The results obtained from this example are compared to that of the traditional robust design method. For comparison purposes, the traditional robust design optimization models are reformulated within the nonlinear programming framework developed here. The proposed methodology provides enhanced optimal robust design solutions consistently. This paper is perhaps the first study on the prioritized response robust design with the consideration of multiple quality characteristics. The findings and key observations of this paper will be of significant value to the quality and reliability engineering/management community

    Robust observer design under measurement noise

    Get PDF
    We prove new results on robust observer design for systems with noisy measurement and bounded trajectories. A state observer is designed by dominating the incrementally homogeneous nonlinearities of the observation error system with its linear approximation, while gain adaptation and incremental observability guarantee an asymptotic upper bound for the estimation error depending on the limsup of the norm of the measuremen noise. The gain adaptation is implemented as the output of a stable filter using the squared norm of the measured output estimation error and the mismatch between each estimate and its saturated value

    Development of an experiment-based robust design paradigm for multiple quality characteristics using physical programming

    Get PDF
    The well-known quality improvement methodology, robust design, is a powerful and cost-effective technique for building quality into the design of products and processes. Although several approaches to robust design have been proposed in the literature, little attention has been given to the development of a flexible robust design model. Specifically, flexibility is needed in order to consider multiple quality characteristics simultaneously, just as customers do when judging products, and to capture design preferences with a reasonable degree of accuracy. Physical programming, a relatively new optimization technique, is an effective tool that can be used to transform design preferences into specific weighted objectives. In this paper, we extend the basic concept of physical programming to robust design by establishing the links of experimental design and response surface methodology to address designers’ preferences in a multiresponse robust design paradigm. A numerical example is used to show the proposed procedure and the results obtained are validated through a sensitivity study

    Robust fuzzy PSS design using ABC

    Get PDF
    This paper presents an Artificial Bee Colony (ABC) algorithm to tune optimal rule-base of a Fuzzy Power System Stabilizer (FPSS) which leads to damp low frequency oscillation following disturbances in power systems. Thus, extraction of an appropriate set of rules or selection of an optimal set of rules from the set of possible rules is an important and essential step toward the design of any successful fuzzy logic controller. Consequently, in this paper, an ABC based rule generation method is proposed for automated fuzzy PSS design to improve power system stability and reduce the design effort. The effectiveness of the proposed method is demonstrated on a 3-machine 9-bus standard power system in comparison with the Genetic Algorithm based tuned FPSS under different loading condition through ITAE performance indices

    Robust Mechanism Design: An Introduction

    Get PDF
    This essay is the introduction for a collection of papers by the two of us on "Robust Mechanism Design" to be published by World Scientific Publishing. The appendix of this essay lists the chapters of the book. The objective of this introductory essay is to provide the reader with an overview of the research agenda pursued in the collected papers. The introduction selectively presents the main results of the papers, and attempts to illustrate many of them in terms of a common and canonical example, the single unit auction with interdependent values. In addition, we include an extended discussion about the role of alternative assumptions about type spaces in our work and the literature, in order to explain the common logic of the informational robustness approach that unifies the work in this volume.Mechanism design, Robust mechanism design, Common knowledge, Universal type space, Interim equilibrium, Ex post equilibrium, Dominant strategies, Rationalizability, Partial implementation, Full implementation, Robust implementation
    • …
    corecore